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Abstract. Given a permutation group acting on coordinates of Rn, we con-
sider lattice-free polytopes that are the convex hull of an orbit of one integral
vector. The vertices of such polytopes are called core points and they play a key
role in a recent approach to exploit symmetry in integer convex optimization
problems. Here, naturally the question arises, for which groups the number of
core points is Vnite up to translations by vectors Vxed by the group. In this pa-
per we consider transitive permutation groups and prove this type of Vniteness
for the 2-homogeneous ones. We provide tools for practical computations of
core points and obtain a complete list of representatives for all 2-homogeneous
groups up to degree twelve. For transitive groups that are not 2-homogeneous
we conjecture that there exist inVnitely many core points up to translations by
the all-ones-vector. We prove our conjecture for two large classes of groups:
For imprimitive groups and groups that have an irrational invariant subspace.
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1. Introduction

Let Γ ≤ Sn be a permutation group acting on Rn by permuting coordinates.
We consider orbit polytopes that are convex hulls conv(Γz) of an orbit of an
integral vector z ∈ Zn. Such an orbit polytope is called lattice-free, when its
vertices are the only integral vectors in the polytope. We note that lattice-free
polytopes (as used in [DO95, BK00]) are sometimes called empty lattice polytopes
(see [Seb99, HZ00]). We call the integral vertices of lattice-free orbit polytopes
core points with respect to Γ (cf. [HRS13]). These core points play an important
role in symmetric integer convex optimization as a Γ -symmetric convex set con-
tains an integral point if and only if it contains a core point of Γ (cf. [HRS13,
Theorem 4]).
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Core points can therefore be used to design algorithms that take advantage
of available symmetries. This is in particular the case when the number of core
points is Vnite up to translations by vectors in the Vxed space of Γ . In this case
it is even possible to use a naïve approach based on enumeration of core points,
beating state-of-the-art optimization software for selected problems, as shown
in [HRS13]. For such an approach, however, a full list of core points in needed.
In this paper we therefore not only address the fundamental question for which
groups Γ a Vniteness result holds, but we also provide computational techniques
to obtain full lists of core points in such cases. As far as possible, we apply our
tools to groups Γ of small degree and provide full lists of core points, which could
potentially be used for future computations. It should be noted though that such
lists are not at all necessary for the design of core point based, symmetry exploit-
ing algorithms. Even groups Γ which do not have Vnitely many core points (up
to translations by vectors in the Vxed space) may allow the use of good approxi-
mations or parametrizations of them.

We focus on transitive permutation groups Γ only, i.e., groups such that all
coordinates lie in the same orbit. This is a Vrst necessary step in a study of
more general groups as every permutation group relates to a product of transitive
groups. Next to the design of new core point based algorithms for integer convex
optimization problems, a detailed study of core points of intransitive groups are
major open tasks for future research (cf. [Her13, Reh13]).

Our paper is organized as follows. In Section 2 we introduce some notation
and recall elementary properties of core points. Using the John ellipsoid [Joh48]
we prove in Section 3 that core points of a given group are always close to an in-
variant subspace of the group. It is a well known fact from representation theory
that the space Rn can be decomposed into a direct sum of pairwise orthogonal
invariant subspaces of the given group. A transitive group always Vxes the one-
dimensional linear subspace spanned by the all-ones vector 1 and therefore also
preserves its (n − 1)-dimensional orthogonal complement 1⊥. Therefore, every
transitive permutation group has at least these two invariant subspaces. In the
following sections we distinguish two fundamentally diUerent cases.

In Section 4 we study groups for which the (n − 1)-dimensional invariant
subspace 1⊥ cannot be decomposed into smaller invariant subspaces, that is, we
consider groups acting irreducibly on 1⊥. By Cameron [Cam72, Lemma 2], these
are precisely the 2-homogeneous groups. We show that in this case there exist
only Vnitely many core points up to translation by the all-ones vector. This allows
in principle to obtain a complete list of core points (up to translation). We provide
mathematical tools for an exhaustive computer search, which we perform up to
dimension twelve (see Table 3).

For the other case, that is, for groups having more than two invariant sub-
spaces, we conjecture that there are inVnitely many core points up to translation
(see Conjecture 21). In Section 5 we prove our conjecture for two major cases:
imprimitive groups and groups which have an irrational invariant subspace. Fig-
ure 1 depicts an overview of the groups whose core points we study in detail. De-
spite convincing computational evidence (see Section 5) for the remaining cases,
a complete proof for Conjecture 21 is still missing.
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Figure 1. Finite vs. inVnite core sets

2. Basic definitions and core points

2.1. Permutation groups and representations. We denote by 〈·, ·〉 the stan-
dard inner product in Rn. The orthogonal projection of a vector x onto a linear
subspace V is denoted by x|V .

By Sn we denote the symmetric group on the set [n] := {1, . . . , n}. Let Γ ≤
Sn be a permutation group. Since it acts on the set [n], we deVne its degree as n.
We say that Γ is transitive if for every x, y ∈ [n] there is a permutation γ ∈ Γ
with γx = y. In other words, all elements of [n] lie in the same Γ -orbit. More
generally, we say that Γ is k-transitive for a k ∈ [n] if for every two k-tuples
(x1, . . . , xk), (y1, . . . , yk) ∈ [n]k, with xi 6= xj and yi 6= yj for i 6= j, there
is a permutation γ ∈ Γ with γxi = yi for all i ∈ [k]. The group Γ is called
k-homogeneous if for every two subsets X,Y ⊂ [n] with k elements there is a
permutation γ ∈ Γ with γX = Y . Thus, every k-transitive group also is k-
homogeneous.

If there exists a non-trivial partition [n] =
⊔m
i=1 Ωi with 2 ≤ m ≤ n − 1 and

a permutation σ of [m] such that ΓΩi = Ωσ(i) for all i, we call the Ωi blocks of
imprimitivity. If no such partition exists, we say that Γ is primitive.

We do not distinguish between a permutation group and its canonical linear
representation which acts on Rn by permuting coordinates. We call a subspace
V ⊂ Rn an invariant subspace for Γ if it is setwise Vxed, i.e. ΓV = V . Note the
diUerence to the Vxed space Fix(Γ ), which is the subspace of all pointwise Vxed
elements of Rn. We can always decompose Rn into a direct sum of orthogonal
Γ -invariant subspaces because the linear representation of Γ is an orthogonal
group. For Γ ≤ Sn the space spanned by the all-ones vector 1 is always an
invariant subspace, which is even Vxed pointwise.

2.2. Core points. Core points were Vrst studied in [BHJ13] with respect to full
symmetric and alternating groups. The following deVnition is taken from [HRS13],
which generalizes the deVnition of core points from [BHJ13] to arbitrary sub-
groups of Sn.

DeVnition 1. Given a group Γ ≤ Sn, a core point with respect to Γ is an integral
point z ∈ Zn such that the convex hull of its Γ -orbit does not contain any further
integral points, that is, conv(Γz) ∩ Zn = Γz. Phrased diUerently, the orbit
polytope of z with respect to Γ , that is, conv(Γz), is lattice-free.
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Remark 2. Translation by 1 commutes with any element of Γ , therefore the
polytope conv(Γ (z+1)) is the translate 1+ conv(Γz). Thus, it suXces to study
core points up to translation by 1.

There are two canonical ways to choose representatives. The Vrst is studying
core points in the aXne hyperplanes H1,0, . . . ,H1,n−1 where H1,k := {x ∈
Rn | 〈x,1〉 = k}. We refer to the set of integer points in these hyperplanes as
layers Zn(k)

:= Zn ∩ H1,k with index k. The second way is to select zero-based
representatives according to the following deVnition.

DeVnition 3. A point z ∈ Zn is called zero-based if all its coordinates are non-
negative and at least one coordinate is zero.

At the end of this section we recall the only previously known result about core
points of transitive groups. For the full symmetric and alternating group on n
variables the following characterization of core points was proven in [BHJ13].
Since any subgroup Γ ′ ≤ Γ inherits the core points of Γ , the core points with
respect to Γ = Sn are core points with respect to any group Γ ′ ≤ Sn. For this
reason we call them universal core points.

Example 4 (Universal core points). Let Γ be the full symmetric or the alter-
nating group on n variables. For each k ∈ [n], the core points in the aXne
hyperplane H1,k are precisely the vertices of the hypersimplex:

coreΓ (H1,k) =

{∑
i∈T

ei : T a k-element subset of [n]

}
.

Thus, each core point with respect to Γ is an integral point with coordinates in
{t, t+ 1} for some t ∈ Z.

3. Core points are close to invariant subspaces

In this section we will show that core points are always close to an invariant
subspace of the group. To prove this we use a well-known theorem from convex
geometry ([Joh48], see also [Bar02]).

