THE VORONOI CONJECTURE FOR PARALLELOHEDRA WITH SIMPLY CONNECTED δ-SURFACE

A. GARBER, A. GAVRILYUK, AND A. MAGAZINOV

Abstract

We show that the Voronoi conjecture is true for parallelohedra with simply connected δ-surface. Namely, we show that if the boundary of parallelohedron P remains simply connected after removing closed non-primitive faces of codimension 2, then P is affinely equivalent to a Dirichlet-Voronoi domain of some lattice. Also we construct the π-surface associated with a parallelohedron and give another condition in terms of homology group of the constructed surface. Every parallelohedron with simply connected δ-surface also satisfies the condition on homology group of the π-surface.

1. The Voronoi conjecture

Definition 1.1. A d-dimensional polytope P is called a parallelohedron if \mathbb{R}^{d} can be tiled by non-overlapping translates of P.

A tiling by parallelohedra is called face-to-face if the intersection of any two copies of P is a face of both, and is called a non face-to-face otherwise. B. Venkov [18] and later independently P . McMullen [13] proved that if there is a non face-to-face tiling by P, then there is also a face-to-face tiling. It is clear that the face-to-face tiling by P is unique up to translation. We will denote this tiling as $\mathcal{T}(P)$ or just \mathcal{T} when the generating polytope of the tiling is obvious.

In 1897 H. Minkowski [15] proved that every parallelohedron P is centrally symmetric, and all facets of P are centrally symmetric. Later Venkov [18] added the third necessary condition, he proved that the projection of P along any face of codimension 2 is a twodimensional parallelohedron, i.e., a parallelogram or a centrally symmetric hexagon. Also Venkov proved that these three conditions are sufficient for a convex polytope to be a parallelohedron. In 1980 McMullen [13] gave an independent proof that these three conditions are necessary and sufficient, see also [14 for acknowledgment of priority.

The centers of all tiles of $\mathcal{T}(P)$ form a d-dimension lattice $\Lambda(P)$. If the fundamental domain of $\Lambda(P)$ has volume 1 , then the homothetic polytope $2 P$ is centrally symmetric with respect to the origin, has volume 2^{d}, and contains no lattice points in the interior. This, by definition, means that $2 P$ is an extremal body. Additional information about extremal bodies can be found in [9, Ch. 2 §12].

On the other hand, given a d-dimensional lattice Λ, the Dirichlet-Voronoi polytope $P(\Lambda)$ is a parallelohedron; the Dirichlet-Voronoi polytope is the set of points that are closer to a given lattice point O than to any other point of Λ.

Conjecture 1 (G. Voronoi, [19]). Any d-dimensional parallelohedron P is affinely equivalent to a Dirichlet-Voronoi polytope $P\left(\Lambda^{\prime}\right)$ for some d-dimensional lattice Λ^{\prime}.

Voronoi's conjecture has been proved for several families of parallelohedra with special local combinatorial properties.

Denote the set of all k-faces of a tiling \mathcal{T} by \mathcal{T}^{k}, and the set of all k-faces of a polytope P by P^{k}.

Date: June 30, 2018.

Definition 1.2. A face $F \in \mathcal{T}^{d-k}$ is called primitive if F belongs to exactly $k+1$ tiles in \mathcal{T}.

For example, any facet of \mathcal{T} is a primitive because it belongs to exactly two tiles. For a cubic tiling of \mathbb{R}^{d} the facets are the only primitive faces.

A face F of a parallelohedron P, with codimension 2, is primitive if projection of P along F is a hexagon, and is otherwise non-primitive; in the non-primitive case F belongs to four tiles in $\mathcal{T}(P)$. The set of facets of P that are parallel to a given face F with codimension 2 is called a belt of P. A belt can have 4 or 6 facets and accordingly is called 4 - or 6-belt.

Figure 1. Local structure of primitive and non-primitive $(d-2)$-faces.

Definition 1.3. A parallelohedron P is called k-primitive if all the k-faces of $\mathcal{T}(P)$ are primitive. A 0-primitive parallelohedron is usually called a primitive parallelohedron.

Clearly, any k-primitive parallelohedron is also $(k+1)$-primitive.
In 1909 Voronoi [19] (see also [9, Ch. 2 §12]) proved Conjecture 1 for primitive parallelohedra In 1929 Zhitomirskii [20] proved Voronoi's conjecture for ($d-2$)-primitive parallelohedra In this case all the projections along $(d-2)$-faces are hexagons.

Definition 1.4. Assume that $k>1$, and that $G \in \mathcal{T}^{d-k}(P)$. Let \mathcal{N}_{G} be the set normal vectors for all facets containing G. Then P is k-irreducible if for each $G \in \mathcal{T}^{d-k}(T)$ the set \mathcal{N}_{G} cannot be represented as $\mathcal{N}_{G}=\mathcal{N}_{1} \cup \mathcal{N}_{2}$ where $\mathcal{N}_{1}, \mathcal{N}_{2}$ are non-empty, and $\operatorname{lin} \mathcal{N}_{1} \cap \operatorname{lin} \mathcal{N}_{2}=\{\mathbf{0}\}$.

For example, the result of Zhitomirskii [20] establishes Voronoi's conjecture for 2irreducible parallelohedra.

In 2005 A. Ordine [16] proved Voronoi's conjecture for 3-irreducible parallelohedra. Up to the moment, no improvements of this result are known.

We also mention a result by R. Erdahl [5] who proved Voronoi's conjecture for spacefilling zonotopes. A zonotope is a Minkowski sum of finitely many segments. Erdahl's proof is based on technique of unimodular vector representations, and he constructed the appropriate affine transformation for a zonotope using normals to its facets. This approach significantly differs from the original approach introduced by Voronoi and developed later by Zhitomirskii and Ordine where the main focus is on constructing an auxiliary polyhedral surface named generatrissa and building a quadratic form associated to the surface.

Definition 1.5. The surface ∂P of a d-dimensional parallelohedron P is homeomorphic to the $(d-1)$-dimensional sphere \mathbb{S}^{d-1}. After deletion of all closed non-primitive faces of codimension 2 of P we obtain new $(d-1)$-dimensional manifold without boundary (in
the topological sense of notion of "manifold without boundary"). We call this manifold the δ-surface of P and denote it by P_{δ}.

