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Abstract. Finding a maximum independent set (MIS) of a given fam-
ily of axis-parallel rectangles is a basic problem in computational geom-
etry and combinatorics. This problem has attracted significant atten-
tion since the sixties, when Wegner conjectured that the corresponding
duality gap, i.e., the maximum possible ratio between the maximum
independent set and the minimum hitting set (MHS), is bounded by
a universal constant. An interesting special case, that may prove use-
ful to tackling the general problem, is the diagonal-intersecting case, in
which the given family of rectangles is intersected by a diagonal. Indeed,
Chepoi and Felsner recently gave a factor 6 approximation algorithm for
MHS in this setting, and showed that the duality gap is between 3/2 and
6. In this paper we improve upon these results. First we show that MIS
in diagonal-intersecting families is NP-complete, providing one smallest
subclass for which MIS is provably hard. Then, we derive an O(n2)-time
algorithm for the maximum weight independent set when, in addition
the rectangles intersect below the diagonal. This improves and extends
a classic result of Lubiw, and amounts to obtain a 2-approximation algo-
rithm for the maximum weight independent set of rectangles intersecting
a diagonal. Finally, we prove that for diagonal-intersecting families the
duality gap is between 2 and 4. The upper bound, which implies an
approximation algorithm of the same factor, follows from a simple com-
binatorial argument, while the lower bound represents the best known
lower bound on the duality gap, even in the general case.

An extended abstract of a preliminary version of this work appears in the proceedings
of the 11th Latin American Theoretical Informatics Symposium.
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1. Introduction

Given a family of axis-parallel rectangles, two natural objects of study are
the maximum number of rectangles that do not overlap and the minimum set
of points stabbing every rectangle. These problems are known as maximum
independent set MIS and minimum hitting set MHS respectively, and in the
associated intersection graph they correspond to the maximum independent
set and the minimum clique covering. We study these problems for restricted
classes of rectangles, and focus on designing algorithms and on evaluating
the duality gap, δGAP, i.e., the maximum ratio between these quantities.
This term arises as MHS is the integral version of the dual of the natural
linear programming relaxation of MIS.

From a computational complexity viewpoint, MIS and MHS of rectangles
are strongly NP-hard [10, 14], so attention has been put into approxima-
tion algorithms and polynomial time algorithms for special classes. The
current best known approximation factor for MIS are O(log log n) [4], and
O(log n/ log logn) for weighted MIS (WMIS) [5]. Very recently, Adamaszek
and Wiese [1] designed a pseudo-polynomial time algorithm finding a (1+ε)-
approximate solution for WMIS, but it is unknown whether there exist poly-
nomial time constant factor approximation algorithms. A similar situation
occurs for MHS: the current best approximation factor is O(log log n) [3],
while in general, the existence of a constant factor approximation is open.
Polynomial time algorithms for these problems have been obtained for spe-
cial classes. When all rectangles are intervals, the underlying intersection
graph is an interval graph and even linear time algorithms, assuming the
input is sorted, are known for MIS, MHS and WMIS [13]. Moving beyond
interval graphs, Lubiw [16] devised a cubic-time algorithm for computing a
maximum weight independent family of point-intervals, which can be seen
as families of rectangles having their upper-right corner along the same di-
agonal. More recently, Soto and Telha [18] considered the case where the
upper-right and lower-left corners of all rectangles are two prescribed point
sets of total size m. They designed an algorithm that computes both MIS
and MHS in the time required to do m by m matrix multiplication, and
showed that WMIS is NP-hard on this class. Finally, there are also known
PTAS for special cases, including the results of Chan [5] for squares, and
Mustafa and Ray [17] for unit height rectangles.

It is straightforward to observe that given a family of rectangles the size
of a maximum independent set is at most that of a minimum hitting set.
In particular, for interval graphs this inequality is actually an equality, and
this still holds in the case studied by Soto and Telha [18], so that the duality
gap is 1 for these classes. A natural question to ask is whether the duality
gap for general families of rectangles is bounded. Indeed, already in the
sixties Wegner [20] conjectured that the duality gap for arbitrary rectangles
families equals 2, whereas Gyárfás and Lehel [11] proposed the weaker con-
jecture that this gap is bounded by a universal constant. Although these
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conjectures are still open, Károlyi and Tardos [15] proved that the gap is
within O(log(mis)), where mis is the size of a maximum independent set.
For some special classes, the duality gap is indeed a constant. In particular,
when all rectangles intersect a given diagonal line, Chepoi and Felsner [6]
prove that the gap is between 3/2 and 6, and the upper bound has been
further improved for more restricted classes [6, 12].

1.1. Notation and classes of rectangle families. Throughout this pa-
per, R denotes a family of n closed, axis-parallel rectangles in R2. A rectan-
gle r ∈ R is defined by its lower-left corner `r and its upper-right corner ur.
For a point v ∈ R2 we let vx and vy be its x-coordinate and y-coordinate,
respectively. Also, each rectangle r ∈ R is associated with a nonnegative
weight wr. We also consider a monotone curve, given by a decreasing bijec-
tive real function, so that the boundary of each r ∈ R intersects the curve in
at most 2 points. We use ar and br to denote the higher and lower of these
points respectively (which may coincide). We identify the rectangles in R
with the set [n] = {1, . . . , n} so that a1

x < a2
x < · · · < anx. For any rectangle i,

we define f(i) as the rectangle j (if it exists) following i in the order of the

b-points, that is, bix < bjx and no rectangle k is such that bix < bkx < bjx. For
reference, see Figure 2.

