Discrete Comput Geom (2008) 39: 656-677
DOI 10.1007/500454-007-9046-6 & OpenAccess

Efficient Algorithms for Maximum Regression Depth

Marc van Kreveld - Joseph S.B. Mitchell -
Peter Rousseeuw - Micha Sharir - Jack Snoeyink -
Bettina Speckmann

Received: 5 September 2005 / Revised: 3 December 2007 /
Accepted: 3 December 2007 / Published online: 21 December 2007
© The Author(s) 2007

A preliminary version of this paper appeared in the proceedings of the 15th Annual ACM
Symposium on Computational Geometry (1999)

M. van Kreveld partially funded by the Netherlands Organization for Scientific Research (NWO)
under FOCUS/BRICKS grant number 642.065.503.

J.S.B. Mitchell’s research largely conducted while the author was a Fulbright Research Scholar
at Tel Aviv University. The author is partially supported by NSF (CCR-9504192,
CCR-9732220), Boeing, Bridgeport Machines, Sandia, Seagull Technology, and Sun
Microsystems.

M. Sharir supported by NSF Grants CCR-97-32101 and CCR-94-24398, by grants from the
U.S.—Israeli Binational Science Foundation, the G.I.F., the German-Israeli Foundation for
Scientific Research and Development, and the ESPRIT IV LTR project No. 21957 (CGAL), and
by the Hermann Minkowski—MINERVA Center for Geometry at Tel Aviv University.

J. Snoeyink supported in part by grants from NSERC, the Killam Foundation, and CIES while at
the University of British Columbia.

M. van Kreveld ()

Department of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands

e-mail: marc@cs.uu.nl

J.S.B. Mitchell
Department of Applied Mathematics and Statistics, SUNY Stony Brook, Stony Brook, USA
e-mail: jsbm@ams.sunysb.edu

P. Rousseeuw

Department of Mathematics and Computer Science, Universitaire Instelling Antwerpen,
Antwerpen, Belgium

e-mail: Peter.Rousseeuw @ua.ac.be

M. Sharir
School of Computer Science, Tel Aviv University, Tel Aviv, Israel
e-mail: michas @tau.ac.il

J. Snoeyink
Department of Computer Science, UNC Chapel Hill, Chapel Hill, USA
e-mail: snoeyink@cs.unc.edu

B. Speckmann
Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, The Netherlands
e-mail: speckman@win.tue.nl

@ Springer

mailto:marc@cs.uu.nl
mailto:jsbm@ams.sunysb.edu
mailto:Peter.Rousseeuw@ua.ac.be
mailto:michas@tau.ac.il
mailto:snoeyink@cs.unc.edu
mailto:speckman@win.tue.nl

Discrete Comput Geom (2008) 39: 656-677 657

Abstract We investigate algorithmic questions that arise in the statistical problem
of computing lines or hyperplanes of maximum regression depth among a set of n
points. We work primarily with a dual representation and find points of maximum
undirected depth in an arrangement of lines or hyperplanes. An O (n¢) time and
O (n“~1) space algorithm computes undirected depth of all points in d dimensions.
Properties of undirected depth lead to an O (nlog? n) time and O (n) space algorithm
for computing a point of maximum depth in two dimensions, which has been im-
proved to an O (n logn) time algorithm by Langerman and Steiger (Discrete Comput.
Geom. 30(2):299-309, 2003). Furthermore, we describe the structure of depth in the
plane and higher dimensions, leading to various other geometric and algorithmic re-
sults.

1 Introduction

The notion of the depth of a point with respect to a set of point data is important
in statistical analysis. Several proposals for depth have been made which include,
for example, Tukey depth, Oja depth, simplicial and convex-layers depth, as well
as regression depth. Because of its application to statistics the design of algorithms
for the computation of points of maximal or minimal depths (depending on the pre-
cise definition) has attracted a great deal of attention in the Computational Geometry
community in recent years. See [7, 29] and the references therein for the precise def-
initions of these depth measures and an overview of the contribution of Computation
Geometry to the computation of robust statistics.

Motivated by the study of robust regression in statistics [18, 24-28, 30, 32, 33],
Peter Rousseeuw posed the question of computing maximum regression depth in his
invited talk at the 14th ACM Symposium on Computational Geometry: Given a set P
of n points in the plane, the regression depth of a line is the minimum number of
points that must be removed from P to allow the line to rotate about a pivot point on
the line to a vertical position without ever containing a remaining point of P.” This
definition is given more generally in the next section.

A line (or hyperplane) of maximum depth has statistical properties that are desir-
able as a robust regression estimator [1, 2]. The experimental investigation of these
properties has been hampered by the inefficiency of the straightforward algorithms
for computing maximum depth. These required ® (n%) time in the plane [26] and
@(nM_1 logn) time in dimensions d > 3 [25, 28].

In the next section, we define an equivalent dual problem, computing undirected
depth in an arrangement of lines or hyperplanes. The properties of undirected depth
will lead to an O (n?) algorithm for computing regression depth for all dimensions.
In Sect. 3, we focus on arrangements in the plane and we present an algorithm to
compute a cell of maximum depth in O (nlog? n) time. Langerman and Steiger sub-
sequently improved this to O(nlogn) time, but as their algorithm is based on our
approach and lemmas, we think it is important to present our algorithm neverthe-
less. In Sect. 4, we continue the analysis of depth with algorithms to determine the

TRousseeuw also posed a combinatorial question, resolved by Amenta et al. [3], who show that for any set
of n points in RY, there exists a hyperplane with regression depth at least [n/(d + 1)].

@ Springer

658 Discrete Comput Geom (2008) 39: 656—-677

deepest vertex in an arrangement, show a connection with k-sets, and deal with depth
in degenerate arrangements. In Sect. 5, we comment on computing depth in higher
dimensions, and show how to reduce space requirements from 0 (%) to O(n?").

2 Duality and Undirected Depth in Arrangements

Although regression depth is defined for a line or hyperplane among n points, it
is easier to work with a duality transformation that maps points to hyperplanes
and vice versa. We use the duality from Edelsbrunner’s book [13]: an inversion
about the unit paraboloid x; = xl2 + x% + 4 x§_1 that maps a point p =
(p1, P2, - ... pa) to the hyperplane p? : xg =2p1x1+2paxa+- - +2pa—1Xi—1 — pa
and maps a hyperplane % : x4 = a1x1 + axxy + -+ + ag—1x4—1 + b to the point
hP = (a1/2,a2/2,...,a4-1/2, —b). This duality preserves point/line incidence and
above/below relationships. Note that the duality mapping will neither accept nor pro-
duce vertical hyperplanes, which have equations that do not involve the variable x,.

All rotations of a hyperplane & can be generated as follows. Choose a set Q of d
affinely independent points whose affine hull is /. Move one of the points go € Q by
increasing (or decreasing) its last coordinate toward infinity. If the points Q are still
taken to span &, then h rotates toward the vertical about the (d — 1)-flat spanned by
points of O\ {qo}.

