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Abstract We study the following variant of the well-known line-simplification prob-
lem: we are getting a (possibly infinite) sequence of points p0,p1,p2, . . . in the plane
defining a polygonal path, and as we receive the points, we wish to maintain a simpli-
fication of the path seen so far. We study this problem in a streaming setting, where
we only have a limited amount of storage, so that we cannot store all the points.
We analyze the competitive ratio of our algorithms, allowing resource augmentation:
we let our algorithm maintain a simplification with 2k (internal) points and com-
pare the error of our simplification to the error of the optimal simplification with k
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points. We obtain the algorithms with O(1) competitive ratio for three cases: convex
paths, where the error is measured using the Hausdorff distance (or Fréchet distance),
xy-monotone paths, where the error is measured using the Hausdorff distance (or
Fréchet distance), and general paths, where the error is measured using the Fréchet
distance. In the first case the algorithm needs O(k) additional storage, and in the
latter two cases the algorithm needs O(k2) additional storage.

Keywords Line simplification · Streaming algorithms

1 Introduction

Motivation Suppose that we are tracking one, or maybe many, moving objects. Each
object is equipped with a device that is continuously transmitting its position. Thus
we are receiving a stream of data points that describes the path along which the object
moves. The goal is to maintain this path for each object. We are interested in the
scenario where we are tracking the objects over a very long period of time, as happens
for instance when studying the migratory patterns of animals. In this situation it may
be undesirable or even impossible to store the complete stream of data points. Instead
we have to maintain an approximation of the input path. This leads us to the following
problem: we are receiving a (possibly infinite) stream p0,p1,p2, . . . of points in the
plane, and we wish to maintain a simplification (of the part of the path seen so far)
that is as close to the original path as possible, while using no more than a given
(fixed) amount of available storage.

Related Work The problem described above is a streaming version of line simpli-
fication, one of the basic problems in GIS. In a line simplification problem one is
given a polygonal path P := p0,p1, . . . , pn in the plane, and the goal is to find a
path Q := q0, q1, . . . , qk with fewer vertices that well approximates the path P . In
fact, this problem arises whenever we want to perform data reduction on a polygonal
shape in the plane, and so it plays a role not only in GIS but also in areas like image
processing and computer graphics. Line simplification has been studied extensively
both in these application areas and in computational geometry. We study line simpli-
fication in a streaming setting, where we only have a limited amount of storage so that
we cannot store all the points. A similar streaming model for geometric algorithms
has been used by, e.g., Agarwal and Yu [2] and Zarrabi-Zadeh and Chan [19]. Also
see Muthukrishnan’s survey [18] on streaming algorithms.

The line-simplification problem has many variants. For example, we can require
the sequence of vertices of Q to be a subsequence of P (with q0 = p0 and qk = pn)—
this is sometimes called the restricted version—or we can allow arbitrary points as
vertices. In this paper, as in most other papers, we consider the restricted version, and
we limit our discussion to this version from now on; some results on the unrestricted
version can be found in [10–12, 15]. In the restricted version, each link qlql+1 of the
simplification corresponds to a shortcut pipj (with j > i) of the original path, and the
error of the link is defined as the distance between pipj and the subpath pi, . . . ,pj .
To measure the distance between pipj and pi, . . . , pj one often uses the Hausdorff
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distance, but the Fréchet distance can be used as well—see below for definitions. The
error of the simplification Q is now defined as the maximum error of any of its links.
Once the error measure has been defined, we can consider two types of optimization
problems: the min-k and the min-δ problem. In the min-k problem, one is given the
path P and a maximum error δ, and the goal is to find a simplification Q with as few
vertices as possible whose error is at most δ. In the min-δ problem, one is given the
path P and a maximum number of vertices k, and the goal is to find a simplification
with the smallest possible error that uses at most k vertices.

The oldest and most popular algorithm for line simplification under the Haus-
dorff distance is the Douglas–Peucker algorithm [8]. A basic implementation of this
algorithm runs in O(n2) time, but more careful implementations run in O(n logn)

time [13] or even O(n log∗ n) time [14]. However, the Douglas–Peucker algorithm
is only heuristic and is not guaranteed to be optimal (in terms of the number of
vertices used or the error of the resulting simplification). Imai and Iri [16] solved
both versions of the problem by modeling it as a shortest-path problem on directed
acyclic graphs. The running time of their method was proved to be quadratic or near
quadratic by Chin and Chan [7] and Melkman and O’Rouke [17]. Finally, Agarwal
and Varadarajan [1] improved the running time to O(n4/3+ε) for any fixed ε > 0, for
the L1-metric and the so-called uniform metric—here d(p,q) = |py −qy | if px = qx

and d(p,q) = ∞ otherwise—by implicitly representing the graph.
The line-simplification problem was first studied for the Fréchet distance by Go-

dau [9]. Alt and Godau [4] proposed an algorithm to compute the Fréchet distance
between two polygonal paths in quadratic time; combined with the approach of Imai
and Iri [16], this can be used to compute an optimal solution to the min-δ or the min-k
problem for the Fréchet distance.