A set of rectangles Q ⊆ R is called independent if and only if no two
rectangles in Q intersect. On the other hand, a set H ⊆ R2 of points
is a hitting set of R if every rectangle r ∈ R contains at least one point
in H. In this paper we consider the problem of finding an independent set
of rectangles in R of maximum cardinality (MIS), and its weighted version
(WMIS). We also consider the problem of finding a hitting set of R of
minimum size (MHS). Let us denote by mis(R), wmis(R), mhs(R) the
solutions to the above problems, respectively.

Since the solutions of the previous problems depend on properties of the
intersection graph I(R) = (R, {rr′ : r∩ r′ 6= ∅}) of the family R, we will as-
sume that no two defining corners in {`1, `2, . . . , `n, u1, u2, . . . , un} have the
same x-coordinates or y-coordinates (this is done without loss of generality
by individually perturbing each rectangle). We will also assume that the
curve mentioned in the first paragraph is the diagonal line D given by the
equation y = −x. This is assumed without loss of generality: by applying
suitable piecewise linear transformations on both coordinates we can trans-
form the rectangle family into one with the same intersection graph such
that every rectangle intersects D. In what follows, call the closed halfplanes
given by y ≥ −x and y ≤ −x, the halfplanes of D. Note that both halfplanes
intersect in D. The points in the bottom (resp. top) halfplane are said to
be below (resp. above) the diagonal.

We study four special classes of rectangle families intersecting D.

Definition 1 (Classes of rectangle families).

(1) R is diagonal-intersecting if for all r ∈ R, r ∩D 6= ∅.
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diagonal-intersecting diagonal-lower-intersecting diagonal-splitting

diagonal-corner-separated diagonal-touching

Figure 1. Examples of rectangle families.

(2) R is diagonal-splitting if there is a side (upper, lower, left, right) such
that D intersects all r ∈ R on that particular side.

(3) R is diagonal-corner-separated if there is a halfplane of D containing the
same three corners of all r ∈ R.

(4) R is diagonal-touching if there is a corner (upper-right or lower-left) such
that D intersects all r ∈ R exactly on that corner (in particular, either
all the upper-right corners, or all the lower-left corners are in D.)

By rotating the plane, we can make the following assumptions: In the
second class, we assume that the common side of intersection is the upper
one; in the third class, that the upper-right corner is on the top halfplane of
D and the other three are in the bottom one; and in the last class, that the
corner contained in D is the upper-right one. Under these assumption, each
type of rectangle family is more general than the next one. It is worth noting
that in terms of their associated intersection graphs, the second and third
classes coincide. Indeed, two rectangles of a diagonal-splitting rectangle
family R intersect if and only if they have a point in common in the bottom
halfplane of D. Therefore, we can replace each rectangle r with the minimal
possible one containing the region of r that is below the diagonal, obtaining
a diagonal-corner-separated family with the same intersection graph. See
Figure 1 for some examples of rectangle families.

Definition 2 (diagonal-lower-intersecting). A diagonal-intersecting family
R is diagonal-lower-intersecting if whenever two rectangles in R intersect,
they have a common point in the bottom halfplane of D.

As we will see later, the graph classes associated to these families satisfy
the following inclusions: Gtouch ( Glow-int = Gsplit = Gc-sep ( Gint. Here
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Gint = {I(R) : R is diagonal-intersecting} is the class of intersection graphs
arising from diagonal-intersecting families of rectangles, and Glow-int, Gsplit,
Gc-sep and Gtouch are the classes arising from diagonal-lower-intersecting,
diagonal-splitting, diagonal-corner-separated, and diagonal-touching fami-
lies of rectangles, respectively. We observe that these classes have appeared
in the literature under different names. Hixon [12] call the graphs in Gtouch

hook graphs, Soto and Thraves [19] call them And(1) graphs, while those in
Gint are called separable rectangle graphs by Chepoi and Felsner [6].

1.2. Our results. In §2 we give a quadratic-time algorithm to compute a
wmis(R) when R is diagonal-lower-intersecting and a 2-approximation for
the same problem when R is diagonal-intersecting. The former is the first
polynomial time algorithm for WMIS on a natural class containing diagonal-
touching rectangle families. Our algorithm improves upon previous work
in the area. Specifically, for diagonal-touching rectangle families, the best
known algorithm to solve WMIS is due to Lubiw [16], who designed a cubic-
time algorithm for the problem in the context of interval systems. More
precisely, a collection of point-intervals Q = {(pi, Ii)}ni=1 is a family such that
for all i, pi ∈ Ii and Ii = [left(Ii), right(Ii)] ⊆ R are a point and an interval,
respectively. Q is called independent if for k 6= j, pk /∈ Ij or pj /∈ Ik. Given
a finite collection Q of weighted point-intervals, Lubiw designed a dynamic
programming based algorithm to find a maximum weighted independent
subfamily of Q. It is easy to see1 that this problem is equivalent to that
of finding wmis(R) for the diagonal-touching family R = {ri}ni=1 where
ri is the rectangle with upper right corner (pi,−pi) and lower left corner
(left(Ii),−right(Ii)) and having the same weight as that of (pi, Ii). Lubiw’s
algorithm was recently rediscovered by Hixon [12].

