On the Geometric Ramsey Number of Outerplanar Graphs *

Josef Cibulka ${ }^{1}$, Pu Gao ${ }^{2}$, Marek Krčál ${ }^{1}$, Tomáš Valla ${ }^{3}$, Pavel Valtr ${ }^{1}$
${ }^{1}$ Department of Applied Mathematics, Charles University, Faculty of Mathematics and Physics, Malostranské nám. 25, 11800 Praha 1, Czech Republic.
\{cibulka,krcal\}@kam.mff.cuni.cz
${ }^{2}$ Max-Planck-Institut für Informatik, Saarbrücken, Saarland, Germany. janegao@mpi-inf.mpg.de
${ }^{3}$ Czech Technical University, Faculty of Information Technology, Prague, Czech Republic.
tomas.valla@fit.cvut.cz

Abstract

We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on $2 n$ vertices are bounded by $O\left(n^{3}\right)$ and $O\left(n^{10}\right)$, in the convex and general case, respectively. We then apply similar methods to prove an $n^{O(\log (n))}$ upper bound on the Ramsey number of a path with n ordered vertices.

MSC codes: 52C35, 05C55, 05C10
Keywords: Geometric Ramsey theory, Outerplanar graph, Ordered Ramsey theory, Pathwidth

1 Introduction and basic definitions

A finite set $P \subset \mathbb{R}^{2}$ of points is in a general position if no three points of P are collinear. The complete geometric graph on P, denoted by K_{P}, is the complete graph with vertex set P, whose edges are drawn as the straight-line segments between pairs of points of P.

The set of points P is in convex position if P is the set of vertices of a convex polygon. If P is in convex position, we say that K_{P} is a convex complete geometric graph.

[^0]Károlyi, Pach and Tóth [10] introduced the concept of Ramsey numbers for geometric graphs as follows. Given a graph G, the geometric Ramsey number of G, denoted by $R_{g}(G)$, is the smallest integer n such that every complete geometric graph K_{P} on n vertices with edges arbitrarily coloured by two colours contains a monochromatic non-crossing copy of G. The convex geometric Ramsey number of $G, R_{c}(G)$, is defined the same way except that K_{P} is restricted to the convex complete geometric graph. A graph G is said to be outerplanar if G can be drawn in the plane without any edge crossing and with all vertices of G incident to the unbounded face. Apparently, the numbers $R_{g}(G)$ and $R_{c}(G)$ are finite only if G is outerplanar: consider a planar but not outerplanar graph G, then it is easy to see that one cannot find a non-crossing monochromatic copy of G in a convex complete graph. Also, it follows immediately from the definitions that $R_{c}(G) \leq R_{g}(G)$ for every outerplanar graph G.

The Ramsey numbers of outerplanar graphs, as well as of all planar graphs, are bounded by a function linear in the number of vertices by a result of Chen and Schelp [5]. In contrast, the only known general upper bound on the geometric Ramsey numbers of outerplanar graphs is exponential in the number of vertices. This bound follows from the exponential upper bound on the Ramsey numbers for cliques since a monochromatic clique on n points implies a monochromatic non-crossing occurrence of every outerplanar graph on n vertices by the result of Gritzmann et al. [8] (see Lemma (2).

The geometric Ramsey numbers of some outerplanar graphs are known to be both larger than linear and smaller than exponential, and it remains open whether there is a general polynomial bound for all outerplanar graphs. By a simple constructive proof, it is easy to see that for every $n \geq 3$, the cycle graph C_{n} on n vertices satisfies $R_{c}\left(C_{n}\right) \geq(n-1)^{2}+1$. Balko and Král [2] constructed colourings that improve this bound to $R_{c}(G) \geq 2(n-2)(n-1)+2$. This bound is tight both in the convex and general geometric setting by an earlier result $R_{g}\left(C_{n}\right) \leq 2(n-2)(n-1)+2$ of Károlyi, Pach, Tóth and Valtr [11], This shows that one cannot have geometric Ramsey numbers for general outerplanar graphs asymptotically smaller than $\Omega\left(n^{2}\right)$. Károlyi et al. [11] found the exact value $R_{c}\left(P_{n}\right)=2 n-3$ and the upper bound $R_{g}\left(P_{n}\right) \in O\left(n^{3 / 2}\right)$, where P_{n} is the path on $n>2$ vertices. The bounds $2 n-3 \leq R_{g}\left(P_{n}\right) \leq O\left(n^{3 / 2}\right)$ remain the best known bounds on the geometric Ramsey number of paths. Further results and open problems on the geometric Ramsey numbers can be found in the survey of Károlyi (9).

The ladder graphs are defined as follows.
Definition 1. For any integer $n \geq 1$, the ladder graph on $2 n$ vertices, denoted by $L_{2 n}$, is the graph composed of two paths $\left(u_{i}\right)_{i=1}^{n}$ and $\left(v_{i}\right)_{i=1}^{n}$, together with the set of edges $\left\{u_{i} v_{i}: i \in[n]\right\}$. See an example in Fig. 1 .

Figure 1: The ladder graph L_{14}.
In this paper, we contribute to this subject by showing polynomial upper bounds on the geometric Ramsey numbers of the ladder graphs, and their generalisation. In Section 2, we
show that the geometric Ramsey numbers of the ladder graph on $2 n$ vertices are bounded by $32 n^{3}$ and $O\left(n^{10}\right)$ in the convex and general case, respectively. In Section 3, we generalise the polynomial upper bounds to the class of all subgraphs of pathwidth-2 outerplanar triangulations, see Definition 15. These bounds are $20 n^{7}$ and $O\left(n^{22}\right)$ in the convex and general case, respectively

In Section [2.2, we consider the closely related area of the ordered Ramsey theory. The ordered Ramsey theory recently gained a lot of attention [7, 14, 13, 2], mainly in the more general hypergraph setting. An ordered graph G is a graph with a total order \prec on the vertices of G. We say that an ordered graph G is a subgraph of an ordered graph H if the vertices of G can be injectively mapped to the vertices of H while preserving both the ordering and the edges of G. The ordered Ramsey number $R_{o}(F, G)$ of ordered graphs F and G is the smallest number N such that every 2-colouring of the edges of the ordered complete graph K_{N} on N vertices either contains a blue copy of F or a red copy of G.

The proof of the upper bound on the convex geometric Ramsey number of the ladder graph in Section 2.1] can be extended to show that the ordered Ramsey number $R_{o}\left(L_{2 n}, L_{2 n}\right)$ of the ladder graph $L_{2 n}$ with specifically ordered vertices is at most $32 n^{3}$. The ideas of the proof are applied in Section 2.2 to give an $n^{O(\log (m))}$ upper bound on the ordered Ramsey number $R_{o}\left(K_{n}, P_{m}\right)$, where K_{n} is the ordered complete graph on n vertices and P_{m} is an arbitrarily ordered path on m vertices.

We note here that all colourings in this paper, unless specified, refer to edge colourings. As a convention, in any 2-colouring, we assume that the colours used are blue and red.

When c is a colour, we say that v is a c-neighbour of u if the edge $\{u, v\}$ has colour c. Let $N_{c}(v)$ be the set of c-neighbours of a vertex v. We abbreviate the set $\{1,2, \ldots, k\}$ with $[k]$ and $\{l, l+1, \ldots, k\}$ with $[l, k]$. We write $\left(x_{i}\right)_{i=1}^{k}$ for the sequence $x_{1}, x_{2}, \ldots, x_{k}$. The sequence of vertices $\left(v_{i}\right)_{i=1}^{\ell+1}$ is a path of colour c and length ℓ if every pair $\left\{v_{i} v_{i+1}\right\}, i \in[\ell]$ is an edge and has colour c. A sequence $\left(A_{i}\right)_{i=1}^{k}$ is said to be a partition of A if A_{i} are pairwise disjoint and $\cup_{i=1}^{k} A_{i}=A$.

