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A quantitative variant of the multi-colored Motzkin-Rabin theorem

Zeev Dvir ∗ Christian Tessier-Lavigne †

Abstract

We prove a quantitative version of the multi-colored Motzkin-Rabin theorem in the spirit
of [BDWY12]: Let V1, . . . , Vn ⊂ Rd be n disjoint sets of points (of n ‘colors’). Suppose that
for every Vi and every point v ∈ Vi there are at least δ|Vi| other points u ∈ Vi so that the line
connecting v and u contains a third point of another color. Then the union of the points in
all n sets is contained in a subspace of dimension bounded by a function of n and δ alone.

1 Introduction

The Motzkin-Rabin (MR) theorem (see [BM90]) states that in a non-collinear set of points in
the Euclidean plane, each colored blue or red, there always exists a monochromatic line (a line
passing through at least two points and all points on the line are of the same color). Another way
to state this theorem uses the following definition which we shall later generalize.

Definition 1.1 (MR configuration). Let V1, V2 ⊂ R
2 be disjoint, finite sets of points in the plane.

The pair V1, V2 is called an MR-configuration if every line L with |L∩(V1∪V2)| ≥ 2 must intersect
both sets V1 and V2.

The Motzkin-Rabin theorem can now be stated equivalently as:

Theorem 1.2 (Motzkin-Rabin Theorem). Let V1, V2 ⊂ R
2 be an MR-configuration. Then all

points in V1 ∪ V2 must belong to a single line.

It is easy to see that one can replace R
2 with R

d and that the theorem will still hold in this
case (take a generic projection to the plane). This theorem answers a question first raised by
Graham [Grü99]. The first published proof of Theorem 1.2 appears in [Cha70] though it was
proved earlier (but never published) by Motzkin and Rabin [Grü99].

We will denote by adim(S) the dimension of the affine span (the smallest affine subspace
containing the points) of a point set S ⊂ R

d and for a family of sets S1, . . . , Sr we will write
adim(S1, . . . , Sr) = adim(S1 ∪ . . . ∪ Sr). Then, the conclusion of the MR theorem, namely all
points in V1, V2 being on a line, can be stated as adim(V1, V2) ≤ 1. Hence, we can view the MR

∗Department of Computer Science and Department of Mathematics, Princeton University, Princeton NJ. Email:
zeev.dvir@gmail.com. Research partially supported by NSF grants CCF-0832797, CCF-1217416 and by the Sloan
fellowship.

†Department of Mathematics, Princeton University, Princeton NJ. Email: ctessierlavigne@gmail.com

1

http://arxiv.org/abs/1406.1530v1


theorem as converting partial information about collinearity in the sets V1, V2 (the line through
every pair of points of the same color contains a third point of a different color) into a global
bound on the dimension of the entire configuration. A closely related theorem is the Sylvester-
Gallai theorem which is a ‘one color’ version of the MR theorem: in every non-collinear set of
points there is a line containing only two of the points.

Shannon [Sha74] (see also [Bor82]) proved an n-color variant of this theorem showing that if
a family of n sets V1, . . . , Vn spans Rn then they must define at least one monochromatic line. In
this work we extend this result to the setting where the information about collinearities is only
given for many of the lines passing through two points of the same color. To be precise we will
give the following definition:

Definition 1.3 ((δ, n)-MR configuration). Let V1, V2, ..., Vn be disjoint sets of points in R
d, and

let V = V1∪V2∪ ...∪Vn. We say that V1, V2, ..., Vn is a (δ, n)-MR configuration if for each Vi and
for each v ∈ Vi, there are at least δ|Vi| points u ∈ Vi \{v} for which the line determined by v and u
contains a third point in V \Vi. For convenience we will always assume that |V1| ≥ |V2| ≥ ... ≥ |Vn|.

Our main theorem gives a dimension bound for (δ, n)-MR configuration that depends only on
n and δ. We do not believe our bound to be tight and conjecture that a bound of poly(n/δ) holds
in general.

Theorem 1.4 (Main theorem). Let V = V1, V2, ..., Vn ⊂ R
d be a (δ, n)-MR configuration. Then,

for any 0 < ǫ < δ we have

adim(V ) ≤
C

ǫ2
·

(

1 +
1

δ − ǫ

)n

,

with C > 0 an absolute constant1.