As in Lubiw’s, our algorithm is based on dynamic programming. However,
rather than decomposing the instance into small triangles and computing
the optimal solution for every possible triangle, our approach involves com-
puting the optimal solutions for what we call a harpoon, which is defined
for every pair of rectangles. We show that the amortized cost of comput-
ing the optimal solution for all harpoons is constant, leading to an overall
quadratic time. Interestingly, it is possible to show that our algorithm is an
extension of the linear-time algorithm for maximum weighted independent
set of intervals [13].

In §3 we give a short proof that the duality gap δGAP, i.e., the maximum
ratio mhs /mis, is always at most 2 for diagonal-touching families; we also
show that δGAP ≤ 3 for diagonal-lower-intersecting families, and δGAP ≤ 4
for diagonal-intersecting families. These bounds yields simple 2, 3, and 4-
approximation polynomial time algorithms for MHS on each class (they can
also be used as approximation algorithms for MIS with the same guarantee,
however, as discussed in the previous paragraph, we have an exact algorithm
for WMIS on the two first classes, and a 2-approximation for the last one).

1This equivalence has been noticed before [18].
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The 4-approximation for MHS in diagonal-intersecting families is the best
approximation known and improves upon the bound of 6 of Chepoi and
Felsner [6], who also give a bound of 3 for diagonal-splitting families based on
a different method. For diagonal-touching families, Hixon [12] independently
showed that δGAP ≤ 2. To complement the previous results, we show that
the duality gap for diagonal-lower-intersecting families is at least 2. We do
this by exhibiting an infinite family of instances whose gap is arbitrarily
close to 2. Similar instances were obtained, and communicated to us, by
Cibulka et al. [7]. Note that this lower bound of 2 improves upon the 5/3 by
Fon-Der-Flaass and Kostochka [9] which was the best known lower bound
for the duality gap of general rectangle families.

In §4, we prove that computing a MIS on a diagonal-intersecting family
is NP-complete. In light of our polynomial-time algorithm for diagonal-
lower-intersecting families, the latter hardness result exhibits what is, in
a way, a class at the boundary between polynomial-time solvability and
NP-completeness. Three decades ago Fowler et al. [10] (see also Asano [2])
established that computing an MIS of axis-parallel rectangles squares is NP-
hard, by actually showing that this is the case even for squares. It is worth
mentioning that diagonal-intersecting families constitute the first natural
subclass of for which NP-hardness of MIS has been shown since then. Our
proof actually only uses rectangles that touch the diagonal line, but that
may intersect above or below it, and uses a reduction from Planar 3-sat.

Combining the results of Chalermsook and Chuzhoy [4] and Aronov et
al. [3], we show in §5 that the duality gap is O((log log mis(R))2) for a general
family R of rectangles, improving on the logarithmic bound of Károlyi and
Tardos [15]. Finally, in §6 we prove the claimed inclusions of the rectangle
families studied in this paper, described in Definition 1.

2. Algorithms for WMIS

The idea behind Lubiw’s algorithm [16] for WMIS on diagonal-touching
families is to compute the optimal independent set OPTij included in every

possible triangle defined by the points ui, uj (which are on D), and (uix, u
j
y)

for two rectangles i < j. The principle exploited is that in OPTij there
exists one rectangle, say i < k < j, such that OPTij equals the union of
OPTik, the rectangle k, and OPTkj . With this idea the overall complexity
of the algorithm turns out to be cubic in n. We now present our algorithm,
which works for the more general diagonal-lower-intersecting families, and
that is based in a more elaborate idea involving what we call harpoons.

2.1. Algorithm for diagonal-lower-intersecting families. Let us first
define some geometric objects that will be used in the algorithm. For any
pair of rectangles i < j we define Hi,j and Hj,i, two shapes that we call
harpoons. See Figure 2. More precisely, the horizontal harpoon Hi,j consists
of the points below the diagonal D obtained by subtracting rectangle i from
the closed box defined by the points (`ix, a

i
y) and aj . Similarly, the vertical
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harpoon Hj,i are the points below D obtained by subtracting j from the box

defined by the points (bjx, `
j
y) and bi. Also, for every rectangle i with i ≥ 1

(resp. such that f(i) exists) we define Bi
h (resp. Bi

v) as the open horizontal
strip that goes through ai−1 and ai (resp. as the open vertical strip that
goes through bi and bf(i)).

ai

bi

li

ui

aj

i

ai

bi

li
aj

bj

i

j

i

aj

ai

Bi
v

Bi+1
h

i
i+ 1

k = f(i)

ai

ai+1

bi

bf(i)

ai

bi

li
aj

bj

i

j

ai

bi

li
aj

bj

i

j

Figure 2. On the left, the construction of a harpoon and the
construction of the strips. On the middle, the harpoons Hij and
Hji, with i < j. On the right, other particular cases for the har-
poon Hij with i < j (the symmetric cases occur for Hji).

We say that a rectangle r is contained in the set Hi,j (and abusing no-
tation, we write r ∈ Hi,j) if the region of r below the diagonal is contained
in Hi,j .

In our algorithm we will compute S(i, j), the weight of the maximum
independent set for the subset of rectangles contained in the harpoon Hi,j .
We define two dummy rectangles 0 and n+ 1, at the two ends of the diago-
nal such that the harpoons defined by these rectangles contain every other
rectangle. As previously observed, two rectangles intersect in R if and only
if they intersect below the diagonal. Therefore, wmis(R) = S(0, n+ 1).
Description of the algorithm:

1. Initialization. In the execution of the algorithm we will need to know
what rectangles have their lower-left corner in which strips. To compute
this we do a preprocessing step. Define B̂i

v and B̂i
h as initially empty.