2 Ladder graphs

In Subsections 2.1 and 2.3, we prove upper bounds on the convex and geometric Ramsey numbers $R_{c}\left(L_{2 n}\right)$ and $R_{g}\left(L_{2 n}\right)$ of ladder graphs $L_{2 n}$. Both proofs use the following lemma due to Gritzmann et al. [8].

Lemma 2 (Gritzmann et al. 1991 [8]). Let G be an outerplanar graph on n vertices and let P be a set of n points in general position. Then K_{P} contains a non-crossing copy of G.

In Subsection 2.2, a small change to the proof of the upper bound on the convex Ramsey number is shown to give an upper bound on the ordered Ramsey number of paths.

2.1 Convex position

Theorem 3. For every $n \geq 1, R_{c}\left(L_{2 n}\right) \leq 32 n^{3}$.
In this section, let C denote a set of $32 n^{3}$ points in convex position. That is, C is the set of vertices of some convex polygon. We label the vertices $v_{1}, v_{2}, \ldots, v_{|C|}$ in the clockwise order starting at an arbitrarily chosen vertex v_{1}. We write $v_{i} \prec v_{j}$ if and only if $i<j$. Let $A, B \subset C$. We say that A precedes B and write $A \prec B$ if and only if for every $u \in A$ and
every $v \in B, u \prec v$. Notice that if $A \prec B$, then the sets A and B can be separated by a line.

For a pair of disjoint vertex sets $(L, R), L \subset C, R \subset C$, the complete bipartite graph on (L, R), denoted by $K_{L, R}$, is the set of edges $\{u, v\}$, where $u \in L$ and $v \in R$. A complete bipartite graph $K_{L, R}$ is said to be well-split if $L \prec R$ or $R \prec L$. A well-split $K_{m, n}$ is a well-split $K_{L, R}$, for some L and R such that $|L|=m,|R|=n$.

The following lemma and its generalisation (stated in Corollary 19 in the next section) are used frequently in later proofs.

Lemma 4. If a 2 -colouring of K_{C} contains a monochromatic well-split $K_{2 n^{2}, 2 n^{2}}$, then it contains a monochromatic non-crossing copy of $L_{2 n}$.

Proof. Let A_{1} and A_{2} be the two vertex parts of the monochromatic well-split $K_{2 n^{2}, 2 n^{2}}$. Without loss of generality, we assume that all the edges between A_{1} and A_{2} are coloured blue.

We use an idea that was used to prove a quadratic upper bound on $R_{g}\left(C_{n}\right)$ and other results on geometric Ramsey numbers [10, 11]. We define partial orders $<_{1}$ on A_{1} and $<_{2}$ on A_{2} as follows. A path $\left(p_{i}\right)_{i=1}^{\ell}$ on the vertices of A_{i} is an increasing path if $p_{1} \prec p_{2} \prec \cdots \prec p_{\ell}$. Let $u<_{i} v$ for $u, v \in A_{i}$ if and only if there exists an increasing blue path starting in u and ending at v. Since $\left|A_{i}\right|=2 n^{2}$ for $i=1,2$, by a lemma of Dilworth [6], each of $\left(A_{i},<_{i}\right)$ has either a chain on n elements or an antichain on $2 n$ elements.

By the definition of $\left(A_{i},<_{i}\right)$, any two vertices that are incomparable in A_{i} are connected by a red edge. Therefore, if $\left(A_{i},<_{i}\right)$ contains an antichain with $2 n$ elements, then there exists a red convex complete geometric graph on $2 n$ vertices. By Lemma 2, K_{C} contains a red non-crossing copy of $L_{2 n}$.

Thus, we may assume that none of $\left(A_{i},<_{i}\right)$ contains an antichain with $2 n$ elements. Then both $\left(A_{i},<_{i}\right)$ contain a chain with n elements, implying that each of A_{i} contains an increasing blue path with n vertices. Let $\left(u_{i}\right)_{i=1}^{n}$ and $\left(v_{i}\right)_{i=1}^{n}$ be the increasing blue paths on A_{1} and A_{2}, respectively. These two paths together with the blue edges $\left\{u_{n+1-i}, v_{i}\right\}, i \in[n]$ form a blue non-crossing copy of $L_{2 n}$.

Lemma 5. Let N and n be positive integers. Let G be the complete graph on a set A of at least $n N$ vertices and let $\left(A_{i}\right)_{i=1}^{n}$ be a partition of A with $\left|A_{i}\right| \geq N$ for every $i \in[n]$. Then for any 2-colouring of the edges of G, either there is a red path $\left(u_{i}\right)_{i=1}^{n}$ with $u_{i} \in A_{i}$ for each $i \in[n]$ or for some $i \in[n-1]$ there exists a blue $K_{B_{i}, B_{i+1}}$ with $B_{i} \subseteq A_{i}, B_{i+1} \subseteq A_{i+1}$ and $\min \left\{\left|B_{i}\right|,\left|B_{i+1}\right|\right\} \geq N / 2$.

Proof. Assume that there is no red path $\left(v_{i}\right)_{i=1}^{n}$ with $v_{i} \in A_{i}$ for each $i \in[n]$. We call a vertex $v \in A_{j}$ good if there is a red path $\left(v_{i}\right)_{i=1}^{j}$ with $v_{j}=v$ and $v_{i} \in A_{i}$ for every $i \in[j-1]$. Every vertex in A_{1} is good and all vertices in A_{n} are bad. Let i be the largest integer such that at least half of the vertices of A_{i} are good. Then by the choice of i, at least half of the vertices of A_{i+1} are bad. Let B_{i} denote the set of good vertices in A_{i} and B_{i+1} the set of bad vertices in A_{i+1}. It follows that both B_{i} and B_{i+1} have size at least $N / 2$ and all the edges between B_{i} and B_{i+1} are blue.
Proof of Theorem 3 Let C denote a set of $32 n^{3}$ points in convex position. Arbitrarily choose a line that partitions C into C_{1} and C_{2} each containing exactly $16 n^{3}$ points. Further, partition C_{1} into $\left(A_{i}\right)_{i=1}^{2 n}$ with $A_{1} \prec A_{2} \prec \cdots \prec A_{2 n}$ and $\left|A_{i}\right|=8 n^{2}$ for each $i \in[2 n]$. Partition C_{2} into $\left(B_{i}\right)_{i=1}^{2 n}$ with $B_{2 n} \prec B_{2 n-1} \prec \cdots \prec B_{1}$ and $\left|B_{i}\right|=8 n^{2}$ for each $i \in[2 n]$.

Colour each vertex $v \in A_{i}$ red if it is adjacent to at least half of the vertices in B_{i} by a red edge. Otherwise, colour it blue. We say that A_{i} is red if at least half of the vertices in A_{i} are coloured red. Otherwise, we say that A_{i} is blue.

Without loss of generality, at least half of the sets A_{i} are red. Let $\left(j_{i}\right)_{i=1}^{n}$ be an increasing sequence of indices such that each $A_{j_{i}}$ is red. Let $D_{i} \subset A_{j_{i}}$ be the set of red vertices of $A_{j_{i}}$. Thus $\left|D_{i}\right| \geq\left|A_{j_{i}}\right| / 2=4 n^{2}$ and for every vertex v from $D_{i},\left|B_{j_{i}} \cap N_{r e d}(v)\right| \geq 4 n^{2}$.