Theorem 5 (John ellipsoid [Joh48]). Let K ⊂ Rn be a convex body, i.e., K is
compact and convex with non-empty interior. Among all ellipsoids containing K
there exists a unique ellipsoid E of minimal volume. Further, a scaled version of E
is in turn contained inK :

t+
1

n
E ⊆ K ⊆ E,

where t ⊆ Rn is a suitable translation vector that depends on the center of E. The
scaling factor 1

n for E is optimal as the case of a simplex shows.

This ellipsoid is called theminimal enclosing ellipsoid ofK . For orbit polytopes
this ellipsoid can be computed as follows. Let Γ ≤ Sn be a permutation group.
Recall from Section 2.1 that we can decompose Rn into pairwise orthogonal Γ -
invariant subspaces. We have

Rn =

m⊕
i=1

Vi

where each Vi ⊆ Rn is setwise preserved by Γ (i.e., γv ∈ Vi for all γ ∈ Γ and
v ∈ Vi) and is irreducible (i.e., Vi does not contain a proper invariant subspace).
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Note that, depending on the group, this decomposition may not be unique, which
is a well-known fact in representation theory (see, for instance, [Ser77]). The
minimal enclosing ellipsoid of an orbit polytope is closely related to invariant
subspaces as [BB05, Thm. 2.2] shows. In the following ‖ · ‖ always refers to the
Euclidean norm.

Theorem 6 ([BB05]). Let Γ ≤ Sn be a transitive permutation group. Let z ∈ Zn(k)

be such that the dimension of the orbit polytope of z is maximal, i.e., dim convΓz =
n−1. Then there exists a decompositionRn = span1⊕

⊕m
i=1 Vi ofRn into the Vxed

space span1 and other Γ -invariant invariant subspaces Vi such that the minimal
enclosing ellipsoid of the orbit polytope conv(Γz) is given by

(1)
k

n
1 +

{
x ∈ H1,0 :

m∑
i=1

(dimVi)
‖x|Vi‖2

‖z|Vi‖2
≤ n− 1

}
.

Remark 7. The ellipsoid given by (1) is contained in the aXne hyperplane H1,k

and thus is not full-dimensional, having dimension n− 1.

Remark 8. If the decomposition of Rn into Γ -invariant subspaces is unique,
then the minimal enclosing ellipsoid is also uniquely determined by the formula
in the theorem. If there are multiple decompositions, only one of these leads to
the minimal enclosing ellipsoid.

Theorem 9. Let Γ ≤ Sn be a transitive permutation group. Then there ex-
ist a constant C(n) depending only on the dimension n, such that for every core
point z with respect to Γ there exists a Γ -invariant subspace V of Rn diUerent from
Fix(Γ ) = span1 such that ‖z|V ‖ ≤ C(n).

Proof. We use the two preceding theorems in this section to Vnd a necessary
condition under which the orbit polytope P := convΓz contains integral points.
We Vrst consider z ∈ Zn(k) with a Vxed k. By Theorem 6 there is a decomposition
Rn = Fix(Γ )⊕

⊕m
i=1 Vi of Rn into Γ -invariant subspaces related to the minimal

enclosing ellipsoid of P . If ‖z|Vi‖ = 0 for one subspace Vi, then nothing remains
to be shown. So we assume that all projections z|Vi have positive norm. Then the
dimension of the polytope P is n − 1. By Theorem 6 we know that the minimal
enclosing ellipsoid of the orbit polytope P is

k

n
1 +

{
x ∈ H1,0 :

m∑
i=1

(dimVi)
‖x|Vi‖2

‖z|Vi‖2
≤ n− 1

}
.

By John’s Theorem 5, the polytope P contains the following scaled ellipsoid:

E′ :=
k

n
1 +

{
x ∈ H1,0 :

m∑
i=1

(dimVi)
‖x|Vi‖2

‖z|Vi‖2
≤ 1

n− 1

}
.

Since the dimension of P is n− 1, the scaling factor is 1
n−1 accordingly (also see

Remark 7). Next we derive conditions under which E′ and thus also P contain
an interior integer point. In this case z cannot be a core point.

Let u ∈ Zn(k) ⊂ H1,k be an integer point with minimal norm. If for all sub-
spaces Vi the length of the projection ‖z|Vi‖ is large enough, then the following
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inequality is satisVed.

(2)
m∑
i=1

(dimVi)
‖u|Vi‖

2

‖z|Vi‖2
≤ 1

n− 1

Hence, in this case the ellipsoid E′ contains the integer point u. Then u must
also lie in P by construction of E′. For an estimation of when (2) is fulVlled, let
u′ := u− k

n1 be the orthogonal projection of u ontoH1,0. Because ‖u|Vi‖ ≤ ‖u′‖
and dimVi ≤ n− 1, inequality (2) is satisVed if for all i the projections satisfy

(3) ‖z|Vi‖
2 ≥ m(n− 1)2

∥∥u′∥∥2
.

As u was chosen as an integer point in H1,k with minimal norm, the bound
in (3) depends only on the layer index k and the dimension n. However, since
u+ l1 has minimal norm in Zn(k+ln) for integers l, the bound really depends only
on the value k mod n. For each k ∈ [n] we get from (3) a constant C(n, k) such
that: ‖z|Vi‖ ≥ C(n, k) for all i implies P contains an integer point. Since these
are only Vnitely many layers, there exists a constant C(n) := maxk C(n, k) as
claimed in the theorem. �

Theorem 9 remains valid under milder assumptions on Γ . It also holds when
Γ ≤ GLn(Z) is a Vnite group of unimodular matrices (see [Reh13]).

4. Precisely two invariant subspaces – finitely many core points!

In this section we consider groups for which the orthogonal complement of 1
is irreducible. Hence, these groups have precisely two invariant subspaces. Recall
that it suXces to study core points up to translation by 1 (see Remark 2). It is
an immediate consequence of Theorem 9 that the considered groups have only
Vnitely many core points up to translation (see the following Section 4.1). There-
fore all core points can be enumerated computationally. In Section 4.2 we give
an overview of our exhaustive search. The necessary mathematical equipment
is provided in Sections 4.3 and 4.4. In Section 4.5 we discuss the results of our
computational search for core points.

4.1. Finiteness. From Theorem 9 it follows immediately that groups with pre-
cisely two invariant subspaces have only a Vnite number of core points up to
translation. By Cameron [Cam72, Lemma 2], these are exactly the 2-homogeneous
groups.

Corollary 10. If Γ ≤ Sn is 2-homogeneous, then the number of core points up to
translation by 1 is Vnite.

Proof. If Γ has only two invariant subspaces, then Rn = span1 ⊕ V for an
irreducible invariant subspace V . Theorem 9 then shows that every core point
must have a “small” projection onto V . Thus, every core point is contained in a
cylinder with radius C(n) around the Vxed space span1. This cylinder contains
only Vnitely many integral points up to translation by 1. �

We conjecture (see Conjecture 21) that the converse statement is true, that is,
every transitive group that is not 2-homogeneous has an inVnite number of core
points up to translation. In Section 5 we will investigate this conjecture more
closely.
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In the following proposition we estimate the constant C(n) from the proof of
Corollary 10. To get a good estimate we also consider the dependency on the
layer index k.

Proposition 11. Let Γ ≤ Sn be a 2-homogeneous group. For a core point z ∈ Zn
with 〈z,1〉 = k for k ∈ [n− 1] we have:

‖z − z|span1‖ < (n− 1)

√
k(n− k)

n
.

Proof. For the proof it is enough to obtain a value for the right hand side of (3)
in the proof of Theorem 9. Let V be the (n− 1)-dimensional invariant subspace
of Γ . Note that

‖z|V ‖ = ‖z − z|span1‖ =

∥∥∥∥z − k

n
1

∥∥∥∥ .
Since V is the only invariant subspace besides the Vxed space span1, the value
ofm in (3) equals one. Therefore we have

(4)

∥∥∥∥z − k

n
1

∥∥∥∥ = ‖z|V ‖ < (n− 1) ‖u|V ‖ .

The points u with minimal projected norm in this case are the universal core
points from Example 4. For layer k we can choose u to be any point with k ones
and n− k zeros as coordinates. We compute

‖u|V ‖2 = ‖u‖2 − ‖u|span1‖2 = k −
∥∥∥∥kn1

∥∥∥∥2

= k − k2

n
=
k(n− k)

n
.

Using this value in (4) yields the inequality claimed in the proposition. �

4.2. On how to determine all core points. We now present one way to prac-
tically compute all core points of a 2-homogeneous group up to translation. Our
computational results with this approach will be discussed in Section 4.5 for 2-
homogeneous groups of degree up to twelve.

For the core point enumeration two essential tasks are involved. First, we
need to determine a set of candidates which is large enough to cover all core
points, and enumerate its elements up to Γ -symmetry. The quality of the set
strongly relies on the quality of the bounds used for the computation. The bound
from Proposition 11 is not strong enough in general. Therefore we use improved
bounds that we develop in Section 4.3. For our core point enumeration we look
at the (zero-based) integral points in the cubes [0, n− 3]n for 2-transitive groups
and [0, b1.09(n− 1)c]n for the other 2-homogeneous groups. These numbers
follow from Theorems 12 and 17, respectively. Note that, by Remark 2 and DeV-
nition 3, it is enough to consider only zero-based core points, which leads to the
aforementioned cubes.