The manifold P_{δ} is centrally symmetric because ∂P is centrally symmetric. If we glue together every pair of opposite points of the P_{δ}, then we obtain another $(d-1)$-dimensional manifold that is a subset of real projective space \mathbb{R}^{d-1}. We call this manifold π-surface of P and denote by P_{π}.

The δ-surface is related to notions of Venkov graph and Venkov subgraph of a parallelohedron. Consider a graph with vertices corresponding to pairs of the antipodal (opposite) facets of parallelohedron P. Edges connect any two different vertices corresponding to four facets of P belonging to a single belt. The edges a colored in blue and red. If the facets belong to a 4 -belt then the edge is blue, otherwise they belong to a 6 -belt and the edge is red. The graph is called Venkov graph of parallelohedron P. Subgraph with the same set of vertices and just red edges remained is called the red Venkov subgraph of P (for details see [8]).
A. Ordine proved a theorem [16, Thm. 2] that a parallelohedron P is irreducible if and only if its red Venkov subgraph is connected. The "if" part is easy. For the "only if" he used the technique of gain functions and (additive) version of the quality translation theorem by Ryshkov, Rybnikov [17]. As the first step Ordine proved that connectivity components of the red Venkov subgraph of P correspond to independent sublattices in lattice consist of centers of polytopes of the tiling $\mathcal{T}(P)$. Second, he showed that a union of parallelohedra centered in points of such a sublattice is convex and invariant under translations of the sublattice affine hull. Essentially that finishes the proof. The preprint [11] contains a rewritten proof of Ordine's result, but it is in Russian.

The theorem is equivalent to a condition that P is irreducible iff its boundary remains connected after deletion of all non-primitive faces of codimension 2 . Thus the δ-surface of P is connected iff P cannot be represented as a direct sum of two parallelohedra of lower dimensions. The same holds for π-surface P_{π}. Ordine also showed that the general case follows if Voronoi's conjecture is proved for the irreducible case where a parallelohedron can not be represented as a direct sum. Therefore, we restrict our attention to parallelohedra with connected δ-surface. If a parallelohedron can be represented as direct sum of two parallelohedra of lower dimensions, that is what we called reducible, then it is reducible at every vertex in the sense of the Definition 1.4.

In this paper we will prove (Theorem 4.3) Voronoi's conjecture for parallelohedra with simply connected δ-surface. Also we prove (Theorem 4.6) Voronoi's conjecture for a family of parallelohedra with first \mathbb{Q}-homology group of π-surface generated by "trivial" cycles. These conditions are global while all preceding conditions which using canonical scaling method of Voronoi (see Section (2) were local. Our results generalize theorems of Voronoi and Zhitomirskii but for now it is unclear whether our theorems are applicable to Ordine's case or not.

However, the comparison of Ordine's conditions and conditions of Theorem 4.6 for irreducible parallelohedra in small dimensions can be done. For reducible parallelhedra $P=P_{1} \oplus P_{2}$ Voronoi's conjecture is inherited from Voronoi conjecture for Minkowski summands P_{1} and P_{2}. For dimension 3 this is done in the Section 5, and both conditions are true for all three possible irreducible three-dimensional parallelohedra. The four-dimensional case is done in [6] and it is shown there that all four-dimensional parallelohedra satisfies conditions of the Theorem 4.6. Using the methods described in [6, Sect. 5] for space-filling zonotopes (i.e. a zonotope and parallelohedron at the same time), one can show that the five-dimensional zonotope with zone vectors (i.e. vectors representing corresponding segments in the Minkowski sum, see also [12] for the definition) represented by columns of the matrix below does not satisfy Ordine's conditions. It is a Π-zonotope
(see the same paper [6, Sect. 5]) with the graph on six vertices with seven edges forming a 6 -cycle with a long diagonal.

$$
\left(\begin{array}{rrrrrrr}
1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

For three- and four-dimensional cases (Section 5and [6]) the Theorem 4.6 is equivalent to the Voronoi's conjecture, but we don't know any proof for such equivalence for arbitrary dimension, or at least for five-dimensional parallelohedra. Also we don't know any example of a parallelohedron that satisfies the Voronoi conjecture and does not satisfy the Theorem 4.6.

It seems, that ideas of topological extension of Voronoi's method were developed before, but we did not find any published article or available preprint. As a reference we can give the link [4] where in the last three paragraphs the result of oral communication of T . Dienst and and son of B.A. Venkov on connection of Voronoi's conjecture and certain cohomology group is exposed. In particular, B.A. Venkov told, that his father "showed that for a given parallelohedron, the conjecture follows from the vanishing of a certain cohomology group assigned to this polytope. By this, he was able to prove the conjecture for all polytopes with no more than one belt of length 4" (this is a precise quote from the web-site (4).

2. CANONICAL SCALING AND SURFACE OF A PARALLELOHEDRON

This section is devoted to the notion of a canonical scaling and its connection with Voronoi's conjecture.

Definition 2.1. A function $\mathfrak{s}: \mathcal{T}^{d-1} \longrightarrow \mathbb{R}_{+}$is called a canonical scaling for the tiling \mathcal{T} (for a parallelohedron P) if for each $\left(d-2\right.$)-dimensional face $G \in \mathcal{T}^{d-2}$ the direction of the unit normal \mathbf{n}_{i} for the facets F_{i} that contain G can be chosen so that

$$
\begin{equation*}
\sum_{i=1}^{3 \text { or } 4} \mathfrak{s}\left(F_{i}\right) \mathbf{n}_{i}=\mathbf{0} \tag{1}
\end{equation*}
$$

the sum ranges to 3 if G is primitive, and to 4 if G is not primitive.
Lemma 2.2. Voronoi's conjecture is true for a parallelohedron P iff the corresponding tiling $\mathcal{T}(P)$ admits a canonical scaling.

Remark. This property was used by Voronoi [19, Zhitomirskii [20], and Ordine [16] to prove Voronoi's conjecture 1 for particular classes of parallelohedra. For a proof of Lemma [2.2) see [3, 7, 17, 19].