For each rectangle r ∈ R, check if `r is in Bi
h. If so, we add r to the set

B̂i
h. Similarly, if `r is in Bi

v, we add r to the set B̂i
v.

2. Main loop. We compute the values S(i, j) corresponding to the maximum-
weight independent set of rectangles in R strictly contained in Hi,j . We
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do this by dynamic programming starting with the values S(i, i) = 0.
Assume that we have computed all S(i, j) for all i, j such that |i−j| < `.
We now show how to compute these values when |i− j| = `.
2.1 Set S(i, j) = S(i, j − 1) if i < j and S(i, j) = S(i, f(j)) if i > j.

2.2 Define B̂i,j as B̂j
h if i < j, or B̂j

v if i > j.

2.3 For each rectangle k ∈ B̂i,j and strictly contained in harpoon Hi,j

do:
2.3.1. Compute m = wk + max{S(i, k), S(k, i)}+ S(k, j).
2.3.2. If m > S(i, j), then S(i, j) := m.

3. Output. S(0, n+ 1).

It is trivial to modify the algorithm to return not only wmis(R) but also
the independent set of rectangles attaining that weight. We now establish
the running time of our algorithm.

Theorem 1. The previous algorithm runs in O(n2).

Proof. The pre-processing stage needs linear time if the rectangles are al-
ready sorted, otherwise we require O(n log n) time. The time to compute

S(i, j) is O(1 + |B̂i,j |) since checking if a rectangle is in a harpoon takes

constant time. As the index of a rectangle is at most once in some B̂h and
at most once in some B̂v, the time to fill all the table S(·, ·) is:∑

(i,j)∈[n]2

O(1 + |B̂i,j |) = O(n2).

The algorithm is then quadratic in the number of rectangles. �

In order to analyze the correctness of our algorithm we define a partial
order over the rectangles in R.

Definition 3. The (strict) onion ordering ≺ in R is defined as

i ≺ j ⇐⇒ rectangles i and j are disjoint, `ix < `jx, and `iy < `jy.

It is immediate to see that ≺ is a strict partial ordering in R. We say
that i is dominated by j if i ≺ j; in other words, i is dominated by j if i
and j are disjoint and `i is dominated by `j under the standard dominance
relation of R2.

For any rectangle k in a harpoon Hi,j , let Sk(i, j) be the value of the
maximum-weight independent set containing k and rectangles in Hi,j which
are not dominated by k in the onion ordering, and Sk(i, j) be the corre-
sponding set of rectangles.

Lemma 1. For any rectangle k in Hi,j , the following relation holds:

Sk(i, j) = wk + max {S(i, k), S(k, i)}+ S(k, j).

Proof. Since k ∈ Hi,j , we have that i, k and j are mutually non-intersecting,
and as indices, min(i, j) < k < max(j, i). Assume that the harpoon is
horizontal, i.e., i < j (the proof for i > j is analogous). In particular, we
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know that ai, bi, ak, bk, aj , bj appear in that order on the diagonal. There are
three cases for the positioning of the two rectangles i and k. See Figure 3.

i

j

k

i

j

k

i

j

k

Figure 3. The three cases for a rectangle in a horizontal harpoon.

First case: i and k are separated by a vertical line, but not separated by a
horizontal one. Noting that Hi,k ⊆ Hk,i, we conclude that all the rectangles
of Sk(i, j) \ {k} are in Hk,i or in Hk,j . Since Hk,i and Hk,j are disjoint, as
shown on the first picture, we conclude the correctness of the formula.

Second case: i and k are separated by a horizontal line, but not by a
vertical one. The proof follows almost exactly as in the first case.

Third case: i and k are separated by both a horizontal line and a vertical
line. By geometric and minimality arguments, all the rectangles in Sk(i, j)\
{k} are in the union of the three harpoons Hi,k, Hk,i and Hk,j depicted.
Finally, if there are two rectangles in Hi,k ∪Hk,i then they must be in the
same harpoon, so the formula holds. �

Theorem 2. Our algorithm returns a maximum weight independent set
of R.

Proof. By induction. For the trivial harpoons Hi,i, the maximum inde-
pendent set has weight 0, because this set is empty. The correctness of the
theorem follows directly from the previous lemma and the next implications:
For i 6= j,

i < j =⇒ S(i, j) = max

{
S(i, j − 1), max

k∈B̂j
h∩Hi,j

Sk(i, j)

}
.

j < i =⇒ S(i, j) = max

{
S(i, f(j)), max

k∈B̂j
v∩Hi,j

Sk(i, j)

}
.

Indeed, assume that i < j (the case i > j is analogous). Let S be the
MIS corresponding to S(i, j), and let m ∈ S be minimal with respect to
domination. If m is in Hi,j−1 then S(i, j) = S(i, j − 1). Otherwise, m

is in B̂j
h and since S \ {m} does not contain rectangles dominated by m,

S(i, j) = Sm(i, j). �
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2.2. An approximation for diagonal-intersecting families. We use
the previous algorithm to get a 2-approximation for diagonal-intersecting
rectangle families. This improves upon the 6-approximation (which is only
for the unweighted case) of Chepoi and Felsner [6].

Theorem 3. There exists a 2-approximation polynomial algorithm for WMIS
on diagonal-intersecting rectangle families.