If for some $i \in[n-1]$, there exists a blue $K_{T_{i}, T_{i+1}}$ with $T_{i} \subseteq D_{i}, T_{i+1} \subseteq D_{i+1}$ and $\min \left\{\left|T_{i}\right|,\left|T_{i+1}\right|\right\} \geq 2 n^{2}$, then K_{C} contains a blue non-crossing copy of $L_{2 n}$ by Lemma 4. Thus, by Lemma [5, we can assume that we have a red path $\left(v_{i}\right)_{i=1}^{n}$ with $v_{i} \in D_{i}$ for every $i \in[n]$. So $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. For each $i \in[n]$, let $F_{i}=B_{j_{i}} \cap N_{\text {red }}\left(v_{i}\right)$. So $\left|F_{i}\right| \geq 4 n^{2}$. If there exists a blue $K_{T_{i}, T_{i+1}}$ with $T_{i} \subseteq F_{i}, T_{i+1} \subseteq F_{i+1}$ and $\min \left\{\left|T_{i}\right|,\left|T_{i+1}\right|\right\} \geq 2 n^{2}$, then the proof is complete by Lemma 4. Thus by Lemma 5, we only need to consider the case when there is a red path $\left(w_{i}\right)_{i=1}^{n}$ with $w_{i} \in F_{i}$ for every $i \in[n]$. We have $w_{n} \prec w_{n-1} \prec \cdots w_{1}$ and so the two paths $\left(v_{i}\right)_{i=1}^{n}$ and $\left(w_{i}\right)_{i=1}^{n}$ together with the edges $\left\{v_{i}, w_{i}\right\}, i \in[n]$ form a red non-crossing copy of $L_{2 n}$.

2.2 Ordered Ramsey theory

The proof of Theorem 3 shows that the ordered Ramsey number $R_{o}\left(L_{2 n}, L_{2 n}\right)$ of the ladder graph $L_{2 n}$ with vertices ordered $v_{1} \prec v_{2} \prec \cdots \prec v_{n} \prec u_{n} \prec u_{n-1} \prec \cdots \prec u_{1}$ is at most $32 n^{3}$. The ideas used in the proof of Theorem 3 can be applied to give a subexponential upper bound on the ordered Ramsey numbers of arbitrarily ordered paths.
Theorem 6. Let K_{n} be the ordered complete graph on n vertices and let P_{m} be an arbitrarily ordered path on m vertices. Then $R_{o}\left(K_{n}, P_{m}\right) \leq 2^{\left\lceil\log _{2}(n)\right\rceil \cdot\left(\left\lceil\log _{2}(m)\right\rceil+1\right)}$.

Proof. If $n \leq 2$, the claim holds trivially. We proceed by induction on n while m remains fixed.

It is enough to show that $R_{o}\left(K_{n}, P_{m}\right) \leq 2^{\log _{2}(n) \cdot\left(\log _{2}(m)+1\right)}$ for values n and m of the form $n=2^{k}$ and $m=2^{\ell}$ for some integers k and ℓ. Let $R=2^{k \cdot(\ell+1)}$. Let K_{R} be the complete ordered graph on R vertices with 2-coloured edges. We split the vertices of K_{R} into m intervals V_{1}, \ldots, V_{m}, each containing $2^{(k-1) \cdot(\ell+1)+1}$ consecutive vertices. Let $p_{1} \prec p_{2} \prec \ldots \prec p_{m}$ be the vertices of P_{m}. Then the edges of P_{m} are $\left\{p_{\pi(1)}, p_{\pi(2)}\right\},\left\{p_{\pi(2)}, p_{\pi(3)}\right\}, \ldots,\left\{p_{\pi(m-1)}, p_{\pi(m)}\right\}$ for some permutation $\pi:[m] \rightarrow[m]$. We let $A_{i}=V_{\pi(i)}$ for every $i \in[n]$. By Lemma 5 5 we either find a red copy of P_{m}, in which case the claim holds, or we find a pair of intervals A_{i}, A_{i+1} satisfying the following. There are sets $L \subset A_{i}$ and $R \subset A_{i+1}$ of size $|L|,|R| \geq 2^{(k-1) \cdot(\ell+1)}$ such that all the edges between L and R are blue.

By the induction hypothesis, $R_{o}\left(K_{n / 2}, P_{m}\right) \leq 2^{(k-1) \cdot(\ell+1)}$. Thus in each of L and R, we either find a red copy of P_{m}, or a blue copy of $K_{n / 2}$. If either L or R contains a red copy of P_{m}, the claim holds. Otherwise both L and R contain a blue copy of $K_{n / 2}$ and so $L \cup R$ is a blue copy of K_{n}.
Corollary 7. Let P_{n} be a path on n arbitrarily ordered vertices. Then $R_{o}\left(P_{n}, P_{n}\right) \leq$ $2^{\left[\log _{2}(n)\right] \cdot\left(\left[\log _{2}(n)\right\rceil+1\right)}$.

2.3 General geometric position

Theorem 8. The geometric Ramsey number of the ladder graph $L_{2 n}$ satisfies $R_{g}\left(L_{2 n}\right)=$ $O\left(n^{10}\right)$.

Definition 9. Two sets of points A and B in the plane are mutually avoiding if $|A|,|B| \geq 2$ and no line subtended by a pair of points in A intersects the convex hull of B, and vice versa. See Fig. ${ }^{\text {Q }}$

Figure 2: An example of mutually avoiding sets A and B. Some lines subtended by pairs of points from A and pairs of points from B are shown.

A simple example of a pair of mutually avoiding sets are sets A and B such that $A \cup B$ is in convex position and A and B can be separated by a straight line.

Observe that for any mutually avoiding pair (A, B), every point in A "sees" all the vertices in B in the same order and vice versa. That is, there are unique total orders $u_{1} \prec u_{2} \prec \cdots \prec u_{|A|}$ of the points in A and $v_{1} \prec v_{2} \prec \cdots \prec v_{|B|}$ of the the points in B such that every point in B "sees" $u_{1}, \ldots, u_{|A|}$ consecutively in a clockwise order before seeing any vertex in B, whereas every point in A "sees" $v_{1}, \ldots, v_{|B|}$ consecutively in a counterclockwise order before seeing any vertex in A. A path $\left(p_{i}\right)_{i=1}^{\ell}$ in either A or B is an increasing path if $p_{1} \prec p_{2} \prec \cdots \prec p_{\ell}$.

For any two sets of vertices A_{1}, A_{2} both contained in A (or B), we write $A_{1} \prec A_{2}$ if and only if for every $u \in A_{1}$ and $v \in A_{2}, u \prec v$. Let U be A or B. A sequence $\left(U_{i}\right)_{i=1}^{k}$ of subsets of U is an increasing sequence if $U_{1} \prec \cdots \prec U_{k}$. An increasing sequence $\left(U_{i}\right)_{i=1}^{k}$ of subsets of U is an increasing partition of U if $\bigcup_{i \in[k]} U_{i}=U$.

The following proposition follows from the definition of a pair of mutually avoiding sets.
Proposition 10. Assume A and B are mutually avoiding. Then

1. An increasing path $\left(p_{i}\right)_{i=1}^{\ell}$ does not cross itself.
2. Let $u, u^{\prime} \in A$ with $u \prec u^{\prime}$ and let $v, v^{\prime} \in B$. Then the two edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross if and only if $v^{\prime} \prec v$.
3. Let $u, u^{\prime} \in A$ with $u \prec u^{\prime}$ and let $w \in A$ such that $w \prec u$ or $u^{\prime} \prec w$ or $w \in\left\{u, u^{\prime}\right\}$. Let $v \in B$. Then the two edges $\left\{u, u^{\prime}\right\}$ and $\{w, v\}$ do not cross.