A primitive $(d-2)$-face G belongs to exactly three facets, F_{1}, F_{2}, F_{3}. Unit normals \mathbf{n}_{i} to these facets span a 2-dimensional plane since they are orthogonal to G and no two of them are collinear, so there is exactly one (up to a nonzero factor) linear dependence

$$
\alpha_{1} \mathbf{n}_{1}+\alpha_{2} \mathbf{n}_{2}+\alpha_{3} \mathbf{n}_{3}=\mathbf{0}
$$

Therefore, a canonical scaling \mathfrak{s} for \mathcal{T} (if exists) must satisfy the local rule:

$$
\begin{equation*}
\frac{\mathfrak{s}\left(F_{i}\right)}{\mathfrak{s}\left(F_{j}\right)}=\frac{\left|\alpha_{i} \mathbf{n}_{i}\right|}{\left|\alpha_{j} \mathbf{n}_{j}\right|}=\left|\frac{\alpha_{i}}{\alpha_{j}}\right| . \tag{2}
\end{equation*}
$$

Definition 2.3. The fraction $\left|\frac{\alpha_{j}}{\alpha_{i}}\right|$ is the value of the gain function $\mathfrak{g}\left(F_{i}, F_{j}\right)$, defined on pairs of facets that share a primitive face of codimension two.

As we have just seen, the gain function is uniquely defined for pairs of facets linked by a primitive $(d-2)$-face. The gain function shows how a canonical scaling changes along a path that travels facet-to-facet across such primitive faces. The gain function has the property that $\mathfrak{g}\left(F_{i}, F_{j}\right)=\frac{1}{\mathfrak{g}\left(F_{j}, F_{i}\right)}$.

In the remaining portion of this section we use the gain function to obtain necessary and sufficient conditions for the existence of a canonical scaling.

Lemma 2.4. If there exists a positive valued function \mathfrak{s}^{\prime} on the set of all facets of P that satisfies condition (2) for every two facets with common primitive $(d-2)$-face then there exists a canonical scaling $\mathfrak{s}: \mathcal{T}^{d-1} \longrightarrow \mathbb{R}_{+}$.

Remark. The inverse statement is trivial since we can take as \mathfrak{s}^{\prime} the restriction of \mathfrak{s} on the surface of one copy of P.

Proof. Consider an arbitrary facet F and its opposite facet F^{\prime} of P.
If F belongs to some 6 -belt then application of rule (2) to this belt immediately gives us $\mathfrak{s}^{\prime}(F)=\mathfrak{s}^{\prime}\left(F^{\prime}\right)$. If F does not belong to any 6 -belt, and $\mathfrak{s}^{\prime}\left(F^{\prime}\right) \neq \mathfrak{s}^{\prime}(F)$, then set $\mathfrak{s}^{\prime}\left(F^{\prime}\right):=\mathfrak{s}^{\prime}(F)$. This modification of \mathfrak{s}^{\prime} preserves the hypothesis that condition (2) holds at all primitive $(d-2)$-faces.

Now the function \mathfrak{s}^{\prime} is invariant with respect to central symmetry of P. We translate this function on all copies of P in the tiling \mathcal{T}. This translation is correctly defined since different tiles of \mathcal{T} are glued together by opposite facets of P and values of \mathfrak{s}^{\prime} are equal on these facets. The constructed function $\mathfrak{s}: \mathcal{T}^{d-1} \longrightarrow \mathbb{R}_{+}$satisfies condition (11) for every primitive $(d-2)$-face because \mathfrak{s}^{\prime} satisfies rule (2). For a non-primitive $(d-2)$-face condition (1) holds as well because every such face lies in two pairs of opposite facets with equal values of \mathfrak{s}^{\prime} in each pair. Consequently, we can choose opposite normal directions for the facets in each pair and obtain a zero sum. Thus the function \mathfrak{s} is a canonical scaling.

Definition 2.5. A sequence of facets $\gamma=\left[F_{0}, \ldots, F_{k}\right]$ is a primitive combinatorial path on P if consecutive facets F_{i} and F_{i+1} are linked by a common primitive face of codimension 2. We call γ a primitive cycle if $F_{0}=F_{k}$.

Define the gain function \mathfrak{g} for every primitive path of P by the formula

$$
\mathfrak{g}(\gamma)=\prod_{i=1}^{k} \mathfrak{g}\left(F_{i-1}, F_{i}\right)
$$

We call a curve γ on the δ-surface of P (see Definition 1.5) generic: if endpoints of γ are interior to facets of $P ; \gamma$ does not intersect any face of dimension less than $d-2$; and the intersection of γ with a $(d-2)$-dimensional face of P is transversal.

For every generic curve γ on the δ-surface of P we define a supporting primitive combinatorial path γ^{\prime} consisting of facets that support γ. This allows us to define a gain function on generic curves: $\mathfrak{g}(\gamma):=\mathfrak{g}\left(\gamma^{\prime}\right)$. Obviously, for the union of two curves $\gamma=\gamma_{1} \cup \gamma_{2}$ we have $\mathfrak{g}(\gamma)=\mathfrak{g}\left(\gamma_{1}\right) \cdot \mathfrak{g}\left(\gamma_{2}\right)$.

Lemma 2.6. Voronoi's conjecture 1 is true for a parallelohedron P iff $\mathfrak{g}(\gamma)=1$ holds for every generic cycle γ on the δ-surface of P.

Proof. Assume that $\mathfrak{g}(\gamma)=1$ holds for every generic cycle γ. We will construct a function \mathfrak{s}^{\prime} from Lemma 2.4 in the following way. Consider an arbitrary facet F and put $\mathfrak{s}^{\prime}(F)=1$. Now for every facet G consider an arbitrary generic curve γ that starts in the center of F and ends in the center of G and put $\mathfrak{s}^{\prime}(G)=\mathfrak{g}(\gamma)$. We show that \mathfrak{s}^{\prime} is defined correctly and satisfies conditions of Lemma 2.4.

Assume that two different curves γ_{1} and γ_{2} produce different values of \mathfrak{s}^{\prime} on a facet G. Then $\mathfrak{g}\left(\gamma_{1}\right) \neq \mathfrak{g}\left(\gamma_{2}\right)$. For a cycle $\gamma=\gamma_{1} \cup \gamma_{2}^{-1}$ (here γ_{2}^{-1} denotes the reversed curve γ_{2}) we have $\mathfrak{g}(\gamma)=\frac{\mathfrak{g}\left(\gamma_{1}\right)}{\mathfrak{g}\left(\gamma_{2}\right)} \neq 1$, a contradiction. So the functions \mathfrak{s}^{\prime} is defined correctly on the set of all facets of P.