The second task is to check for each candidate whether it is a core point or
not. There are two natural ways to tackle this task. One way is to set up a
(mixed) integer program that is feasible if and only if an orbit polytope contains
an integral point that is not a vertex (for details see [Reh13]). Another way is to
count the integral points in the orbit polytope and compare it to the number of
vertices. The candidate is a core point if and only if the two numbers coincide.
For our examples we chose the second approach (see Section 4.5).
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Dealing with problems that are NP-hard in general, the second task – checking
whether a candidate is a core point – is the most time-consuming step in the
computation. Hence, additional criteria are necessary to exclude points from the
expensive core point check upfront. We use the following tweaks, which we will
discuss in detail in the next sections.

• We can assume w.l.o.g. that each candidate z is zero-based (see above)
and that its Vrst coordinate is minimal (by transitivity), i.e., z1 = 0.
• We skip the check for all universal core points. Recall that they are core
points with respect to every subgroup of Sn, compare Example 4.
• For (k + 1)-transitive groups, Proposition 19 allows for the exclusion of
all integer points with layer index l for (l mod n) ∈ ±{1, . . . , k} since
they either are universal core points, or their orbit polytope contains
one.
• All candidates z whose nonzero coordinates have a greatest common
divisor gcd > 1 can be excluded by Lemma 15.
• Let Γ ′(z) be the stabilizer of the set of even coordinates of a candidate z.
We skip all candidates which are not constant on the orbits of Γ ′(z).
This is justiVed by Lemma 18.
• For 2-transitive groups we check whether(

n∑
i=1

zi

)
mod (n− 1) ≤ max zi,

which follows from Proposition 16.
• Finally, we check whether the orbit polytope convΓz contains one of
the universal core points (see Section 4.4.3).

We give statistics about the combined power of all these criteria in Table 3.

4.3. Box width bounds. Proposition 11 already provides a bound for the dis-
tance of a core point z ∈ H1,k from its projection k

n1 onto the Vxed space. This
bound turns out to be weak, as shown by our results in Section 4.5. It also has the
disadvantage that it is not straight-forward to enumerate all integral points in-
side a ball of a given radius. In the following we show how to obtain stronger and
more practical bounds, which are essential for the viability of our computations
described in Section 4.5. These bounds will be in terms of the box width bw(z)
which we deVne as

bw(z) := max
i∈[n]

zi −min
i∈[n]

zi.

We start with the special case of 2-transitive groups and come back to the more
general case of 2-homogeneous groups at the end of this section.

Theorem 12. Let Γ ≤ Sn be a 2-transitive group and let n ≥ 4. Then bw(z) ≤
n− 3 for every core point z with respect to Γ .

For our proof of this theorem we use the following simple observation about
intersection with and projection onto Vxed spaces. Remember that the orthogo-
nal projection of x onto Fix(Γ ) is given by the barycenter of its orbit:

(5) x|Fix(Γ ) =
1

|Γ |
∑
γ∈Γ

γx.
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Lemma 13. Let P ⊂ Rn be a polytope and Γ ≤ Sn be a symmetry group of P ,
i.e., ΓP = P . Then

P ∩ Fix(Γ ) = P |Fix(Γ ).

Proof. For the “⊆”-part let x ∈ P ∩ Fix(Γ ). Since x ∈ Fix(Γ ), we have x =
x|Fix(Γ ) ∈ P |Fix(Γ ). For the reverse inclusion “⊇” let y ∈ P |Fix(Γ ). In particular,
y = x|Fix(Γ ) is a convex combination of points γx in ΓP by (5). Since ΓP = P
is convex, this implies that the point y lies in P . �

In words, the lemma states that projection to the Vxed space equals intersec-
tion with the Vxed space for symmetric polytopes. Depending on how a polytope
is presented, either by facets or by vertices, one of these two operations is easier
to handle. Since we are dealing with orbit polytopes, we naturally only have its
vertices, so the projection is readily available. Lemma 13 allows us to Vnd inte-
gral points in P , which may be diXcult, by Vnding projections of integral points,
which may be a much easier problem. How easy it gets depends on the group
we choose. Consider an orbit polytope convΓz. If we intersect it with the Vxed
space Fix(Γ ), this leaves us with the vertex barycenter of the orbit polytope,
which does not provide new information. Thus, the goal is to Vnd a subgroup
Γ ′ � Γ with at least two but still a small number of orbits so that the projection
is not trivial. In particular, for 2-transitive groups, which we focus on in this
section, we can obtain a one-dimensional projection, using a subgroup with two
orbits. In such a line segment integral points are naturally easy to Vnd. Theo-
rem 12 follows from the fact that if the line segment is wide enough, it – and
therefore also the original polytope – contain an integer point, which is not a
vertex. To prove the main theorem, we start with an application of Lemma 13 to
2-transitive groups.

Proposition 14. Let Γ ≤ Sn be a 2-transitive group and let P := convΓz be the
orbit polytope of some zero-based z ∈ Zn≥0. Then a point p = (k, l, l, . . . , l)> ∈ Rn
for some k, l ∈ R lies in P if and only if the following two conditions are met:

(i) 0 ≤ k ≤ max zi,
(ii) l =

(
∑n
j=1 zj)−k
n−1 .

Proof. The stabilizer Γ ′ := StabΓ (p) = StabΓ (1) of p acts transitively on {2, . . . , n}
because Γ is 2-transitive. Let {γ1, . . . , γn} ⊂ Γ be a transversal for Γ modulo
Γ ′, that is, γi(i) = 1 for each i ∈ [n]. Thus, for every γi we have that

(γiz)|Fix(Γ ′) = (zi, ri, ri, . . . , ri)
> where ri =

1

n− 1

∑
j∈[n]\{i}

zj .

Let Q := P |Fix(Γ ′) be the projection of P onto the Vxed space Fix(Γ ′). It is the
convex hull of vectors q(i) := (γiz)|Fix(Γ ′) for i ∈ [n]. All these vectors lie in a
one-dimensional aXne subspace of Rn, so Q is a line segment. By Lemma 13 the
point p ∈ Fix(Γ ′) lies in P if and only if it lies in the projection Q.

Let a be such that za = mini∈[n] zi = 0 and let b be such that zb = maxi∈[n] zi.
With this setting we know that q(a) and q(b) are end points of Q because of
the respective minimality and maximality of za and zb. To simplify notation we
project on the Vrst two coordinates, which are suXcient. We identify Q with



ON LATTICE-FREE ORBIT POLYTOPES 10

the line segment Q′ ⊂ R2, given as the convex hull of q′(a) = (0, ra)
> and

q′(b) = (zb, rb)
>. As inequality description we obtain

Q′ =

(x1, x2)> ∈ R2 : 0 ≤ x1 ≤ zb and x1 + (n− 1)x2 =

n∑
j=1

zj

 .

Hence, the polytope Q′ contains a point u = (u1, u2)> ∈ R2 if and only if 0 ≤
u1 ≤ zb and u2 = 1

n−1(
∑n

j=1 zj) −
u1
n−1 . Because the point p of the proposition

projects onto (k, l) ∈ R2, the claim of the proposition follows. �

A simple observation for which points cannot be core points is the following
lemma.

Lemma 15. Let z ∈ Zn be a core point for a group Γ ≤ Sn. If z /∈ Fix(Γ ), then
gcd(z1, . . . , zn) = 1.

Proof. Let z ∈ Zn have c := gcd(z1, . . . , zn) > 1. In order to prove the lemma we
show that such a point z is not a core point. Because z /∈ Fix(Γ ) by assumption
of the lemma, there is a permutation γ ∈ Γ with γz 6= z. Then c−1

c z + 1
cγz is

an integral, non-trivial convex combination of two vertices of convΓz. Hence,
convΓz is not lattice-free and z is not a core point. �

Theorem 12 will follow from the following proposition. The previous Proposi-
tion 14 showed that we can Vnd integral points in a polytope by Vnding integral
points on a line segment in R2 with slope (n− 1) : 1. The following proposition
due to Knörr [Knö11] quantiVes the condition under which the induced line seg-
ment contains an integral point. It is also interesting in its own right because it
states a necessary criterion for core points which is stronger than the box width
alone.

Proposition 16. Let Γ ≤ Sn be a 2-transitive group with n ≥ 3. Let z ∈ Zn≥0 be
zero-based with max zi ≥ 2. If(

n∑
i=1

zi

)
mod (n− 1) ≤ max zi,

then convΓz is not lattice-free.