The following corollary follows directly from Proposition 10.
Corollary 11. Assume A and B are mutually avoiding. Let $P_{u}=\left(x_{i}\right)_{i=1}^{n}$ be an increasing path in A and let $P_{v}=\left(y_{i}\right)_{i=1}^{n}$ be an increasing path in B. Then the ladder graph composed of the paths P_{u} and P_{v} and edges $\left\{\left\{x_{i}, y_{i}\right\}: i \in[n]\right\}$ is non-crossing.

Given a set of points in general position, the following theorem guarantees the existence of two mutually avoiding subsets of relatively large sizes.
Theorem 12 (Aronov et al. 1994 [1]). Let A^{\prime} and B^{\prime} be two sets of points separated by a line, each of size $6 n^{2}$. Then there exist mutually avoiding sets $A \subset A^{\prime}$ and $B \subset B^{\prime}$ such that A and B are both of size n.

An embedding of the complete bipartite graph $K_{m, n}$ on a set of points in general position is well-split if the two sets of points representing the two vertex parts are mutually avoiding. By Lemma 2 and Corollary 11, we have the following generalisation of Lemma 4 .
Lemma 13. If a 2-colouring of K_{P} contains a monochromatic well-split $K_{2 n^{2}, 2 n^{2}}$, then it contains a monochromatic non-crossing $L_{2 n}$.

Proof. Let A_{1} and A_{2} be the two vertex parts of the monochromatic well-split $K_{2 n^{2}, 2 n^{2}}$. Without loss of generality, assume $K_{A_{1}, A_{2}}$ is blue. By applying the Dilworth's lemma [6] in the same way as in the proof of Lemma 4, we either find a red $K_{2 n}$ or blue increasing paths $\left(u_{i}\right)_{i=1}^{n}$ in A_{1} and $\left(v_{i}\right)_{i=1}^{n}$ in A_{2}. In the first case, we get a red $L_{2 n}$ by Lemma 2 and in the second case a blue $L_{2 n}$ by Corollary (11.

A complete geometric bipartite graph $K_{L, R}$ is said to be separable if L and R can be separated by a line. Notice that if $L \cup R$ is in convex position, then $K_{L, R}$ is separable if and only if it is well-split. Obviously, every complete bipartite geometric graph $K_{L, R}$ contains a separable complete bipartite graph with parts of sizes $|L| / 2$ and $|R| / 2$. However, all complete bipartite geometric graphs that we encounter in subsequent proofs are separable, so we state the following corollary of Theorem 12 and Lemma 13 for separable complete bipartite graphs only.

Corollary 14. Every 2 -colouring of K_{P} containing a monochromatic separable $K_{24 n^{4}, 24 n^{4}}$ contains a monochromatic non-crossing copy of $L_{2 n}$.

Proof of Theorem 8. Let G be the complete geometric graph on vertex set P, where P is a set of $c n^{10}$ points in general position, where c is some sufficiently large absolute constant. By Theorem [12, there exist two subsets $S_{u}, S_{v} \subset P$, such that S_{u} and S_{v} are mutually avoiding and $\left|S_{u}\right|=\left|S_{v}\right|=c_{1} n^{5}$ for some $c_{1} \geq \sqrt{c / 6}$.

The proof of Theorem 8 is analogous to that of Theorem 3 with S_{u} and S_{v} having the role of C_{1} and C_{2}. Let $\left(A_{i}\right)_{i=1}^{2 n}$ be the increasing partition of S_{u} with $\left|A_{i}\right|=c_{1} n^{4} / 2$ for each $i \in[2 n]$. Let $\left(B_{i}\right)_{i=1}^{2 n}$ be the increasing partition of S_{v} with $\left|B_{i}\right|=c_{1} n^{4} / 2$ for each $i \in[2 n]$. As in the proof of Theorem 3, we find one colour, that we assume to be red, an increasing sequence $\left(D_{i}\right)_{i=1}^{n}$ of subsets of S_{v} and an increasing sequence $\left(j_{i}\right)_{i=1}^{n}$ of integers from [2n] satisfying the following. For every $i \in[n],\left|D_{i}\right| \geq c_{1} n^{4} / 4$ and every vertex in D_{i} is adjacent to at least half of the vertices of $B_{j_{i}}$ by a red edge. By Lemma 5 either there is a blue copy of $K_{c_{2} n^{4}, c_{2} n^{4}}$, where $c_{2} \geq c_{1} / 8 \geq \sqrt{c} /(16 \sqrt{3})$ or there is a red path $\left(v_{i}\right)_{i=1}^{n}$ with $v_{i} \in D_{i}$ for every $i \in[n]$. In the first case the proof is complete by Corollary 14. In the second case we let $T_{i}=B_{j_{i}} \cap N_{r e d}\left(v_{i}\right)$. Now we apply Lemma 5 on $\left(T_{i}\right)_{i=1}^{n}$ and either find a blue $K_{c_{2} n^{4}, c_{2} n^{4}}$ or a red path $\left(w_{i}\right)_{i=1}^{n}$ with $w_{i} \in T_{i}$ for every $i \in[n]$. In the first case the proof is complete by Corollary 14 and in the second by Corollary 11using $\left(v_{i}\right)_{i=1}^{n}$ and $\left(w_{i}\right)_{i=1}^{n}$ as the two paths of the ladder graph.

3 Generalisation to pathwidth-2 outerplanar triangulations

An outerplanar triangulation G is a planar graph that can be drawn in the plane in such a way that the outer face is incident with all the vertices of G and every other face is incident with exactly three vertices.

The pathwidth of a graph was first defined by Robertson and Seymour [16] as follows. A path decomposition of a graph G is a sequence $\left(G_{i}\right)_{i=1}^{m}$ of subgraphs of G such that each
edge of G is in at least one of G_{i} and for every vertex v of G, the set of graphs G_{i} containing v forms a contiguous subsequence of $\left(G_{i}\right)_{i=1}^{m}$. The pathwidth of a graph G is the smallest k such that G has a path decomposition in which every G_{i} has at most $k+1$ vertices. Let $p w(G)$ denote the pathwidth of G. A pathwidth- k graph is a graph of pathwidth at most k.

For every k, the class of graphs of pathwidth at most k is a minor-closed class. Every such class can be characterised by a finite list of forbidden minors by the graph minor theorem [15]. A characterisation of the class of pathwidth-2 graphs with 110 forbidden minors was provided by Kinnersley and Langston [12].

Simplified characterisations of pathwidth-2 graphs were obtained recently by Barát, Hajnal, Lin and Young [3] and Biró, Keller and Young [4]. We use these characterisations to provide an equivalent definition of pathwidth-2 outerplanar triangulations that will be used in our proofs.
Definition 15. Let $P W_{2}(n)$ be the class of outerplanar triangulations G on n vertices whose vertices can be decomposed into two disjoint sets $V_{u} \cup V_{v}=V(G)$ such that the subgraphs induced by the two sets, $P_{u}=G\left[V_{u}\right]$ and $P_{v}=G\left[V_{v}\right]$, are paths. See an example in Fig. 3 .

Figure 3: An example of a pathwidth-2 outerplanar triangulation.