In order to show that \mathfrak{s}^{\prime} satisfies conditions of the Lemma 2.4 consider two arbitrary facets F_{1} and F_{2} with common non-primitive $(d-2)$-face. Assume that values on facets F_{i} were obtained with paths γ_{i}, consider a path γ_{3} that connects centers of F_{1} and F_{2} through their common ($d-2$)-face. We have the cycle $\gamma=\gamma_{3} \cup \gamma_{2}^{-1} \cup \gamma_{1}$, so

$$
\mathfrak{g}\left(\gamma_{3}\right)=\frac{\mathfrak{g}\left(\gamma_{2}\right)}{\mathfrak{g}\left(\gamma_{1}\right)}=\frac{\mathfrak{s}^{\prime}\left(F_{2}\right)}{\mathfrak{s}^{\prime}\left(F_{1}\right)}
$$

By definition, $\mathfrak{g}\left(\gamma_{3}\right)=\mathfrak{g}\left(F_{1}, F_{2}\right)$, therefore \mathfrak{s}^{\prime} satisfies condition of Lemma 2.4 and there exists a canonical scaling of the tiling, so by lemma 2.2 Voronoi's conjecture is true for P.

On the other hand, if Voronoi's conjecture is true for P then there is a canonical scaling $\mathfrak{s}: \mathcal{T}^{d-1} \longrightarrow \mathbb{R}_{+}$, from which we can determine the corresponding gain function. It easily follows using (2) that $\mathfrak{g}(\gamma)=1$ for every generic cycle γ on the δ-surface of P.

3. Dual 3-cells and local consistency of canonical scaling

Definition 3.1. Consider an arbitrary face G of codimension k of the tiling $\mathcal{T}(P)$. Then, the corresponding dual k-cell \mathcal{D}_{G} is the convex hull of the centers of all tiles that share G.

For example, the dual cell corresponding to a d-dimensional polytope $P^{\prime} \in \mathcal{T}(P)$ is a single point - its center.
Definition 3.2. We say that a dual cell \mathcal{D}_{G} is a face of a dual cell \mathcal{D}_{H} iff H is a face of G. Using that we can introduce the notion of incidence for dual cells. A cell \mathcal{D}_{G} is incident to a dual cell \mathcal{D}_{H} iff H is incident to G.

It is clear that a face \mathcal{D}_{G} of a dual cell \mathcal{D}_{H} belongs to it as a point-set, but it is not proved and no counterexample known whether \mathcal{D}_{G} is a polyhedral face of \mathcal{D}_{H}. Such defined incidences on dual cells induce an inverse face lattice structure comparing with the face lattice of $\mathcal{T}(P)$.
Definition 3.3. \mathcal{D}_{F} is said to be combinatorially equivalent to a polytope in case the polytope has identical face lattice.

For example, a dual 2-cell \mathcal{D}_{F} is combinatorially equivalent to either a triangle for primitive F or to a parallelogram for a non-primitive F (see figure (1).

We will use the following classification theorem on $(d-3)$-faces of parallelohedra, or equivalently dual 3 -cells. The first part of the theorem was originally stated by Delone, and the second is a reformulation in terms of dual cells.
Theorem 3.4 (Delone, [1], see also [16]). There are five possible combinatorial types of coincidence of parallelohedra at $(d-3)$-faces, and each of five types (see figure 2) has a representative when $d=3$.

In other words, every dual 3-cell is combinatorially equivalent to one of the five 3dimensional polytopes: cube, triangular prism, tetrahedron, octahedron, or quadrangular pyramid.

Figure 2. Dual 3-cells.
Every $(d-3)$-face G of a d-polytope P is a face of codimension 2 in the boundary complex ∂P which is homeomorphic to a $(d-1)$-sphere. We consider a union U_{G} of all facets F_{i} of P containing G as a neighborhood of G in $\partial P . U_{G}$ is naturally homeomorphic to a product $G \times D^{2}$ where D^{2} is a 2 -dimensional disk. Each facet F_{i} containing G could be coherently represented as $G \times S_{i} \subset G \times D^{2}$ where S_{i} is a 2-dimensional sector of D^{2}. Union of sectors is the entire D^{2}. Thus all the facets F_{i} containing G form a closed combinatorial path where each F_{i} appears just once along it. Clearly, the closed path is unique up to two choices of direction for a bypass along it.

Definition 3.5. The closed combinatorial path generated by $(d-3)$-face G of a d-polytope P on the surface of P, as described above, we call a cycle around G.

Lemma 3.6. Let G be a $(d-3)$-face of a parallelohedron P. If the $(d-2)$-faces containing G are all primitive, then, the cycle around F is primitive, and the gain function along this path has value 1.
Remark. The cycle around G is a primitive cycle in sense of Definition 2.5,
In the proof of Lemma 3.6 we will use the following Lemma.
Lemma 3.7. Let G be a $(d-3)$-face of parallelohedron P. Suppose that all $(d-2)$-faces of P containing G are primitive. Let $P=P_{0}, P_{1}, P_{2}, \ldots$ be all the parallelohedra of \mathcal{T} that share G. Then there exist affine functions $U_{0}, U_{1}, U_{2}, \ldots$ with the following property:
given any pair of parallelohedra $\left(P_{i}, P_{j}\right)$ with a common facet, the functions U_{i} and U_{j} coincide on the affine hull of the facet $P_{i} \cap P_{j}$ and nowhere else.
Remark. This lemma is an extension of a statement by Zhitomirskii [20, Sect. 1 and 4]. He needed all $(d-2)$-faces of the entire tiling containing G to be primitive. We relax the condition and demand just part of these $(d-2)$-faces to be primitive, namely those belonging to P. As a result we admit an extra case (3) for a dual cell of G.
Proof. Theorem 3.4 implies that there are three possible cases.
(1) The dual cell of G is combinatorially equivalent to a tetrahedron.
(2) The dual cell of G is combinatorially equivalent to an octahedron.
(3) The dual cell of G is combinatorially equivalent to a quadrangular pyramid and P corresponds to its apex.
We will construct U_{i} to be constant on every $(d-3)$-dimensional affine plane parallel to G. Therefore we will restrict ourselves to the 3-dimensional images of parallelohedra P_{i} under the projection π_{G} along the face G.

