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DISTINCT DISTANCE ESTIMATES AND LOW DEGREE POLYNOMIAL

PARTITIONING

LARRY GUTH

Abstract. We give a shorter proof of a slightly weaker version of a theorem from [GK2]: we

prove that if L is a set of L lines in R
3 with at most L1/2 lines in any low degree algebraic surface,

then the number of r-rich points of L is . L
(3/2)+ǫ

r
−2. This result is one of the main ingredients

in the proof of the distinct distance estimate in [GK2]. With our slightly weaker theorem, we
get a slightly weaker distinct distance estimate: any set of N points in R

2 determines at least
cǫN

1−ǫ distinct distances.

In [E], Erdős asked how few distinct distances may be determined by a set of N points in the
plane. He conjectured that a square grid of points is near-optimal, giving a conjectural lower bound
of cN(logN)−1/2. Quite recently, in [ES], Elekes and Sharir suggested a new approach to this
problem, connecting it to the incidence geometry of curves in 3-dimensional space. This approach
was carried out by Katz and the author in [GK2], proving that any set of N points determines
≥ cN(logN)−1 distinct distances. In this paper, we give a variation of the most difficult step of
the proof. We will prove a slightly weaker result, but using a shorter argument.

The main work in [GK2] is an estimate about lines in R
3. If L is a set of lines in R

3, then a point
x is called r-rich if it lies in at least r lines of L. We write Pr(L) for the set of r-rich points of L.

Theorem 0.1. (Theorem 1.2 in [GK2]) If L is a set of L lines in R
3 with at most L1/2 lines in

any plane or regulus, and if 2 ≤ r ≤ L1/2, then |Pr(L)| ≤ CL3/2r−2.

The distinct distance estimate follows from combining the approach of Elekes and Sharir with
this bound. The proof of Theorem 0.1 is somewhat involved. There are different arguments for
the cases r = 2 and r ≥ 3 and each argument is pretty long. The case r ≥ 3 uses the idea of
polynomial partitioning, which will also be central to this paper. The case r = 2 uses the theory of
ruled surfaces. We will prove a slightly weaker result using only polynomial partitioning.

Theorem 0.2. For any ǫ > 0, there are D(ǫ), K(ǫ) so that the following holds.
If L is a set of L lines in R

3, and there are less than L(1/2)+ǫ lines of L in any irreducible
algebraic surface of degree at most D, and if 2 ≤ r ≤ 2L1/2, then

|Pr(L)| ≤ KL(3/2)+ǫr−2.

Using Theorem 0.2 in place of Theorem 0.1 in the arguments of [GK2], one gets the following
slightly weaker distinct distance estimate.

Theorem 0.3. For any ǫ > 0, there is a constant cǫ > 0 so that any set of N points in the plane
determines at least cǫN

1−ǫ distinct distances.

Polynomial partitioning is one of the main new ideas in [GK2], and it will also be the key tool
in our proof. We recall the statement of the partitioning theorem.
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Theorem 0.4. (Theorem 4.1 in [GK2]) For each dimension n and each degree D ≥ 1, the following
holds. For any finite set S ⊂ R

n, we can find a non-zero polynomial P of degree at most D so that
R

n \ Z(P ) is a union of disjoint open sets Oi, and for each of these sets,

|S ∩Oi| ≤ CnD
−n|S|.

This polynomial partitioning result is a corollary of the Stone-Tukey ham sandwich theorem
[StTu]. Polynomial partitioning is useful in divide and conquer arguments. The set S is divided
into a part in each cell Oi plus a part in a lower-dimensional surface Z(P ). In a divide and conquer
argument, we estimate each of these contributions separately and then add up the results.

Kaplan, Matous̆ek, and Sharir wrote a paper [KMS] on the polynomial partitioning technique.
They give a good exposition of the topic. They show how to use polynomial partitioning to give
new proofs of some classical results in incidence geometry, such as the Szemerédi-Trotter theorem.
They also discuss how polynomial partitioning compares with other partitioning methods, such as
the cutting method (see Section 2.3 of [KMS]).

The arguments of [GK2] use polynomial partitioning with degree D equal to a power of L. This
gives good bounds on what happens in the cells Oi, but it also makes Z(P ) rather complicated. In
[SoTa], Solymosi and Tao gave a modification of this argument using partitioning with degree D
equal to a large constant, and using induction to control what happens in each cell. In [SS], Sharir
and Solomon further developed this method, proving estimates for lines in R

4. We will use this low
degree partitioning method to prove Theorem 0.2.

Here is the main new issue that arises in the proof of Theorem 0.2. Recall that we use a low degree
polynomial to partition R

3 into cells Oi, and we plan to use induction to study the behavior of the
lines entering each cell. Let Li denote the lines of L that intersect the cell Oi. By hypothesis, we
know that L contains less than |L|(1/2)+ǫ lines in any low degree surface. Since Li ⊂ L, Li contains
less than |L|(1/2)+ǫ lines in any low degree surface. But that doesn’t mean that Li contains less
than |Li|

(1/2)+ǫ lines in any low degree surface. Therefore, we cannot immediately apply induction
to Li. At first sight, the inductive argument doesn’t look like it will close. The main new ingredient
in this paper is a way to organize the low degree surfaces containing many lines. By keeping track
of their contribution, we can make the induction close.

Acknowledgements. I would like to thank Nets Katz for many interesting discussions about these
ideas over the last several years. I would also like to thank the referee for helpful suggestions about
the exposition.