Proposition 16. A graph G is a pathwidth-2 outerplanar triangulation if and only if $G \in$ $P W_{2}(n)$.

Proof. A track is a graph composed of two rails and several cross-ties. The two rails are paths $\left(x_{i}\right)_{i=1}^{n_{1}}$ and $\left(y_{i}\right)_{i=1}^{n_{2}}$. A cross-tie is a path of length one or two that connects x_{i} with y_{j}, for some $i \in\left[n_{1}\right]$ and $j \in\left[n_{2}\right]$. The cross-ties further satisfy that for every $i, i^{\prime}, j, j^{\prime}$ with $i<i^{\prime}$, whenever one cross-tie connects x_{i} to y_{j} and another connects $x_{i^{\prime}}$ to $y_{j^{\prime}}$, then $j \leq j^{\prime}$. The middle vertex of a cross-tie of length two has no neighbours other than x_{i} and y_{j}. Additionally, there always is a cross-tie of length one connecting x_{1} to y_{1} and another connecting $x_{n_{1}}$ to $y_{n_{2}}$. Barát et al. [3] prove that a graph is a 2 -connected pathwidth-2 graph if and only if it is a track.

Notice that every outerplanar triangulation is Hamiltonian and thus 2-connected. Observe also that every $G \in P W_{2}(n)$ satisfies the definition of a track. It remains to show that if a track G on n vertices is an outerplanar triangulation then $G \in P W_{2}(n)$.

If the track G has a cross-tie of length two between x_{1} and y_{1}, then the middle vertex t of the cross-tie can be added to one of the tracks to form, for example, the track $t, x_{1}, \ldots, x_{n_{1}}$. Thus we can assume, that the track G has no cross-tie of length two connecting x_{1} to y_{1} or $x_{n_{1}}$ to $y_{n_{2}}$. Then, since G is outerplanar, it has no cross-tie of length two. Therefore the outerplanar triangulation G satisfies the definition of graphs from $P W_{2}(n)$.

The following is a corollary of Property 10 .
Corollary 17. Let $G \in P W_{2}(n)$ and let G be composed of induced paths $P_{u}=\left(x_{i}\right)_{i=1}^{n_{1}}$, $P_{v}=\left(y_{i}\right)_{i=1}^{n_{2}}$ and edges between vertices of P_{u} and vertices of P_{v}. Let (A, B) be a pair of mutually avoiding sets. Let $\left(u_{i}\right)_{i=1}^{n_{1}}$ be an increasing path in A and $\left(v_{i}\right)_{i=1}^{n_{2}}$ an increasing
path in B. Then by mapping every x_{i} on u_{i} and every y_{i} on v_{i} we obtain a non-crossing embedding of G.

By Corollary 17, Lemma 4 generalises to an arbitrary graph $G \in P W_{2}(n)$.
Corollary 18. If K_{P} with 2 -coloured edges contains a monochromatic well-split $K_{n^{2}, n^{2}}$, then it contains a monochromatic non-crossing copy of every G from $P W_{2}(n)$.

Then, by Theorem 12, we also generalise Corollary 14 ,
Corollary 19. If K_{P} with 2 -coloured edges contains a monochromatic separable $K_{6 n^{4}, 6 n^{4}}$, then it contains a monochromatic non-crossing copy of every G from $P W_{2}(n)$.

We obtain upper bounds for the geometric Ramsey numbers of graphs $G \in P W_{2}(n)$, both in the convex case and in the general case. These two upper bounds follow directly from the following key lemma.

Lemma 20. Let G be a subgraph of a graph $G^{\prime} \in P W_{2}(n)$. Let $m \geq n^{2}$ and let S_{u} and S_{v} be two mutually avoiding sets of $10 m^{2} n^{3}$ points each. Then every 2 -colouring of the complete geometric graph on $S_{u} \cup S_{v}$ either contains a monochromatic G or a monochromatic separable $K_{m, m}$.

We leave the technical proof of Lemma 20 to the next section.
Theorem 21. For any $G \subseteq G^{\prime} \in P W_{2}(n), R_{c}(G) \leq 20 n^{7}$.
Proof. Let S be a set of $20 n^{7}$ points in convex position. We cut the set S by a line into sets S_{u} and S_{v} of size $10 n^{7}$ each. Then S_{u} and S_{v} are mutually avoiding. Moreover if either S_{u} or S_{v} contains a monochromatic separable and thus well-split $K_{n^{2}, n^{2}}$, then S contains a monochromatic non-crossing G by Corollary 18 ,

Therefore, by Lemma 20 with $m=n^{2}, S$ contains a monochromatic non-crossing copy of G.

Theorem 22. For any $G \subseteq G^{\prime} \in P W_{2}(n), R_{g}(G) \leq O\left(n^{22}\right)$.
Proof. Let S be a set of $10^{2} 6^{5} n^{22}$ points in general position. By Theorem 12, S contains mutually avoiding sets S_{u} and S_{v} of size $10 \cdot 6^{2} n^{11}$ each. If S contains a monochromatic separable $K_{6 n^{4}, 6 n^{4}}$, then it contains a monochromatic non-crossing copy of G by Corollary 19 .

Therefore, by Lemma 20 with $m=6 n^{4}, S$ contains a monochromatic non-crossing copy of G.

Remark. Notice that not every pathwidth-2 outerplanar graph is a subgraph of a pathwidth- 2 outerplanar triangulation. See Fig. 困

Figure 4: A pathwidth-2 outerplanar graph that is not a subgraph of a pathwidth-2 outerplanar triangulation.

4 Proof of Lemma 20

Without loss of generality, we only need to consider $G \in P W_{2}(n)$.
If $n \leq 3$ then the result is trivial, so we assume $n \geq 4$, which will be used in several estimates.

Let $\left(u_{i}\right)_{i=1}^{\ell-1}$ and $\left(v_{i}\right)_{i=1}^{\ell}$ be sequences of vertices such that $u_{i} \in P_{u}$ and $v_{i} \in P_{v}$ for every $i \in[\ell], v_{1}=y_{1}, v_{\ell}=y_{n_{2}}$ and the alternating sequence of vertices $v_{1}, u_{1}, v_{2}, u_{2}, \ldots, u_{\ell-1}, v_{\ell}$ forms a path in G. Note that $2 \ell-1 \leq n$ and that such a path is unique and can be constructed by starting at y_{1} and always continuing to the largest neighbour in the other of the sets P_{u}, P_{v} until reaching $y_{n_{2}}$. Vertices $u_{1}, \ldots u_{\ell-1}, v_{1}, \ldots v_{\ell}$ are called the stem vertices and all the other vertices of G are the leaf vertices. Notice that every leaf vertex of P_{u} has exactly one neighbour in P_{v} and vice versa.

Figure 5: Labelling and grouping of the vertices of the graph from Fig. 3, which is in $P W_{2}(14)$. The path connecting stem vertices is represented by a heavier line.

Refer to Fig. 5. We cut P_{u} into a sequence of subpaths $\left(U_{i}\right)_{i=1}^{\ell-1}$, where U_{1} contains u_{1} and all the vertices preceding u_{1} on $P_{u}, U_{\ell-1}$ contains all the vertices after $u_{\ell-2}$ and for $i \in[2, \ell-2], U_{i}$ contains u_{i} and the vertices strictly between u_{i-1} and u_{i}. Let $\left(Q_{i}\right)_{i=1}^{\ell-1}$ be the sequence of subpaths created by removing vertices v_{i} from P_{v}. That is, for every $i \in[\ell-1]$, Q_{i} contains the leaf vertices in between v_{i} and v_{i+1}. Let $f_{i}=\left|Q_{i}\right|$.