The projections $\left\{\pi_{G}\left(P_{i}\right): i=0,1,2, \ldots\right\}$ split the neighbourhood of the point $\pi_{G}(G)$ in the same way as a 3 -dimensional polyhedral fan \mathcal{C} does. The combinatorics of \mathcal{C} is completely prescribed by the type of the dual cell of G.

Our goal is, in fact, to construct a piecewise affine continuous function U on \mathcal{C} such that the restriction of U to each 3-dimensional cone of \mathcal{C} is affine function, and the affine functions for different cones are different. For Cases 1 and 2 this was done by Zhitomirskii, however, in order to make our proof more transparent, we will consider these cases again along with Case 3 . For simplicity, suppose that $\pi_{G}(G)$ is the origin. We will also require that $U\left(\pi_{G}(G)\right)=0$, therefore we can speak of linear functions rather than affine.
Case 1. \mathcal{C} has four 1-dimensional faces (rays). Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ be the unit vectors along these rays. For every $\lambda \geq 0$ and $j=1,2,3,4$ set $U\left(\lambda \mathbf{x}_{j}\right)=\lambda$. It defines U because every 3 -dimensional cone C of the fan \mathcal{C} is 3 -sided, and three linear functions on extreme rays of C can be extended in a unique way to a linear function on C.
Case 2. Let C be one of the 3 -dimensional cones of the fan \mathcal{C}. C is 4 -sided, and let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ be the vectors along the extreme rays of C in the order they met by a path around $\pi_{G}(G)$ on ∂C. After a proper scaling of these vectors, we can assume that $\mathbf{x}_{1}+\mathbf{x}_{3}=\mathbf{x}_{2}+\mathbf{x}_{4}$. Now for every $\lambda \in \mathbb{R}$ and $j=1,2,3,4$ set

$$
\begin{equation*}
U\left(\lambda \mathbf{x}_{j}\right)=|\lambda| \tag{3}
\end{equation*}
$$

Let C^{\prime} be a 4 -sided 3 -dimensional cone with the vertex at the origin. Let $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}$, \mathbf{y}_{4} be the vectors along its extreme rays such that $\mathbf{y}_{1}+\mathbf{y}_{3}=\mathbf{y}_{2}+\mathbf{y}_{4}$. Suppose that u_{i}, $i=1,2,3,4$, are linear functions on the extreme rays of C^{\prime} corresponding to \mathbf{y}_{i}. One can check that u_{1}, u_{2}, u_{3} and u_{4} can be extended to the same linear function U^{\prime} if and only if

$$
\begin{equation*}
u_{1}\left(\mathbf{y}_{1}\right)+u_{3}\left(\mathbf{y}_{3}\right)=u_{2}\left(\mathbf{y}_{2}\right)+u_{4}\left(\mathbf{y}_{4}\right) . \tag{4}
\end{equation*}
$$

The condition above can be applied to any of the six cones of the fan \mathcal{C} Therefore the function U can be recovered from its values on all 1-dimensional faces of the fan \mathcal{C}, if those values are as in formula (3).
Case 3. Let C be the only 4 -sided cone of the fan \mathcal{C}. Once again, we can assume that $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ are the vectors along the extreme rays of C satisfying $\mathrm{x}_{1}+\mathrm{x}_{3}=\mathrm{x}_{2}+\mathrm{x}_{4}$. Let \mathbf{y} be the vector along the remaining 1-dimensional face of \mathcal{C}. Because of the structure of \mathcal{C}, the 2 -face of \mathcal{C} between \mathbf{x}_{1} and \mathbf{y}, and the 2 -face between \mathbf{x}_{3} and \mathbf{y} lie in the same plane. Therefore the vectors $\mathbf{x}_{1}, \mathbf{x}_{3}$, and \mathbf{y} are coplanar. Similarly, the vectors \mathbf{x}_{2}, \mathbf{x}_{4}, and \mathbf{y} are coplanar as well. Consequently, \mathbf{y} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{3}, and, simultaneously of \mathbf{x}_{2} and \mathbf{x}_{4}. This is possible only if \mathbf{y} is collinear to the vector $-\mathrm{x}_{1}-\mathrm{x}_{3}=-\mathrm{x}_{2}-\mathrm{x}_{4}$.

Since \mathcal{C} consists of convex cones, \mathbf{y} has the same direction with $-\mathbf{x}_{1}-\mathbf{x}_{3}$, but not with $\mathrm{x}_{1}+\mathrm{x}_{3}$. Hence the directions of rays of \mathcal{C} are the directions of vectors $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$, and $-\mathrm{x}_{1}-\mathrm{x}_{3}$.
For every $\lambda \geq 0$ and $j=1,2,3,4$ set $U\left(\lambda \mathbf{x}_{j}\right)=\lambda$ and $U\left(-\lambda \mathbf{x}_{1}-\lambda \mathbf{x}_{3}\right)=\lambda$. Because of the condition (4), we can recover U on the cone C. Further, as in Case 1, we can recover U on all other cones of \mathcal{C}, because these cones are 3 -sided.

Thus in every case we have constructed the function U. Returning from the projections to the parallelohedra P_{i}, we get the required set of functions U_{j}.

Proof of Lemma [3.6. Lemma 3.7 provides us with the set of functions $U_{0}, U_{1}, U_{2}, \ldots$ such that U_{i} and U_{j} coincide on $P_{i} \cap P_{j}$, if $P_{i} \cap P_{j}$ is a $(d-1)$-face. For all such pairs (i, j) let $U_{j}=U_{i}+\mathbf{a}_{i j}^{T} \mathbf{x}+b_{i j}$ for vector argument \mathbf{x} and some vector parameter $\mathbf{a}_{i j}$.

Assume that P_{i} and P_{j} share a common facet $F_{i j}$. The difference $U_{j}-U_{i}$ is zero on $F_{i j}$ and is not zero outside the affine hull of $F_{i j}$. Thus $U_{j}-U_{i}$ is not a constant and therefore $\mathbf{a}_{i j} \neq 0$.

Hence the affine hull of $F_{i j}$ is a hyperplane represented by the equation $\mathbf{a}_{i j}^{T} \mathbf{x}+b_{i j}=0$. Since the vector $\mathbf{a}_{i j}$ is a normal to the hyperplane, we conclude that $\mathbf{a}_{i j}$ and $F_{i j}$ are orthogonal.