1. Background and notation

Our proof is based on polynomial partitioning. Here we restate the partitioning theorem with
an extra condition bounding the number of cells Oi.

Theorem 1.1. For each dimension n and each degree D ≥ 1, the following holds. For any finite
set S ⊂ R

n, we can find a non-zero polynomial P of degree at most D so that Rn \Z(P ) is a union
of disjoint open sets Oi obeying the following:

• For each i, |S ∩Oi| ≤ CnD
−n|S|.

• The number of open sets Oi is at most CnD
n.

Proof. The first claim is Theorem 4.1 in [GK2]. So we just need to prove the second claim.
The number of connected components of the complementRn\Z(P ) is at most CnD

n, by estimates
proven independently by Oleinik-Petrovsky [OP], Milnor [Mi], and Thom [Th]. A short proof was
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also given by Solymosi and Tao, as Theorem A.1. in their paper [SoTa]. This implies the second
claim.

However, we don’t need to appeal to these results. The statement of the theorem does not require
that each open set Oi is connected. By Theorem 4.1 of [GK2], we can write R

n \ Z(P ) as a union
of open sets Uj with |S ∩ Uj | ≤ CnD

−n|S|. We can then define each Oi to be a union of some
of the Uj so that each Oi contains ≤ CnD

−n|S| points of S and the number of sets Oi is at most
CnD

n. �

We will also need a version of the Bézout theorem. The simplest version of the Bézout theorem
is the following.

Theorem 1.2. If P,Q are non-zero polynomials in R[x1, x2] with no common factor, then Z(P )∩
Z(Q) ⊂ R

2 contains at most (DegP )(DegQ) points.

We need a version of this theorem for polynomials in three variables where we count the number
of lines in Z(P ) ∩ Z(Q).

Theorem 1.3. If P,Q are non-zero polynomials in R[x1, x2, x3] with no common factor, then
Z(P ) ∩ Z(Q) contains at most (DegP )(DegQ) lines.

Proofs of these classical results appear in [GK]. They are Corollaries 2.3 and 2.4. See also Section
2 of [EKS] for a proof of Theorem 1.3 and a review of related material. A more general version of
Theorem 1.2 can be found in van der Waerden’s book Modern Algebra, [VW], Volume 2, page 16.

We will also use the Szemerédi-Trotter theorem, which we record here in the following form:

Theorem 1.4. ([SzTr]) If L is a set of L lines in R
n, then

|Pr(L)| ≤ C
(

L2r−3 + Lr−1
)

.

There are several nice proofs of the Szemerédi-Trotter theorem that have appeared since the
original article. In [CEGSW], Clarkson et al. gave a proof using the method of cuttings. In [Sz],
Székely gave a proof using the crossing number lemma. In [KMS], Kaplan, Matous̆ek, and Sharir
gave a proof using the polynomial partitioning theorem. Their proof is closely related to the ideas
in this paper.

We end with a note on constants. We will use C to denote a constant that may change from line
to line. If we want to label a particular constant to refer to later, we will call it C1, C2, etc.

2. A stronger result for inductive purposes

We will prove Theorem 0.2 by induction. To make the induction work, we prove a slightly
stronger result. The stronger result says that for any set of lines L in R

3, there is a small set of low
degree surfaces that account for all but ∼ L(3/2)+ǫr−2 of the r-rich points of L.

To state our theorem we need a piece of notation. If L is a set of lines and Z is an algebraic
surface, we define LZ ⊂ L to be the set of lines of L that lie in Z.

Theorem 2.1. For any ǫ > 0, there are D(ǫ), and K(ǫ) so that the following holds. For any r ≥ 2,
let r′ = ⌈(9/10)r⌉, the least integer which is at least (9/10)r.

If L is a set of L lines in R
3, and if 2 ≤ r ≤ 2L1/2, then there is a set Z of algebraic surfaces so

that

• Each surface Z ∈ Z is an irreducible surface of degree at most D.
• Each surface Z ∈ Z contains at least L(1/2)+ǫ lines of L.
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• |Z| ≤ 2L(1/2)−ǫ.
• |Pr(L) \ ∪Z∈ZPr′(LZ)| ≤ KL(3/2)+ǫr−2.

Theorem 2.1 implies Theorem 0.2. If there are less than L(1/2)+ǫ lines of L in any irreducible
algebraic surface of degree at most D, then the set Z must be empty, and so Theorem 2.1 implies
that |Pr(L)| ≤ KL(3/2)+ǫr−2.

In our theorems above, we always assumed that r ≤ 2L1/2. Studying r-rich points for r > 2L1/2

is much simpler. We recall the following elementary estimate, which will also be useful in our proof.

Proposition 2.2. If L is a set of L lines in R
d for d ≥ 2, and if r > 2L1/2, then |Pr(L)| ≤ 2Lr−1.

We include the well-known proof here, because it is a model for a different proof below.

Proof. Let Pr(L) be {x1, x2, .., xM}, with M = |Pr(L)|. Now x1 lies in at least r lines of L. The
point x2 lies in at least (r − 1) lines of L that did not contain x1. More generally, the point xj

lies in at least r − (j − 1) lines of L that did not contain any of the previous points x1, ..., xj−1.
Therefore, we have the following inequality for the total number of lines:

L ≥

M
∑

j=1

max(r − j, 0).