Claim 23. There exists a colour $c \in\{$ blue, red $\}$ and sequences of vertex sets $A_{1}^{\prime}, \ldots, A_{\ell}^{\prime} \subset S_{v}$, $M_{1}, \ldots, M_{\ell-1} \subset S_{v}$ and $B_{1}, \ldots, B_{\ell-1} \subset S_{u}$ with

$$
\begin{aligned}
& B_{1} \prec B_{2} \prec \cdots \prec B_{\ell-1} \\
& A_{1}^{\prime} \prec M_{1} \prec A_{2}^{\prime} \prec \cdots \prec A_{\ell-1}^{\prime} \prec M_{\ell-1} \prec A_{\ell}^{\prime}
\end{aligned}
$$

that satisfy the following conditions.

1. $\forall i \in[\ell-1]:\left|B_{i}\right|=8 m n^{3}$;
2. $\forall i \in[\ell]:\left|A_{i}^{\prime}\right|=4 m n^{2}$;
3. $\forall i \in[\ell-1]:\left|M_{i}\right|=9 m^{2} n^{2}$;
4. $\forall i \in[\ell-1]: \forall v \in A_{i}^{\prime}:\left|N_{c}(v) \cap B_{i}\right| \geq\left|B_{i}\right| / 2$.

Proof. Let $\left(Z_{k}\right)_{k=1}^{2 \ell-1}$ be the increasing partition of S_{u} with parts of size $8 m n^{3}$. Then we take sequences $\left(D_{k}\right)_{k=1}^{2 \ell-1},\left(C_{k}\right)_{k=1}^{2 \ell-2}$ of subsets of S_{v} satisfying $D_{1} \prec C_{1} \prec D_{2} \prec \cdots \prec D_{2 \ell-2} \prec$ $C_{2 \ell-2} \prec D_{2 \ell-1}$ with $\left|D_{k}\right|=8 m n^{2}$ for every $k \in[2 \ell-1]$ and $\left|C_{k}\right|=9 m^{2} n^{2}$ whenever $k \in[2 \ell-2]$.

The colour of a vertex $v \in D_{k}$ is the colour of the majority of the edges between v and the vertices of Z_{k} and it is red in case of a tie. The colour of D_{k} is the colour of the majority of the vertices $v \in D_{k}$ and it is red in case of a tie.

We fix c to be the colour such that at least half of the sets D_{k} have colour c. Let $\left(k_{i}\right)_{i=1}^{\ell}$ be an increasing sequence of indices such that for every $i \in[\ell], D_{k_{i}}$ has colour c. For each $i \in[\ell]$ let A_{i}^{\prime} be the set of vertices of $D_{k_{i}}$ with colour c. Then $\left|A_{i}^{\prime}\right| \geq 4 m n^{2}$. Let $B_{i}=Z_{k_{i}}$ for every $i \in[\ell-1]$ and $M_{i}=C_{k_{i}}$ for every $i \in[\ell-1]$. It is easy to verify that the sets A_{i}^{\prime}, B_{i} and M_{i} satisfy the requirements.

Observation 24. Let N, k and t be positive integers. Let S be a set of size N and let T_{1}, \ldots, T_{k} be sets such that $\left|S \cap T_{i}\right| \leq t$ for every $i \in[k]$. Then

$$
\left|S \backslash \bigcup_{i=1}^{k} T_{i}\right|=\left|\bigcap_{i=1}^{k}\left(S \backslash T_{i}\right)\right| \geq N-t k
$$

The observation is applied several times for some colour c and a set V of vertices in the following way. We set $T_{i}=N_{c}\left(v_{i}\right)$ where $\left\{v_{1}, \ldots, v_{k}\right\}$ are the vertices of V with the fewest c-neighbours in S. The observation says that if k is large and every v_{i} has few c-neighbours in S, then we find a large complete bipartite graph in the other colour.

Without loss of generality, we assume that Claim 23 holds with $c=\operatorname{red}$. Let $\left(A_{i}^{\prime}\right)_{i=1}^{\ell}$, $\left(B_{i}\right)_{i=1}^{\ell}$ and $\left(M_{i}\right)_{i=1}^{\ell-1}$ be the sequences that satisfy the conditions of the claim.

The rest of the proof proceeds in several phases. In each phase we either immediately find a blue well-split $K_{n^{2}, n^{2}}$ implying a monochromatic G, a blue separable $K_{m, m}$, or we move closer to finding a non-crossing embedding $\phi: V(G) \rightarrow S_{u} \cup S_{v}$ of G with all edges red. The mapping ϕ maps v_{i} on some point of A_{i}^{\prime} for each $i \in[\ell]$ and for each $i \in[\ell-1]$, the vertices of U_{i} are mapped on some points of B_{i} and vertices of Q_{i} on some points of M_{i}. In some phases, the embedding of some vertices of G is selected and this will then remain fixed for the rest of the proof.

Claim 25. Either the complete geometric graph on $S_{u} \cup S_{v}$ contains a monochromatic noncrossing G or there is a sequence of sets $\left(A_{i}\right)_{i=1}^{\ell}$ with $A_{i} \subseteq A_{i}^{\prime}$ for every $i \in[\ell]$ that satisfies the following conditions.

1. $\forall i:\left|A_{i}\right|=2 m$;
2. $\forall i \in[\ell-1], \forall u \in A_{i}, \forall v \in A_{i+1}: u$ and v have at least $3 n m$ common red neighbours in B_{i};

Proof. To find the sets A_{i}, we proceed in ℓ steps, unless we find a red G earlier.
In the first step, we let the set A_{1} be an arbitrary subset of A_{1}^{\prime} of size 2 m .
At the beginning of step $j, j>1$, we have sets A_{1}, \ldots, A_{j-1} each of size $2 m$ and such that the requirement 2 of the claim is satisfied for all $i<j-1$. A vertex $w \in A_{j}^{\prime}$ is compatible with $v \in A_{j-1}$ if u and v have at least 3 nm common red neighbours in B_{j}. We distinguish two cases.

The first case occurs when there is a vertex $v \in A_{j-1}$ and a set $W=\left\{w_{1}, \ldots, w_{n^{2}}\right\}$ of vertices of A_{j}^{\prime} incompatible with v. Let $S=N_{\text {red }}(v) \cap B_{j}$ and for every $i \in\left[n^{2}\right]$, let $T_{i}=N_{\text {red }}\left(w_{i}\right) \cap B_{j}$. Let $C=S \backslash \bigcup_{i=1}^{n^{2}} T_{i}$. Since the vertices of W are incompatible with v, we can apply Observation 24 on S and $\left\{T_{1}, \ldots, T_{n^{2}}\right\}$ with $t=3 n m, N=4 m n^{3}$ and $k=n^{2}$ and obtain $|C| \geq 4 m n^{3}-3 m n^{3} \geq n^{2}$. All edges between W and C are blue, thus $K_{W, C}$
forms a blue well-split $K_{n^{2}, n^{2}}$ and so $K_{S_{u} \cup S_{v}}$ contains a monochromatic noncrossing G by Corollary 18 .

In the second case, for every vertex $u \in A_{j-1}$ at most n^{2} vertices of A_{j}^{\prime} are incompatible. Thus the number of vertices of A_{j}^{\prime} compatible with every $u \in A_{j-1}$ is at least $4 m n^{2}-2 m n^{2} \geq$ $2 m$. We can thus let A_{j} be the set of some $2 m$ vertices of A_{j}^{\prime} compatible with every $v \in A_{j-1}$.