If P_{0}, P_{i} and P_{j} share a common $(d-2)$-face $F_{0 i j}$, then, since $F_{0 i j}$ is primitive and

$$
\mathbf{a}_{0 i}+\mathbf{a}_{i j}-\mathbf{a}_{0 j}=\mathbf{0}
$$

we have $\mathfrak{g}\left(F_{0 i}, F_{0 j}\right)=\left|\mathbf{a}_{0 i}\right| /\left|\mathbf{a}_{0 j}\right|$.
Now if $\gamma=\left[F_{01}, F_{02}, \ldots F_{0 n}, F_{01}\right]$ is a cycle around F, then

$$
\mathfrak{g}(\gamma)=\frac{\left|\mathbf{a}_{01}\right|}{\left|\mathbf{a}_{02}\right|} \cdot \frac{\left|\mathbf{a}_{02}\right|}{\left|\mathbf{a}_{03}\right|} \cdot \ldots \cdot \frac{\left|\mathbf{a}_{0 n}\right|}{\left|\mathbf{a}_{01}\right|}=1 .
$$

4. Voronoi's conjecture for parallelohedra with simply connected δ-SURFACE

Lemma 4.1. If two generic cycles γ_{1} and γ_{2} on the δ-surface of a parallelohedron P are homotopy equivalent then $\mathfrak{g}\left(\gamma_{1}\right)=\mathfrak{g}\left(\gamma_{2}\right)$.

Remark. Under "homotopy" here and after we mean the relation of continuous homotopy.
Proof. Consider an arbitrary homotopy $F(t)$ between γ_{1} and γ_{2} such that $F(0)=\gamma_{1}$ and $F(1)=\gamma_{2}$. With small perturbation of the homotopy F we can obtain another homotopy $G(t)$ such that:
(1) $G(0)=\gamma_{1}$ and $G(1)=\gamma_{2}$;
(2) at any moment t cycle $G(t)$ does not intersect any face of P with dimension less than $d-3$;
(3) at any moment t cycle $G(t)$ does not have more than one point of intersection with set of all $(d-3)$-faces of P;
(4) there is only a finite number of moments t_{1}, \ldots, t_{n} such that each cycle $G\left(t_{i}\right)$ intersects some $(d-3)$-face F_{i}^{d-3} of P;
(5) there is only finite number of moments $\tau_{1}, \ldots, \tau_{k}\left(t_{i} \neq \tau_{j}\right)$ such that each cycle $G\left(\tau_{j}\right)$ has exactly one non-transversal intersection of $G\left(\tau_{j}\right)$ with some ($d-2$)-face F_{j}^{d-2}. For all other $t \neq \tau_{j}$ each intersection of $G(t)$ with $(d-2)$-faces of P is transversal.
So in other words we can find a perturbation of the homotopy $F(t)$ that will be in general position.

For any $t \in(0,1)$ equal neither to any t_{i} nor to any τ_{j} the cycle $G(t)$ is generic, so we can evaluate the gain function $\mathfrak{g}(G(t))$. We show that $\mathfrak{g}(G(t))$ does not depend on t.

For any segment $[a, b] \subset[0,1]$ that does not contain points t_{i} and τ_{j} the function $\mathfrak{g}(G(t))$ is constant because the primitive path γ_{t}^{\prime} that supports $G(t)$ does not depend on t while $t \in[a, b]$. So we just need to show that the gain function $\mathfrak{g}(G(t))$ does not change when t passes across t_{i} or τ_{j}.

If t passes across τ_{j} then either the supporting primitive path does not change or one of its facets F^{d-1} could be replaced by a copy of a sequence $\left[F^{d-1}, G^{d-1}, F^{d-1}\right.$] (or vice versa) for some facets F^{d-1} and G^{d-1} with common primitive $(d-2)$-face. In the latter case gain function \mathfrak{g} does not change because $\mathfrak{g}\left(\left[F^{d-1}, G^{d-1}, F^{d-1}\right]\right)=1$.

If t passes across t_{i} then either the supporting primitive path does not change or some subpath $\left[F_{i, 1}^{d-1}, \ldots, F_{i, 2}^{d-1}\right]$ with each facet containing F_{i}^{d-3} changes into subpath with the same startpoint and endpoint and again all facets of this new subpath containing F_{i}^{d-3}. In this case the gain function $\mathfrak{g}(G(t))$ will not change due to lemma 3.6.

Therefore the gain function $\mathfrak{g}(F(t))$ is constant and $\mathfrak{g}\left(\gamma_{1}\right)=\mathfrak{g}(F(0))=\mathfrak{g}(F(1))=$ $\mathfrak{g}\left(\gamma_{2}\right)$.
Corollary 4.2. The gain function \mathfrak{g} is a homomorphism of the fundamental group $\pi_{1}\left(P_{\delta}\right)$ into \mathbb{R}_{+}.

Since \mathbb{R}_{+}is a commutative group than we trivially get that \mathfrak{g} also gives us a homomorphism of group $\pi_{1}\left(P_{\delta}\right) /\left[\pi_{1}\left(P_{\delta}\right)\right]$ (here $[G]$ denotes the commutant of a group G) to \mathbb{R}_{+}. This group is isomorphic to a group of homologies $H_{1}\left(P_{\delta}, \mathbb{Z}\right)$ (see [10]).
Theorem 4.3. Given a parallelohedron P with connected δ-surface, if the fundamental group $\pi_{1}\left(P_{\delta}\right)$ or the group of homologies $H_{1}\left(P_{\delta}, \mathbb{Z}\right)$ is trivial then Voronoi's conjecture $\mathbb{1}$ is true for P.
Proof. In both cases an arbitrary generic cycle γ can be represented as a product $\gamma=$ $\gamma_{1} \cdot \ldots \cdot \gamma_{k}$ where $\gamma_{i}=a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$ is a cycle from commutant $\left[\pi_{1}\left(P_{\delta}\right)\right]$. This is true because in both cases $\left[\pi_{1}\left(P_{\delta}\right)\right]=\pi_{1}\left(P_{\delta}\right)$ (and also this is the trivial group in the first case). It is clear that $\mathfrak{g}\left(\gamma_{i}\right)=1$ and hence $\mathfrak{g}(\gamma)=1$. Thus by lemma 2.6 Voronoi's conjecture is true for P.