If M ≥ r/2, then we would get L ≥ (r/2)(r/2) = r2/4. But by hypothesis, r > 2L1/2, giving a
contradiction. Therefore, M < r/2, and we get L ≥ M(r/2) which proves the proposition. �

3. Proof of Theorem 2.1

Here is an outline of our proof. We will use induction on the number of lines in L.
First, we use a low degree polynomial partitioning argument to cut R

3 into cells Oi. For each
cell, we use induction to study the lines of L that enter that cell. For each cell, we get a set of
surfaces Zi that accounts for all but a few of the r-rich points in Oi. Combining these surfaces
with the polynomial partitioning surface, we will get a large set of surfaces Z̃ with the following
properties:

• Each surface Z ∈ Z̃ is an irreducible algebraic surface of degree at most D.
• |Z̃| ≤ Poly(D)L(1/2)−ǫ logL.
• |Pr(L) \ ∪Z∈Z̃Pr′(LZ)| ≤ (1/100)KL(3/2)+ǫr−2.

(We write A ≤ Poly(D)B to mean that is an exponent p and a constant C so that A ≤ CDpB.)

This set of surfaces Z̃ does not close the induction. There are too many surfaces in Z̃, and we
don’t know that each surface contains L(1/2)+ǫ lines of L. The second step is to prune Z̃. We will
define

Z := {Z ∈ Z̃|Z contains at least L(1/2)+ǫ lines of L}.

Then we will check that Z satisfies the conclusions of the theorem. First, we will prove that
|Z| ≤ 2L(1/2)−ǫ. This follows from a simple counting argument, similar to the proof of Proposition

2.2 above. Second, we will check that the surfaces in Z̃\Z did not contribute too much to controlling
the r-rich points of L. More precisely we will prove that

∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ (1/100)KL(3/2)+ǫr−2.
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To prove this bound, we use Szemerédi-Trotter to bound the size of Pr′(LZ) in terms of |LZ | for

each surface Z ∈ Z̃ \ Z, and we use a simple counting argument to control how many surfaces Z
have large |LZ |. This finishes our outline. Now we begin the proof of Theorem 2.1.

We remark that if ǫ ≥ 1/2 then the theorem is trivial: we can take Z to be empty, and it is
easy to check that |Pr(L)| ≤ 2L2r−2. (This follows from Szemerédi-Trotter, which gives a stronger
estimate. But it also follows from a simple double-counting argument.) So we can assume that
ǫ ≤ 1/2.

We start by discussing how to choose D = D(ǫ) and K = K(ǫ). We will choose D a large
constant depending on ǫ and then we will choose K a large constant depending on ǫ and D. As
long as these are large enough at certain points in the proof, the argument goes through. For
example, we will choose K large enough that

(1) K ≥ 10(2D)2/ǫ.

The proof is by induction on L. We start by checking the base of the induction. Because of
equation 1, we claim the theorem holds when Lǫ ≤ 2D. Suppose that L is a set of L lines with
Lǫ ≤ 2D, and that 2 ≤ r ≤ 2L1/2. We choose Z to be the empty set. Using equation 1, we see that

|Pr(L)| ≤ L2 ≤ (2D)2/ǫ ≤ K/10 ≤ KL(3/2)+ǫr−2.

We have now established the base of the induction. By the inductive hypothesis, we can assume
that the theorem holds for sets of at most L/2 lines.

3.1. Building Z̃. Let S be any subset of Pr(L). An important case is S = Pr(L), but we will have
to consider other sets as well. We use Theorem 1.1 to do a polynomial partitioning of the set S
with a polynomial of degree at most D. The polynomial partitioning theorem, Theorem 1.1, says
that there is a non-zero polynomial P of degree at most D so that

• R
3 \ Z(P ) is the union of at most CD3 disjoint open cells Oi, and

• for each cell Oi, |S ∩Oi| ≤ CD−3|S|.

We define Li ⊂ L to be the set of lines from L that intersect the open cell Oi. We note that
S ∩Oi ⊂ Pr(Li). If a line does not lie in Z(P ), then it can have at most D intersection points with
Z(P ), which means that it can enter at most D + 1 cells Oi. So each line of L intersects at most
D + 1 cells Oi. Therefore, we get the following inequality:

(2)
∑

i

|Li| ≤ (D + 1)L ≤ 2DL.

Let β > 0 be a large parameter that we will choose below. We say that a cell Oi is β-good if

(3) |Li| ≤ βD−2L.

The number of β-bad cells is at most 2β−1D3. Each cell contains at most CD−3|S| points of S.
Therefore, the bad cells all together contain at most Cβ−1|S| points of S. We now choose β so that
Cβ−1 ≤ (1/100). β is an absolute constant, independent of ǫ. We now have the following estimate:

(4) The union of the bad cells contains at most (1/100)|S| points of S.
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For each good cell Oi, we apply induction to understand Li. By choosing D sufficiently large,
we can guarantee that for each good cell, |Li| ≤ (1/2)L. Now there are two cases, depending on
whether r ≤ 2|Li|

1/2.
If r ≤ 2|Li|

1/2, then we can apply the inductive hypothesis. In this case, we see that there is a
set Zi of irreducible algebraic surfaces of degree at most D with the following two properties:

(5) |Zi| ≤ 2|Li|
(1/2)−ǫ ≤ 2(βD−2L)(1/2)−ǫ.

Because S ∩Oi ⊂ Pr(Li), we also get:

(6)

|(S ∩Oi) \ ∪Z∈ZiPr′(LZ)| ≤ K|Li|
(3/2)+ǫr−2 ≤ K(βD−2L)(3/2)+ǫr−2 ≤ C1KD−3−2ǫL(3/2)+ǫr−2.