Let $\left(A_{i}\right)_{i=1}^{\ell}$ be the sequence of sets satisfying the conditions of Claim 25,
To provide an exposition of the rest of the proof, we first prove Lemma 20 for the case when there is no leaf vertex on P_{v}.
Claim 26. Assume P_{v} contains no leaf vertices, then there exists a blue separable $K_{m, m}$ or a monochromatic non-crossing G.

Proof. We assume that neither S_{u} nor S_{v} contains a blue separable $K_{m, m}$. By Lemma 5, we find a red path $\left(a_{i}\right)_{i=1}^{\ell}$, where each $a_{i} \in A_{i}$. Then for every $i \in[\ell-1]$ we take the set $R_{i} \subseteq B_{i}$ of 3 nm common red neighbours of a_{i} and a_{i+1}. For every $i \in[\ell-1]$, let \mathcal{R}_{i} be an increasing partition of R_{i} with $\left|U_{i}\right|$ parts of size at least $2 m$ each. By Lemma 5 we find an increasing red path $\left(r_{i}\right)_{i=1}^{\left|P_{u}\right|}$ with exactly one vertex in each set in $\bigcup_{i=1}^{\ell} \mathcal{R}_{i}$. Then we map every u_{i} on r_{i} and every x_{i} on a_{i} to obtain a red copy of G.

The rest of this section deals with the leaf vertices on P_{v}.
For each $i \in[\ell-1]$ such that $f_{i}>1$, we take an increasing partition $\left(M_{i, j}\right)_{j=1}^{f_{i}}$ of M_{i} with $\left|M_{i, 1}\right|,\left|M_{i, f_{i}}\right| \geq 4 m^{2} n^{2}$ and $\left|M_{i, j}\right| \geq 3 m n^{2}$ for every $j \in\left[2, f_{i}-1\right]$.

Let γ be the colouring of the edges of $K_{S_{u} \cup S_{v}}$. We define a new edge colouring γ^{\prime} of the edges of $K_{S_{u} \cup S_{v}}$ according to the following cases.

1. The edge e connects a vertex $v \in A_{i}$ and a vertex $w \in A_{i+1}$ such that $f_{i}=1$. We colour e red if and only if v and w have at least n^{2} common red neighbours in M_{i}.
2. The edge e connects a vertex $v \in A_{i}$ and a vertex $w \in A_{i+1}$ such that $f_{i} \geq 2$. We colour e red if and only if $\left|N_{r e d}(v) \cap M_{i, 1}\right| \geq 3 m n^{2}$ and $\left|N_{\text {red }}(w) \cap M_{i, f_{i}}\right| \geq 3 m n^{2}$.
3. Otherwise $\gamma^{\prime}(e)=\gamma(e)$.

Claim 27. If there exist sets $L \subseteq A_{i}$ and $R \subseteq A_{i+1}$ with $|L|=|R|=m$ and all edges between L and R blue under γ^{\prime}, then there exists a blue separable $K_{m, m}$ in S_{v} under γ.

Proof. We distinguish three cases.

1. We have $f_{i}=1$. If every $v \in L$ has fewer than $2 n^{2} m$ red neighbours in M_{i} under γ, then there are at least $9 m^{2} n^{2}-2 n^{2} m \cdot m \geq m$ vertices in M_{i} that are connected by blue edges to every vertex in L under γ. This implies the existence of a blue separable $K_{m, m}$ in S_{v}. Otherwise, there exists a vertex $v \in L$ with at least $2 n^{2} m$ red neighbours in M_{i}. Let $N \subseteq M_{i}$ denote the set of these neighbours of v. Since every edge between L and R is blue under γ^{\prime}, each $w \in R$ is connected by red edges to at most n^{2} vertices in N. Thus there are at least $2 n^{2} m-n^{2} \cdot m \geq m$ vertices of N that are connected by blue edges to each vertex in R. Thus we have a blue separable $K_{m, m}$ in S_{v} under γ.
2. We have $f_{i} \geq 2$. Either each point of L has fewer than $3 m n^{2}$ red neighbours in $M_{i, 1}$ or each point of R has fewer than $3 m n^{2}$ red neighbours in $M_{i, f(i)}$. Without loss of generality, the first case occurs and then there are at least $4 m^{2} n^{2}-3 m n^{2} \cdot m \geq m$ points in $M_{i, 1}$ connected by blue edges to every point of L.
3. We have $f_{i}=0$. Then γ^{\prime} is equal to γ on all the edges between A_{i} and A_{i+1}. This implies the existence of a blue separable $K_{m, m}$.

By Claim 27, we may assume that under γ^{\prime}, there exists no $i \in[\ell]$ for which some two sets $L \subseteq A_{i}$ and $R \subseteq A_{i+1}$ with $|L|=|R|=m$ would form a blue $K_{m, m}$. Then by Lemma 5 , we can map each vertex v_{i} on some point $\phi\left(v_{i}\right) \in A_{i}$ in such a way that $\left(\phi\left(v_{i}\right)\right)_{i=1}^{\ell}$ is a red path under γ^{\prime}. For every $i \in[\ell-1]$, let $H_{i}^{\prime} \subseteq B_{i}$ be a set of 3 nm common red neighbours of $\phi\left(v_{i}\right)$ and $\phi\left(v_{i+1}\right)$ and let $H_{\ell}^{\prime}=B_{\ell} \cap N_{r e d}\left(\phi\left(v_{\ell}\right)\right)$.

In what follows, for each $i \in[\ell-1]$ we define a vertex set $H_{i} \subseteq H_{i}^{\prime}$ in which we then embed U_{i}. If $f_{i}=1$ we define a vertex set $\widetilde{M}_{i} \subset M_{i}$ in which we embed the only vertex of Q_{i}. If $f_{i} \geq 2$ we define a sequence of vertex sets $\widehat{M}_{i, 1}, \ldots, \widehat{M}_{i, f_{i}} \subset M_{i}$, and on each one of these sets, we embed one of the leaf vertices from Q_{i}. Refer to Fig. 6,

Figure 6: Embedded vertices v_{1}, \ldots, v_{4} of the graph from Fig. 55. This embedding fixes sets $\widetilde{M}_{i}, \widehat{M}_{i, j}$ and H_{i}. The dashed lines form a red path in the colouring γ^{\prime}.

If $f_{i}=0$, we let $H_{i}=H_{i}^{\prime}$.
If $f_{i}=1$, then let $\widetilde{M}_{i} \subseteq M_{i}$ be a set of n^{2} common red neighbours of $\phi\left(v_{i}\right)$ and $\phi\left(v_{i+1}\right)$. We let H_{i} be the subset of H_{i}^{\prime} formed by the vertices connected by at least one red edge to a vertex in \widetilde{M}_{i}. If $\left|H_{i}^{\prime} \backslash H_{i}\right|>n^{2}$, then we have a blue well-split $K_{n^{2}, n^{2}}$ with parts $\left|H_{i}^{\prime} \backslash H_{i}\right|$ and \widetilde{M}_{i}. By Corollary 18, this implies a monochromatic non-crossing G. Otherwise we have $\left|H_{i}\right| \geq 2 m n$.