Theorem 1.4 is a multi-colored version of recent results of [BDWY12, DSW12], which give
a similar ‘δ-version’ of the Sylvester-Gallai theorem ([BDWY12] also establishes the n = 2 case
of Theorem 1.4). In fact, our proof uses one of the main results of [BDWY12, DSW12] as its
principal tool. This result, given below as Theorem 2.2, gives a lower bound on the rank of
matrices whose pattern of zeros and non-zeros satisfies a certain ‘design-like’ condition. As the
results of [BDWY12, DSW12] work also over the complex numbers, our results (in particular,
Theorem 1.4) hold also when one replaces Rd with C

d (with the same bounds).

In the next section we state some preliminaries from [BDWY12, DSW12] that will be used in
the proof of Theorem 1.4. The proof itself is given in Section 3.

2 Preliminaries

The main tool in the proof is a rank lower bound for design-matrices defined in [BDWY12]. For
a vector R ∈ F

n we denote the support of R by supp(R) = {i ∈ [n] | Ri 6= 0}.

Definition 2.1 (Design matrix). Let A be an m× n matrix over a field F. Let R1, . . . , Rm ∈ F
n

be the rows of A and let C1, . . . , Cn ∈ F
m be the columns of A. We say that A is a (q, k, t)-design

1One could set ǫ = δ/2 to get a simpler (but worse, in some cases) bound.
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matrix if the following three conditions are satisfied:

1. For all i ∈ [m], |supp(Ri)| ≤ q.

2. For all j ∈ [n], |supp(Cj)| ≥ k.

3. For all j1 6= j2 ∈ [n], |supp(Cj1) ∩ supp(Cj2)| ≤ t.

The following is a quantitative improvement of a bound originally proved in [BDWY12].

Theorem 2.2 ([DSW12]). Let A by an m × n complex matrix. If A is a (q, k, t) design matrix
then

rank(A) ≥ n−
ntq(q − 1)

k
.

Another lemma we will use is the following lemma whose proof is a simple consequence of the
existence of diagonal Latin squares.

Lemma 2.3 ([BDWY12, Lemma 2.1]). Let r ≥ 3. Then there exists a set T ⊂ [r]3 of r2 − r
triples that satisfies the following properties.

1. Each triple (t1, t2, t3) ∈ T consists of three distinct elements.

2. For each i ∈ [r] there are exactly 3(r − 1) triples in T that contain i as an element.

3. For every pair i, j ∈ [r] of distinct elements there are at most 6 triples in T which contain
both i and j as elements.

3 Proof of the main theorem

Before giving the proof of Theorem 1.4 we prove some useful lemmas. The first is the technical
heart of the proof and its proof utilizes the rank bound for design matrices (Theorem 2.2). In
the following we will denote by dim(S) the dimension of the subspace spanned by a set S. Notice
that, since adim(S) ≤ dim(S), we can bound dim(V ) instead of adim(V ).

Lemma 3.1. Let V =
⋃n

i=1 Vi be a (δ, n)-MR configuration in R
d. Let x, y be indices with

0 ≤ x < y ≤ n. Let P1 =
⋃x

i=1 Vi, let P2 =
⋃y

i=x+1 Vi, and let P3 =
⋃n

i=y+1 Vi (P1 and P3

might be empty if x = 0 or y = n). Suppose that for some constants c1, c2 > 0 the following two
inequalities hold:

|Vy| ≥ c1|P2|, (1)

(δ − c2)|Vy| ≥ |P3|. (2)

Then dim(P2) ≤ dim(P1) + 12/(c1c2).

Proof. We start by noting that, since |V1| ≥ |V2| ≥ . . . ≥ |Vn|, inequalities (1) and (2) in the
lemma statement, |Vy| ≥ c1|P2| and (δ − c2)|Vy| ≥ |P3|, also hold when |Vy| is replaced with |Vi|,
for i < y.
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We will call a line L extraordinary with respect to the configuration V if (1) L passes through
at least one point of P2 and (2) L passes through at least three points of P1 ∪P2. We will refer to
the points of P1 ∪ P2 that lie on some extraordinary line L as the points associated with L (such
a line L might contain additional points from P3 which are not associated with it).