Now we show how to generalize this theorem in terms of π-surface of a parallelohedron P. This theorem can be generalized in two directions. First we can consider polytopes with non-connected δ - or π-surfaces. In that case the polytope P can be represented as a direct sum of parallelohedra of smaller dimensions as it was proved in 16, so if for both polytopal summands the theorem 4.3 (and therefore Voronoi's conjecture) is true then it is true for P.

The second way of generalization is to introduce new cycles that have gain function 1. We can use a special family of "half-belt" cycles on the π-surface of P for these purposes.
Definition 4.4. The cycle γ on P_{π} is called half-belt cycle if its support is a combinatorial path $\gamma^{\prime}=\left[F_{1}, F_{2}, F_{3}, F_{1}\right]$ such that all three facets F_{i} belong to the same belt of length 6.

On the δ-surface P_{δ} this cycle corresponds to a path that starts on the facet F_{1} and ends on the opposite facet F_{1}^{\prime} of P and crosses only three parallel primitive faces of codimension 2.

Lemma 4.5. For every half-belt cycle γ we have $\mathfrak{g}(\gamma)=1$.
Proof. Let $\alpha_{1} \mathbf{n}_{1}+\alpha_{2} \mathbf{n}_{2}+\alpha_{3} \mathbf{n}_{3}=\mathbf{0}$ be the unique linear dependence of normal vectors $\mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}$ to facets F_{1}, F_{2}, and F_{3}. Then by definition of the gain function \mathfrak{g} we have

$$
\mathfrak{g}(\gamma)=\mathfrak{g}\left(F_{1}, F_{2}\right) \cdot \mathfrak{g}\left(F_{2}, F_{3}\right) \cdot \mathfrak{g}\left(F_{3}, F_{1}^{\prime}\right)=\frac{\left|\alpha_{2}\right|}{\left|\alpha_{1}\right|} \cdot \frac{\left|\alpha_{3}\right|}{\left|\alpha_{2}\right|} \cdot \frac{\left|\alpha_{1}\right|}{\left|\alpha_{3}\right|}=1
$$

Theorem 4.6. If the homology group $H_{1}\left(P_{\pi}, \mathbb{Q}\right)$ is generated by half-belt cycles of a parallelohedron P then Voronoi's conjecture is true for P.
Proof. At first we show that \mathfrak{g} is well-defined on $H_{1}\left(P_{\pi}, \mathbb{Q}\right)$. As above, we have that the gain function \mathfrak{g} is a homomorphism of $\pi_{1}\left(P_{\pi}\right)$ to $\left(\mathbb{R}_{+}, \cdot\right)$. The group $\left(\mathbb{R}_{+}, \cdot\right)$ is commutative, so the action \mathfrak{g} is well-defined on the commutant of $\pi_{1}\left(P_{\pi}\right)$ and therefore on $H_{1}\left(P_{\pi}, \mathbb{Z}\right)$. Since $\left(\mathbb{R}_{+}, \cdot\right)$ has no torsion \mathfrak{g} is trivial on the torsion subgroup of $H_{1}\left(P_{\pi}, \mathbb{Z}\right)$. Thus \mathfrak{g} is well-defined on $H_{1}\left(P_{\pi}, \mathbb{Q}\right)$.

Further since \mathfrak{g} acts trivially on all generators of $H_{1}\left(P_{\pi}, \mathbb{Q}\right)$ it is a trivial action on the group as well. Furthermore as \mathfrak{g} also acts trivially on the torsion subgroup of $H_{1}\left(P_{\pi}, \mathbb{Z}\right)$ thus it acts trivially of the group $H_{1}\left(P_{\pi}, \mathbb{Z}\right)$. Clearly, standard gluing-map $P_{\delta} \longrightarrow P_{\pi}$ holds action of \mathfrak{g} on cycles of P_{δ}. Thus \mathfrak{g} acts trivially of the group $H_{1}\left(P_{\delta}, \mathbb{Z}\right)$ and application of lemma 2.6 finishes the proof.

5. Three-dimensional case

In this section we will show that conditions of Theorem 4.6 hold for all three-dimensional parallelohedra.

Example 5.1. There are five combinatorial types of three-dimensional parallelohedra. Two types of reducible parallelohedra are cube \mathcal{C} and hexagonal prism \mathcal{P}. It easy to see that \mathcal{C}_{δ} is a collection of six disjoint open disks (corresponding to facets of \mathcal{C}) and \mathcal{C}_{π} is a collection of three disjoint open disks. In both cases it is easy to see that both fundamental groups $\pi_{1}\left(\mathcal{C}_{\delta}\right)$ and $\pi_{1}\left(\mathcal{C}_{\pi}\right)$ as well as homology groups $H_{1}\left(\mathcal{C}_{\delta}\right)$ and $H_{1}\left(\mathcal{C}_{\pi}\right)$ (over \mathbb{Z} or \mathbb{Q}) are trivial and conditions of both theorems 4.3 (for non-connected case) and 4.6 are true. For \mathcal{P} situation is a bit more interesting. The surface \mathcal{P}_{δ} is a collection of two open disks (bases of prism) and an open strip (the side surface) and \mathcal{P}_{π} is a collection of a disk and a Möbius strip. In this case

$$
\pi_{1}\left(\mathcal{P}_{\delta}\right) \cong \pi_{1}\left(\mathcal{P}_{\pi}\right) \cong H_{1}\left(\mathcal{P}_{\delta}, \mathbb{Z}\right) \cong H_{1}\left(\mathcal{P}_{\pi}, \mathbb{Z}\right) \cong \mathbb{Z}
$$

It is easy to find generators for all these groups. For both fundamental and homology group of δ-surface the generator is the cycle represented by single belt-cycle on the side surface of \mathcal{P}. For π-surface the generator is represented by unique half-belt cycle of \mathcal{P}.

Three types of irreducible parallelohedra are rhombic dodecahedron \mathcal{R}, elongated dodecahedron \mathcal{E}, and truncated octahedron \mathcal{O} (from left to right in Figure (3). The rhombic

Figure 3. Irreducible parallelohedra in \mathbb{R}^{3}.
dodecahedron and the truncated octahedron are 2-primitive (the Zhitomirskii case [20]) since all edges of these polytopes generate belts of length 6 . For any such parallelohedron its δ-surface is just the surface of parallelohedron itself. So, \mathcal{R}_{δ} and \mathcal{O}_{δ} are homeomorphic to the sphere \mathbb{S}^{2}, and \mathcal{R}_{π} and \mathcal{O}_{π} are homeomorphic to the projective plane $\mathbb{R} \mathbb{P}^{2}$. So, groups $\pi_{1}\left(\mathcal{R}_{\delta}\right), H_{1}\left(\mathcal{R}_{\delta}\right), \pi_{1}\left(\mathcal{O}_{\delta}\right)$ and $H_{1}\left(\mathcal{O}_{\delta}\right)$ are trivial and we can apply theorem 4.3 for
these polytopes. The groups $H_{1}\left(\mathcal{R}_{\pi}, \mathbb{Q}\right)$ and $H_{1}\left(\mathcal{O}_{\pi}, \mathbb{Q}\right)$ are trivial. Thus for this case we can also apply Theorem 4.6.