The dual of a rotation is easy to interpret. The points of Q map to hyperplanes
through a common point 2”. Hyperplane go” moves parallel to itself up (or down)
the x4 axis, so the point common to all hyperplanes moves from 4? toward infinity
along a ray that is contained in the duals of the stationary points.

Given n primal points P, the number that must be removed to allow a particular
rotation are the number that are passed over by the rotation, plus the number that are
on the final vertical plane (which our rotation never reaches). This number can be
counted in the dual as the number of hyperplanes dual to points in P that are crossed
by the ray corresponding to the rotation, plus the number of hyperplanes parallel to
the ray. Therefore, for an arrangement of n hyperplanes A, we define the undirected
depth, or just depth, of a point p to be the minimum number of hyperplanes inter-
sected by some ray from p, counting parallel hyperplanes as intersecting at infinity.
Hyperplanes containing p are counted for all rays. For the rest of this paper we focus
on computing depth of a point in an arrangement of n lines or hyperplanes.

We use the notation depth(p) for the value of undirected depth. Since, for any cell
C of an arrangement, all points have the same depth, we can as well use the notation
depth(C). (In this paper, unless otherwise stated, we use the word cell to refer to a
full-dimensional cell in an arrangement.) Figure 1 shows a two-dimensional example
with labels for some cells of depth 0, 1, and 2; the maximum depth of 3 occurs at 8
vertices and two edges.

The directions for a cell C are the directions of rays that intersect depth(C) lines
or hyperplanes of the arrangement. We can call such rays witnesses that the cell has
a certain depth. We next observe three simple lemmas about depth by translating
witness rays in the arrangement of hyperplanes in R?: (1) depth of lower-dimensional
features in the arrangement can be determined from depth of adjacent d-dimensional
cells, (2) directions are disjoint for adjacent cells of the same depth, and (3) directions
determining depth are inherited from adjacent cells of lower depth.

@ Springer

Discrete Comput Geom (2008) 39: 656-677 659

Fig. 1 Arrangement with cells
of depth 0 (unbounded), 1
(shaded), and 2 (unshaded,
bounded); maximum depth of 3
occurs at the indicated eight
vertices and two edges

Lemma 1 In an arrangement of hyperplanes, let p be a point on k hyperplanes,
and let i be the minimum of the depths of cells whose closure contains p. Then
depth(p) =i +k.

Proof First we can observe that depth(p) <i + k: a ray that starts in the cell and
crosses i hyperplanes can be translated to start at p at the cost of crossing all hyper-
planes through p that it did not cross before. Second, if we take a ray not contained
in a hyperplane incident on p that witnesses depth(p) and translate its starting point
infinitesimally into the first cell entered by the ray, we can observe that there is an
adjacent cell with depth depth(p) — k, which is therefore the minimum cell depth i. [J

Lemma 2 [n an arrangement of hyperplanes, let h be a hyperplane that separates
a cell B of depth i from an adjacent cell A of depth at least i. No witness ray for B
crosses h.

Proof Let p be aray from B that crosses £, and let p’ be a translation of this ray that
begins in A. Translated ray o’ intersects the same hyperplanes as p, except for 4. But
since p’ intersects at least i hyperplanes, o intersects at least i + 1 hyperplanes and
is not a witness ray for B. U

Lemma 3 (Inheritance lemma) The directions for a cell of depth i are the union of
the directions for the adjacent cells of depthi — 1.

Proof We prove that the set of directions for a cell A with depth(A) =i contains
the union. For any adjacent cell B of depth i — 1, let ray p be a witness for B. By
Lemma 2, translating p to start in A adds at most one (and, therefore, exactly one)
intersection, and provides a witness that A inherits the direction of p.

To prove the other inclusion, take a witness ray o’ that depth(A) = i. We can
choose the start point of p’ so that p’ does not pass through any vertex of the
arrangement. By clipping o’ to start in an adjacent cell B, we obtain a witness that
depth(B) <i — 1. But the depth of B cannot be less than i — 1, since depth(A) =i and
we already know that A inherits all directions for B with only one more intersection.
Thus, the directions for A are contained in the union. O

As a corollary of Lemma 3, the depth of all points with respect to a set of hy-
perplanes can be computed by constructing the arrangement of hyperplanes [14, 15]
and labeling cells in a breadth-first search. The unbounded cells are labeled with their

@ Springer

660 Discrete Comput Geom (2008) 39: 656—-677

depth zero. Then, fori =1, 2, ..., all cells with label i — 1 cause their adjacent, unla-
beled cells to be labeled i. Finally, lower-dimensional cells can be labeled according
to Lemma 1.

Corollary 4 For n hyperplanes in R?, the depths of all cells, and thus the maxi-
mum depth too, can be computed in O(n?) time by building the arrangement and
traversing the graph of adjacent cells.

3 An Algorithm for Maximum Depth Cells in the Plane

Undirected depth in two dimensions satisfies some additional properties that allow an
efficient algorithm to compute a two-dimensional cell of maximum depth. Langerman
and Steiger [21] built upon the results presented in this section to give an optimal
algorithm that finds a maximum depth cell in O (nlogn) time and linear space.

Suppose that we are given a set L of n lines in the plane. We first consider nonde-
generate sets of lines (arrangements of lines) only, that is, no line is vertical, no two
lines are parallel, and no three lines pass through a single point. We will relax this
assumption in Sect. 4.5. Our goal is to find, among all the points of the plane that
do not lie on lines of L, a point p whose depth is maximum. Note that vertices and
edges of the arrangement A(L) may attain greater depth than p—we return to these
in Sect. 4.1.

We will use a binary search on x-coordinates of vertices of the arrangement A(L),
with a test for which side of a vertical line contains a maximum depth cell. Section 3.1
establishes properties that allow a sidedness test; Sect. 3.2 describes a tournament
data structure needed to implement the sidedness test.

3.1 A Sidedness Test

In the plane, we use two concepts to determine which side of a vertical test line can
have cells of maximum depth: a wedge lemma and the notion of top directions.

Lemma 5 (Wedge lemma) Let p be a point, possibly on a line £ € L, let u and v be
two rays starting at p, let W be the convex wedge (cone) defined by p, u, and v, and
let f be a feature of the arrangement A(L).

(1) If ¢ intersects W, f is a cell, and u and v intersect at most i other lines each,
then f has depth at most i.

(ii) If € intersects W, f is an edge, and u and v intersect at most i and i — 1 other
lines, then f has depth at most i.

(iii) If £ intersects W, f is a vertex, and u and v intersect at most i — 1 other lines
each, then f has depth at most i.

(iv) If € does not intersect W or p does not lie on a line, f is a cell, and u and v
intersect at most i + 1 and i (other) lines, then f has depth at most i.

(v) If € does not intersect W or p does not lie on a line, f is an edge, and u and v
intersect at most i (other) lines each, then f has depth at most i.