On the other hand, if r > 2|Li|
1/2, then we define Zi to be empty, and Proposition 2.2 gives the

bound

(7) |S ∩Oi| ≤ |Pr(Li)| ≤ 2|Li|r
−1 ≤ 2Lr−1 ≤ 4L3/2r−2.

By choosingK sufficiently large compared toD, we can arrange that 4L3/2r−2 ≤ C1KD−3−2ǫL(3/2)+ǫr−2.
Therefore, inequality 6 holds for the good cells with r > 2|Li|

1/2 as well as the good cells with
r ≤ 2|Li|

1/2. We sum this inequality over all the good cells:

∑

Oi good

|(S ∩Oi) \ ∪Z∈ZiPr′(LZ)| ≤ CD3 · C1KD−3−2ǫL(3/2)+ǫr−2 ≤ C2D
−2ǫKL(3/2)+ǫr−2.

We choose D(ǫ) large enough so that C2D
−2ǫ ≤ (1/400). Therefore, we get the following:

(8)
∑

Oi good

|(S ∩Oi) \ ∪Z∈ZiPr′(LZ)| ≤ (1/400)KL(3/2)+ǫr−2.

We have studied the points of S in the good cells. Next we study the points of S in the zero set
of the partioning polynomial Z(P ). Let Zj be an irreducible component of Z(P ). If x ∈ S ∩ Zj ,
but x /∈ Pr′(LZj ), then x must be contained in at least r/10 lines of L \LZj . Each line of L that is
not contained in Zj has at most Deg(Zj) intersection points with Zj . Therefore,

|(S ∩ Zj) \ Pr′(LZj )| ≤ 10r−1(DegZj)L.

If {Zj} are all the irreducible components of Z(P ), then we see that

|(S ∩ Z(P )) \ ∪jPr′(LZj )| ≤ 10r−1DL.

We choose K = K(ǫ,D) sufficiently large so that 10D ≤ (1/800)K. Since r ≤ 2L1/2, we have

(9) |(S ∩ Z(P )) \ ∪jPr′(LZj )| ≤ (1/800)KLr−1 ≤ (1/400)KL3/2r−2.

Now we define Z̃S to be the union of Zi over all the good cells Oi together with all the irreducible
components Zj of Z(P ). Each surface in Z̃S is an algebraic surface of degree at mostD. By equation

5, we have the following estimate for |Z̃S |:
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(10) |Z̃S | ≤ CD3(βD−2L)(1/2)−ǫ +D ≤ Poly(D)L(1/2)−ǫ.

Summing the contribution of the bad cells in equation 4, the contribution of the good cells in
equation 8, and the contribution of the cell walls in equation 9, we get:

(11) |S \ ∪Z∈Z̃S
Pr′(LZ)| ≤ (1/100)|S|+ (1/200)KL(3/2)+ǫr−2.

If we didn’t have the (1/100)|S| term coming from the bad cells, we could simply take S = Pr(L)

and Z̃ = Z̃S . Because of this term, we need to run the above construction repeatedly.
Let S1 = Pr(L), and let Z̃S1 be the set of surfaces constructed above. Now we define S2 =

S1 \ ∪Z∈Z̃S1
Pr′(LZ). We iterate this procedure, defining

Sj+1 := Sj \ ∪Z∈Z̃Sj
Pr′(LZ).

Each set Sj is a subset of Pr(L). Each set of surfaces Z̃Sj has cardinality at most Poly(D)L(1/2)−ǫ.
Iterating equation 11 we see:

(12) |Sj+1| ≤ (1/100)|Sj|+ (1/200)KL(3/2)+ǫr−2.

We define J = C logL for a large constant C. Because of the iterative formula in equation 12,
we get

(13) |SJ | ≤ (1/100)KL(3/2)+ǫr−2.

We define Z̃ = ∪J−1
j=1 Z̃Sj . This set of surfaces has the following properties. Since each set Z̃Sj

has at most Poly(D)L(1/2)−ǫ surfaces, we get:

(14) |Z̃| ≤ Poly(D)L(1/2)−ǫ logL.

Also, Pr(L) \ ∪Z∈Z̃Pr′(LZ) = SJ , and so equation 13 gives:

(15) |Pr(L) \ ∪Z∈Z̃Pr′(LZ )| ≤ (1/100)KL(3/2)+ǫr−2.

This finishes our construction of Z̃. Next we prune Z̃ down to our desired set of surfaces Z.

3.2. Pruning Z̃. We define

Z := {Z ∈ Z̃|Z contains at least L(1/2)+ǫ lines of L}.

To close our induction, we have to check two properties of Z.

(1) |Z| ≤ 2L(1/2)−ǫ.
(2) |Pr(L) \ ∪Z∈ZPr′(LZ)| ≤ KL(3/2)+ǫr−2.

We begin with a simple lemma about surfaces that each contain many lines.

Lemma 3.1. Suppose L is a set of lines in R
3, and Y is a set of irreducible algebraic surfaces of

degree at most D, and suppose that each surface Z ∈ Y contains at least A lines of L.
If A > 2D|L|1/2, then |Y| ≤ 2|L|A−1.
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Proof. The proof of this lemma follows the same idea as the proof of Proposition 2.2. By the Bézout
theorem for lines, Theorem 1.3, the intersection of any two surfaces Z1, Z2 ∈ Y contains at most
D2 lines of L.