Let L1, L2, ..., Lk be an enumeration of the extraordinary lines of our configuration and let ℓi
denote the number of points associated with Li, for 1 ≤ i ≤ k.

For each extraordinary line Li we construct, using Lemma 2.3, a set Ti of ℓ
2
i − ℓi triples of

points so that (1) each triple in Ti consists of three distinct points associated with Li; (2) for any
point v associated with Li, there are exactly 3(ℓi − 1) triples in Ti that contain v; and (3) for any
two points u 6= v associated with Li, there are at most 6 triples in Ti that contain both u and v.
Let

T =

k
⋃

i=1

Ti.

Next, let m = |V | and let M be the m× d matrix whose rows are defined by the points of V
(in some choice of coordinates for Rd). We will now define a matrix A that will satisfy A ·M = 0.
Each triple in T will correspond to one row of A. Every triple t = (t1, t2, t3) ∈ T consists of
three distinct points in P1 ∪ P2 that are collinear. Since they are collinear, there are coefficients
h1, h2, h3, not all zero, such that

h1t1 + h2t2 + h3t3 = 0

(treating the points as vectors). We set the t’th row of A to have entries h1, h2, h3 in the positions
corresponding to the three points t1, t2, t3 (we can do that since the columns of A are indexed by
V ) and zero elsewhere. Observe that A is a |T | ×m matrix, since there is a bijection between the
elements of T and the rows of A. Since the product of any row of A with M is 0, we must also
have that

A ·M = 0.

There is a bijection between the rows of the matrix M and the points in the set V . Therefore,
any subset of the set V corresponds to a submatrix of the matrix M , obtained by taking only
those rows that correspond to the points in the subset. Let M1 denote the submatrix of M
corresponding to the point set P1, and likewise let M2 and M3 be the submatrices corresponding
to P2 and P3. Let A1 be the submatrix of A obtained by taking those columns of A whose indices
match the indices of the rows of M1 (that is, with indices corresponding to elements of P1). Define
A2 and A3 analogously (with columns in P2 and P3 respectively). Observe that A1M1, A2M2,
and A3M3 are all valid matrix products, and that

A1M1 +A2M2 +A3M3 = AM = 0.

From the definition of the matrix A we have that the column corresponding to any given point
in P3 contains only 0’s; therefore A3 = 0, and so A3M3 = 0. Hence A1M1 + A2M2 = 0 which
gives

rank(A2M2) = rank(A1M1) ≤ rank(M1) = dim(P1). (3)

(If |P1| is empty we get A2M2 = 0 and the rest of the proof is the same).

We now claim that:
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Claim 3.2. A2 is a (3, 3c1c2|P2|, 6)-design matrix.

Proof. By the construction of A each row contains at most three non-zero terms. Since A2 is
a submatrix of A, each row of A2 can contain at most three non-zero terms. Similarly, by the
construction of A, any two columns can share at most six non-zero locations; and again this holds
for A2 as well. Finally, we claim that each column of A2 contains at least 3c1c2|P2| non-zero
entries.

Consider a column C of A2. This column corresponds to a point p in P2. The number of
non-zero entries of C is exactly equal to the number of triples in T that contain the point p.
Suppose that p ∈ Vi ⊂ P2 for some i. We claim that there must be at least δ|Vi| − |P3| points
q 6= p that lie on extraordinary lines through p. Observe that this quantity is at least c2|Vi| by
inequality (2). Indeed, there are at least δ|Vi| points q 6= p in Vi, for which the line through q, p
contains a point from some Vj , with j 6= i, because the configuration is (δ, n)-MR. Let us denote
this set of at least δ|Vi| points by S. For each point q in S, either the line through q, p contains a
third point from P1 ∪P2, and is therefore an extraordinary line, or (1) it contains no other points
from P1 ∪ P2, and (2) it contains some point r from P3.