(vi) If £ does not intersect W or p does not lie on a line, f is a vertex, and u and v
intersect at most i and i — 1 (other) lines, then f has depth at most i.

@ Springer

Discrete Comput Geom (2008) 39: 656-677 661

L<itl

Fig. 2 Six cases of the Wedge lemma

Proof For case (i) (see Fig. 2, top left), consider the lines that intersect the union
of rays from p in directions u and v. There are at most 2i + 1 intersections, if we
count the line containing p only once. If we translate this union within the wedge,
although we may lose intersections with lines that intersect both rays, we will not
gain intersections. Thus, if the apex is inside a cell of the line arrangement, one of
the translated rays will witness that the depth is at most i. All other cases follow
by a similar counting argument. In case (iv), the possible line through p does not
intersect the wedge so u or v can intersect one more line. In the other cases, the line
or lines containing f influence the count by one or two as well. O

The Wedge lemma is helpful for identifying maximum depth cells, as in the fol-
lowing corollary.

Corollary 6 Suppose that a cell C has three directions u, v, and w that span the
plane by positive linear combinations and witness the value of depth(C). Then C is
a deepest cell.

Proof Apply the Wedge lemma, case (i), to the three wedges defined by pairs of
directions. O

We can order the witness rays for a cell C by increasing slope to the right of C and
decreasing slope to the left. We call the two extreme directions for witness rays the
top directions for the cell C. (In general, the top directions need not be witnesses.)
There will be a single top direction when one side of the line has no witness rays, or
when the ray upward is a witness. Figure 3 illustrates a cell with two top directions.

Suppose that we can determine the top directions for all cells along a vertical
line £. Then next lemma shows that we can then determine whether a maximum
depth cell occurs to the left or right of £. We give an algorithmic proof, since this
becomes part of our procedure for computing maximum depth.

@ Springer

662 Discrete Comput Geom (2008) 39: 656—-677

Fig. 3 Directions (shaded) and
top directions

Fig. 4 Region R

Vo

Lemma 7 Given a vertical test line £ that does not pass through any vertex in an
arrangement of n lines in the plane, and given a top direction for each cell intersected
by £, one can determine one side of £ that intersects a maximum depth cell.

Proof Let i denote the maximum depth of the cells intersected by ¢£. We will be able
to sweep up the line £ and, on one of the sides of £, maintain a region R that does not
intersect a cell of depth greater than i. Region R is, in fact, a wedge from the vertical
downward direction, v, to a top direction, u, as illustrated in Fig. 4.

Initially, we choose a point p € £ in the lowest cell, which will have two top
directions, to the right and left of the vertical downward direction v (parallel to the
lines with smallest and largest slopes, respectively). We choose a top direction as u
and form the wedge R between v and u. Note that R is contained in this lowest cell,
which has depth i > 0.

Now, move the point p up the line £. As long as p remains in its cell, the top di-
rection does not change; the region R is enlarged by this motion, but cannot intersect
a cell of depth greater than i.

When p crosses a line of the arrangement, we may obtain a new top direction u’.
Let W denote the convex wedge with apex p and directions u and u’. Applying the
Wedge lemma to W, we see that no cell of depth greater than i intersects W.

If this new wedge W contains the vertically downward direction v (which may
happen when u and u’ point to different sides of £), then we take the new region R
from v to u’, which is contained in W. Otherwise, we take the new R to be the union
of R with W (this happens either when u and u’ point to the same side of ¢, or when
the convex wedge between u and u’ contains the vertical upward direction —v). In
either case, R does not intersect a cell of depth greater than i. Finally, if W contains
the upward direction —v, then the new R contains one of the halfplanes defined by ¢
and we may stop the algorithm.

Since the upward direction is the top direction for the uppermost cell, the algorithm
must terminate. t

@ Springer

Discrete Comput Geom (2008) 39: 656-677 663

As an aside, one can use a similar argument along a curved path to show that the
maximum depth cells are connected.

Corollary 8 In an arrangement of lines in the plane, the closure of the cells of depth
at least i is simply connected.

Proof Consider a connected component of the union of the closures of cells of depth
> i, and draw a path in the neighboring cells (which have depths i — 1 and i — 2).
Applying the Wedge lemma as one traverses the path, as in the proof of Lemma 7,
shows that no cell of depth > i lies outside the path, so there can be only one com-
ponent. Note that this component must be simply connected, since every point has
a witness ray for depth along which the depth decreases monotonically. U

3.2 Computing Top Directions

In this section we describe a data structure that can determine the top directions for
a sequence of adjacent cells in an arrangement of # lines using logarithmic time per
cell, after O (nlogn) preprocessing. Preprocessing takes linear time if the lines of the
arrangement are sorted by slope.

Let us continue to assume that no line is vertical and let I, [», ..., [, be the lines
ordered by increasing slope. We can identify a cell C in the arrangement with its bit
string b(C) = by ...b,, where bit b; = 1 if line [; is above the cell C, and b; =0
otherwise.

Notice that the number of 1 bits in b(C) is exactly the number of lines crossed
by a ray p from C in the downward direction. Consider rotating the ray p from C
counter-clockwise. The set of lines crossed by p does not change until ray p reaches
the direction of the line /{—then bit b is complemented, since p will begin to inter-
sect or cease to intersect /5.

We therefore consider an extended bit string B(C) = b(C)b(C)b(C), which is
the bit string for C, followed by its complement, and the bit string again. The ex-
tended string B(C) has 2n + 1 contiguous subsequences of length n; we drop the
last, since it equals the first. The counts of the number of 1 bits in these 2n subse-
quences give the number of lines intersected by a ray from C to the unbounded cells
of the arrangement in the corresponding 2n directions. The minimum of these counts
is the value depth(C).

With a relatively simple tournament we can maintain the minimum of the counts
and information about directions in which the minimum occurs. We use a static, bal-
anced, binary tree that stores in the leaves the sequence of 2n counts. The leftmost
leaf stores the count for the upward direction. Each internal node stores three integers:
the size of its subtree, the minimum count of the leaves in its subtree, and a correction
value.

The correction value is a positive or negative integer that should be added to the
counts of all leaves in the subtree. It is processed as follows: before the count of
a node is inspected, the correction value is added to the count and to the correction
values of the two children nodes, then set to zero. Since tree operations will process
nodes from root to leaf, the value of inspected nodes will always be properly cor-
rected.

@ Springer

664 Discrete Comput Geom (2008) 39: 656—-677

The tree supports two operations: a query and an update. The query asks for the
leaf with minimum count; in case of equal counts we want both the leftmost leaf
and the rightmost leaf with these counts—these give the top directions for the cell C.
Since each internal node stores the minimum count in its subtree, such a query is easy
to perform in O (logn) time by following two paths in the tree.

The update operation corresponds to moving from a cell C to a cell C’ by crossing
some line /;. This means that the bit string of b(C’) differs from b(C) in the ith bit.
In the extended string B(C’), three bits change to their complements. Since the 2n
counts for a cell are obtained by adding n consecutive bits, every count changes—if
b; changes from O to 1, then the first i counts increase by one, the next n counts
decrease by one, and the final n — i counts increase by one. Thus, we should not
update the counts in the leaves explicitly, since this would take linear time; instead
we update correction values.