If $f_{i} \geq 2$, let $\widehat{M}_{i, 1}=M_{i, 1} \cap N_{r e d}\left(\phi\left(v_{i}\right)\right)$ and $\widehat{M}_{i, f_{i}}=M_{i, f_{i}} \cap N_{r e d}\left(\phi\left(v_{i+1}\right)\right)$. For every $j \in\left[2, f_{i}-1\right]$ let $\widehat{M}_{i, j}=M_{i, j}$. Thus, $\left|\widehat{M}_{i, j}\right| \geq 3 m n^{2}$ for every $j \in\left[f_{i}\right]$.
Claim 28. When $f_{i} \geq 2$, then either there is a monochromatic non-crossing G or there exists a set $H_{i} \subseteq H_{i}^{\prime}$ of size $2 n m$ such that for every $j \in\left[f_{i}\right]$, every point of H_{i} has $2 m$ red neighbours in $\widehat{M}_{i, j}$.

Proof. We call a vertex in H_{i}^{\prime} good, if it has at least $2 m$ red neighbours in $\widehat{M}_{i, j}$ for every $j \in\left[f_{i}\right]$ and bad otherwise. We assume that the number of good vertices is smaller than 2 nm . The claim will be proven by finding a monochromatic non-crossing copy of G.

The number of bad vertices in H_{i}^{\prime} is at least $\left|H_{i}^{\prime}\right|-2 n m \geq 3 n m-2 n m=n m$. For each bad vertex h, label h by j if $N_{\text {red }}(h) \cap \widehat{M}_{i, j}<2 m$. Since $f_{i} \leq n$, there exists an index $j \in\left[f_{i}\right]$ such that the number of bad vertices labelled j is at least $n m / f_{i} \geq m \geq n^{2}$. Consider the set $\widehat{M}_{i, j}$ and a set W of n^{2} bad vertices in H_{i} labelled j. For each $w \in W$,
we have $\left|N_{\text {red }}(w) \cap \widehat{M}_{i, j}\right| \leq 2 m$ and we also have $\left|\widehat{M}_{i, j}\right| \geq 3 m n^{2}$. Then by Observation 24, $\left|\widehat{M}_{i, j} \backslash \bigcup_{w \in W} N_{r e d}(w)\right| \geq 3 m n^{2}-2 m \cdot n^{2} \geq n^{2}$. All the edges between $\widehat{M}_{i, j} \backslash \bigcup_{w \in W} N_{\text {red }}(w)$ and W are blue. This implies the occurrence of a well-split blue $K_{n^{2}, n^{2}}$ and a monochromatic non-crossing G by Corollary 18 .

Hence we can assume that for every i with $f_{i} \geq 2$ there is a set $H_{i} \subseteq H_{i}^{\prime}$ of 2 nm points each having $2 m$ red neighbours in each of $\widehat{M}_{i, 1}, \ldots, \widehat{M}_{i, f_{i}}$. This completes the definition of H_{i} for every $i \in[\ell-1]$. Next we take an increasing partition of each H_{i} into $\left|U_{i}\right|$ parts, each of size at least $2 m$. By Lemma 5, we either find a blue separable $K_{m, m}$ or embed the red path $P_{u}=\left(y_{i}\right)_{i=1}^{n_{2}}$ on S_{u} in such a way that $\left(\phi\left(y_{i}\right)\right)_{i=1}^{n_{2}}$ is a red increasing path with every vertex of U_{i} mapped on some point of H_{i}. We consider every star centred at some u_{i}. If $f_{i}=1$, then $\phi\left(u_{i}\right)$ has a red neighbour in \widetilde{M}_{i} and we map the only vertex of Q_{i} on this red neighbour. If $f_{i} \geq 2$, let $M_{i, j}^{\prime}$ be the $2 m$ red neighbours of $\phi\left(u_{i}\right)$ in $\widehat{M}_{i, j}$, for every $j \in\left[f_{i}\right]$. We assume that there is no blue separable $K_{m, m}$. Recall that red edges connect all the vertices of $\widehat{M}_{i, 1}$ to $\phi\left(v_{i}\right)$ and all the vertices of $\widehat{M}_{i, f_{i}}$ to $\phi\left(v_{i+1}\right)$. This fact and Lemma 5 imply the existence of a red increasing path between $\phi\left(v_{i}\right)$ and $\phi\left(v_{i+1}\right)$ visiting every $M_{i, j}^{\prime}$ exactly once. This completes the embedding of the vertices of G on $S_{u} \cup S_{v}$ that yields a monochromatic non-crossing graph isomorphic to G. See Fig. 7 .

Figure 7: Full lines form a red occurrence of the graph from Fig. 号, Dashed lines are other edges known to be red in the colouring γ.

Acknowledgements

The authors would like to thank to Gyula Károlyi for introduction to the geometric Ramsey theory and to Jan Kynčl and Martin Balko for discussions about the Ramsey theory of ordered graphs.

References

[1] Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, János Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127134, 1994.
[2] Martin Balko and Karel Král. Ramsey numbers of ordered graphs. arXiv:1310.7208 [math.CO], 2013.
[3] János Barát, Péter Hajnal, Yixun Lin, and Aifeng Yang. On the structure of graphs with path-width at most two. Stud. Sci. Math. Hung., 49(2):211-222, 2012.
[4] Csaba Biró, Mitchel T. Keller, and Stephen J. Young. Posets with cover graph of pathwidth two have bounded dimension. arXiv:1308.4877, 2013.
[5] G.T. Chen and R.H. Schelp. Graphs with linearly bounded Ramsey numbers. Journal of Combinatorial Theory, Series B, 57(1):138-149, 1993.
[6] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161-166, 1950.
[7] J. Fox, J. Pach, B. Sudakov, and A. Suk. Erdős-Szekeres-type theorems for monotone paths and convex bodies. Proc. London Math. Soc., 105:953-982, 2012.
[8] P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar triangulation with vertices at specified points. Am. Math. Monthly, 98:165-166 (Solution to problem E3341), 1991.
[9] Gyula Károlyi. Ramsey-type problems for geometric graphs. In János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 371-382. Springer New York, 2013.
[10] Gyula Károlyi, János Pach, and Géza Tóth. Ramsey-type results for geometric graphs, I. Discrete $\mathcal{E F}^{\text {Computational Geometry, 18(3):247-255, } 1997 .}$
[11] Gyula Károlyi, János Pach, Géza Tóth, and Pavel Valtr. Ramsey-type results for geometric graphs, II. Discrete \& Computational Geometry, 20(3):375-388, 1998.
[12] Nancy G Kinnersley and Michael A Langston. Obstruction set isolation for the gate matrix layout problem. Discrete Applied Mathematics, 54(2):169-213, 1994.
[13] Kevin G Milans, Derrick Stolee, and Douglas B West. Ordered Ramsey theory and track representations of graphs, 2012.
[14] Guy Moshkovitz and Asaf Shapira. Ramsey theory, integer partitions and a new proof of the Erdős-Szekeres theorem. arXiv:1206.4001 [math.CO], 2012.
[15] Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner's conjecture. Journal of Combinatorial Theory, Series B, 92(2):325-357, 2004.
[16] Neil Robertson and P.D. Seymour. Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B, 35(1):39-61, 1983.

[^0]: *An extended abstract of this paper appeared in the proceedings of the EuroComb 2013 conference. This research was started at the 2nd Emléktábla Workshop held in Gyöngyöstarján, January 24-27, 2011. Research was supported by the project CE-ITI (GAČR P202/12/G061) of the Czech Science Foundation and by the grant SVV-2013-267313 (Discrete Methods and Algorithms). Josef Cibulka and Pavel Valtr were also supported by the project no. 52410 of the Grant Agency of Charles University. Pu Gao was supported by the Humboldt Foundation and is currently affiliated with University of Toronto. Marek Krčál was supported by the ERC Advanced Grant No. 267165.