Thus, each point q ∈ S that is not associated with any of the extraordinary lines passing
through p corresponds to some point r ∈ P3. Since no two q1 6= q2 ∈ S can correspond to
the same r, at most |P3| of the points in S are not associated with any of the extraordinary
lines passing through p. Thus, the remaining δ|Vi| − |P3| points are associated with one of the
extraordinary lines passing through p.

Now, if a given extraordinary line L passes through p, and if there are ℓ points associated with
L besides p, then that line contributes 3ℓ triples to T that contain p. Therefore, since we showed
that there are at least c1c2|P2| points other than p that lie on the extraordinary lines passing
through p, there must be at least 3c1c2|P2| triples in T that contain p.

We conclude that that the point p ∈ Vi is in at least 3c2|Vi| triples; and since |Vi| ≥ c1|P2| (by
inequality (1)), this quantity is at least 3c1c2|P2| such points and so A2 is indeed a (3, 3c1c2|P2|, 6)
design matrix as claimed.

Applying Theorem 2.2 we have that

rank(A2) ≥ |P2| − 12/(c1c2).

Now, using basic linear algebra, we get that

rank(A2M2) ≥ rank(M2)− (|P2| − rank(A2)) ≥ rank(M2)− 12/(c1c2).

Using Eq. (3) we immediately get

rank(M2) ≤ dim(P1) + 12/(c1c2),

which implies dim(P2) ≤ dim(P1) + 12/(c1c2) as was required. This completes the proof of
Lemma 3.1.

To state the next lemma we will need the following definition.
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Definition 3.3 (ǫ-large and ǫ-small indices). Let V1, . . . , Vn ⊂ R
d be a (δ, n)-MR configuration

and let cǫ = 1/(δ− ǫ) with 0 < ǫ < δ some real number. We call an index k ∈ [n] an ǫ-large index
if

|Vk| ≥ cǫ(|Vk+1|+ |Vk+2|+ ...+ |Vn|),

otherwise we say that k is ǫ-small. By convention, we say that n is always ǫ-large.

Lemma 3.4. Let V1, V2, ..., Vn ⊂ R
d be a (δ, n)-MR configuration, and suppose x and y are integers

with 0 ≤ x < y ≤ n such that y is an ǫ-large index, and each of the indices x+1, x+2, ..., y−2, y−1
is ǫ-small. Then, for each i with 0 ≤ i ≤ y − x− 1 we have

∑

j≥y−i

|Vj | ≤ 2(1 + cǫ)
i · |Vy|.

Proof. We will prove the lemma by induction on i. To prove the base case, i = 0, we need to
show that

∑

j≥y

|Vj | ≤ 2|Vy|.

Since y is an ǫ-large index, we have

|Vy| ≥ cǫ
∑

j>y

|Vj |

and so
∑

j>y |Vj | ≤ 1/cǫ|Vy|. By adding |Vy| to both sides we immediately have that

∑

j≥y

|Vj | ≤ (1 + 1/cǫ)|Vy|

which gives the desired bound since cǫ > 1 and so 1 + 1/cǫ < 2.

Now suppose the claim holds for i = k. We wish to show that it also holds for i = k + 1,
assuming that k + 1 ≤ y − x− 1. From the induction we have that

∑

j≥y−k

|Vj | ≤ 2(1 + cǫ)
k|Vy|.

We also know that y − (k + 1) is an ǫ-small index, so

|Vy−(k+1)| ≤ cǫ
∑

j≥y−k

|Vj |.

Substituting the first inequality into the second gives

|Vy−(k+1)| < 2cǫ(1 + cǫ)
k|Vy|.

Then adding this inequality to the first inequality yields the desired result.
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Corollary 3.5. Under the same notations and conditions as Lemma 3.4, we have:

|Vy| ≥
1

2(1 + cǫ)y−x−1

y
∑

j=x+1

|Vj|.

Proof. Apply Lemma 3.4 with i = y − x− 1 to get that

n
∑

j=x+1

|Vj | ≤ 2(1 + cǫ)
y−x−1 · |Vy|,

hence
y

∑

j=x+1

|Vj | ≤ 2(1 + cǫ)
y−x−1 · |Vy|

and the corollary follows.