We follow the two paths in the tree to the ith leaf and the (i + n)th leaf using the
size-of-subtree integers stored at the internal nodes. The paths partition the tree into
three parts. For all highest nodes left of the search path to the ith leaf we increment
the correction value (or decrement, if b; changes from 1 to 0). This is done also for
the highest nodes right of the search path to the (i + n)th leaf. For the highest nodes
between the search paths we decrement (or increment) the correction value. Since
there can be at most O (logn) highest nodes left (or right) of any path in the tree, only
O (logn) correction values are updated.

Because the structure of the tree is static, we implement it by indexing into a fixed
array, and subtree sizes are calculated rather than stored.

Lemma9 Using the data structure described above, one can determine the top direc-
tions for a sequence of adjacent cells in an arrangement of n lines using logarithmic
time per cell, after O (nlogn) preprocessing.

3.3 Binary Search for a Maximum Depth Cell

It is probably no surprise that we use the sidedness test in a binary search on x-
coordinates of vertices of the arrangement .A(L). A Java prototype can be seen at
www.win.tue.nl/~speckman/demos/maxdepth.

Standard results on slope selection [5, 10, 19, 22] allow us to consider the portion
of the arrangement A(L) that lies between two vertical lines, and to generate the
vertex of median x coordinate in O (nlogn) time. We base our implementation on
a randomized algorithm of Dillencourt, Mount, and Netanyahu [12].

At a vertical test line £ through (or, rather, slightly near) this median vertex, we sort
the intersections with the lines of L and use the tournament described in Sect. 3.2 to
compute the depth of each point on the test line £ and the top directions in O (n logn)
time. Lemma 7 then allows us to discard one side of the line £, and to continue the
search on the other side. The search terminates when there are no intersection points
remaining, which occurs after at most log(n?) = 2logn steps. Thus, we claim the
following result.

Theorem 10 A cell of maximum undirected depth in an arrangement of n lines can
be computed in O (n log2 n) time and O (n) space.

@ Springer

http://www.win.tue.nl/~speckman/demos/maxdepth

Discrete Comput Geom (2008) 39: 656-677 665

As remarked before, Langerman and Steiger improved this result to O (nlogn)
time [21]. They make use of the Wedge lemma presented here, but replace our sided-
ness test by a version that is more efficient: in recursive steps, a constant fraction of
the lines can be pruned out.

4 The Structure of Depth

Although our binary search identifies a deepest cell, we know from Lemma 1 that
the maximum depth in an arrangement will always occur at a vertex. In statistical
analysis, we may also wish to know the set of all lines with maximum regression
depth, which corresponds to the set of all points at maximum depth. In this section,
we characterize the set of points at maximum depth in nondegenerate arrangements
in the plane. We also establish relationships with k-sets in all dimensions and show
how to efficiently approximate a maximum depth point in degenerate arrangements.

4.1 Finding a Deepest Vertex in a Nondegenerate Arrangement

Figure 1 showed an example in which edges and isolated vertices attain the maximum
depth, but no cell does. Once we have found a point in a cell of maximum depth, we
still must determine whether there is a vertex with greater depth. For arrangements
of lines in general position, this is not difficult to do. When the maximum depth of
a cell is i, then the maximum depth of a vertex is i, i + 1, or i 4+ 2, as illustrated in
Fig. 5. These cases can be detected by postprocessing after computing a maximum
depth cell. Recall that an arrangement is nondegenerate if no line is vertical, no two
lines are parallel, and no three lines pass through a single point.

When the maximum depth vertex v has depth i 4+ 2 in a nondegenerate arrange-
ment, then the two lines crossing at v form four quadrants containing incident cells
at depth i. Lemma 2 says that the directions for these cells are contained in the re-
spective quadrants. During the binary search, test lines to the right of the vertex will
eliminate their right side and those to the left will eliminate their left side. Thus, there
is at most one such vertex and the binary search will find it.

The maximum depth vertex could instead have depth i—equal to the depth of the
maximum depth cell. In this case, every vertex incident on a cell of depth i must also

1X:

Fig. 5 Cases for maximum vertex depth

@ Springer

666 Discrete Comput Geom (2008) 39: 656—-677

be incident on two cells of depth i — 1 and one of depth i — 2, otherwise the vertex
depth would be greater than 7, as illustrated in Fig. 5. This, together with the fact that
cells are convex and the maximum depth is connected, implies that there can be only
one cell that attains the maximum, which will be found by our binary search.

Finally if the maximum depth vertex has depth i + 1, then every cell of depth i
has to have at least one incident vertex of depth i + 1. This follows, e.g., from the
case analysis shown in Fig. 5, and from the fact that the set of points at depth > i is
connected. Since our binary search finds a cell of depth i a traversal of its boundary
will yield a vertex of depth i + 1.

Theorem 11 After computing a deepest cell, one can compute a deepest vertex in
O (nlogn) additional time.

Proof Once we have computed some cell of maximum depth i, we must determine
whether a maximum depth vertex has depth i, i 4 1, or i 4-2. This is most easily done
by constructing the cell as the intersection of the n halfplanes that are defined by lines
of the arrangement and that contain the cell. Intersection is equivalent to convex hull
computation, and takes O(nlogn) time. Then we can use the tournament to check
the depth of all vertices, also in O (nlogn) time. By the above discussion, we either
find that all vertices are of depth i, or there is a unique vertex of depth i + 2, or some
vertex is of depth i 4 1. O

4.2 Connections with k-Sets

It is natural to ask for the set of all points with maximum undirected depth, which
corresponds to the set of all lines that have maximum regression depth. This appears
to be more difficult; in this section we observe the connections between the complex-
ity of points with given undirected depth and the concept of k-sets in a configuration
of points. There has been considerable attention in computational geometry devoted
to k-sets, and the dual concept of k-levels in an arrangement of lines or hyperplanes;
see, e.g., [9, 11, 13, 23, 31].

The k-level of an arrangement A for a particular direction 6 consists of all points
p such that a ray from p in direction 6 intersects exactly k£ hyperplanes. (Usually,
hyperplanes containing p are not counted.) In the dual, the k intersected hyperplanes
become a k-set: k points that can be separated from the configuration by an open half-
space bounded by a hyperplane, namely p”. Note that point p has undirected depth
at most k (assuming that p does not lie on any hyperplane) and that the hyperplane
pP has regression depth at most k as shown by rotation about any line outside the
convex hull of the dual points. The combinatorial complexity of k-levels and algo-
rithms to compute them have been intensively studied, although many open problems
remain.

In a similar manner, we define the k-envelope in an arrangement .4 to be the union
of all points with undirected depth k. An example can be seen in Fig. 1. There have
been some results on 1-envelopes of lines [16, 20], but we know of no deeper results.