Proof. Let k ∈ {0, . . . , n − 2} be congruent to
∑n

i=1 zi mod (n− 1). Then l :=
(
∑n
i=1 zi)−k
n−1 is an integer. By Proposition 14 the integral point p = (k, l, . . . , l)>

lies in P := convΓz because 0 ≤ k ≤ max zi. The point p is a vertex of P if
and only if p is in the orbit of z. If p is not a vertex, then P is not lattice-free
and we are done. So suppose that p is a vertex of P . Because z is zero-based,
this can happen only if l = 0 or k = 0. In these two cases we still have to Vnd
an integer point in P which is not a vertex. Note that in both cases we must
have gcd(p1, . . . , pn) = gcd(k, l) ≥ 2 because of our assumption max zi ≥ 2.
Thus, Lemma 15 implies that convΓp is not lattice-free and therefore convΓz ⊇
convΓp is not lattice-free. �

With this proposition we are able to prove the maximal box width of core
points for 2-transitive groups.
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Proof of Theorem 12. It suXces to prove the theorem for zero-based points be-
cause the box width is not aUected by translation by 1. Let z ∈ Zn≥0 be zero-
based with max zi ≥ n − 2 ≥ 2. We have to show that z is not a core point.
It holds that

∑n
i=1 zi mod (n− 1) ≤ max zi because the remainder of

∑n
i=1 zi

after division by n− 1 lies in {0, 1, . . . , n− 2}. Thus, Proposition 16 ensures that
the orbit polytope convΓz is not lattice-free. Hence, z is not a core point and the
claim of the theorem follows. �

For 2-homogeneous groups the situation is more complicated than for the 2-
transitive groups. We can start similarly and study the projection of orbit poly-
topes onto the Vxed space Fix(StabΓ (1)). Because this Vxed space has dimen-
sion three (see [Cam72, Lemma 2]), the resulting projected polytope is in general
not a line segment but a two-dimensional polygon. For two-dimensional poly-
topes, determining the vertices and integral points is not as trivial as in the one-
dimensional case. Using the classiVcation of 2-homogeneous, not 2-transitive
permutation groups (see [Kan72]) and the Watness theorem in dimension two
(see [Hur90]), one can still obtain the following upper bound on the box width.
Its proof is quite technical so we just state the result here and refer to [Reh13] for
details.

Theorem 17 ([Reh13]). Let Γ ≤ Sn be a 2-homogeneous group. Then bw(z) <
1.09 (n− 1) for every core point z with respect to Γ .

4.4. Tweaks to speed up computations.

4.4.1. A parity tweak.

Lemma 18. Let Γ ≤ Sn be a transitive permutation group and z ∈ Zn. Consider
the set E of indices corresponding to the even coordinates of z, that is, E = {i ∈
[n] : zi ≡ 0 mod 2}. Let Γ ′(z) ≤ Γ be the set-stabilizer of E. Further, let I be
the partition of [n] into orbits under Γ ′(z). If any of the orbits O ∈ I contains two
indices k, l ∈ O such that zk is not equal to zl, then the point z is not a core point
with respect to Γ .

Proof. Let k, l ∈ O be two indices in the same orbit O ∈ I with zk 6= zl.
Since Γ ′(z) acts transitively on O, there exists a permutation γ ∈ Γ ′(z) such
that the l-th coordinate of γz is equal to zk 6= zl. Since the coordinates corre-
sponding to indices in every orbit in I are either all even or all odd, the point
z′ := 1

2z + 1
2γz is integral. Furthermore, it is a proper convex combination, as

z 6= γz. Hence, the integer point z′ is contained in the orbit polytope of z without
being a vertex, thus z is not a core point. �

Note that Lemma 18 also holds with respect to odd instead of even coordi-
nates. In order to use the lemma in the candidate enumeration, it is necessary to
compute the orbits of the set-stabilizers of all subsets of [n] up to Γ -symmetry in
a preprocessing step. However, using a software package like [GAP] the compu-
tation time for this task is negligibly small. The lemma is particularly eUective
if the set stabilizers have large orbits (so that many coordinates must have the
same value). By a result of Seress [Ser97], many small 2-transitive groups are
exceptional in the sense that no set stabilizer is trivial, i.e., has at least one orbit
of size two (and usually many more).
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4.4.2. Restriction on layer indices for k-transitive groups. We can generalize the
argument behind Proposition 14 to groups of higher transitivity. The following
proposition shows that transitivity enforces that core points with “small” layer
index k must be universal core points. For the enumeration in Section 4.5 we can
thus skip these layers.

Proposition 19. Let Γ ≤ Sn be a (k + 1)-transitive group with k ≥ 1. Then
the only core points with respect to Γ in Zn(l), for l mod n congruent to an index in
{0, . . . , k} ∪ {n− k, . . . , n}, are universal core points.

Proof. Let z ∈ Zn≥0 be zero-based and max zi ≥ 2, otherwise z is universal. To
keep the index notation simple we may assume that z is sorted non-decreasingly.
If z is not already sorted, we relabel the coordinates. Further, we write N for
the layer index N = N(z) := 〈1, z〉 =

∑n
i=1 zi. To prove the proposition, it is

enough to show that every such z withN ≡ k mod n is not a core point because
every (k + 1)-transitive group is k-transitive. In the following we prove that
P := convΓz is not lattice-free by using Lemma 13. More precisely, we show
that P contains

(6) v = (c+ 1, . . . , c+ 1︸ ︷︷ ︸
k times

, c, . . . , c︸ ︷︷ ︸
n−k times

)

for c =
⌊
N
n

⌋
. Note that v is contained in the Vxed space Fix(Γ ′) of the set

stabilizer Γ ′ := StabΓ ({1, . . . , k}). By Lemma 13 it suXces to prove that v is
contained in the projection Q := P |Fix(Γ ′) in order to ensure that v lies in P .

Because the group Γ is (k+ 1)-transitive, the stabilizer Γ ′ acts transitively on
the sets {1, . . . , k} and {k+1, . . . , n}. Thus, the projection of an x onto the Vxed
space is given by x|Fix(Γ ′) = (R(x), . . . , R(x), S(x), . . . , S(x))> with R(x) :=
1
k

∑k
i=1 xi and S(x) := 1

n−k
∑n

i=k+1 xi. Therefore, Q is a line-segment that is
contained in the hyperplane H1,N = {x ∈ Rn : 〈1, x〉 = N}. In the following
we show the existence of two points x, y ∈ QwithR(x) ≤ R(v) ≤ R(y). By our
initial assumption we haveN = cn+k = (n−k)c+k(c+1) and thus v ∈ H1,N .
Hence, the existence of such x and y implies that v lies on the line-segment Q.
Our next step is to show that

k∑
i=1

zi ≤ k(c+ 1) and(7)

n∑
i=n−k+1

zi ≥ k(c+ 1).(8)

After we have established these inequalities, we immediately obtain the desired
points x and y as follows. From the Vrst equation (7) we get that R(z) ≤ (c +
1) = R(v). Because Γ is k-transitive, there is a permutation γ ∈ Γ that maps
{n − k + 1, . . . , n} to {1, . . . , k}. Thus, we obtain R(v) = (c + 1) ≤ R(γz)
from (8). This shows that the choice x = z and y = γz satisVes our requirements.

It remains to show that inequalities (7) and (8) actually hold. For a contradic-
tion assume that

∑k
i=1 zi > k(c + 1). Since z is sorted, this implies zk ≥ c + 2
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and thus

N =
n∑
i=1

zi =
k∑
i=1

zi +
n∑

i=k+1

zi > k(c+ 1) + (n− k)(c+ 2) > N.

We get a similar contradiction by assuming that
∑n

i=n−k+1 zi < k(c + 1). This
implies zn−k+1 ≤ c and thus

N =

n∑
i=1

zi =

n−k∑
i=1

zi +

n∑
i=n−k+1

zi < (n− k)c+ k(c+ 1) = N.

Therefore the inequalities (7) and (8) must hold.
Thus, we have shown that v ∈ Q and therefore also v ∈ P . We still have to

prove that v is not a vertex of P , i.e., v is not in the orbit of z. Because z is zero-
based, the point v can only be a vertex of P if c = 0. Otherwise, all coordinates
of v are non-zero by choice of v in (6). So we can assume that c = 0. In this case
we have max zi = c+ 1 = 1, which we have ruled out by our initial assumption.
Hence, v is not a vertex of P . �

A simple corollary of this proposition is the following. However, a similar
statement for general 2-homogeneous groups is false as the computer search in
Section 4.5 shows.

Corollary 20. If Ω ≤ Sn is 2-transitive, then all core points in the layers with
index 1 and n− 1 are universal core points.

4.4.3. Selective probing. If none of the other, easily testable criteria excluded a
given candidate, we apply a last heuristic before we call the computationally ex-
pensive lattice point enumeration. For this we choose a selection of „probing
points“ to check wether a given candidate z is a core point. For each point z
which is not a core point the orbit polytope convΓz is likely to contain one of
the core points already approved. The check whether a speciVc point is con-
tained in convΓz can be done by solving one linear program, see for instance
[Fuk04]. In order to keep the computational eUort within reasonable limits, it is
of course advisable to choose only a selection of already approved core points, if
there are too many. For our enumeration, for instance, we checked whether the
orbit polytope of a candidate contains one of the universal core points. These
are a natural choice since they are the closest points to the vertex barycenter of
the orbit polytope. Probing for them enabled us to eliminate a large number of
candidates (see Table 3).