Since exact solving the line-simplification problem is costly—the best known al-
gorithm for the Hausdorff distance (under the L2 metric) and for the Fréchet dis-
tance take quadratic time or more—Agarwal et al. [3] considered approximation al-
gorithms. In particular, they considered the min-k problem for both the Hausdorff
distance for x-monotone paths (in the plane) and the Fréchet distance for general
paths (in d-dimensional space). They gave near-linear time algorithms that compute
a simplification whose error is at most δ and whose number of vertices is at most the
minimum number of vertices of a simplification of error at most δ/2. Their algorithms
are greedy and iterative. Because the algorithms are iterative, they can be used in an
on-line setting, where the points are given one by one, and the simplification must
be updated at each step. However, since they solve the min-k problem, they cannot
be used in a streaming setting, because the complexity of the produced simplification
for an input path of n points can be Θ(n). (Note that an iterative greedy approach
can be used in the min-k problem—try to go as far as possible with each link, while
staying within the error bound δ—but that for the min-δ problem this does not work.)
Moreover, their algorithm for the Hausdorff distance does not work when the normal
Euclidean distance is used in the definition of Hausdorff distance, but it does when
the uniform distance is used. The other existing algorithms for line simplification
cannot be used in a streaming setting either.

Definitions, Notation, and Problem Statement We first introduce some terminology
to state more clearly the problem we wish to solve. Let p0,p1, . . . be the given stream
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of input points. We use P(n) to denote the path defined by the points p0,p1, . . . , pn,
that is, the path connecting those points in order, and for any two points p,q on the
path, we use P(p,q) to denote the subpath from p to q . For two vertices pi,pj ,
we use P(i, j) as a shorthand for P(pi,pj ). A segment pipj with i < j is called a
link or sometimes a shortcut. Thus P(n) consists of the links pi−1pi for 0 < i � n.
We assume that a function error is given that assigns a nonnegative error to each
link pipj . An �-simplification of P(n) is a polygonal path Q := q0, q1, . . . , qk, qk+1,
where k � �, q0 = p0, qk+1 = pn, and q1, . . . , qk is a subsequence of p1, . . . , pn−1.
The error of a simplification Q for a given function error, denoted error(Q), is de-
fined as the maximum error of any of its links. We will consider two specific error
functions for our simplifications, one based on the Hausdorff distance, and the other
based on the Fréchet distance, as defined next. For two objects o1 and o2, we use
d(o1, o2) to denote the Euclidean distance between o1 and o2. (For two points pi

and pj , we sometimes also use |pipj | to denote the Euclidean distance between pi

and pj , which is equal to the length of the segment pipj .)

• In the Hausdorff error function errorH, the error of the link pipj is equal to
dH(pipj ,P (i, j)), the Hausdorff distance of the subpath P(i, j) to the segment
pipj . The Hausdorff distance is defined as dH(pipj ,P (i, j)) :=
maxi�l�j d(pl,pipj ).

• The Fréchet distance between two paths A and B , which we denote by dF(A,B),
is defined as follows. Consider a man with a dog on a leash, with the man standing
at the start point of A and the dog standing at the start point of B . Imagine that the
man walks to the end of A and the dog walks to the end of B . During the walk,
they can stop every now and then, but they are not allowed to go back along their
paths. Now the Fréchet distance between A and B is the minimum length of the
leash needed for this walk, over all possible such walks. More formally, dF(A,B)

is defined as follows. Let A and B be specified by functions A : [0,1] → R
2 and

B : [0,1] → R
2. Any nondecreasing continuous function α : [0,1] → [0,1] with

α(0) = 0 and α(1) = 1 defines a reparameterization Aα of A by setting Aα(t) =
A(α(t)). Similarly, any nondecreasing continuous function β : [0,1] → [0,1] with
β(0) = 0 and β(1) = 1 defines a reparameterization Bβ of B . The Fréchet distance
dF(A,B) between two paths A and B is now defined as

dF(A,B) := inf
α,β

max
0�t�1

d
(
Aα(t),Bβ(t)

)
,

where the infimum is taken over all reparameterizations Aα of A and Bβ of B .
In the Fréchet error function errorF, the error of the link pipj is the Fréchet
distance of the subpath P(i, j) to the segment pipj , that is, errorF(pipj ) :=
dF(P (i, j),pipj ).

Now consider an algorithm A := A(�) that maintains an �-simplification for the
input stream p0,p1, . . . for some given �. Let QA(n) denote the simplification that
A produces for the path P(n). Let Opt(�) denote an optimal off-line algorithm that
produces an �-simplification. Thus error(QOpt(�)(n)) is the minimum possible error
of any �-simplification of P(n). We define the quality of A using the competitive
ratio, as is standard for on-line algorithms. We also allow resource augmentation.
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More precisely, we allow A to use a 2k-simplification, but we compare the error of
this simplification to QOpt(k)(n). (This is similar to Agarwal et al. [3], who compare
the quality of their solution to the min-k problem for a given maximum error δ to the
optimal solution for maximum error δ/2.) Thus we define the competitive ratio of an
algorithm A(2k) as

competitive ratio of A(2k) := max
n�0

error(QA(2k)(n))

error(QOpt(k)(n))
,

where error(QA(2k)(n))

error(QOpt(k)(n))
is defined as 1 if error(QA(2k)(n)) = error(QOpt(k)(n)) = 0.

We say that an algorithm is c-competitive if its competitive ratio is at most c.

Our Results We present and analyze a simple general streaming algorithm for line
simplification. Our analysis shows that the algorithm has good competitive ratio un-
der two conditions: the error function that is used is monotone—see Sect. 2 for a
definition—and there is an oracle that can approximate the error of any candidate
link considered by the algorithm. We then continue to show that the Hausdorff error
function is monotone on convex paths and on xy-monotone paths. (It is not monotone
on general paths.) The Fréchet error function is monotone on general paths. Finally,
we show how to implement the error oracles for these three settings. Putting every-
thing together leads to the following results.

(i) For convex paths and the Hausdorff error function (or the Fréchet error function),
we obtain a 3-competitive streaming algorithm using O(k) additional storage
that processes an input point in O(log k) time.