We show that the worst-case combinatorial complexity of k-envelopes is asymp-
totically the same as the worst-case complexity of a k-level in any fixed dimension.

@ Springer

Discrete Comput Geom (2008) 39: 656-677 667

Fig. 6 Median level to
maximum depth

~
—

—
<

/

The exact asymptotic worst-case complexity of a k-level is still unknown [11, 34]. In
the plane, it known to be between n - 29 (/logn) anq o (n*3).

We begin with the lower bounds that show that the complexity of a k-envelope is
at least as great as that of a k-level.

Lemma 12 The worst-case complexity of the k-envelope of an arrangement of n hy-
perplanes is at least as large as the worst-case complexity of a k-level in an arrange-
ment of n — dk hyperplanes, for k <n/d.

Proof Consider the k-level in an arrangement of n — kd > 0 hyperplanes, none of
which are parallel to the x; axis. There is a unique unbounded cell in this arrange-
ment that contains the vertically downward direction, 6. In this cell we can construct
a simplex A with one horizontal face such that all rays through the horizontal face
from the opposite vertex remain inside the cell. Scale and translate A until A contains
the full complexity of the k-level. Then add to the arrangement k perturbed copies of
the hyperplanes through each of the d nonhorizontal faces of A.

For points on the k-level, rays in the downward direction intersect k£ old hyper-
planes and none of the new ones. Rays in directions outside the cell of the downward
direction intersect at least k of the new hyperplanes. Thus, the k-level appears on the
k-envelope. U

The construction above does not state what the combinatorial complexity is of
the points with maximum depth of k = n/d. With another construction, illustrated in
Fig. 6, we can show that the complexity of the points with maximum depth in the
plane is lower bounded by the complexity of a median level.

Lemma 13 The worst-case complexity of the set of points with maximum undirected
depth in an arrangement of n lines is at least as large as the worst-case complexity
of the median level in an arrangement of n/3 lines.

Proof Consider any arrangement with 2m lines, none of which is parallel to the ver-
tical y axis, and enclose it in a triangle with a vertical longest side, and two other

@ Springer

668 Discrete Comput Geom (2008) 39: 656—-677

nearly vertical sides. Add 2m lines through the longest side and m through each of
the others, then perturb the new lines to be in general position.

Unbounded cells in the original arrangement now have undirected depth at most
2m by crossing only new lines. Bounded cells in the original arrangement also have
undirected depth at most 2m by crossing m old lines and m new with a near-vertical
ray. The former median level has undirected depth of exactly 2m, and thus contributes
points of maximum depth.]

4.3 Deepest Points in Nondegenerate Arrangements

We expand on the discussion given earlier in this section to characterize the whole set
of maximum depth points in nondegenerate arrangements. As we just showed, this
set can have superlinear complexity.

Lemma 14 If the maximum cell depth is i, then the maximum depth points form
either

1. a single point of depth i + 2;

2. a convex polygon whose vertices, edges, and interior all have depth i; or

3. a single chain of segments and some isolated points of depth i + 1, where either
the single chain or the isolated points need not be present.!

Proof The first and second cases are discussed in Sect. 4.1; we establish the structure
of the third by considering the configurations of Fig. 5 that give vertices and edges
of depth i + 1. If we consider the witness directions for cells of depth i — 1 adjacent
to cells of depth i in these cases, and apply the Wedge lemma, we can make the
following observations.

In configuration 11, there is a wedge defined by directions for the two cells of
depth i — 1 that includes a ray on the line separating these two cells. In configuration
1A, there are two such wedges. The Wedge lemma implies that cells in these wedges
are of depth at most i — 1. This immediately implies that all edges in the wedge have
depth at most i. In fact, vertices in the wedge also have depth at most i, since the
only way for a vertex to have depth i + 1 would be to have four incident cells of
depth i — 1, but then i — 1 would be the maximum depth of a cell in the arrangement.

In configuration 1X, we consider two witness directions for the cells of depth
i — 1, and let them define rays that originate at the intersection point of configuration
1X. The rays define a wedge that contains one of the two incident cells of depth i.
Translate the wedge slightly so that its apex is in the other cell of depth i. Cases (iv)
and (v) of the Wedge lemma show that all cells and edges in the wedge have depth at
most i. There may be isolated vertices of depth i 4 1 in the wedge.

It is clear that configurations 1A and 1X give isolated vertices of depth i + 1, that
11 gives the end of a chain of vertices and edges of depth i + 1, and that 1V gives the
middle of such a chain (see Fig. 7). We need to show that there is at most one chain,

IThe conference version claimed that the chain has O (n) segments, but our proof of that claim turned out
to be incorrect.

@ Springer

Discrete Comput Geom (2008) 39: 656-677 669

Fig.7 A chain of maximum
depth

so assume there is some chain. We construct a path enclosing this chain by infinites-
imally translating copies of each segment into its adjacent cells and connecting the
endpoints (see Fig. 7). Every point on this cycle has at least one witness ray of depth
at most i and the union of these rays cover the whole plane except the original chain.
This certifies—again by the Wedge lemma—that no edge of depth i 4 1 exists that is
not part of the original chain. O

We can go further to characterize the isolated points that are at maximum depth
i + 1: they appear as the connections for stings of cells of depth i, and are antipodal,
meaning that they are the points of tangency for parallel tangent lines.

Lemma 15 Let ¢ be a cell of maximum depth i, let ¢’ be an edge-adjacent cell of
depth i — 1, and let r be a witness ray for ¢’. Then any cell ¢” that is edge-adjacent
to ¢ and for which no translated ray r of r originating in ¢" intersects c, has depth
i — 1 with ¥ as a witness ray.

Proof Since ¢’ is edge-adjacent to ¢, it must have depth at least i — 1. If ¢’ and ¢” are
as in the lemma and vertex-adjacent, then obviously 7 intersects exactly one line that
r does not intersect, and r intersects one line that 7 does not intersect. By induction
the same holds if ¢’ and ¢” are not vertex-adjacent; see Fig. 8. Since a witness ray
for ¢’ exists that intersects i — 1 lines, ¢” has depth at most i — 1, and the lemma
follows. O

Lemma 16 Assume that the maximum cell depth is i, and the maximum depth is
realized by one or more vertices of depth i + 1 (no edge has depth i 4 1). If two
vertices of depth i + 1 are incident to the same depth i cell, then they are antipodal.
At most one cell has three incident vertices of depth i 4+ 1, and all other cells have
fewer vertices of depth i + 1.

Proof Let i be the depth of a deepest cell. Clearly, a cell of depth i — 1 cannot be
edge-adjacent to three cells of depth i in such a way that the bounded triangle formed

@ Springer

670 Discrete Comput Geom (2008) 39: 656—-677

Fig. 8 Antipodal vertices of
depth i + 1 incident to depth i
cells

\

\

witness rays for
depth 7 — 1 cells

by the three lines supporting these three edges contains the cell of depth i — 1. A con-
sequence is that any two vertices in 1X configuration and incident to the same cell
of depth i are antipodal in that cell, otherwise we will have a contradiction with
Lemma 15. Therefore, a cell of depth i can have at most three vertices of depth i + 1
in 1X configuration, and these vertices are pairwise antipodal.