4.5. Computational results. We now present the results of our exhaustive com-
puter search based on the strategy described in the previous sections. To enu-
merate all core points of all 2-homogeneous groups with degree up to twelve we
implemented the core point enumeration using the polymake framework [pol,
GJ00]. An overview of these groups is shown in Table 1. The column “Id” is a
composition of the group degree and the PrimitiveIdentification-id of the
group as assigned by the library of primitive groups of [GAP].

Regarding the core point search, Table 2 shows that there is a vast number of
core point candidates in the cube induced by our theoretical bound on the box
width.
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Table 1. 2-homogeneous groups up to degree 12

Id Order Structure Transitivity Homogeneity

5-3 20 AGL(1, 5) 2 5

6-1 60 PSL(2, 5) 2 2
6-2 120 PGL(2, 5) 3 6

7-3 21 C7 o C3 1 2
7-4 42 AGL(1, 7) 2 2
7-5 168 L(3, 2) 2 2

8-1 56 AGL(1, 8) 2 3
8-2 168 AΓL(1, 8) 2 3
8-3 1344 ASL(3, 2) 3 3
8-4 168 PSL(2, 7) 2 3
8-5 336 PGL(2, 7) 3 3

9-3 72 M9 2 2
9-4 72 AGL(1, 9) 2 2
9-5 144 AΓL(1, 9) 2 2
9-6 216 32:(2’A(4)) 2 2
9-7 432 AGL(2, 3) 2 2
9-8 504 PSL(2, 8) 3 9
9-9 1512 PΓL(2, 8) 3 9

10-3 360 PSL(2, 9) 2 2
10-4 720 PGL(2, 9) 3 3
10-5 720 S6 2 2
10-6 720 M10 3 3
10-7 1440 PΓL(2, 9) 3 3

11-3 55 C11 o C5 1 2
11-4 110 AGL(1, 11) 2 2
11-5 660 L(2, 11) 2 2
11-6 7920 M11 4 4

12-1 7920 M11 3 3
12-2 95040 M12 5 5
12-3 660 PSL(2, 11) 2 3
12-4 1320 PGL(2, 11) 3 3

Table 3 illustrates the progress of our candidate elimination towards the actual
set of core points. We introduce the table by columns. The Vrst column shows the
id of the group; this is the same as in Table 1. The second column “tweaks” gives
the number of all actually enumerated candidates, using all necessary bounds and
tweaks from Sections 4.3 and 4.4, but without selective probing. The number of
candidates shown in this column is much smaller than the number of integral
points in the cube [0, n − 3]n for 2-transitive groups and [0, b1.09(n− 1)c]n for
2-homogeneous, not 2-transitive groups (cf. Table 2). This demonstrates the
combined power of all the “small” necessary criteria displayed above. For the
groups for which at least one set stabilizer is trivial (7-3, 9-3, 9-4, 11-3, 11-4, 12-3)
the number of candidates is much higher than for the other groups (cf. [Ser97]).

Note that among the considered groups there are two that are 2-homogeneous
but not 2-transitive. These occur in dimension seven and eleven only (groups 7-3
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Table 2. Theoretical maximal bounds for 2-transitive groups

dim n #integral points in [0,bw]n bw distance to span1

5 243 2 4.38
6 4 096 3 6.12
7 78 125 4 7.86

a7 823 543 6 7.86
8 1 679 616 5 9.90
9 40 353 607 6 11.93
10 1 073 741 824 7 14.23
11 31 381 059 609 8 16.51

a11 285 311 670 611 10 16.51
12 1 000 000 000 000 9 19.05

a for the 2-homogeneous case, for which the larger bw-bound applies

and 11-3). To these groups we cannot apply Proposition 16 to eliminate candi-
dates. For the group with id 11-3, this leaves us with 1 331 476 291 candidates.
This number is too large to proceed to the actual core point checks. To exclude
candidates fast we implemented a test based on Lemma 13. We project each
orbit polytope P onto the three-dimensional Vxed space Fix(StabΓ (1)). The
corresponding projected polytope Q is two-dimensional. We can Vnd integral
points in Q quickly after a relatively cheap convex hull computation. As integer
points in Q correspond to integer points in P , this allows to eliminate core point
candidates without constructing the complete orbit polytope. This reduced the
number of candidates to under 300 000 without too much computational eUort.
More details can be found in [Reh13].

The third column of Table 3 “probing” shows the number of candidates that
remain after selective probing, that is, the number of orbit polytopes that do
not contain a universal core point. The fourth column “core points” lists the
number of actual non-universal core points as conVrmed by actually enumerat-
ing all integral points in the orbit polytopes. For this Vnal check we use Nor-
maliz [Nor, BIS12] via its interface to polymake. Comparing the third and fourth
columns of Table 3, we see that the number of candidates after selective prob-
ing is already very close to the number of actual non-universal core points. This
shows that a concise description of those that survive probing, i.e., of those points
whose orbit polytopes do not contain universal core points, would probably make
core point enumeration much easier.

The Vfth column of Table 3 “max bw” contains the maximal box width of a
core point. The sixth column “max dist to span1” shows the maximal distance
of a core point from the Vxed space. Comparing these last two columns to the
last two columns of Table 2, we see that the bounds from Theorems 12 and 17
(for the box width) and Proposition 11 (for the cylinder radius) have room for
improvement.

The polytopes of all core points of the groups from Table 1 are available in the
polymake-format at

http://www.polymake.org/polytopes/core-point-polytopes/.

http://www.polymake.org/polytopes/core-point-polytopes/
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Table 3. Candidate elimination

group id tweaks probing core points max bw max dist to span1

5-3 0 0 0 – –

6-1 0 0 0 – –
6-2 0 0 0 – –

7-3 63 077 12 10 3 2.62
7-4 10 1 1 2 1.85
7-5 3 2 2 2 1.93

8-1 1 797 4 4 2 1.97
8-2 20 1 1 2 1.97
8-3 3 1 1 2 1.97
8-4 10 2 2 2 1.97
8-5 2 0 0 – –

9-3 21 666 20 20 3 2.75
9-4 21 691 20 18 3 2.75
9-5 529 10 10 3 2.75
9-6 68 3 3 2 2.05
9-7 32 3 3 2 2.05
9-8 5 0 0 – –
9-9 5 0 0 – –

10-3 514 8 8 2 2.37
10-4 31 2 2 2 2.12
10-5 164 6 6 2 2.37
10-6 53 4 4 2 2.12
10-7 31 2 2 2 2.12

11-3 a 266 982 2 546 2 407 6 5.80
11-4 9 352 389 231 208 4 3.77
11-5 4 285 11 11 2 2.76
11-6 16 2 2 2 2.17

12-1 128 4 4 2 2.58
12-2 11 1 1 2 2.22
12-3 21 580 154 15 15 4 3.30
12-4 7 252 2 2 2 2.22

a number after two-dimensional IPs; see text for an explanation

5. More than two invariant subspaces – infinitely many core points?

In the previous section we showed that 2-homogeneous groups (those with
precisely two invariant subspaces) have a Vnite number of core points (up to
translation by 1). For other groups there may be an inVnite number of core
points. For instance, for all integers m ∈ Z the point (1 + m,−m,m,−m)> is
a core point of the cyclic group C4 as we will see later (cf. Example 31). Figure 2
visualizes parts of this inVnite sequence, showing orthogonal projections of the
lattice-free orbit tetrahedra for 0 ≤ m ≤ 4. In this section we construct similar
inVnite sequences of core points (up to translation by 1) for two major classes
of groups. These constructions, together with our computational experiments,
suggest the following conjecture.
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Figure 2. Impression of an inVnite sequence of lattice-free orbit
polytopes for C4

Conjecture 21. A transitive permutation group Γ has a Vnite number of core
points up to translation by 1 if and only if Γ is 2-homogeneous.

For the aforementioned core point constructions we use the fact that all core
points are close to an invariant subspace of the group by Theorem 9. In Sec-
tion 5.1 we will look at an outline of a general core point construction based on
proximity to invariant subspaces. We use this method to give constructions for
all imprimitive groups (in Section 5.2) and for all groups with a non-rationally
generated invariant subspace (in Section 5.3). For the remaining groups the con-
struction can not be applied directly in general. However, we computationally
veriVed Conjecture 21 for all transitive groups up to degree 127. Details about
these special constructions can be found in [Her13, Reh13].