(ii) For xy-monotone paths and the Hausdorff error function (or the Fréchet error
function). We can, for any fixed ε > 0, obtain a (4 + ε)-competitive streaming
algorithm that uses O(k2/

√
ε) additional storage and processes each input point

in O(k log (1/ε)) amortized time.
(iii) For general paths and the Fréchet error function, we can, for any fixed ε > 0,

obtain a (4
√

2 + ε)-competitive streaming algorithm that uses O(k2/
√

ε) addi-
tional storage and processes each input point in O(k log (1/ε)) amortized time.

Finally, we give a negative result in Sect. 5. We show that, for the Hausdorff er-
ror function, it is not possible to have a streaming algorithm that maintains a path
with less than 2k points whose competitive ratio (with respect to Opt(k)) is bounded,
unless the algorithm uses Ω(n/k) additional storage.

2 A General Algorithm

In this section we describe a general strategy for maintaining an �-simplification of
an input stream p0,p1, . . . of points in the plane, and we show that it has a good com-
petitive ratio under two conditions: the error function is monotone (as defined below),
and we have an error oracle at our disposal that computes or approximates the error
of a link. We denote the error computed by the oracle for a link pipj by error∗(pipj ).
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In later sections we will prove that the Hausdorff error metric is monotone on con-
vex or xy-monotone paths and that the Fréchet error function is monotone on general
paths, and we will show how to implement the oracles for these settings.

Our algorithm is quite simple. Suppose that we have already handled the points
p0, . . . , pn. (We assume that n > � + 1; until that moment, we can simply use all
points and have zero error.) Let Q := q0, q1, . . . , q�, q�+1 be the current simplifica-
tion. Our algorithm will maintain a priority queue Q that stores the points qi with
1 � i � �, where the priority of a point is the error (as computed by the oracle) of
the link qi−1qi+1. In other words, the priority of qi is (an approximation of) the error
that is incurred when qi is removed from the simplification. Now the next point pn+1
is handled as follows:

1. Set q�+2 := pn+1, thus obtaining an (� + 1)-simplification of P(n + 1).
2. Compute error∗(q�q�+2) and insert q�+1 into Q with this error as priority.
3. Extract the point qs with minimum priority from Q; remove qs from the simplifi-

cation.
4. Update the priorities of qs−1 and qs+1 in Q.

Next we analyze the competitive ratio of our algorithm.
We say that a link pipj encloses a link plpm if i � l � m � j , and we say that

error is a c-monotone error function for a path P(n) if, for any two links pipj and
plpm such that pipj encloses plpm, we have

error(plpm) � c · error(pipj ).

In other words, an error function is c-monotone if the error of a link cannot be worse
than c times the error of any link that encloses it.

Furthermore, we denote an error oracle as an e-approximate error oracle if

error(pipj ) � error∗(pipj ) � e · error(pipj )

for any link pipj for which the oracle is called by the algorithm above.

Theorem 2.1 Suppose that we use a c-monotone error function and that we have
an e-approximate error oracle at our disposal. Then the algorithm described above
with � = 2k is ce-competitive with respect to Opt(k). The time the algorithm needs
to update the simplification Q upon the arrival of a new point is O(log k) plus the
time spent by the error oracle. Besides the storage needed for the simplification Q,
the algorithm uses O(k) storage plus the storage needed by the error oracle.

Proof Consider an arbitrary n � 0, and let Q(n) denote the 2k-simplification pro-
duced by our algorithm. Since the error of Q(n) is the maximum error of any of
its links, we just need to show that error(σ ) � c · e · error(QOpt(k)(n)) for any link
σ in Q(n). Let m � n be such that σ appears in the simplification when we re-
ceive point pm. If m � 2k + 1, then error(σ ) = 0, and we are done. Otherwise, let
Q(m − 1) := q0, . . . , q2k+1 be the 2k-simplification of P(m − 1). Upon the arrival
of pm = q2k+2 we insert q2k+1 = pm−1 into Q. A simple counting argument shows
that at least one of the shortcuts qt−1qt+1 for 1 � t � 2k + 1, let us call it σ ′, must be
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enclosed by one of the at most k + 1 links in QOpt(k)(n). Since σ is the link with the
smallest priority among all links in Q at that time, its approximated error is smaller
than that of σ ′. Therefore,

error
(
QOpt(k)(n)

)
� 1

c
error(σ ′) � 1

c · e error∗(σ ′)

� 1

c · e error∗(σ ) � 1

c · e error(σ ).

We conclude that our algorithm is ce-competitive with respect to Opt(k).
Besides the time and storage needed by the error oracle, the algorithm only needs

O(k) space to store the priority queue and O(log k) for each update of the priority
queue. �

Remark The proof of Theorem 2.1 is similar to a proof by Buragohain et al. [6].
They show that any simplification with 2k links satisfying the so-called min-merge
property is competitive against an optimal solution with k links. Although their proof
is similar, their concept of min-merge property is not directly applicable in our setting,
and so we cannot use their result directly.

3 The Hausdorff Error Function

The algorithm presented above has good competitive ratio if the error function being
used is monotone and can be well approximated. In this section we show that these
properties hold for the Hausdorff error function on convex and xy-monotone paths.
(A path is convex if by connecting the last point to the first point on the path we obtain
a convex polygon. A path is xy-monotone if any horizontal or vertical line intersects
it in at most one point.) Note that for these two cases, the Hausdorff distance between
a link pipj and the subpath P(i, j) is identical to the Fréchet distance between them.
Thus the results from this section hold for the Fréchet distance as well. They improve
on the result that will be given in the next section for the Fréchet distance on general
curves.