Proof. Divide R into two subsets: the rectangle that intersect the diagonal
on their upper side, and the ones that don’t. It is easy to see that every
rectangle in the second subset intersect the diagonal on its left side. Using
symmetry, the left side case is equivalent to the upper side case. Therefore
we can compute in polynomial time a WMIS in each subset. We output the
heaviest one. Its weight is at least half of wmis(R). This algorithm gives a
2-approximation �

3. Duality gap and other approximation algorithms

In this section we explore the duality gap, that is, the largest possible
ratio between mhs and mis, on some of the rectangle classes defined before.

Theorem 4. The duality gap for diagonal-touching rectangle families is
between 3/2 and 2. For diagonal-lower-intersecting families it is between 2
and 3, and for diagonal-intersecting families it is between 2 and 4.

We will prove the upper bounds and the lower bounds separately.

Proof of the upper bounds in Theorem 4. Let R be a rectangle family in the
plane, that can be in one of the three classes described on the theorem. In the
case which R is diagonal-lower-intersecting we first replace each rectangle
r ∈ R by the minimal one containing the region of r that is below the
diagonal. The modified family has the same intersection graph as before, but
it is diagonal-corner-separated. In particular, the region of each rectangle
that is above the diagonal is a triangle or a single point.

We use Rx and Ry to denote the projections of the rectangles in R on the
x-axis and y-axis respectively. Both Rx and Ry can be regarded as intervals,
and so we can compute in polynomial time the minimum hitting sets, Px
and Py, and the maximum independent sets, Ix and Iy, of Rx and Ry
respectively. Since interval graphs are perfect, |Px| = |Ix| and |Py| = |Iy|.

Furthermore, since rectangles with disjoint projections over the x-axis
(resp. over the y-axis) are disjoint, we also have

mis(R) ≥ max{|Ix|, |Iy|} = max{|Px|, |Py|}.

Observe that the collection P = Px × Py ⊂ R2 hits every rectangle of R.
From here we get the (trivial) bound mhs(R) ≤ |P| ≤ mis(R)2 which holds
for every rectangle family. When R is in one of the classes studied in this
paper, we can improve the bound.
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Let P− and P+ be the sets of points in P that are below or above the
diagonal, respectively. Consider the following subsets of P:

F− = {p ∈ P− : @q ∈ P− \ {p}, px < qx and py < qy}.
F+ = {p ∈ P+ : @q ∈ P+ \ {p}, qx < px and qy < py}.
F∗ = {p ∈ P+ : @q ∈ P+ \ {p}, qx ≤ px and qy ≤ py}.

The set F− (resp. F+) forms the closest “staircase” to the diagonal that
is below (resp. above) it. The set F∗ corresponds to the lower-left bending
points of the staircase defined by F+. See Figure 4).

ut ut
ut

ut

×
bc×
ut
ut

×
×utbc×
ut

ut ut

bc×
×

b

b

b

b

b

b

b

b

b

b

b b

b

b

⊕ ⊕ ⊕ ⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

Figure 4. We do not represent the rectangles but Px and Py

(the plus into circles, along the axis). The points of P \ (F+∪F−)
are the dots, F− corresponds to the triangles, F+ corresponds to
the ’x’-s, and F∗ corresponds to the circles. Remark that a point
can be in several sets.

From here, it is easy to see that

max{|F−|, |F+|} ≤ |Px|+ |Py| − 1 ≤ 2 mis(R)− 1.

|F∗| ≤ max{|Px|, |Py|} ≤ mis(R).

If r ∈ R is hit by a point of P−, let p1(r) be the point of P−∩ r closest to
the diagonal (in `1-distance). Since r intersects the diagonal, and the points
of P form a grid, we conclude that p1(r) ∈ F−. Similarly, if r ∈ R is hit by
a point of P+, let p2(r) be the point of P+∩ r closest to the diagonal. Since
r intersects the diagonal, we conclude that p2(r) ∈ F+. Furthermore, if the
region of r that is above the diagonal is a triangle, then p2(r) ∈ F∗.

IfR is diagonal-touching, then every rectangle is hit by a point of F−, and
so mhs(R) ≤ |F−| ≤ 2 mis(R)− 1. If R is diagonal-lower-intersecting (and,
after the modification discussed at the beginning of this proof, diagonal-
corner-separated), then every rectangle is hit by a point of F− ∪F∗, and so
mhs(R) ≤ |F−|+ |F∗| ≤ 3 mis(R)−1. Finally, if R is diagonal-intersecting,
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then every rectangle is hit by a point of F− ∪F+, and so mhs(R) ≤ |F−|+
|F+| ≤ 4 mis(R)− 2. �

Proof of the lower bounds of Theorem 4. The lower bound of 3/2 is achieved
by any family R whose intersection graph G is a 5-cycle. It is easy to see
that R can be realized as a diagonal-touching family, that mis(R) = 2 and
mhs(R) = 3, and so the claim holds.

The lower bound of 2 for diagonal-lower-intersecting and diagonal-intersecting
families is asymptotically attained by a sequence of rectangle families {Rk}k∈Z+ .
We will describe the sequence in terms of infinite rectangles which intersect
the diagonal, but it is easy to transform each Rk into a family of finite ones
by considering a big bounding box.

For i ∈ Z+, define the i-th layer as Li = {U(i), D(i), L(i), R(i)}, and for

k ∈ Z+, define the k-th instance as Rk =
⋃k
i=1 Li, where:

U(i) = [2i, 2i+ 1]× [−(2i+ 1
3),+∞), D(i) = [2i+ 2

3 , 2i+ 5
3 ]× (−∞,−2i]

L(i) = (−∞, 2i+ 1
3 ]× [−2i− 1,−2i], R(i) = [2i,∞)× [−(2i+ 5

3),−(2i+ 2
3)].