In a 1X configuration, there are two vertex-adjacent depth i — 1 cells with different
witness directions. If rays with these directions are placed on the 1X vertex, then they
form a wedge that encloses exactly one of the two depth i cells. For that cell, one
of the two directions will apply for each of its edge-adjacent depth i — 1 cells by
Lemma 15. Therefore, it can have at most one other vertex in 1X configuration, and
if there is another 1X vertex, then the lines parallel to the two witness rays must be
tangent to the cell at the vertex. By the same argument, a cell with three vertices in
1X configuration cannot be contained in any of the three wedges formed at the 1X
vertices.

From these structure observations it follows that there can be at most one depth
i cell that has three vertices in 1X configuration. The three vertex-adjacent depth i
cells can each have at most one more vertex in 1X configuration, so the vertices of
depth i 4+ 1 occur on three “paths” of depth i cells; see Fig. 8.]

Lemma 17 Assume that the maximum cell depth is i, and the maximum depth of a
feature realized by a chain of depth i + 1 and zero or more isolated vertices. Then
any cell of depth i sharing some edge with the chain must have all edges of the
chain consecutive in its boundary. Every isolated vertex of depth i + 1 is antipodal to
another isolated vertex or to a chain vertex of depth i + 1.

Proof 1If the chain would coincide with the boundary of a depth i cell ¢ more than
once, then there exists a cell that is enclosed by the union of the chain and cell c. The
witness direction of that cell must cross the chain or cell ¢, and therefore would have
depth > i, a contradiction.

The antipodality property follows in a similar way as in Lemma 16. If a depth
i cell ¢ is incident to at least one edge of the depth i + 1 chain, then the witness
directions in the edge-adjacent depth i — 1 cells certify that there can only be one
isolated depth i 4- 1 vertex incident to cell c.]

@ Springer

Discrete Comput Geom (2008) 39: 656-677 671

4.4 Output-Sensitive Construction for Maximum Depth in Nondegenerate Planar
Arrangements

A dynamic convex hull maintenance algorithm, when applied to the duals of the lines,
allows us to maintain a description of the current cell as we walk from cell to cell in
the arrangement. With the characterization of the points of maximum depth from
Sect. 4.3, this allows us to compute a description of the maximum depth points in an
output-sensitive manner.

Theorem 18 After O(n log2 n) preprocessing, the set of all edges and vertices at
maximum depth in an arrangement of lines in general position can be computed at
the cost of O (log3/ 2 n) time per feature.

Proof For the preprocessing, use the result of Theorem 10 to find a deepest cell. Build
the tournament structure for this cell (Lemma 9). Let H be the set of half-planes with
the lines as bounding lines, such that the deepest cell that was found is (), .y .
Dualize the lines bounding positive half-planes to points and build a lower convex
hull maintenance structure for them. We choose the one of Chan [6], which allows
all necessary operations in O (log*>/?n) time. Similarly, build an upper convex hull
maintenance structure for the points dual to lines that bound negative half-planes.
The convex hull maintenance structures allow us to do a search on the boundary
of a deepest cell. We can switch to an adjacent cell in O (log>/?n) time by updat-
ing all three data structures. Therefore, we can decide in 0(10g3/ 2n) time what the
depth of an incident edge or vertex is, and also what the type of a vertex is. We can
also do linear programming queries (find extreme vertices for a direction) in cells of
the arrangement in O (log*>? n) time, which are the dual of vertical line intersection
queries with the convex hull.

We note that our algorithm to find a deepest cell will find a cell of depth i that
is adjacent to the depth i + 1 chain, if it exists. Also, it will find the cell with three
incident antipodal vertices of depth i 4 1, if such a cell exists. So we can determine
in O(nlog/? n) additional time whether case 3 of Lemma 14 applies, by inspecting
the whole boundary of the cell, or get the three depth i + 1 vertices. Furthermore,
using the data structures, we can easily obtain the whole depth i 4+ 1 chain in time
O (klog*? n) if it has k edges.

When we check any other depth i cell by continuing over a depth i 4+ 1 edge or over
the lines intersecting in a vertex in 1X configuration, we cannot examine the whole
boundary and achieve the claimed time bound. Instead we will perform a search in
the cell to find any other features of depth i 4 1. This will be done using the witness
directions of adjacent depth i — 1 cells (which was already suggested by the proof of
Lemma 16).

Let v be a known depth i 4 1 vertex of a cell ¢ of depth i, and assume that it
is isolated. Then v is incident to two depth i — 1 cells, and the rays with their wit-
ness directions, when originating in v, form a wedge that contains c. If v is part of
the depth i + 1 chain, then we get the witness directions at the most clockwise and
counterclockwise depth i 4+ 1 vertices of the chain. When placed at these vertices, the
rays with the witness directions and the subchain together form an unbounded convex

@ Springer

672 Discrete Comput Geom (2008) 39: 656—-677

Fig. 9 A depthi + 1 chain
(fat), two depth i + 1 isolated
vertices, a cell ¢ of depth i, and
the two witness directions (fat
arrows) for the search illustrated

polygon that contains c. Figure 9 shows an example with two (dashed) rays and one
edge (fat) of the chain.

To find the at most one other vertex of depth i + 1—in 1X configuration—we
perform a linear programming query with each of the two witness rays. If they find
the same vertex in c, then this vertex may be in 1X configuration, and the vertex-
adjacent cell would then have depth i. We can test this using our data structures in
O (log*? n) time. If they find different vertices, then the cell has no other depth i + 1
vertices due to Lemma 15 and the fact that the initial witness rays form a wedge that
contains the cell (when the rays are placed at the known depth i 4 1 vertex). In case
we find another depth i + 1 vertex, the search proceeds in the vertex-adjacent depth i
cell with the same two witness rays.

After processing all depth i cells we have found all depth i + 1 features in at most
0 (log’/? n) time per feature. (]

It may be possible to use a more efficient dynamic convex hull maintenance struc-
ture like the one of Brodal and Jacob [4], but it is unclear if all necessary operations
that we need can be performed more efficiently using their data structure.

4.5 Depth of Vertices in Degenerate Arrangements

Efficiently finding a deepest vertex in a degenerate arrangement of lines appears to
be difficult. However, we can efficiently find a vertex whose depth is within a factor
of (1 — o(1)) from the maximum depth.

log(logn)

Lemma 19 A point whose depth is at least (1 — Togn

found in O(nlogn) time.

) times the maximum can be

Proof First, compute the cell of maximum depth in the arrangement. Then, using

an algorithm of Guibas et al. [17], find all vertices V that are contained in at least
n%gk;g") lines in O (nlogn) time. There are at most O(mg%%) of these vertices,
and their depth can be tested in O (n) time each once the lines are sorted by slope.