3.1 Proof of Theorem 1.4

Let d1 < d2 < ... < dk = n be the ǫ-large indices determined by V (see Definition 3.3) and let us
define d0 = 0. We define

W1 = V1 ∪ V2 ∪ ... ∪ Vd1 ;

W2 = Vd1+1 ∪ Vd1+2 ∪ ... ∪ Vd2

etc. for 1 ≤ i ≤ k. Let
mi = dim(W1 ∪W2 ∪ ... ∪Wi),

for 1 ≤ i ≤ k and set m0 = 0.

Consider Wi for some 1 ≤ i ≤ k. Since di is an ǫ-large index, we have that

|Vdi | ≥ cǫ(|Vdi+1|+ |Vdi+2|+ ...+ |Vn|)

with cǫ = 1/(δ − ǫ). Hence

(δ − ǫ)|Vdi | ≥ |Vdi+1|+ |Vdi+2|+ ...+ |Vn|.

Furthermore, each of di−1+1, di−1 +2, ..., di − 2, di − 1 are ǫ-small indices, so by Corollary 3.5 we
have

|Vdi | ≥
1

2(1 + cǫ)di−di−1−1
(|Vdi−1+1|+ |Vdi−1+2|+ ...+ |Vdi−1|+ |Vdi |).

Therefore our configuration satisfies the conditions of Lemma 3.1, with x = di−1, y = di,
c1 = 1

2(1+cǫ)
di−di−1−1 , and c2 = ǫ. For these values of x and y, the set P1 defined in the lemma

equals W1 ∪W2 ∪ ...Wi−1, and the set P2 equals Wi. Therefore we get that

dim(Wi) ≤ mi−1 + (24/ǫ) · (1 + cǫ)
di−di−1−1.

Now, since mi ≤ mi−1 + dim(Wi), we have that

mi ≤ 2mi−1 + (24/ǫ) · (1 + cǫ)
di−di−1−1.
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Claim 3.6. For all 0 ≤ i ≤ k we have

mi ≤
24

ǫ

∑

1≤j≤i

2i−j(1 + cǫ)
dj−dj−1−1.

Proof. We prove the claim by induction on i. The base case, i = 0, holds since m0 = 0. Suppose
the claim holds for i = h and consider the case i = h+ 1. By induction we have that

mh ≤
24

ǫ

∑

1≤j≤h

2h−j(1 + cǫ)
dj−dj−1−1.

We also showed that

mh+1 ≤ 2mh +
24

ǫ
(1 + cǫ)

dh+1−dh−1.

Substituting the first inequality into the second we find that

mh+1 ≤
24

ǫ

∑

1≤j≤h

2h+1−j(1 + cǫ)
dj−dj−1−1 +

24

ǫ
(1 + cǫ)

dh+1−dh−1

which gives the desired result.

Using the claim for i = k we get

mk ≤
24

ǫ

∑

1≤j≤k

2k−j(1 + cǫ)
dj−dj−1−1.

Observe that for all j, dj − dj−1 ≤ n − k + 1. This follows from the fact that the dj are strictly
increasing, d0 = 0, and dk = n. Therefore, the summand 2k−j(1 + cǫ)

dj−dj−1−1 is at most

2k−j(1 + cǫ)
n−k, which in turn is at most (1 + cǫ)

n ·
(

2
1+cǫ

)k
. Adding these together we get that

mk ≤
24 · k

ǫ
(1 + cǫ)

n ·

(

2

1 + cǫ

)k

.

Observe that, since cǫ = 1/(δ − ǫ) > 1/(1 − ǫ) > 1 + ǫ, we have 2/(1 + cǫ) < 2/(2 + ǫ) and so we
get that

mk ≤
24 · k

ǫ

(

2

2 + ǫ

)k

(1 + cǫ)
n.

The expression 24·k
ǫ

(

2
2+ǫ

)k
is maximized when k = − 1

ln(2/(2+ǫ)) = O(1/ǫ) and so we get

mk ≤
C

ǫ2
· (1 + cǫ)

n

For some absolute constant C. Since mk = dim(W1 ∪W2 ∪ ...∪Wn) = dim(V1, . . . , Vn), the proof
of the theorem is complete.
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