The following lemma gives results on the monotonicity of various types of paths
under the Hausdorff error function.

Lemma 3.1 The Hausdorff error function is 1-monotone on convex paths and
2-monotone on xy-monotone paths. Moreover, there is no constant c such that the
Hausdorff error function is c-monotone on y-monotone paths.

Proof It is easy to see that the Hausdorff error function is 1-monotone on con-
vex paths. It is also not difficult, given any constant c, to give an example of an
y-monotone path such that the Hausdorff error function is not c-monotone—a zigzag
with four vertices such that the first and third are very close together and the second
and fourth are very close together will do.

So now consider an xy-monotone path p0, . . . , pn. Let pipj and plpm be two
links such that pipj encloses plpm, and let ps be a point on the subpath P(l,m)
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Fig. 1 The Hausdorff error
function is 2-monotone on
any xy-monotone path

such that d(ps,plpm) = errorH(plpm). Consider the circles Cl , Cm, and Cs of ra-
dius errorH(pipj ) centered at points pl , pm, and ps , see Fig. 1. Since the distance of
the link pipj to the points pl , ps , and pm is at most errorH(pipj ), it must intersect
these circles. Let p′

s , p′
l , and p′

m be the orthogonal projections of ps , pl , and pm

onto the link pipj . Clearly, p′
s , p′

l , and p′
m are inside Cs , Cl , and Cm, respectively.

Since P(i, j) is xy-monotone, p′
s lies between p′

l and p′
m, which implies

d(p′
s ,plpm) � max

(
d(p′

l , pl), d(p′
m,pm)

)
� errorH(pipj ).

Therefore,

errorH(plpm) = errorH(ps,plpm)

� d(ps,p
′
s) + d(p′

s ,plpm)

� 2 errorH(pipj ).

Note that the link pipj can be tangent to Cs , Cl , and Cm, which shows that the
monotonicity factor 2 is tight. �

The next step is to implement the error oracles for convex paths and for
xy-monotone paths. We start with the case of convex paths.

3.1 The Error Oracle for Convex Paths

The idea of the error oracle is to maintain an approximation of the area enclosed
by pipj and the path P(i, j) for each link pipj . Let area(i, j) denote this area.
If the two angles ∠pi+1pipj and ∠pj−1pjpi are at most 90 degrees, we can
deduce an approximation of errorH(pipj ) from area(i, j) and |pipj |. Indeed, if
dH(pipj ,P (i, j)) = d , then the maximum area enclosed by pipj and P(i, j) is
achieved by a rectangle with base pipj and height d , and the minimum area is
achieved by a triangle with base pipj and height d . Hence,

dH
(
pipj ,P (i, j)

)
� 2 · area(i, j)/|pipj | � 2 · dH

(
pipj ,P (i, j)

)
,

and so 2 · area(i, j)/|pipj | can be used as a 2-approximate error oracle. Unfortu-
nately this approach does not work if ∠pi+1pipj and/or ∠pj−1pjpi are bigger than
90 degrees. We therefore proceed as follows.
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Fig. 2 The areas maintained by
the error oracle for convex paths

For each shortcut pipj used in the current approximation, partition the path
P(i, j) into at most five pieces by splitting it at each vertex that is extreme in x-
or y-direction. (If, say, there is more than one leftmost vertex on the path, we cut at
the first such vertex.) The information we maintain for pipj is the set of cut points
and the area enclosed by each such piece P(l,m) and the corresponding shortcut
plpm, see Fig. 2. Notice that if P(i, j) does not contain an extreme point, we simply
maintain area(i, j), as before.

Since dH(pipj ,P (i, j)) is the maximum of dH(pipj ,P (l,m)) over all pieces
P(l,m) into which P(i, j) is cut, it is sufficient to approximate dH(pipj ,P (l,m))

for each piece. Note that ∠pl+1plpm and ∠pm−1pmpl are at most 90 degrees. We
approximate dH(pipj ,P (l,m)) by

(
2 · area(l,m)/|plpm|) + dH

(
pipj ,plpm

)
.

We claim this gives us a 3-approximation. We have

dH
(
pipj ,P (l,m)

)
� dH

(
plpm,P (l,m)

) + dH(pipj ,plpm)

� 2 · area(l,m)

|plpm| + dH(pipj ,plpm).

On the other hand,

3 · dH
(
pipj ,P (l,m)

)
� 3 · max

(
dH

(
plpm,P (l,m)

)
, dH(pipj ,plpm)

)

� 2 · area(l,m)

|plpm| + dH(pipj ,plpm),

so (2 ·area(l,m)/|plpm|)+dH(pipj ,plpm) is indeed a 3-approximation of dH(pipj ,

P (l,m)).
It remains to show that we can maintain this information as more points are

received and the simplification changes. First consider Step 2 of the algorithm,
where we need to compute error∗(q�q�+2). Since we have the information de-
scribed above available for q�q�+1, and q�+1 and q�+2 are consecutive points
of the original path P , we can compute the necessary information for q�q�+2
in O(1) time. Updating the priorities of ps−1 and ps+1 after removing ps in
Step 4 can be performed in O(1) time as follows. The priority assigned to ps−1
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after removing ps is the approximation of dH(qs−2qs+1,P (qs−2, qs+1)), which
is the maximum of dH(qs−2qs+1,P (qs−2, qs−1)), dH(qs−2qs+1,P (qs−1, qs)), and
dH(qs−2qs+1,P (qs, qs+1)). Since the areas and the cutting points of subpaths
P(qs−2, qs−1), P(qs−1, qs), and P(qs, qs+1) are available, we can simply compute
the priority of ps as described above. The priority of ps+1 can be computed in a
similar way.