L(1)

L(2)

L(3)

L(4)

R(1)

R(2)

R(3)

R(4)

U(1) U(2) U(3) U(4)

D(1) D(2) D(3) D(4)

Figure 5. The family R4. The diagonal line shows this family is
diagonal-intersecting. The staircase line shows that it is actually
lower-diagonal-intersecting.

Consider the instance Rk depicted in Figure 5 with k layers of rectangles.
Rk can be easily transformed into a diagonal-lower-intersecting family by
“straightening” the staircase curve shown in the figure without changing its
intersection graph. Let I be a maximum independent set of rectangles in
that instance. It is immediately clear that a minimum hitting set has size
2k since no point in the plane can hit more that two rectangles.

Let us prove that the size of a maximum independent set is at most k+2,
amounting to conclude that the ratio is arbitrarily close to 2. To this end,



RECTANGLES INTERSECTING A DIAGONAL LINE 13

we let iD = min{i : D(i) ∈ I} and iR = min{i : R(i) ∈ I}, and if no
D(i) ∈ I or no R(i) ∈ I, we let iD = k+ 1 or iR = k+ 1, respectively. When
iD = iR = k + 1, it is immediate that |I| ≤ k. Assume then, without loss of
generality, that iD < iR.

Since for i = 1, . . . , iD − 1 the set I neither contains rectangle D(i) nor
R(i), we have that I contains at most one rectangle on each of these layers.

It follows that |I ∩ ∪iD−1
i=1 Li| ≤ iD − 1. Similarly, for i = iD + 1, . . . , iR − 1

the set I neither contains rectangle L(i) nor R(i), thus |I ∩ ∪iR−1
i=iD+1Li| ≤

iR − iD − 1. Finally, we have that for i = iR + 1, . . . , k the set I neither
contains rectangle L(i) nor U(i), and on layer iR, I contains at most 2
rectangles; thus |I ∩ ∪ki=iRLi| ≤ k − iR + 2. To conclude, note that I may
contain at most 2 rectangles of layer iD, then

|I| =
k∑
i=1

|I ∩ Li| ≤ iD − 1 + iR − iD − 1 + k − iR + 2 + 2 = k + 2. �

Corollary 1. There is a simple 2-approximation polynomial time algo-
rithm for MHS on diagonal-touching families, a 3-approximation for MHS
on diagonal-lower-intersecting families, and a 4-approximation polynomial
time algorithm for MHS on diagonal-intersecting families.

Proof. The algorithm consists in computing and returning F− for the first
case, F− ∪ F∗ for the second one, and F− ∪ F+ for the third one. �

4. NP-hardness of MIS for diagonal-intersecting families

In this section we prove the following theorem. It is worth noting that the
class of rectangles it refers to is not the class of diagonal-touching rectangles:
some of the rectangles may touch the diagonal on its lower-left corner while
others may touch it on its upper-right one.

Theorem 5. The MIS problem is NP-hard on diagonal-intersecting families
of rectangles, even if the diagonal intersects each rectangle on a corner.

Proof. We use a reduction from the Planar 3-SAT problem which is NP-
complete [24]. The input of the Planar 3-SAT problem consists of a
Boolean formula ϕ in 3-CNF whose associated graph is planar, and the
formula is accepted if and only if there exists an assignment to its variables
such that in each clause at least one literal is satisfied. Let ϕ be a planar
3-SAT formula. The (planar) graph associated with ϕ can be represented
in the plane as in Figure 6, where all variables lie on an horizontal line,
and all clauses are represented by non-intersecting three-legged combs [23].
We identify each clause with its corresponding comb, and vice versa. Using
this embedding as base, which can be constructed in a grid of polynomial
size [23], we construct a set R of rectangles intersecting the diagonal D,
such that there exists in R an independent set of some given number of
rectangles if and only if ϕ is accepted. Such a construction of R follows
ideas of Caraballo et al. [22].
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v1 v2 v3 v4 v5 v6

Figure 6. Planar embedding of ϕ = (v1 ∨ v2 ∨ v3) ∧ (v3 ∨ v4 ∨
v5) ∧ (v1 ∨ v3 ∨ v5) ∧ (v1 ∨ v2 ∨ v4) ∧ (v2 ∨ v3 ∨ v4) ∧ (v4 ∨ v5 ∨ v6)

∧ (v1 ∨ v5 ∨ v6).

Let ϕ be an instance of the Planar 3-SAT problem, with n variables and
m clauses, and let E0 denote the above embedding of ϕ. For any variable
v, let d(v) denote the number of clauses in which v appears. We assume
that every variable appears in each clause at most once. Given any clause
C with variables u, v, and w, such that u, v, and w appear in this order
from left to right in the embedding E0, we say that u is the left variable
of C, and that w is the right variable. Given E0, using simple geometric
transformations we can obtain the next slightly different planar embedding
E1 of ϕ. Essentially, E1 can be obtained from E0 by arranging the variables
in the diagonal D and extending the combs. Such an embedding E1 has the
next further properties (see Figure 7):

v1

v2

v3

v4

v5

v6

Figure 7. The embedding E1 obtained (essentially) from E0 by
arranging the variables as segments in the diagonal D and extend-
ing the combs. For clarity, each variable segment is represented by
a parallelogram.