We choose an ordering of the surfaces of Y. We consider the surfaces one at a time in order and
count the number of new lines.

Z1 contains at least A lines of L. Z2 contains at least A−D2 lines of L that are not in Z1. Zj+1

contains at least A− jD2 lines of L that are not in the previous surfaces Z1, ..., Zj . Therefore, we
get the following inequality:

|L| ≥

|Y|
∑

j=1

max(A− jD2, 0).

If j ≤ (1/2)AD−2, then A − jD2 ≥ A/2. Therefore, if |Y| ≥ (1/2)AD−2, then we see that
|L| ≥ (1/2)AD−2(A/2). By hypothesis, we know A > 2D|L|1/2, which gives the contradiction
|L| > |L|. Therefore, |Y| ≤ (1/2)AD−2. Now we see that |L| ≥ |Y|(A/2), and this completes the
proof of the lemma. �

We apply this lemma with Y = Z and A = L(1/2)+ǫ. We can assume that Lǫ > 2D, because the
case of Lǫ ≤ 2D was the base of our induction, and we handled it by choosing K sufficiently large.
Therefore, A = L(1/2)+ǫ > 2DL1/2, and the hypotheses of Lemma 3.1 are satisfied. The lemma
tells us that |Z| ≤ 2L(1/2)−ǫ, which proves item (1) above. Now we turn to item (2). We recall
equation 15:

|Pr(L) \ ∪Z∈Z̃Pr′(LZ )| ≤ (1/100)KL(3/2)+ǫr−2.

Therefore, it suffices to check that

∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ (1/100)KL(3/2)+ǫr−2.

We sort Z̃ \Z according to the number of lines in each surface. For each integer s ≥ 0, we define:

Z̃s := {Z ∈ Z̃ so that |LZ | ∈ [2s, 2s+1)}.

Since each surface of Z̃ with at least L(1/2)+ǫ lines of L lies in Z, we see that:

(16) Z̃ \ Z ⊂
⋃

2s≤L(1/2)+ǫ

Z̃s.

For each Z ∈ Z̃s, |LZ | ≤ 2s+1. We use the Szemerédi-Trotter theorem, Theorem 1.4, to bound
Pr′(LZ). Since r′ ≥ (9/10)r, Szemerédi-Trotter gives:

(17) Pr′(LZ) ≤ C
(

22sr−3 + 2sr−1
)

.

Using Lemma 3.1 with A = 2s, we get the following estimate for |Z̃s|:

(18) If 2s > 2DL1/2, then |Z̃s| ≤ 2L2−s.

We can now estimate
∑

Z∈Z̃\Z |Pr′(LZ)|.
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(19)
∑

Z∈Z̃\Z

|Pr′(LZ)| ≤
∑

2s≤L(1/2)+ǫ





∑

Z∈Z̃s

|Pr′(LZ)|



 ≤ C
∑

2s≤L(1/2)+ǫ

|Z̃s|
(

22sr−3 + 2sr−1
)

.

We consider the contribution to the last sum from s in the range 2DL1/2 < 2s ≤ L(1/2)+ǫ. Using
equation 18 to estimate |Z̃s| gives:

∑

2DL1/2<2s≤L(1/2)+ǫ

|Z̃s|
(

22sr−3 + 2sr−1
)

≤
∑

2s≤L(1/2)+ǫ

(2L2−s)
(

22sr−3 + 2sr−1
)

≤

≤ C
∑

2s≤L(1/2)+ǫ

(L2sr−3 + Lr−1) ≤ C(L(3/2)+ǫr−3 + L(logL)r−1) ≤ CL(3/2)+ǫr−2.

Next we consider the contribution to the last sum in equation 19 from s in the range 2s ≤ 2DL1/2.
In this range of s, we use Equation 14 to bound |Z̃s|: |Z̃s| ≤ |Z̃| ≤ Poly(D)L(1/2)−ǫ logL.

(20)
∑

2s≤2DL1/2

|Z̃s|
(

22sr−3 + 2sr−1
)

≤ Poly(D)
(

L(1/2)−ǫ logL
)

(

22sr−3 + 2sr−1
)

.

Since 2s ≤ 2DL1/2 we see that 22sr−3 ≤ Poly(D)Lr−3 and 2sr−1 ≤ Poly(D)L1/2r−1 ≤
Poly(D)Lr−2. Plugging these into the right-hand side of equation 20, we get

∑

2s≤2DL1/2

|Z̃s|
(

22sr−3 + 2sr−1
)

≤ Poly(D)L3/2r−2.

All together, we see

∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ Poly(D)L(3/2)+ǫr−2.

Choosing K = K(ǫ,D) sufficiently large, we see that

∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ (1/100)KL(3/2)+ǫr−2.

This proves item (2), closing the induction, and finishing the proof of Theorem 2.1.

4. Distinct distances

In [ES], Elekes and Sharir proposed a new approach to the distinct distance problem, connecting
it to incidence estimates about curves in R

3. A tiny modification of these ideas is explained in
Section 2 of [GK2], connecting the distinct distance problem to an estimate about incidences of
lines in R

3. The paper [GK2] then uses Theorem 0.1 to control these incidences. We can also
use our slightly weaker Theorem 0.2 to prove a slightly weaker bound on the number of distinct
distances.

In this section, we give a concise review of the Elekes-Sharir approach to the distinct distance
problem. Using our incidence bound, Theorem 0.2, we prove the following distinct distance bound.