@ Springer

Discrete Comput Geom (2008) 39: 656-677 673

Either a vertex of V has maximum depth, or, by Lemma 1, a point in the cell of
maximum depth is less than n W from the true maximum value. Since Amenta
et al. proved in [3] that the maximum value is at least [n/37] we therefore have an

approximation factor of at least (1 — logk()lgin)). O

One heuristic that involves less programming is to symbolically perturb the lines
of the arrangement to simulate general position and compute the cell of maximum
depth. In the original arrangement this cell may correspond to a vertex, in which case
we evaluate the depth of this vertex, or to a cell, in which case we construct the cell
and evaluate the depth of all of its vertices. From the Wedge lemma it can be seen
that the actual maximum depth will be at most double the computed depth.

5 Computing Depth in Higher Dimensions

For three and higher dimensions, Corollary 4 states that we can compute the maxi-
mum depth in O (n?) time and space by evaluating depth at all cells and vertices of
an arrangement. It is challenging to develop more efficient algorithms.

5.1 The Wedge Lemma Cannot Extend to %3

The solution for the planar case was based on the Wedge lemma, which allowed
us to argue that certain regions of the plane could not contain a cell of maximum
depth. When thinking about the extension to three dimensions, one would first try to
generalize the Wedge lemma: that for a point p whose depth i is witnessed by three
vectors i, v, and w, the cone defined by i, v, and w does not contain a cell of depth
greater than i. The following construction shows that this is not true.

Let point p be the origin of the coordinate system. We construct an arrangement
of 15 planes such that the positive x-axis, the positive y-axis, and the positive z-axis
each witness that depth(p) = 2, the point ¢ = (2, 2, 2) will have depth(g) = 3.

There are six planes that intersect the positive octant: Planes x = 4, y = 4, and
7z =4 are parallel to the coordinate planes. Planes 5= —x —y+5z,5=—x+5y -z,
and 5 = 5x — y — z pass through a common point (5/3,5/3,5/3), and each intersect
one of the positive coordinate axes. Note that the first intersects the z axis at (0, 0, 1)
and the x and y axes at (—5,0,0) and (0, —5, 0). Note that if the coordinate frame
is translated from the origin to ¢ = (2, 2, 2), then each positive axis intersects three
of these six planes, which already shows that the argument used to prove the two-
dimensional Wedge lemma does not hold in the three-dimensional case.

The remaining nine planes are chosen to make sure that only directions in or
near the positive octant can give depth counts below three for all cells in the posi-
tive octant. They are perturbed versions of x = —1, x = —2, x = —3 and similarly,
v,z =—1,—2, —3. The perturbations are such that none of the planes intersect the
positive octant. The common intersection of the half-spaces bounded by these planes
and containing the origin can be seen as the perturbed positive octant. These make
sure that for any point in the positive octant, and any direction outside the positive
octant by a small angle, the depth count in that direction will be at least three.

@ Springer

674 Discrete Comput Geom (2008) 39: 656—-677

Fig. 10 Cross-section of nine 0"
planes with the plane x =2,]
with depth values for directions

in this plane. Plus signs denote a

possible increment by one due 0
to perturbation

-

B

Let us first consider the number of planes intersected by rays from g inside the
positive quadrant of the plane x = 2 (which itself is not one of the six planes). By
constructing a figure of this cross-section, one can easily verify that all of these di-
rections give rays intersecting three or four planes; see Fig. 10. The perturbation of
the planes does not influence the depth of the cell containing g.

Finally, when we consider directions from ¢ where x, y, z-contributions are all
strictly positive, we simply observe that any such direction intersects each one of
x =4, y =4, and z = 4. Thus, the depth(g) = 3.

This example also shows that the closures of cells of a particular depth need not
be connected. The proof of the Wedge lemma does imply that the positive quadrants
of the three coordinate planes do not intersect cells of depth greater than two—if we
translate a pair of positive coordinate axes within the quadrant that they define, we do
not gain new intersections. Thus, Corollary 8 cannot be extended beyond the plane.

5.2 Computing Depth in Higher Dimensions with Reduced Space

We close this paper by showing how to reduce the space requirement by a linear
factor using hyperplane cuttings.

Theorem 20 Ford > 3, one can compute the depth of all cells of a set of hyperplanes
in W4 in time O(nd), using O(nd_l) space.

Proof Let H be a set of n hyperplanes. For parameter r = n'!/ d a1 /r)-cutting
of H is a set of O(r?) = O(n) simplices covering M9, each intersecting at most
n/r hyperplanes. It requires O (nr?~!) time to compute the cutting, using a result of
Chazelle [8].

We consider the subproblem for each simplex t and its intersecting hyper-
planes H;. If we considered only the hyperplanes in H;, then by Corollary 4 we

@ Springer

Discrete Comput Geom (2008) 39: 656-677 675

Fig. 11 A triangle (simplex) 7, three planes in H, five lines in H \ Hy (thicker), and the directions giving
the lowest depth for the six unbounded cells. To the right, weights for certain directions (corresponding to
directions in the left figure) in the cells of S(Hr)

could solve the subproblem for 7 by building the arrangement A(H;) in H¢. This
takes O (| H; |d) time and space, which is O (41 since |Hy| <n/r. We can modify
this algorithm to capture the additional depth caused by the other hyperplanes. Since
hyperplanes of H \ H; do not intersect t, we can translate them away from t until
each one has all vertices of A(H;) (and 7 itself) to one side, without changing the
depth of any point inside 7. We can then compute the depth of all unbounded cells of
A(H-) with respect to the translated hyperplanes in H \ H;, and use this as the base
for computing the depth of all cells in A(H-).

More precisely, consider the (hyper)sphere of directions. Each hyperplane in
H induces a great circle on this sphere, and their arrangement, which we call
S(H), has O(n?~1) cells. Choosing one direction in each cell of S(H) gives a set
{p1, P2, ..., pe} of k = O(n?~1) directions sufficient to witness the maximum depth
for any point p € R,

We return to the subproblem for simplex t and its hyperplanes H; C H. For each
direction p;, define a weight w; that equals the number of planes of H \ H; intersected
by a ray from 7 in direction p;; see Fig. 11. It does not matter which point of 7 is the
ray origin for this definition, since planes of H \ H; do not intersect .

We can compute the arrangement S(H;), and a direction with lowest weight for
each cell of S(H;) in two steps. First, compute weights for all directions in S(H)
with respect to hyperplanes of H \ H; by choosing a cell with its direction p;, count-
ing the number of hyperplanes intersected by a ray in direction p;, then traversing
the remaining cells of S(H), adding or subtracting one each time we cross the great
circle for a hyperplane of H \ H;. Second, delete hyperplanes of H \ H; from S(H)
to form arrangement S(H;). Whenever two cells merge, keep a direction with low-
est weight. The time for each subproblem is proportional to |S(H)| = O (n¢™1), for
a total of O (n?) time overall.