(1) Each variable v is represented by a segment Sv ⊂ D, divided into three
equal parts: S`v is the left part, Smv the middle one, and Srv the right
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one. The segments Sv’s are pairwise disjoint and equally spaced in D,
and appear in D from left to right as the v’s appear in E0. Let δ denote
the vertical gap between successive segments Sv’s.

(2) If the variable v is the left variable of a clause C above D, then the left
leg of C (i.e. the one corresponding to v) contacts the interior of Srv .
Otherwise, it contacts the interior of Smv .

(3) If the variable v is the right variable of a clause C below D, then the
right leg C (i.e. the one corresponding to v) contacts the interior of S`v.
Otherwise, it contacts the interior of Smv .

The above properties (1)-(3) of E1 allows us to obtain the next embed-
ding E2 of ϕ (refer to Figure 8). Let v be any variable. Let C1, C2, . . . , Ck
be the clauses above the diagonal having v as left variable, sorted accord-
ing to the left-to-right order of the contact points of their left legs with Srv .
Let s1, s2, . . . , sk denote the horizontal segments of C1, C2, . . . , Ck, respec-
tively. Assume w.l.o.g. that s1, s2, . . . , sk are equally spaced at a distance
less than δ/2k. Push downwards simultaneously s1, s2, . . . , sk to modify
C1, C2, . . . , Ck so that s1 is now below Sv, the vertical gap between sk and
Sv is less than δ/2, and the left legs of C1, C2, . . . , Ck are inverted and make
contact with Srv from below. Further modifying C1, C2, . . . , Ck by invert-
ing the left-to-right order of the contact points of C1, C2, . . . , Ck with Srv ,
C1, C2, . . . , Ck become pairwise disjoint. Proceed similarly (and symmetri-
cally) with the clauses below the diagonal having v as right variable. It can
be verified that this new embedding E2 has no crossings among the combs
and variable segments.

Using the embedding E2, we construct a set R or rectangles via variable
gadgets and clause gadgets.

Variable gadgets: For each variable v, the segment Sv is replaced by a
necklace Qv of 12 · d(v) + 2 squares (their intersection graph is a cycle), so
that each square intersects the diagonal D on a corner and only consecutive
squares pairwise intersect (see Figure 9). We number these squares consec-
utively in clockwise order, starting from the topmost one which is numbered
0. Let Q1

v ⊂ Qv be the first top-down 2 · d(v) squares above D, Q2
v ⊂ Qv

the second top-down 2 · d(v) squares above D, Q3
v ⊂ Qv the first bottom-up

2 ·d(v) squares below D, and Q4
v ⊂ Qv the second bottom-up 2 ·d(v) squares

below D. Since any clause can contact: S`v from above, Srv from below, and
Smv from either above or below, we identify S`v with Q1

v, S
m
v with Q2

v ∪Q4
v,

and Srv with Q3
v.

Clause gadgets: Let C be a clause with variables u, v, and w, appearing
in this order from left to right in E0. We represent C by the set QC of
nine thin rectangles, three vertical and six horizontal, as in Figure 10. The
vertical rectangles of QC represent the three legs of C, and for z = u, v, w
the vertical rectangle corresponding to z intersects a unique rectangle Rz of
Qv, and D as well, so that Rz is even numbered if and only if z appears as
positive in C. Furthermore, if C is above D in E1 then Ru ∈ Q3

u, Rv ∈ Q2
v,
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v1

v2

v3

v4

v5

v6

Figure 8. The embedding E2 obtained from E1 by modifying
the combs and inverting one leg.

Q3
v

Q4
v

Q2
v

Q1
v

Figure 9. The variable gadget for the variable v. The even
numbered squares are shaded.
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and Rw ∈ Q2
w. Otherwise, if C is below D in E1 then Ru ∈ Q4

u, Rv ∈ Q4
v,

and Rw ∈ Q1
w. Observe that since for every variable z each of the sets Q1

z,
Q2
z, Q

3
z, Q

4
z contains 2 · d(z) squares, we can guarantee that each square of

the variable gadgets is intersected by at most one vertical rectangle of the
clause gadgets.

C = (u ∨ v ∨ w)

u

v

w

Figure 10. Clause gadget for the clause C = (u ∨ v ∨ w). The
variable u is positive in C and the vertical rectangle of C corre-
sponding to u intersects D and an even numbered square of Q3

u.
The variable v appears negative and the vertical rectangle of C cor-
responding to v intersects D and an odd numbered square of Q4

v.
The variable w appears positive and the vertical rectangle of C
corresponding to w intersects D and an even numbered square

of Q3
w.

Reduction: Observe that in each variable v, the set Qv has exactly two
maximum independent sets of rectangles of size 6 · d(v) + 1: the set Qv,0 ⊂
Qv of the even-numbered squares and the set Qv,1 ⊂ Qv of the the odd-
numbered squares. We consider that v = 1 if we select Qv,1 as a maximum
independent set of rectangles of Qv, and consider v = 0 if Qv,0 is selected.
Observe that the next statements are satisfied:

(1) if v = 1 then the vertical rectangles of the clause gadgets in which
v appears as positive, together with Qv,1, form an independent set of
rectangles.
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(2) if v = 0 then the vertical rectangles of the clause gadgets in which v
appears as negative, together with Qv,0, form an independent set of
rectangles.

(3) For each clause C, any maximum independent set of rectangles of QC
has size 4, and among its elements there must be a vertical rectangle.

(4) For each clause C and each variable v in C: there exists an independent
set of size (6 · d(v) + 1) + 4 in Qv ∪QC , such that the vertical rectangle
of C corresponding to v is selected, if and only if either v appears as
positive in C and Qv,1 is selected or v appears as negative in C and Qv,0
is selected.