5.1. Constructing core points along invariant subspaces. Our main tool in
this section is orthogonal projection to an arbitrary invariant subspace of a tran-
sitive group. If this projection of an integer point z has small norm, i.e., the point
z is close to an invariant subspace, then z seems to be a good candidate for a
core point. Recall from Section 2.1 that we can always decompose Rn into a di-
rect sum of pairwise orthogonal invariant subspaces Rn = span1 ⊕

⊕
i Vi. If

such an invariant subspace Vi contains no rational vectors, i.e., Vi ∩ Qn = {0},
we call Vi an irrational invariant subspace. Similarly, we say that Vi is rational if
it has a rational basis. Every R-irreducible invariant subspace is either rational
or irrational. Reducible subspaces may be neither rational nor irrational by this
deVnition, but for our purposes it is enough to cover irreducible subspaces. For
some groups, for instance, cyclic groups of prime order, all irreducible invariant
subspaces except the Vxed space are irrational. A more detailed study of these
groups can be found in [Dix05].

Our goal throughout this section is the construction of core points. There-
fore we need a way to prove that an orbit polytope convΓz is lattice-free. The
main tool that we use is projection onto an invariant subspace of Γ . If both the
projection and the Vbers are lattice-free in some sense, then we can prove lattice-
freeness for the whole orbit polytope. Proposition 24 will give a suXcient core
point condition in quite general (and also quite technical) terms. The rest of this
section makes the projection argument more precise.
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An important property of the projection to an invariant subspace is that group
action and projection operation commute:

Lemma 22. Let Γ ≤ Sn be a permutation group and V an invariant subspace of
Γ . Group action and projection commute: (γx)|V = γ(x|V ) for all γ ∈ Γ and
x ∈ Rn.

Proof. Let W := V ⊥ be the orthogonal complement of V . We can decompose
x = v ⊕ w with v ∈ V and w ∈ W into a direct sum from distinct invariant
subspaces V,W . Since the action of Γ is linear, we have γx = γv + γw for
every permutation γ ∈ Γ . Because V and W are invariant subspaces, we must
have γv ∈ V and γw ∈ W . Hence, this is a direct sum γx = γv ⊕ γw. Thus,
(γx)|V = γv = γ(x|V ). �

We now turn to a method for proving lattice-freeness of orbit polytopes. Let
Γ ≤ Sn be a permutation group and V be an invariant subspace of Γ . Further-
more, let z ∈ Zn(k) be an integral point in the k-th layer. Since all integer points
in the orbit polytope P := convΓz also lie in the k-th layer, we start with the
following projection setup. We project both the orbit polytope P and all integer
points Zn(k) orthogonally onto V . To ensure the lattice-freeness of P we have to
control the pre-image of all points in the intersection Q := P |V ∩ Zn(k)|V . If the
pre-image of Q intersects P only at its vertices vert(P ), then P is lattice-free.
This condition is in general quite hard to test because it is an integer feasibility
problem. Thus, we use relaxed conditions instead. The following two steps to-
gether allow us to control the pre-images of Q in some cases. First, we ensure
that all integer points in P project only onto vert(P )|V . Second, we ensure that
only vertices of P project onto vert(P )|V . These two steps together constitute
Proposition 24. Before we get there, we start with an outline that introduces facts
and notation.

For the Vrst step we use arguments based on the Euclidean norm. We say that
z has globally minimal projection onto V if

(9) ‖z|V ‖ ≤
∥∥z′|V ∥∥ for all z′ ∈ Zn(k),

If z has globally minimal projection, then integer points in P can project only
onto vert(P )|V , which completes the Vrst step. The argument behind this will
be made explicit in Proposition 24 below. However, we will see later that for
irrational subspaces there is no point with global minimal projection (cf. Lem-
mas 35 and 36). In this case the following weaker condition suXces. We say that
the point z has locally minimal projection onto V if

(10) ‖z|V ‖ ≤
∥∥z′|V ∥∥ for all z′ ∈ Zn(k) with

∥∥z′∥∥ ≤ ‖z‖.
Since only points with ‖z′‖ ≤ ‖z‖ can lie in the orbit polytope P = convΓz, it
is enough to control the projection of these points.

For the second step of the outline above, proving lattice-freeness of P , our
argument is based on the stabilizer group of the vertex z and its projection z|V .
We will need the following lemma.

Lemma 23. Let Γ ≤ Sn and V an invariant subspace of Γ . For any z ∈ Zn we
have StabΓ (z) ≤ StabΓ (z|V ).
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Proof. Let γ ∈ StabΓ (z), thus γz = z. This implies γ(z|V + z|W ) = z|V + z|W .
Hence γz|V − z|V = z|W −γz|W . The only element in V ∩W is the zero vector.
Therefore γ ∈ StabΓ (z|V ). �

Proposition 24. Let Γ ≤ Sn be a permutation group and V an invariant subspace
of Γ . Let z ∈ Zn have locally minimal projection for V . Then z is a core point for Γ
if and only if z is a core point for StabΓ (z|V ).

Proof. Because StabΓ (z|V ) is a subgroup of Γ , we only have to prove the “if”-
part. For this let y be an integer point in convΓz. We can write y as a convex
combination

(11) y =
∑
γ∈Γ

λγγz

with 0 ≤ λγ ≤ 1 and
∑

γ∈Γ λγ = 1. This yields:

‖z|V ‖2 ≤ ‖y|V ‖2 = ‖

∑
γ∈Γ

λγγz

|V ‖2
≤
∑
γ∈Γ

λγ‖(γz)|V ‖2 = ‖z|V ‖2.
(12)

The Vrst inequality holds because we assumed that z has locally minimal pro-
jection. The second inequality holds because of the convexity of a norm square
and Jensen’s inequality. The last equation holds since ‖(γz)|V ‖ = ‖γ(z|V )‖ =
‖z|V ‖. For this we use Lemma 22 and that the linear representation of γ is an
orthogonal matrix. Note that the left- and right-most terms of (12) are the same,
so we must in fact have equality.

Since the squared norm is strictly convex on V , equality in (12) holds if and
only if there is a coset γ0 StabΓ (z|V ) such that

∑
γ∈γ0 StabΓ (z|V ) λγ = 1. Plug-

ging this into (11) yields

γ−1
0 y =

∑
γ∈StabΓ (z|V )

λγγz.

Since z is a core point for StabΓ (z|V ), we must have γ−1
0 y ∈ StabΓ (z|V )z.

Hence, the point y lies also in the orbit Γz. From this we conclude that z is a core
point for Γ . �

5.2. Imprimitive groups. We start this section with a specialization of Propo-
sition 24 and then prove that imprimitive groups have an inVnite number of core
points (up to translation).

Corollary 25. Let Γ ≤ Sn be a permutation group and Rn = Fix(Γ ) ⊕ V ⊕
W a decomposition into Γ -invariant subspaces. Let z ∈ Zn(k) be a core point
for StabΓ (z|V ) with globally minimal projection. Let w ∈ W ∩ Zn be such that
StabΓ (z|V ) ≤ StabΓ (w). Then for allm ∈ Z the polytopePm := convΓ (z +mw)
contains no integer points except its vertices.

Proof. To prove that Pm is lattice-free we apply Proposition 24. Since z has glob-
ally minimal projection onto V , so does z +mw. In particular, z +mw thus also
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has locally minimal projection. It remains to show that z + mw is a core point
for StabΓ (z|V ). Because of the inclusion StabΓ (z|V ) ≤ StabΓ (w), we have that

P ′m := conv (StabΓ (z|V )(z +mw)) = mw + conv (StabΓ (z|V )z) .

Because z is a core point for StabΓ (z|V ) by assumption of the corollary, this
shows that the polytope P ′m is lattice-free. Hence, z + mw is a core point for
StabΓ (z|V ) and thus also for Γ by Proposition 24. �

Example 26. As an example we consider the cyclic group C4 = 〈(1 2 3 4)〉.
The arguments here will be generalized to imprimitive groups later in this sec-
tion. The vector w := (1,−1, 1,−1)> spans a one-dimensional invariant sub-
space. Its orthogonal complement, besides the Vxed space, is spanned by v :=
(1, 0,−1, 0)> and v′ := (0, 1, 0,−1)>.

For applying Corollary 25, let V := span{v, v′} and W := span{w}. We
will see in Lemma 29 that e1 := (1, 0, 0, 0)> is a core point for C4 with glob-
ally minimal projection on V . We compute e1|V = 1

2v, hence the stabilizer
StabC4(e1|V ) is trivial. Therefore we may choose any integer direction fromW .
As these are all multiples ofw, this yields the sequence of core points, e1 +mw =
(1 +m,−m,m,−m)>.

If we swap the roles of V and W in Corollary 25, we still have that e1 has
globally minimal projection onW (again cf. Lemma 29). Its projection is e1|W =
1
4w with stabilizer StabC4(e1|W ) = 〈(1 3)(2 4)〉. Since all non-zero elements
from V have trivial stabilizer, we cannot Vnd a suitable integer direction v ∈ V
that is compatible with the stabilizer condition of Corollary 25.