The most interesting case is the elongated dodecahedron \mathcal{E}. The manifold \mathcal{E}_{δ} is a sphere with four cuts. (The cuts correspond to four vertical edges of the middle polytope in Figure (3) The fundamental group $\pi_{1}\left(\mathcal{E}_{\delta}\right)$ is the free group with 3 generators. We can take three cycles consisting of two half-belts each going around some deleted edge as independent generators. Thus, the homology group $H_{1}\left(\mathcal{E}_{\delta}, \mathbb{Z}\right)$ is isomorphic to \mathbb{Z}^{3}.

The manifold \mathcal{E}_{π} is the real projective plane with two cuts, or equivalently, the Möbius strip with one cut. One possible triangulation of (closure of) this surface on the figure 4. the cuts are shaded with gray, and opposite points of the boundary circle are glued together as usual.

Figure 4. A triangulation of \mathcal{E}_{π}.
Fundamental group $\pi_{1}\left(\mathcal{E}_{\pi}\right)$ is generated by two cycles around cuts and arbitrary halfbelt cycle (one can use a cycle represented by half-circle from the figure 4 for that) but these three cycles are not independent. The group of one-dimensional homologies also can be found easily using that Betti number h_{1} of \mathcal{E}_{π} is 2 (to check this one can calculate the Euler characteristic of \mathcal{E}_{π} using figure (4). For homology groups we have $H_{1}\left(\mathcal{E}_{\pi}, \mathbb{Z}\right)=\mathbb{Z}^{2} \times T$, where T is the torsion part of homology group and does not affect on existence of canonical scaling. And $H_{1}\left(\mathcal{E}_{\pi}, \mathbb{Q}\right)$ is just \mathbb{Q}^{2}. In both cases generators of non-torsion part can be chosen as one half-belt cycle and composition of two half belt cycles around on of the cuts (or generating cycle of corresponding Möbius strip and cycle around cut on the Möbius strip). Thus Theorem 4.6 can be applied to this case as well.

6. Acknowledgments

Authors would like to thank Professor Nikolai Dolbilin and Professor Robert Erdahl for fruitful discussions and helpful comments and remarks.

The first author is supported by RScF project 14-11-00414.

References

[1] B. Delone, Sur la partition régulière de l'espace à 4 dimensions. Bulletin de l'Académie des Sciences de l'URSS. VII série, première partie 1 (1929), 79-110, deuxième partie 2 (1929), 147-164.
[2] B. Delone, Sur la sphère vide. A la mémoire de Georges Voronoi, Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na, 6 (1934), 793-800.
[3] M. Deza, V. Grishukhin, Properties of parallelotopes equivalent to Voronoi's conjecture. Eur. J. of Comb., 25 (2004), 517-533.
[4] T. Dienst, Fedorov's five parallelohedra in \mathbb{R}^{3},http://www.matha.mathematik.uni-dortmund.de/~thilo/contents
[5] R. Erdahl, Zonotopes, Dicings, and Voronoi's Conjecture on Parallelohedra. Eur. J. of Comb., 20:6 (1999), 527-549.
[6] A. Garber, On π-surfaces of four-dimensional parallelohedra, arXiv preprint, http://arxiv.org/abs/1309.7661, 2013.
[7] A. Gavrilyuk, On Voronoi problem for parallelotopes (in Russian). Masters thesis, Moscow State University, 2010.
[8] A.A. Gavrilyuk, A class of affinely equivalent Voronoi parallelohedra. Mathematical notes, 95:5 (2014), 625-633.
[9] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, 2nd edition, North-Holland, 1987.
[10] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, 2002.
[11] A. Ordine, A. Magazinov, A criterion of reducibility for a parallelohedron (in Russian), arXiv preprint, http://arxiv.org/abs/1305.5345, 2013.
[12] P. McMullen, On zonotopes, Trans. Amer. Math. Soc., 159, 1971, 91-109.
[13] P. McMullen, Convex bodies which tile space by translation. Mathematika, 27:1 (1980), 113-121.
[14] P. McMullen, Convex bodies which tile space by translation: Acnowledgement of priority. Mathematika, 28:2 (1981), 191-191.
[15] H. Minkowski, Allgemeine Lehrsätze über die convexen Polyeder. Gött. Nachr., 1897, 198-219.
[16] A. Ordine, Proof of the Voronoi conjecture on parallelotopes in a new special case. Ph.D. thesis, Queen's University, Ontario, 2005.
[17] S. Ryshkov, K. Rybnikov Jr., The Theory of Quality Translations with Applications to Tilings. Eur. J. of Comb., 18:4 (1997), 431-444.
[18] B.A. Venkov, About one class of Euclidean polytopes (in Russian). Vestnik Leningr. Univ., ser. Math., Phys., Chem., 9 (1954), 11-31.
[19] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Crelle's Journal, 133 (1908), 97-178, 134 (1908), 198-287, and 136 (1909), 67-181.
[20] O.K. Zhitomirskii, Verschärfung eines Satzes von Woronoi, Journal of Leningrad Math. Soc., 2 (1929), 131-151.

The University of Texas at Brownsville, Department of Mathematics, One University blvd., Brownsville, TX, 78520, USA.

E-mail address: alexeygarber@gmail.com
Steklov Mathematical Institute, 8 Gubkina Str., Moscow, 119991, Russia, and Center for Optical Neural Technologies, Scientific-Research Institute for System Analysis, RAS, Vavilova str., 44, korp. 2, Moscow 119333, Russia.

E-mail address: agavrilyuk.research@gmail.com
Steklov Mathematical Institute, 8 Gubkina str., Moscow, 119991, Russia.
E-mail address: magazinov-al@yandex.ru