Lemma 3.2 There is a 3-approximate error oracle for the Hausdorff error function
on convex paths that uses O(k) storage and can be updated in O(1) time.

Theorem 3.3 There is a streaming algorithm that maintains a 2k-simplification for
convex planar paths under the Hausdorff error function (or the Fréchet error func-
tion) and that is 3-competitive with respect to Opt(k). The algorithm uses O(k) ad-
ditional storage, and each point is processed in O(log k) time.

3.2 The Error Oracle for xy-Monotone Paths

We use the notion of width for approximating errorH of an xy-monotone path. The
width of a set of points with respect to a given direction

−→
d is the minimum dis-

tance of two lines being parallel to
−→
d that enclose the point set.1 Let w(i, j) be

the width of the points in subpath P(i, j) with respect to the direction −−→
pipj . Since

P(i, j) is xy-monotone, it is contained inside the axis-parallel rectangle defined by
pi and pj . Therefore, w(i, j)/2 � errorH(pipj ) � w(i, j), and w(i, j) can be used
as a 2-approximate error oracle for errorH(pipj ).

Agarwal and Yu [2] have described a streaming algorithm for maintaining a core-
set that can be used to approximate the width of a set in any direction. More precisely,
they maintain an ε-coreset of size O(1/

√
ε) in O(log (1/ε)) amortized time per in-

sertion. The width in a given direction can be efficiently computed from the coreset if
we additionally maintain the convex hull of the coreset using the dynamic data struc-
ture by Brodal and Jacob [5]. This data structure uses linear space and can be updated
in logarithmic time. Also it supports queries for the extreme point in a given direction
in logarithmic time. Thus we can compute the extreme points that define the width
in a given direction in O(log (1/ε)) time. The coreset gives us a (2 + ε)-approximate
error oracle.

Lemma 3.4 There is a (2+ε)-approximate error oracle for the Hausdorff error func-
tion on xy-monotone paths that uses O(k2 + k/

√
ε) storage and has O(k log (1/ε))

amortized update time.

Proof Let q0, . . . , q�+1 denote the current approximation with � = 2k. Although our
algorithm only needs the approximate errors of the links qi−1qi+1 to decide which
point qs is erased next, we must maintain some information for each link that might

1Sometimes the width in a direction is defined as the smallest distance between two enclosing lines that
are orthogonal to that direction, but for us it is more convenient to define it with respect to lines parallel to
the given direction.
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be needed at some later time in our simplification. More precisely, we maintain the
following information:

• For each (potential) link qiqj with 0 � i < j � � + 1, we store a (1 + ε)-
approximation of the width of the subpath P(qi, qj ) in the direction of qiqj . This
takes O(k2) storage in total.

• For each (potential) link qiq�+1 with 0 � i � �, we maintain a coreset of all the
points on the subpath P(qi, q�+1) and a dynamic convex-hull structure for this
coreset. Since each coreset uses O(1/

√
ε) storage, the amount of storage for the

coresets and convex hulls is O(k/
√

ε).

Now consider the arrival of a new point pn+1. We need to add this point to the sim-
plification and remove one of the existing points in the simplification. Since for each
of the current links we know (an approximation) of its width, we also know its ap-
proximate error. Hence, we can decide which point to remove.

Next we must update the information we maintain. Note that pn+1 is our new last
point of the simplification and that the only new (potential) links are links qipn+1.
We must obtain a coreset for each such link qipn+1. Note that we no longer need the
coreset for qipn. Hence, we can simply take this coreset, insert pn+1 into it, and then
update the dynamic convex-structure storing the coreset. After having obtained the
O(k) new coresets in this manner in O(k log(1/ε)) amortized time, we can find the
approximate widths of these links in the same amount of time. �

Theorem 3.5 There is a streaming algorithm that maintains a 2k-simplification for
xy-monotone planar paths under the Hausdorff error function (or the Fréchet error
function) and that is (4 + ε)-competitive with respect to Opt(k). The algorithm uses
O(k2 + k/

√
ε) additional storage, and each point is processed in O(k log (1/ε))

amortized time.

4 The Fréchet Error Function

We now turn our attention to the Fréchet error function. We will show that we can
obtain an O(1)-competitive algorithm for general paths. The first property we need
is that the Fréchet error function is monotone. This has in fact already been proven
by Agarwal et al. [3].

Lemma 4.1 [3] The Fréchet error function is 2-monotone on general paths.

4.1 The Error Oracle

Next we consider the implementation of the error oracle for the Fréchet error func-
tion. We use two parameters to approximate errorF(pipj ). The first one is w(i, j),
the width of the points of P(i, j) in the direction of pipj , which we also used to
approximate the Hausdorff error in the case of xy-monotone paths. The other para-
meter is the length of the largest back-path in the direction of pipj , which is defined
as follows. Assume without loss of generality that pipj is horizontal with pj to the



508 Discrete Comput Geom (2010) 43: 497–515

Fig. 3 Relation between
Fréchet distance and back-paths

right of pi . For two points pl,pm on the path P(i, j) with l < m, we define P(l,m)

to be a back-path on P(i, j) if (pm)x < (pl)x . In other words, P(l,m) is a back-path
if, relative to the direction −−→

pipj , we go back when we move from pl to pm, see Fig. 3.
The length of a back-path P(l,m) on P(i, j) is defined to be the length of the pro-
jection of plpm onto a line parallel to pipj , which is equal to (pl)x − (pm)x since
we assumed that pipj is horizontal. We define b(i, j) to be the maximum length of
any back-path on P(i, j).