Theorem 4.1. For any ǫ > 0, there is a constant cǫ > 0 so that the following holds. If P is a set
of N points in R

2, then P determines at least cǫN
1−ǫ distinct distances.



10 LARRY GUTH

If P ⊂ R
2 is a set of points, we let d(P ) be the set of distinct distances:

d(P ) := {|p1 − p2|}p1,p2∈P .

The approach of Elekes and Sharir involves the set of distance quadruples Q(P ):

Q(P ) := {(p1, p2, p3, p4) ∈ P 4 so that |p1 − p2| = |p3 − p4| 6= 0}.

A simple Cauchy-Schwarz inequality proves the following estimate (Lemma 2.1 in [GK2]):

(21) |d(P )| ≥
N4 − 2N3

|Q(P )|
.

The heart of the matter is to prove an upper bound for |Q(P )|. The next step is to introduce a
family of lines in R

3, L(P ), associated to the set P ⊂ R
2. The incidence geometry of this family of

lines encodes the distance quadruples.
For any two points p1, p2 ∈ R

2, we define a line lp1,p2 ⊂ R
3 as follows. Suppose that p1 = (x1, y1)

and p2 = (x2, y2). We use x, y, z for the coordinates of R3. Then lp1,p2 is the line defined by the
following equations:

(22) 2x = (x1 + x2) + (y1 − y2)z.

(23) 2y = (y1 + y2) + (x2 − x1)z.

The set L(P ) is defined to be {lp1,p2}p1,p2∈P . If P is a set of N points, then L(P ) is a set of N2

lines. The connection between Q(P ) and L(P ) appears in the following lemma.

Lemma 4.2. A quadruple (p1, p2, p3, p4) ∈ P 4 is a distance quadruple if and only if the line lp1,p3

and the line lp2,p4 are intersecting or parallel.

Remark: The condition of being intersecting or parallel is natural from the projective point of
view. Two lines l, l̄ are intersecting or parallel in R

n if and only if they intersect in RP
n.

We now give a proof by direct computation. The paper [ES] gives a nice motivation for intro-
ducing these lines. The motivation comes from the group of rigid motions of the plane, which is a
symmetry group of the distinct distance problem. This point of view is also explained in Section 2
of [GK2]. Lemma 4.2 is proven in Section 2 of [GK2] using the point of view of rigid motions.

Proof. First we describe the projective completion of the line lp1,p2 in RP
3. A point in RP

3 is an
equivalence class of non-zero vectors (w, x, y, z) ∈ R

4, where two vectors are equivalent if one is a
scalar multiple of the other. In these coordinates, the equations for the line lp1,p2 ⊂ RP

3 are as
follows:

(24) 2x = (x1 + x2)w + (y1 − y2)z.

(25) 2y = (y1 + y2)w + (x2 − x1)z.

Next we investigate when two lines in RP
3 intersect. Suppose that l is defined by the equations

(26) 2x = axw + bxz; 2y = ayw + byz.



DISTINCT DISTANCE ESTIMATES AND LOW DEGREE POLYNOMIAL PARTITIONING 11

and l̄ is defined by the equations

(27) 2x = āxw + b̄xz; 2y = āyw + b̄yz.

The lines l and l̄ intersect in RP
3 if and only if the following system of two equations in w, z has

a non-zero solution:

(28) axw + bxz = āxw + b̄xz; ayw + byz = āyw + b̄yz

By standard linear algebra, this system of equations has a non-zero solution if and only if an
appropriate determinant vanishes, which we can rewrite as the following equation:

(29) (ax − āx)(by − b̄y) = (ay − āy)(bx − b̄x).

Now we take l = lp1,p3 and l̄ = lp2,p4 . Using equations 24 and 25, we can find the values of ax
etc. In particular, we see that ax = x1 + x3, ay = y1 + y3, bx = y1 − y3 and by = x3 − x1, and
similarly āx = x2+x4, āy = y2+y4, b̄x = y2−y4, and b̄y = x4−x2. When we plug these values into
equation 29, we get a homogeneous quadratic equation in xi and yi. We claim that this equation is
equivalent to (x1 − x2)

2 + (y1 − y2)
2 = (x3 − x4)

2 − (y3 − y4)
2. Here is the computation. Plugging

the values of ax etc. into equation 29, we immediately get:

[(x1 + x3)− (x2 + x4)] [(x3 − x1)− (x4 − x2)] = [(y1 + y3)− (y2 + y4)] [(y1 − y3)− (y2 − y4)] .

Rearranging the terms inside of each large parentheses, this is equivalent to

[(x3 − x4) + (x1 − x2)] [(x3 − x4)− (x1 − x2)] = [(y1 − y2) + (y3 − y4)] [(y1 − y2)− (y3 − y4)]

Expanding both sides, this is equivalent to

(x3 − x4)
2 − (x1 − x2)

2 = (y1 − y2)
2 − (y3 − y4)

2.

Moving the negative terms to the other sides, this is equivalent to

(x3 − x4)
2 + (y3 − y4)

2 = (x1 − x2)
2 + (y1 − y2)

2.

This is equivalent to |p3 − p4| = |p1 − p2|.
�

Because of Lemma 4.2, each distance quadruple (p1, p2, p3, p4) ∈ Q(P ) can be labelled as an
intersecting quadruple or a parallel quadruple, depending on whether lp1,p3 and lp2,p4 are intersecting
or parallel.