Now, form the hyperplane arrangement A(H;), and initially label all bounded
cells with depth co. Each unbounded cell of A(H;) corresponds to a cell of the

@ Springer

676 Discrete Comput Geom (2008) 39: 656—-677

spherical arrangement S(H); label it with the corresponding weight and direction.
The minimum assigned depth is correct, so we can perform the loop as before: for
i=1,2,...,n,all cells with label i — 1 cause their adjacent, higher-labeled cells
to be relabeled i. This takes O (n¢~!) time and space for each simplex 7, leading to
a total time of O (n9). U

6 Conclusions and Open Problems

This paper presented an O (nlog? n) time algorithm for computing a point with max-
imum regression depth in the plane. Langerman and Steiger used our algorithm as
a basis for their improved O(nlogn) time algorithm [21]. We also gave an O (n¢)
time, O (n¢~") space algorithm for maximum regression depth in higher dimensions
and various other results.

The most interesting open problems that remain are a more efficient algorithm
for computing regression depth in higher dimensions, and good approximation algo-
rithms in the plane and higher dimensions.

Acknowledgements J. Mitchell and M. Sharir thank E. Arkin and S. Har-Peled for several helpful
discussions and suggestions. We also thank an anonymous referee for useful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aelst, S.V., Rousseeuw, P.J.: Robustness of deepest regression. J. Multivar. Anal. 73, 82-106 (2000)
2. Aelst, S.V., Rousseeuw, P.J., Hubert, M., Struyf, A.: The deepest regression method. J. Multivar. Anal.
81(1), 138-166 (2002)
3. Amenta, N., Bern, M., Eppstein, D., Teng, S.-H.: Regression depth and center points. Discrete Com-
put. Geom. 23, 305-323 (2000)
4. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd Symposium on Foundations of
Computer Science (FOCS), pp. 617-626 (2002)
5. Bronnimann, H., Chazelle, B.: Optimal slope selection via cuttings. Comput. Geom. Theory Appl.
10(1), 23-29 (1998)
6. Chan, T.M.: Dynamic planar convex hull operations in near-logarithmic amortized time. J. ACM
48(1), 1-12 (2001)
7. Chan, T.M.: An optimal randomized algorithm for maximum turkey depth. In: Proc. 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 430—436 (2004)
8. Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9(2), 145-158
(1993)
9. Chazelle, B., Preparata, F.P.: Halfspace range search: An algorithmic application of k-sets. Discrete
Comput. Geom. 1, 83-93 (1986)
10. Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for slope selection. SIAM
J. Comput. 18(4), 792-810 (1989)
11. Dey, T.K.: Improved bounds on planar k-sets and related problems. Discrete Comput. Geom. 19,
373-382 (1998)
12. Dillencourt, M.B., Mount, D.M., Netanyahu, N.S.: A randomized algorithm for slope selection. Int.
J. Comput. Geom. Appl. 2, 1-27 (1992)
13. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, New York (1987)
14. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with
applications. SIAM J. Comput 15, 341-363 (1986)

@ Springer

Discrete Comput Geom (2008) 39: 656-677 677

15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.
26.
217.
28.

29.

30.

31.
32.

33.

34.

Edelsbrunner, H., Seidel, R., Sharir, M.: On the zone theorem for hyperplane arrangements. SIAM J.
Comput. 22(2), 418-429 (1993)

Eu, D., Guévremont, E., Toussaint, G.T.: On envelopes of arrangements of lines. J. Algorithms 21,
111-148 (1996)

Guibas, L.J., Overmars, M.H., Robert, J.-M.: The exact fitting problem for points. Comput. Geom.
Theory Appl. 6, 215-230 (1996)

Hubert, M., Rousseeuw, P.J.: The catline for deep regression. J. Multivar. Anal. 66, 270-296 (1998)
Katz, M.J., Sharir, M.: Optimal slope selection via expanders. Inf. Process. Lett. 47, 115-122 (1993)
Keil, M.: A simple algorithm for determining the envelope of a set of lines. Inf. Process. Lett. 39,
121-124 (1991)

Langerman, S., Steiger, W.: The complexity of hyperplane depth in the plane. Discrete Comput.
Geom. 30(2), 299-309 (2003)

Matousek, J.: Randomized optimal algorithm for slope selection. Inf. Process. Lett. 39, 183-187
(1991)

Peck, G.W.: On k-sets in the plane. Discrete Math. 56, 73-74 (1985)

Rousseeuw, P.J., Aelst, S.V., Hubert, M.: Regression depth: Rejoinder. J. Am. Stat. Assoc. 94, 419—
433 (1999)

Rousseeuw, P.J., Hubert, M.: Depth in an arrangement of hyperplanes. Discrete Comput. Geom. 22,
167-176 (1999)

Rousseeuw, P.J., Hubert, M.: Regression depth. J. Am. Stat. Assoc. 94, 388-402 (1999)

Rousseeuw, P.J., Ruts, I.: Constructing the bivariate Tukey median. Stat. Sin. 8, 827-839 (1998)
Rousseeuw, P.J., Struyf, A.: Computing location depth and regression depth in higher dimensions.
Stat. Comput. 8, 193-203 (1998)

Rousseeuw, P.J., Struyf, A.: Computation of robust statistics: depth, median, and related measures.
In: Goodman, J.E., O’Rourke, J. (eds.) The Handbook of Discrete and Computational Geometry, 2nd
edn., pp. 1279-1292. Chapman & Hall/CRC, Boca Raton (2004)

Ruts, I., Rousseeuw, P.J.: Computing depth contours of bivariate point clouds. Comput. Stat. Data
Anal. 23, 153-168 (1996)

Sharir, M.: k-sets and random hulls. Combinatorica 13, 483-495 (1993)

Struyf, A., Rousseeuw, P.J.: Halfspace depth and regression depth characterize the empirical distribu-
tion. J. Multivar. Anal. 69, 135-153 (1999)

Struyf, A., Rousseeuw, P.J.: High-dimensional computation of the deepest location. Comput. Stat.
Data Anal. 34, 415-426 (2000)

Téth, G.: Point sets with many k-sets. Discrete Comput. Geom. 26, 187-194 (2001)

@ Springer

	Efficient Algorithms for Maximum Regression Depth
	Abstract
	Introduction
	Duality and Undirected Depth in Arrangements
	An Algorithm for Maximum Depth Cells in the Plane
	A Sidedness Test
	Computing Top Directions
	Binary Search for a Maximum Depth Cell

	The Structure of Depth
	Finding a Deepest Vertex in a Nondegenerate Arrangement
	Connections with k-Sets
	Deepest Points in Nondegenerate Arrangements
	Output-Sensitive Construction for Maximum Depth in Nondegenerate Planar Arrangements
	Depth of Vertices in Degenerate Arrangements

	Computing Depth in Higher Dimensions
	The Wedge Lemma Cannot Extend to R3
	Computing Depth in Higher Dimensions with Reduced Space

	Conclusions and Open Problems
	Acknowledgements

	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