Lemma 4.2 max(
w(i,j)

2 ,
b(i,j)

2 ) � errorF(pipj ) � 2
√

2 max(
w(i,j)

2 ,
b(i,j)

2 ).

Proof As above, without loss of generality we assume that pipj is horizontal with pj

to the right of pi .
We observe that errorF(pipj ) � errorH(pipj ) � w(i,j)

2 . Next we will show

that b(i,j)
2 � errorF(pipj ). Consider a back-path P(l,m) on P(i, j) determin-

ing b(i, j), as shown in Fig. 3. Let r be the point on the line through pipj midway
between pl and pm, that is, the point on the line through pipj with x-coordinate
((pl)x + (pm)x)/2. Note that r does not necessarily lie on pipj . The Fréchet dis-
tance between pipj and P(i, j) is determined by some optimal pair of parameter-
izations of pipj and P(i, j) that identifies each point p of P(i, j) with a point p

on pipj in such a way that if p comes before q along P(i, j), then p does not come
later than q along pipj . Now consider the images pl and pm. If pl lies to the left

of r , then |plpl | � b(i,j)
2 . If, on the other hand, pl lies on or to the right of r , then

pm lies on or to the right of r as well, and we have |pmpm| � b(i,j)
2 . We conclude

that max(
w(i,j)

2 ,
b(i,j)

2 ) � errorF(pipj ), which proves the first part of the lemma.
For the second part of the lemma, we must show that errorF(pipj ) �√

2 max(w(i, j), b(i, j)). It is convenient to think about the Fréchet distance in terms
of the man–dog metaphor. In these terms, we have to find a walking schedule where
the man walks along pipj and the dog walks along P(i, j) so that they never go back
along their paths and their distance is never greater than

√
2 max(w(i, j), b(i, j)).

We can find such a walk as follows. Denote the position of the man by pman
and the position of the dog by pdog. Initially, pman = pdog = pi . Let � be the
vertical line through pi . Among all the intersection points of � with P(i, j), let
p be one farthest along P(i, j). (If � does not intersect P(i, j) except at pi ,
then p = pi .) We let the dog walk along P(pi,p), while the man waits at pi . Let q

be an arbitrary point on P(pi,p). Then there must be points pl,pm with l < m

such that (pl)x � (pi)x and (pm)x � (q)x . Hence, we have |(q)x − (pi)x | �
(pl)x − (pm)x � b(i, j). Furthermore, |(q)y − (pi)y | � w(i, j). Hence, so far we
have |pmanpdog| �

√
2 max(w(i, j), b(i, j)).



Discrete Comput Geom (2010) 43: 497–515 509

We continue the walk as follows. Sweep � to the right. Initially � will intersect
P(p,pj ) in only one point. As long as this is the case, we set pman = � ∩ pipj and
pdog = �∩P(p,pj ). During this part, we clearly have |pmanpdog| � w(i, j). At some
point, � may intersect P(pdog,pj ) in one (or more) point(s) other than pdog. When
this happens, we take the intersection point p that is farthest along P(pdog,pj ),
and let the dog proceed to p while the man waits at his current position. By the
previous argument, |pmanpdog| �

√
2 max(w(i, j), b(i, j)) during this phase. Then

we continue to sweep � to the right again, letting pman = � ∩ pipj and pdog =
� ∩ P(p,pj ). The process ends when the sweep line reaches pj . We have thus found
a walking schedule with |pmanpdog| �

√
2 max(w(i, j), b(i, j)) at all times, finishing

the proof of the lemma. �

According to the above lemma, in order to approximate errorF(pipj ), it suffices
to approximate max(w(i, j), b(i, j)). In the previous section we already described
how to approximate w(i, j), when we were studying the Hausdorff error function for
xy-monotone paths. Next we describe a method for approximating b(i, j), and show
how to combine these two methods to build the oracle for errorF(pipj ). (Note that
if there are no back-paths, then the Fréchet error is equal to the Hausdorff error, so
the case of xy-monotone paths for Hausdorff error is a special case of our current
setting.)

In the algorithm presented in Sect. 2 we need to maintain (an approximation of)
the error of each shortcut qlql+2 in the current simplification. For this, we need to
know the maximum length of a back-path on the path from ql to ql+2. The operations
we must do are to add a point q�+2 = pn+1 at the end of the simplification and to
remove a point qs from the simplification. To this end we maintain the following
information. For the moment let us assume that all we need is the maximum length
of the back-path with respect to the positive x-direction. Then we maintain for each
link pipj of the simplification the following values:

(i) b(i, j), the maximum length of a back-path (w.r.t. the positive x-direction)
on P(i, j);

(ii) x max(i, j), the maximum x-coordinate of any point on P(i, j);
(iii) x min(i, j), the minimum x-coordinate of any point on P(i, j).

Now consider a shortcut qlql+2. Let ql = pi , ql+1 = pt , and ql+2 = pj . Then b(i, j),
the maximum length of a back-path on P(ql, ql+2) = P(i, j), is given by

max
(
b(i, t), b(t, j), x max(i, t) − x min(t, j)

)
.

Adding a point q�+2 is easy, because we only have to compute the above three val-
ues for q�+1q�+2, which is trivial since q�+1 and q�+2 are consecutive points on the
original path. Removing a point qs can also be done in O(1) time (let qs−1 = pi

and qs+1 = pj ): above we have shown how to compute b(i, j) from the available in-
formation for qs−1qs and qsqs+1, and computing x max(i, j) and x min(i, j) is even
easier.