The number of parallel quadruples is straightforward to bound. If lp1,p3 and lp2,p4 are parallel,
then equations 22 and 23 imply that y1 − y3 = y2 − y4 and x3 − x1 = x4 − x2. In other words,
lp1,p3 and lp2,p4 are parallel if and only if p1 − p2 = p3 − p4. For any p1, p2, p3, there is at most one
p4 ∈ P so that p1 − p2 = p3 − p4, and so there are at most N3 parallel distance quadruples.

From now on, we sometimes abbreviate L(P ) by L.
The number of intersecting distance quadruples can be counted as follows. We let P=r(L) denote

the set of points that lie in exactly r lines of L. At each point of P=r(L) there are r
2−r intersecting

pairs (l1, l2) ∈ L
2. Therefore, the number of intersecting distance quadruples is
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|Q(P )inter | =
∑

r≥2

(r2 − r)|P=r(L)|.

Since |P=r(L)| = |Pr(L)| − |Pr+1(L)|, we can rewrite this formula as

(30) |Q(P )inter | =
∑

r≥2

(2r − 2)|Pr(L)|.

Therefore, a bound on |Pr(L)| gives a bound on |Q(P )|.
To bound |Pr(L)| the paper [GK2] proves the following result (Proposition 2.8 in [GK2]):

Lemma 4.3. If P ⊂ R
2 is a set of N points, then L(P ) contains at most CN lines in any plane

or regulus, and at most N lines of L(P ) contain any point.

With this lemma in hand, [GK2] can apply Theorem 0.1, giving the bound |Pr(L)| ≤ CN3r−2 for
all 2 ≤ r ≤ N . (And for r > N +1, Lemma 4.3 says that |Pr(L)| = 0.) Plugging these bounds into

equation 30 shows that |Q(P )| ≤ N3 +
∑N

r=2 CN3r−1 ≤ CN3 logN .
We will use Theorem 0.2 in place of Theorem 0.1 to give a slightly weaker bound on the number

of distance quadruples. In order to apply Theorem 0.2 we need a slightly stronger lemma.

Lemma 4.4. For any degree D ≥ 1 there is a constant CD so that the following holds. If P ⊂ R
2

is a set of N points, then L(P ) contains at most CDN lines in any algebraic surface of degree at
most D. Also L(P ) contains at most N lines that pass through any point.

We will give the proof of Lemma 4.4 below. Using Lemma 4.4, we can apply Theorem 0.2, giving
the following bound: for any ǫ > 0, there is a constant Cǫ so that

|Pr(L)| ≤ CǫN
3+ǫr−2.

Plugging this bound into equation 30, we see that

|Q(P )| ≤ N3 +
N
∑

r=2

(2r − 2)|Pr(L)| ≤ N3 +
N
∑

r=2

CǫN
3+ǫr−1 ≤ CǫN

3+ǫ.

Plugging this bound into equation 21, we see that |d(P )| ≥ cǫN
1−ǫ for any ǫ > 0. This proves

Theorem 4.1.

4.1. The proof of the non-clustering lemma. It only remains to prove Lemma 4.4. Suppose
that P ⊂ R

2 is a set of N points.
We first observe that if p ∈ R

2 and q1 6= q2 ∈ R
2 then the lines lp,q1 and lp,q2 are skew. By

Lemma 4.2, lp,q1 and lp,q2 are non-skew if and only if |p − p| = |q1 − q2|. But |p − p| = 0 and
|q1 − q2| 6= 0.

From this observation, we can quickly establish two parts of Lemma 4.4. First, for any plane in
R

3, at most one of the lines {lp,q}q∈P can lie in the plane. Therefore, any plane contains at most
N lines of L(P ). Second, for any point R3, at most one of the lines {lp,q}q∈P can contain the point.
Therefore, for any point in R

3, at most N lines of L(P ) contain the point.
Now consider an irreducible polynomial Q with 1 < DegQ ≤ D. We will prove that Z(Q)

contains ≤ 3D2N lines of L(P ), and this will finish the proof of Lemma 4.4.
We let Lp := {lp,q}q∈R2 . We would like to understand how many lines of Lp may lie in Z(Q).
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Lemma 4.5. If Q is an irreducible polynomial with 1 < DegQ ≤ D, then there is at most one
point p ∈ R

2 so that Z(Q) contains at least 2D2 lines of Lp.

Given Lemma 4.5, we now check that Z(Q) contains at most 3D2N lines of L(P ). For N − 1
of the points p ∈ P , Z(Q) contains at most 2D2 of the lines {lp,p′}p′∈P . For the last point p ∈ P ,
Z(Q) contains at most all N of the lines {lp,p′}p′∈P . In total, Z(Q) contains at most (2D2 + 1)N
lines of L(P ).

The proof of Lemma 4.5 is based on a more technical lemma which describes the algebraic
structure of the set of lines {lp,q} in R

3.

Lemma 4.6. For each p, each point of R3 lies in a unique line from the set {lp,q}q∈R2 . Moreover,
for each p, there is a non-vanishing vector field Vp(x1, x2, x3), so that at each point, Vp(x) is tangent
to the unique line lp,q through x. Moreover, Vp(x) is a polynomial in p and x, with degree at most
1 in the p variables and degree at most 2 in the x variables.