However, we may also work with Proposition 24 directly. Let av + bv′ with
a, b ∈ Z be an arbitrary integer direction in V . By Proposition 24,

p(a, b) := e1 + av + bv′ = (1 + a, b, −a, −b)>

is a core point for C4 if and only if it is a core point for StabC4(e1|W ) = 〈(1 3)(2 4)〉.
The orbit polytope conv StabC4(e1|W )p(a, b) has only two vertices,

u := (1 + a, b, −a, −b)>, and

u′ := (−a, −b, 1 + a, b)>.

Consider a proper convex combination λu + (1 − λ)u′ on the line segment be-
tween u and u′ with 0 < λ < 1. If λu + (1 − λ)u′ is integral, then looking at
the Vrst coordinate shows that λ(1 + a) + (1 − λ)(−a) = (2a + 1)λ must be
an integer. Looking at the second coordinate, we similarly obtain that 2bλ must
be an integer. If gcd(2a + 1, 2b) > 1 this is possible for λ = 1/ gcd(2a + 1, 2b).
If b = 0, the second condition is automatically fulVlled and the Vrst condition
is satisVable if a /∈ {−1, 0}. We have therefore proven: p(a, b) is a core point
for C4 if and only if gcd(2a + 1, 2b) = 1 (with our convention gcd(x, 0) = |x|).
Figure 3 depicts instances of lattice-free orbit tetrahedra of p(a, b) for (a, b) ∈
{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)}. �

We will show that the conditions of Corollary 25 are satisVed for imprimitive
groups. However, it can also be applied to other groups with rational subspaces
if a suitable direction is found, which may however be diXcult.

Recall from Section 2.1 the deVnition of an imprimitive permutation group.
For each imprimitive permutation group Γ acting on [n], there is a partition of
[n] =

⊔B
i=1 Ωi such that Γ acts on the B sets Ωi. For every γ ∈ Γ and index
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Figure 3. Impression of an inVnite sequence of lattice-free orbit
polytopes for C4

i ∈ [B] there exists an index j such that γΩi = Ωj . Every such block Ωi has size
S = n

B . These blocks induce a rational invariant subspace of Γ in the following
way. Let

(13) u(j) :=
∑
i∈Ωj

ei ∈ Zn

be the characteristic vector of Ωj . Then the vectors u(1), . . . , u(B) form an or-
thogonal basis of an Γ -invariant subspace ofRn. We call thisB-dimensional sub-
space UΩ := span{u(1), . . . , u(B)}. Since 1 =

∑B
j=1 u

(j), we know that U con-
tains Fix(Γ ) = span1. We can thus split U into a direct sum UΩ = span1⊕WΩ

for another rational invariant subspace WΩ. Furthermore, there is an invariant
subspace VΩ which is the orthogonal complement of UΩ in Rn. In total we ob-
tain for each block system Ω the following decomposition into rational invariant
subspaces:

(14) Rn = span1 ⊕ WΩ︸ ︷︷ ︸
UΩ

⊕VΩ.

Example 27. As an example we consider the cyclic group C6 = 〈(1 2 3 4 5 6)〉.
The group action of C6 is imprimitive as it preserves the partitionΩ = {{1, 3, 5}, {2, 4, 6}}.
The corresponding invariant subspaceUΩ is span{(1, 0, 1, 0, 1, 0)>, (0, 1, 0, 1, 0, 1)>}.
For its non-Vxed summand we obtainWΩ = span(1,−1, 1,−1, 1,−1)>.

Note that the block system and the corresponding decomposition (14) is not
unique. For instance, the group C6 has another block systemΩ′ = {{1, 4}, {2, 5}, {3, 6}}.
This corresponds toUΩ′ = span{(1, 0, 0, 1, 0, 0)>, (0, 1, 0, 0, 1, 0)>, (0, 0, 1, 0, 0, 1)>}
andWΩ′ = span{(2,−1,−1, 2,−1,−1)>, (−1, 2,−1,−1, 2,−1)>}. �

With these invariant subspaces VΩ and WΩ we show that the conditions of
Corollary 25 are fulVlled for imprimitive groups.

Theorem 28. Let Γ ≤ Sn act imprimitively, i. e. the permutation action of Γ
preserves a block system with blocks of size 1 < S < n. If k is not a multiple of S,
then Γ has inVnitely many core points in layer Zn(k).

Proof. The proof of this theorem follows immediately from applying Corollary 25
to the following Lemma 29. By the latter, we Vnd a core point z(k) in the claimed
layers with globally minimal projection onto VΩ. Moreover, it produces a non-
zero direction w ∈ WΩ ∩ Zn such that StabΓ (z(k)|VΩ

) ≤ StabΓ (w). Therefore,
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for everym ∈ Z, the point z(k) +mw is a core point by Corollary 25. Since w is
not the zero vector, these core points are diUerent for varyingm. �

Lemma 29. Let Γ ≤ Sn act imprimitively, i. e. the permutation action of Γ pre-
serves a block system with blocks of size 1 < S < n. For the corresponding invariant
subspaces UΩ, VΩ,WΩ from (14) the following holds: If k is not a multiple of S, then
there exist a core point z(k) ∈ Zn(k) with globally minimal projection onto VΩ and a

non-zero direction w ∈WΩ ∩ Zn such that StabΓ (z(k)|VΩ
) ≤ StabΓ (w).

Proof. To keep notation as simple as possible, we assume w.l.o.g. that the Vrst of
the blocks Ω1, . . . ,ΩB of Γ is Ω1 = {1, . . . , S}. Consider an arbitrary z ∈ Zn.
We compute the squared norm of the projection onto VΩ as

‖z|VΩ
‖2 = ‖z‖2 − ‖z|UΩ

‖2

=

 B∑
b=1

∑
j∈Ωb

z2
j

−
 1

S

B∑
b=1

∑
j∈Ωb

zj

2
=

1

S

B∑
b=1

∑
i,j∈Ωb
i<j

(zi − zj)2 .

(15)

Looking at this sum of squares, we observe that the total expression is mini-
mized if inside each block Ωb the coordinates diUer in the least possible way
and the total number of blocks with non-zero contribution is minimized. Let
l ∈ {0, . . . , S − 1} be congruent to k mod S. Then the point

(16) z(k) =
l∑

i=1

ei +

b kS c+1∑
j=2

u(j).

with u(j) as in (13) satisVes this condition and hence has globally minimal pro-
jection. As a sum of squares, the projection in (15) can be zero if and only if k is
a multiple of S. Thus, z(k) has non-zero length if k is not a multiple of S. The
choice for the minimum in (16) is not the most obvious, but it has the advantage
that it is a universal core point because it has coordinates with only zeros and
ones.

Now that we have found a core point z(k) with globally minimal projection,
it remains to Vnd a suitable non-zero direction w ∈ WΩ ∩ Zn. For this we need
the stabilizer StabΓ (z(k)|VΩ

) to be contained in StabΓ (w). To compute the pro-
jection z(k)|VΩ

we again use our explicit basis for UΩ. Looking again at (16) we
see that z(k)|VΩ

= z(k+S)|VΩ
since the vectors diUer only in summands from

UΩ, which is the orthogonal complement of VΩ. For the projection we may thus
assume w.l.o.g. that k < S and we compute
(17)

z(k)|VΩ
= z(k) − z(k)|UΩ

=

(
k∑
i=1

ei

)
− k

S
u(1) =

k∑
i=1

(
1− k

S

)
ei −

S∑
i=k+1

k

S
ei.

For the directionw we look at the projection of u(1) ontoWΩ, which is u(1)|WΩ
=

u(1) − S
n1. After scaling this gives a non-zero integer vector w with stabilizer

StabΓ (w) = StabΓ (Ω1). Looking again at (17), we observe that z(k)|VΩ
has a
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zero at coordinate i if and only if i is not in Ω1. Thus, the stabilizer of z(k)|VΩ

must be a subgroup of StabΓ ([n] \ Ω1) = StabΓ (Ω1) = StabΓ (w). �

Remark 30. Note that many points minimize (15). As long as they are core
points, they are valid alternative choices for z(k) in (16). If used in the proof of
Theorem 28, they may also lead to inVnite sequence of core points.

Example 31. We continue Example 27 and construct core points for the cyclic
group C6. We begin with the block system Ω = {{1, 3, 5}, {2, 4, 6}}. We thus
have B = 2 and size S = 3. Hence, we can expect inVnitely many core points
in the layers with indices k = 1, 2, 4, 5 because these are not multiples of S. The
layer minima z(k) from Lemma 29 are given by

z(1) = (1, 0, 0, 0, 0, 0)>,

z(2) = (1, 0, 1, 0, 0, 0)>,

z(4) = (1, 1, 0, 1, 0, 1)>,

z(5) = (1, 1, 1, 1, 0, 1)>.