Thus we can maintain the maximum length of a back-path. There is one catch,
however: the procedure given above maintains the maximum length of a back-path
with respect to a fixed direction (the positive x-direction). But in fact we need to
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know for each qiqi+2 the maximum length of a back-path with respect to the direc-
tion −−−→

qiqi+2. These directions are different for each of the links, and, moreover, we do
not know them in advance. To overcome this problem we define 2π/α equally spaced
canonical directions for a suitable α > 0, and we maintain, for every link pipj , the in-
formation described above for each direction. Now suppose that we need to know the
maximum length of a back-path for pipj with respect to the direction −−→

pipj . Then we

will use b−→
d

(pipj ), the maximum length of a back-path with respect to
−→
d instead,

where
−→
d is the canonical direction closest to −−→

pipj in clockwise order. In general,

using
−→
d may not give a good approximation of the maximum length of a back-path

in direction −−→
pipj , even when α is small. However, the approximation is only bad

when w(i, j) is relatively large, which means that the Fréchet distance can still be
well approximated. This is made precise in the following lemmas.

Lemma 4.3 Let w be the width of P(i, j) in direction −−→
pipj , let b be the maximum

length of a back-path on P(i, j) in direction −−→
pipj , and let b∗ be the maximum length

of a back-path on P(i, j) in direction
−→
d , where

−→
d is the canonical direction closest

to −−→
pipj in clockwise order. Then we have b∗ − tan(α) ·w � b � b∗ + tan(α) ·(b∗ +w).

Proof We first show that b � b∗ + tan(α) · (b∗ + w). Let the sub-path P(l,m) have
the maximum back-path length in the direction −−→

pipj . Consider two half-lines origi-

nating from pm and being parallel to −−→
pipj and

−→
d . Let β denote the angle between

these two half-lines. Because
−→
d is the canonical direction closest to −−→

pipj in clock-
wise order, clearly β � α. Let p and q be the orthogonal projections of pl onto the
lines through pm in directions −−→

pipj and
−→
d , respectively. We distinguish four cases,

depending on the relation of direction −−→
pmpl to −−→

pipj and
−→
d . The direction −−→

pmpl can

be counterclockwise to −−→
pipj , between −−→

pipj and
−→
d , or clockwise to

−→
d . If −−→

pmpl is
counterclockwise to −−→

pipj , we also distinguish whether the angle between −−→
pmpl and−−→

pipj is less or more than 90 − β degrees. Note, that since plpm is a back-path, the
angle between −−→

pmpl and −−→
pipj cannot be larger than 90 degrees. All four cases are

illustrated in Fig. 4. The corresponding proofs are as follows:

(a) −−→
pmpl is between 90 and 90 − β degrees counterclockwise to −−→

pipj :

b = |pmq| � |plq| tan(β) � w tan(α)

� b∗ + tan(α) · (b∗ + w).

(b) −−→
pmpl is less than 90 − β degrees counterclockwise to −−→

pipj :

b = |pmq| � |pmp| + |pr| + |rq|
� |pmp| + |pmp| tan(β) + |plq| tan(β)

� b∗ + tan(α) · (b∗ + w).

(c) −−→
pmpl is between −−→

pipj and
−→
d :
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Fig. 4 Illustration for the proof of Lemma 4.3

b = |pmq| � |pmpl | � |pmp| + |ppl |
� |pmp| + |pmp| tan(β)

� b∗ + tan(α) · (b∗ + w).

(d) −−→
pmpl is clockwise to

−→
d by at most 90 − β degrees:

b = |pmq| � |pmp| � b∗ � b∗ + tan(α) · (b∗ + w).

The same elementary arguments can be used to show that b∗ − tan(α) · w � b. �

The final oracle is now defined as follows. Let w∗ be the approximation of the
width of P(i, j) in direction −−→

pipj as given by Agarwal and Yu’s ε-coreset method,

and let b∗ be the maximum length of a back-path on P(i, j) in direction
−→
d , where

−→
d

is the canonical direction closest to −−→
pipj in clockwise order. Then we set

errorF
∗(pipj ) := √

2 · max
(
w∗, b∗ + tan(α) · (b∗ + w∗)

)
.

Combining Lemma 4.2 with the observations above, we can prove the following
lemma.
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Lemma 4.4

errorF(pipj ) � errorF
∗(pipj ) � 2

√
2(1 + ε)

(
1 + 4 tan(α)

) · errorF(pipj ).

Proof Let w be the width of P(i, j) in direction −−→
pipj , and let b be the maximum

length of a back-path on P(i, j) in direction −−→
pipj . Because w∗ is the width of an

ε-coreset, we have w � w∗ � (1 + ε)w. Using Lemma 4.2, we get

errorF(pipj ) � 2
√

2 · max

(
w

2
,
b

2

)

�
√

2 · max
(
w∗, b∗ + tan(α) · (b∗ + w)

)

�
√

2 · max
(
w∗, b∗ + tan(α) · (b∗ + w∗)

)

= errorF
∗(pipj ).

On the other hand,

errorF
∗(pipj ) = √

2 · max
(
w∗, b∗ + tan(α) · (b∗ + w∗)

)

�
√

2 · max
(
(1 + ε)w,b + tan(α)w

+ tan(α) · (b + tan(α)w + (1 + ε)w
)

�
√

2(1 + ε) · max
(
w,b + b tan(α) + 3w tan(α)

)

�
√

2(1 + ε)
(
1 + 4 tan(α)

) · max(w,b)

� 2
√

2(1 + ε)
(
1 + 4 tan(α)

) · max

(
w

2
,
b

2

)

� 2
√

2(1 + ε)
(
1 + 4 tan(α)

) · errorF(pipj ).