Let us assume this technical lemma for the moment and use it to prove Lemma 4.5.
Fix a point p ∈ R

2. Suppose Z(Q) contains at least 2D2 lines from the set Lp := {lp,q}p,q∈R2 .
On each of these lines, Q vanishes identically, and Vp is tangent to the line. Therefore, Vp · ∇Q
vanishes on all these lines. But Vp · ∇Q is a polynomial in x of degree at most 2D − 2. If Vp · ∇Q
and Q have no common factor, then the Bezout theorem for lines, Theorem 1.3, implies that there
are at most 2D2 − 2D lines where the two polynomials vanish. Therefore, Vp · ∇Q and Q have a
common factor. Since Q is irreducible, Q must divide Vp · ∇Q, and we see that Vp · ∇Q vanishes
identically on Z(Q).

Now suppose that Z(P ) contains at least 2D2 lines from Lp1 and from Lp2 . We see that Vp1 ·∇Q
and Vp2 · ∇Q vanish on Z(Q). For each fixed x, the expression Vp · ∇Q is a degree 1 polynomial in
p. Therefore, for any point p in the affine span of p1 and p2, Vp · ∇Q vanishes on Z(Q).

Suppose that Z(Q) has a non-singular point x, which means that ∇Q(x) 6= 0. In this case, x has
a smooth neighborhood Ux ⊂ Z(Q) where ∇Q is non-zero. If Vp · ∇Q vanishes on Z(Q), then the
vector field Vp is a vector field on Ux, and so its integral curves lie in Ux. But the integral curves
of Vp are exactly the lines of Lp. Therefore, for each p on the line connecting p1 and p2, the line
of Lp through x lies in Z(Q). Since x is a smooth point, all of these lines must lie in the tangent
plane TxZ(Q), and we see that Z(Q) contains infinitely many lines in a plane. Using Bezout’s
theorem, Theorem 1.3, again, we see that Z(Q) is a plane, and that Q is a degree 1 polynomial.
This contradicts our assumption that DegQ > 1.

We have now proven Lemma 4.5 in the case that Z(Q) contains a non-singular point. But if
every point of Z(Q) is singular, then we get an even stronger estimate on the lines in Z(Q):

Lemma 4.7. Suppose that Q is a non-zero irreducible polynomial of degree D on R
3. If Z(Q) has

no non-singular point, then Z(Q) contains at most D2 lines.

Proof. Since every point of Z(Q) is singular, ∇Q vanishes on Z(Q). In particular, each partial
derivative ∂iQ vanishes on Z(Q). We suppose that Z(Q) contains more than D2 lines and derive
a contradiction. Since ∂iQ = 0 on Z(Q) and Z(Q) contains more than D2 lines, then Bezout’s
theorem, Theorem 1.3, implies that Q and ∂iQ have a common factor. Since Q is irreducible, Q
must divide ∂iQ. Since Deg ∂iQ < DegQ, it follows that ∂iQ is identically zero for each i. This
implies that Q is constant. By assumption, Q is not the zero polynomial and so Z(Q) is empty.
But we assumed that Z(Q) contains at least D2 + 1 lines, giving a contradiction. �

This finishes the proof of Lemma 4.5 assuming Lemma 4.6. It only remains to prove Lemma 4.6.
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First we check that each point x ∈ R
3 lies in exactly one of the lines {lp,q}q∈R2 . Suppose p =

(p1, p2) and q = (q1, q2) are points in R
2. Using Equation 22 and 23, we see that (x1, x2, x3) ∈ lp,q

if and only if:

(31) 2x1 = (p1 + q1) + (p2 − q2)x3.

(32) 2x2 = (p2 + q2) + (q1 − p1)x3.

We can rewrite these equations as a matrix equation for q as follows:

(

1 −x3

x3 1

)(

q1
q2

)

= (2x1 − p1 − x3p2, 2x2 − p2 + p1x3) =: ap(x),

Note that ap(x) is a vector whose entries are polynomials in x, p of degree ≤ 1 in x and degree
≤ 1 in p. Since the determinant of the matrix on the left-hand side is 1 + x2

3 > 0, we can uniquely
solve this equation for q1 and q2. The solution has the form

(33) q1 = (x2
3 + 1)−1b1,p(x); q2 = (x2

3 + 1)−1b2,p(x),

where b1, b2 are polynomials in x, p of degree ≤ 2 in x and degree ≤ 1 in p.
We have now proven that each point of R3 lies in a unique line from the set {lp,q}q∈R2 . Now we can

construct the vector field Vp. From Equations 31 and 32, we see that the vector (p2 − q2, q1 − p1, 2)
is tangent to lp,q. If x ∈ lp,q, then we can use Equation 33 to expand q in terms of x, p, and we see
that the following vector field is tangent to lp,q at x:

vp(x) := (p2 − (x2
3 + 1)−1b2,p(x), (x

2
3 + 1)−1b1,p(x) − p1, 2).

The coefficients of vp(x) are not polynomials because of the (x2
3 + 1)−1. We define Vp(x) =

(x2
3 + 1)vp(x), so

Vp(x) =
(

p2(x
2
3 + 1)− b2,p(x), b1,p(x)− p1(x

2
3 + 1), 2x2

3 + 2
)

.

The vector field Vp(x) is tangent to the family of lines {lp,q}q∈R2 . Moreover, Vp never vanishes
because its last component is 2x2

3 + 2. Therefore, the integral curves of Vp are exactly the lines
{lp,q}q∈R2 . Moreover, each component of Vp is a polynomial of degree ≤ 2 in x and degree ≤ 1 in p.

This finishes the proof of Lemma 4.6 and hence the proof of Lemma 4.4.
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[SzTr] E. Szemerédi and W. T. Trotter Jr., Extremal Problems in Discrete Geometry, Combinatorica (1983) 3,

381-392.
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