The corresponding direction is w = (1,−1, 1,−1, 1,−1)> from Example 27.
Corollary 25 implies that for every m ∈ Z the simplex conv C6(z(k) +mw) is
lattice-free. In the case k = 1, for everym ∈ Z the simplex given by the orbit of

(18) z(1) +mw = (1 +m,−m,m,−m,m,−m)> ∈ Zn(1)

is lattice-free.
Note that for the layer with index k = 3 this construction did not produce an

inVnite sequence of simplices. But we can Vnd such a sequence by looking at the
other invariant block system of C6, which is Ω′ = {{1, 4}, {2, 5}, {3, 6}} with
size S = 2. Using this, we Vnd inVnitely many core points in the layers 1, 3 and
5 by Theorem 28. The corresponding layer minima are

z(1) = (1, 0, 0, 0, 0, 0)>,

z(3) = (1, 1, 0, 0, 1, 0)>,

z(5) = (1, 1, 1, 0, 1, 1)>.

As direction w we choose a multiple of u′(1)|WΩ′ = 1
3(2,−1,−1, 2,−1,−1)>

such that the vector is integral. In the case k = 3, for instance, the simplex given
by the orbit of

(19) z(3) +mw(1) = (1 + 2m, 1−m, −m, 2m, 1−m, −m)> ∈ Zn(3)

is lattice-free for everym ∈ Z. An alternative choice for z(3) could be (1, 0, 0, 1, 0, 1)
(cf. Remark 30), leading to the sequence of core points

(20) (1 + 2m, −m, −m, 1 + 2m, −m, 1−m)> ∈ Zn(3)

for m ∈ Z. The core points described by (20) and (19) are diUerent. To see this
we observe that in (20) two consecutive coordinates have the same value −m;
this does happen in (19). Besides these constructions, there are entirely diUerent
ones that yield inVnite sequences for C6.

For instance, one can check that for every a, b ∈ Z the simplex given by the
orbit of (1, a, b, 0,−a,−b)> ∈ Zn(1) is lattice-free. We have already seen a proof
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of similar constructions for the special case C4 in Example 26. More examples can
be found in [Her13, Reh13]. �

5.3. Irrational subspaces. In this section we will construct core points using
irrational invariant subspaces. The main result will be the following.

Theorem 32. Let Γ ≤ Sn have an irrational invariant subspace. If k is not a
multiple of n, then Γ has inVnitely many core points in layer Zn(k).

To prove this theorem, we begin this section with an adaption of Proposi-
tion 24.

Corollary 33. Let Γ ≤ Sn and let V be an invariant subspace of Γ . Let z ∈ Zn(k)

be an integer point with locally minimal projection. Moreover, let StabΓ (z) =
StabΓ (z|V ). Then z is a core point for Γ .

Proof. The minimality condition is the same as in Proposition 24. If StabΓ (z) =
StabΓ (z|V ), then the orbit of StabΓ (z|V )z consists only of a single element,
showing that z is a core point for StabΓ (z|V ). Thus by Proposition 24 z is a core
point for Γ . �

In order to apply Corollary 33 for the proof of Theorem 32, we show that its
prerequisites are satisVed for an irrational invariant subspace. First we show in
Lemma 34 that the stabilizer condition holds. Lemma 36 and Lemma 35 together
show that the local minimality condition is fulVlled.

Lemma 34. Let Γ ≤ Sn and let V be an irrational invariant subspace of Γ . Then
StabΓ (z) = StabΓ (z|V ) for any z ∈ Zn.

Proof. We have already proven StabΓ (z) ≤ StabΓ (z|V ) in Lemma 23. For the
reverse direction let Rn = span1 ⊕ V ⊕ W . Then W must be an irrational
invariant subspace because V is irrational. We consider a γ ∈ Γ \ StabΓ (z) and
show γ 6∈ StabΓ (z|V ). For z = 0 the statement is obviously true, so let z 6= 0.
Then

γz − z = (γz − z)|V + (γz − z)|W
is a non-zero integral vector. As V and W are irrational subspaces, both pro-
jections on the right must be non-zero, showing in particular (γz − z)|V =
γz|V − z|V 6= 0. Hence γ 6∈ StabΓ (z|V ). �

Lemma 35. Let Γ ≤ Sn and let V be an irrational invariant subspace of Γ . Then
for all k ∈ [n− 1] and every z ∈ Zn(k) it holds that ‖z|V ‖ > 0.

Proof. Let Rn = span1 ⊕ V ⊕W . Then W is an irrational invariant subspace
of Γ . We know that z|V is the zero vector if and only if z ∈ span1⊕W . This is in
turn equivalent to the rational vector z− k

n1 lying inW . BecauseW is irrational,
the only rational vector it contains is the zero vector. Thus, the projection z|V
can be zero only if k is an integral multiple of n. �

Lemma 36. Let Γ ≤ Sn and let V be an irrational invariant subspace of Γ . Then
for every ε > 0 and k ∈ [n− 1] there exists a vector z ∈ Zn(k) such that ‖z|V ‖ < ε.

For the proof of Lemma 36, we use two auxiliary statements. We begin with
the symmetry of the projection matrix PV = (ei|V )i∈[n] ∈ Rn×n, which maps
Rn onto an invariant subspace V .
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Lemma 37. For the orthogonal projection to a linear subspace V holds:
(i) 〈ei|V , ej〉 = 〈ei|V , ej |V 〉
(ii) The projection matrix PV = (ei|V )i∈[n] ∈ Rn×n is symmetric.

Proof. Let v1, . . . , vd be an orthonormal basis for V .

〈ei|V , ej |V 〉 =

〈
d∑

k=1

〈ei, vk〉 vk,
d∑
l=1

〈ej , vl〉 vl

〉

=

d∑
k=1

〈ei, vk〉 〈ej , vk〉 = 〈ei|V , ej〉

The symmetry in the second part follows from the symmetry of the scalar product
in 〈ei|V , ej〉 = 〈ei|V , ej |V 〉 = 〈ej |V , ei|V 〉 = 〈ej |V , ei〉. �

The main ingredient to prove Lemma 36 is Kronecker’s Theorem, which is
reproduced below as given in [Sch98, p. 80].

Theorem 38 (Kronecker’s Theorem). Let A ∈ Rm×n and let b ∈ Rn. Then the
following two statements are equivalent:

(i) for each ε > 0 there is an x ∈ Zn with ‖Ax− b‖ < ε;
(ii) for each y ∈ Rm the implication A>y ∈ Zn ⇒ b>y ∈ Z is true.

Proof of Lemma 36. Using the projection matrix PV = (ei|V )i∈[n] ∈ Rn×n, our
goal is to show that for every ε > 0 there exists a z ∈ Zn(k) with ‖PV z‖ < ε.

Let B ∈ Rn×(n−1) be the matrix whose columns consist of the vectors b(i) :=
ei+1 − ei for i ∈ [n− 1]. We can write every z ∈ Zn(k) as z = ke1 + Bz′ for

a suitable z′ ∈ Zn−1. Thus, we have to show that for every ε > 0 we Vnd a
z′ ∈ Zn−1 such that

(21) ‖kPV e1 + PVBz
′‖ < ε.

Kronecker’s Theorem states that this is equivalent to an implication concerning
the integrality of (PVB)>y and (PV e1)>y for y ∈ Rn. Using the symmetry of
PV from Lemma 37, we have to show thatB>y′ ∈ Zn implies (e1)>y′ ∈ Zwhere
y′ := PV y = y|V is the projection of y onto V .

Let us assume that B>y′ ∈ Zn holds. We will show that this can only be
the case for y′ = 0, from which we immediately obtain that the implication
required by Kronecker’s Theorem is satisVed. From B>y′ ∈ Zn we infer that for
all b(i) we must have

〈
b(i), y′

〉
∈ Z. Thus, we can write y′ as y′ = ζ1 + u for

some ζ ∈ R and an integral vector u ∈ Zn. Since y′ lies in V , we know that
0 = 〈1, y′〉 = nζ + 〈1, u〉. This shows that ζ must be rational number. Hence, y′

must be a rational vector. The only rational vector lying in the irrational invariant
subspace V is the zero vector. �

Nowwe have all the ingredients for the proof of our main result of this section:

Proof of Theorem 32. Lemma 35 together with Lemma 36 show that for every k ∈
[n− 1] and every ε > 0 we Vnd an integer point z ∈ Zn(k) such that 0 < ‖z|V ‖ <
ε and, by choosing one with minimal norm, ‖z|V ‖ ≤ ‖z′|V ‖ for all z′ ∈ Zn(k)

with ‖z′‖ ≤ ‖z‖.
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By letting ε approach zero, we thus obtain a sequence of mutually distinct
points z(1), z(2), · · · ∈ Zn(k), which by construction each satisfy the minimality
condition of Corollary 33. Lemma 34 shows that also the stabilizer condition of
Corollary 33 is automatically fulVlled. Hence, each of these points z(1), z(2), · · · ∈
Zn(k) is a core point. �

We close the section with an example of an inVnite sequence of core points that
can be derived from Theorem 32. For a detailed discussion we refer to [Reh13,
Section 5.2.2].

Example 39. Let C5 = 〈(1 2 3 4 5)〉 be the cyclic group of order Vve. Moreover,
let fj be the j-th Fibonacci number. For every j the point z(j) = (0, fj , fj , 0, fj+1)>

is a core point for C5.
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