Taking ε and α sufficiently small, we get our final result. �

Theorem 4.5 There is a streaming algorithm that maintains a 2k-simplification
for general planar paths under the Fréchet error function and that is (4

√
2 + ε)-

competitive with respect to Opt(k). The algorithm uses O(k2 + k/
√

ε) additional
storage, and each point is processed in O(k log (1/ε)) amortized time.

5 The Hausdorff Error Function for General Paths

In this section we show that for the Hausdorff error function, it is not possible to have
a streaming algorithm that maintains a path with less than 2k points whose competi-
tive ratio (with respect to Opt(k)) is bounded, unless the algorithm uses Ω(n/k) addi-
tional storage. In fact, this even holds when the input path is known to be y-monotone.

Theorem 5.1 Let A be a streaming algorithm that maintains a (2k−1)-simplification
for a general planar path P(n) and that is able to store at most m − 1 of
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Fig. 5 Base path component for Theorem 5.1

the input points, where 2k + 2 � m � n/k. For any c > 0 and n � km + 1,
there is a y-monotone path p0,p1, . . . , pn such that errorH(QA(2k−1)(n)) >

c · errorH(QOpt(k)(n)).

Proof Figure 5 shows the basic component of the path which has the following prop-
erties:

(i) Points p0, . . . , pm−1 are collinear.
(ii) |pipi+1| > c · dH(pm−1,pipm+1) for all 0 � i � m − 2.

(iii) dH(pm−1,pi−1pm+1) > c · dH(pm−1,pipm+1) for all 1 � i � m − 1.

To obtain a configuration with the above properties, we take a horizontal line �

and a point pm−1 on �. We put pm+1 below � and arbitrarily far from pm−1 to the
right of pm−1 so that its distance to � is greater than (c + ε)m−1, where ε > 0 is an
arbitrarily small number. We put pi (i = 0, . . . ,m − 2) on � to the left of pm−1 so
that pipm+1 is tangent to the circle whose radius is (c + ε)m−i−1 and whose center
is pm−1. The point pi always exists, because dH(pm+1, �) > (c + ε)i .

Let A be a simplification algorithm being able to store at most m−1 points. Upon
the arrival of pm−1, the algorithm A is required to delete one of the past points, be-
cause it cannot store m points. Let pi with 1 � i � m− 2 be the deleted point, and let
the next point, pm, be slightly below pi (i.e., |pipm| ∼= 0). Up to here, by choosing pm

in QA(1)(m), we have errorH(QA(1)(m)) = errorH(QOpt(1)(m)) = 0. Now consider
the next point pm+1, which lies on its position according to our construction. Obvi-
ously, QOpt(1)(m + 1) is p0,pi,pm+1, and its Hausdorff error is dH(pm−1,pipm+1).
Since A has missed the point pi , QA(1)(m+1) is p0,pj ,pm+1 for some j 	= i. There
are three possibilities for j :

1. 0 � j < i: using property (iii), we have

errorH
(
QA(1)(m + 1)

) = dH(pm−1,pjpm+1)

> c · dH(pm−1,pipm+1)

= c · errorH
(
QOpt(1)(m + 1)

)
.

2. i < j � m − 1: using property (ii), we have

errorH
(
QA(1)(m + 1)

)
� dH(pm,pjpm+1) ∼= |pipj |
> c · dH(pm−1,pipm+1)

= c · errorH
(
QOpt(1)(m + 1)

)
.
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Fig. 6 A path that cannot be simplified within a bounded competitive ratio

3. j = m: using property (ii), we have

errorH
(
QA(1)(m + 1)

) = dH(pm−1,p0pm) ∼= |pipm−1|
> c · dH(pm−1,pipm+1)

= c · errorH
(
QOpt(1)(m + 1)

)
.

Therefore, in order to be within a bounded competitive ratio, A must store at least
the two points pm−1 and pm, which leads to a 2-simplification.

We concatenate k of these components in such a way that for any two consecutive
components, the first two points of the latter lie on the last two points of the former,
as illustrated in Fig. 6. Other than the first and the last points, it is straightforward
to show that A has to store two points of each component to be within a bounded
competitive ratio. This implies errorH(QA(2k−1)) > c · errorH(QOpt(k)(n)). �

6 Concluding remarks

We presented the first line-simplification algorithms in the streaming model. We
obtained algorithms with O(1) competitive ratio for convex planar paths and
xy-monotone planar paths under the Hausdorff error function (or the Fréchet error
function) and for general planar paths under the Fréchet distance. Our results imply
linear-time approximation when k is a constant (where the approximation factor is
with respect to the optimal solution using half the number of links).

Our algorithms all use resource augmentation: they maintain a 2k-simplification,
but we compare the error of our simplification to the error of an optimal
k-simplification. One obvious question is whether we can do with less, or maybe
no, resource augmentation. We have shown that this is not the case for general planar
paths under the Hausdorff error function, but note that we have not been able to give
any O(1)-competitive algorithm for this case, not even with resource augmentation.
Thus there is a significant gap between our positive and negative results.

Another aspect where improvement may be possible is the implementation of the
error oracles, which need O(k2) storage for xy-monotone paths under the Hausdorff
error function and for general paths under the Fréchet distance. For instance, if we can
maintain coresets in a streaming setting such that one can also merge two coresets,
then this will reduce the dependency on k in the storage from quadratic to linear.
(Note that we need to be able to do an unbounded number of merges.)

Our general approach extends to higher dimensions (but the approximation factors
and running times will change).
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