Let R be the set of the rectangles of all variable gadgets and clause gadgets.
From the above observations, we claim that ϕ can be accepted if and only
if R has an independent set of exactly

∑
v(6 · d(v) + 1) + 4m rectangles.

Therefore, the MIS problem is NP-hard on diagonal-intersecting families
of rectangles (even if the diagonal intersects each rectangle on a corner) since
R is a family of such rectangles. �

5. The duality gap of general rectangle families is
O((log log(mis))2)

In this section, we prove that the duality gap of general rectangle families
is O((log log(mis))2). This observation is a simple application of the results
in [4] and [3] however, as far as we know, it is not a known result.

Theorem 6. For every rectangle family R
mhs(R)

mis(R)
≤ O

(
(log log mis(R))2

)
.

In order to prove this bound, we need to briefly recall the natural linear
programming formulations for MIS and MHS. A point p in the plane is
called a witness of a maximal clique of the intersection graph of R if it hits
this clique. Given any (possibly infinite) hitting set H ⊆ R2 of containing
the witness points of all maximal cliques inR, define the following polytopes:

PolH(R) =
{
x ∈ RR :

∑
r∈R: p∈r

xr ≤ 1 for all p ∈ H,x ≥ 0
}
,

DualH(R) =
{
y ∈ RH :

∑
p∈H∩r

yp ≥ 1 for all r ∈ R, y ≥ 0
}
.

and the following dual linear programs:

LPH(R) = max

{∑
r∈R

xr : x ∈ PolH(R)

}
,

LP′H(R) = min

{∑
p∈H

yp : y ∈ DualH(R)

}
.
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It is easy to see that the previous linear programs are relaxations of MIS
and MHS respectively, therefore

mis(R) ≤ LPH(R) = LP′H(R) ≤ mhs(R); (1)

furthermore the value LPH(R) does not depend on the hitting set H chosen,
and so, we can drop the subindex H in (1).

Chalermsook and Chuzhoy [4] showed that for any family of rectangles
R having their corners in the grid [t]2 = [t] × [t], it is possible to find an
independent set Q with

mis(R) ≤ LP[t]2(R) ≤ |Q| ·O(log log(t)), (2)

On the other hand, Aronov et al. [3] have shown the existence ofO(1
ε log log 1

ε )-
nets for families of axis-parallel rectangles, concluding that for every family
R of rectangles, there exist a polynomial time computable hitting set P ,
with

|P | ≤ O(LP(R) log log(LP(R))). (3)

To prove Theorem 6, we require the following lemma.

Lemma 2. For every family of rectangles R, with α := mis(R), there is
another family R′ of rectangles with corners in the grid [α]2 such that

mis(R′) ≤ mis(R) ≤ LP(R) ≤ 9 LP(R′). (4)

Proof. Let Rx (resp. Ry) be the family of intervals obtained by projecting
R on the x-axis (resp. y-axis), and let Px (resp. Py) be minimum hitting sets
for Rx (resp. Ry). Similar to the proof of the upper bounds of Theorem 4,
we have

max{|Px|, |Py|} = max{mis(Rx),mis(Ry)} ≤ mis(R) = α.

Consider the grid Px×Py of size at most α×α. By translating and piece-
wise scaling the plane, we can identify Px with the set {(i, 0) : 1 ≤ i ≤ |Px|}
and Py with the set {(0, j) : 1 ≤ j ≤ |Py|} without changing the intersection
graph associated with R. Thus, we can identify the grid Px × Py with a
subgrid of [α]× [α]. Note that this grid is itself, a hitting set of R.

Furthermore, consider the family R̃ = {R∩[1, α]×[1, α] : R ∈ R}. This is,

R̃ is obtained by trimming the rectangles to the rectangular region [1, α]×
[1, α]. It is easy to see that this operation does not change the intersection
graph of the family either. So, for our purposes, we will assume w.l.o.g. that

R = R̃.
LetR′ be the family of rectangles obtained by replacing each rectangle r of

R by the minimal possible rectangle in the plane containing r and having all
its corners in the grid [α]× [α]. This is, we replace the rectangle r defined by

`r and ur by the rectangle defined by ˜̀r = (b`rxc, b`ryc) and ũr = (durxe, durye),
where b·c and d·e are the floor and ceiling functions, respectively.

The first inequality of (4) follows since any independent set of R′ induces
an independent set of R of the same size. The second inequality follows
from (1). The only non-trivial inequality is the last one.
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Since [α]2 is a hitting set forR andR′, LP[α]2(R) = LP(R) and LP[α]2(R′) =

LP(R). Consider a fractional optimal solution y′ for LP′[α]2(R′) and recall

that the support of y′ is contained in [α]2. Observe that if p is a point in the
support of y that fractionally hits some grown rectangle r+, then either p,
one of its 4 immediate neighbors in the grid or one of its 4 diagonal neighbors
in the grid will hit the original rectangle r. Define y as

yq = y′q +
∑

p∈[α]2 : p immediate or
diagonal neighbor of q

y′p, for all q ∈ [α]2. (5)

By the previous observation, y is a fractional feasible solution for the
dual of LP[α]2(R), and by definition, its value is at most 9 times the value

of y′. �

Now we are ready to prove Theorem 6.

Proof of Theorem 6. Let R be a family of rectangles with mis(R) = α and
R′ the family guaranteed by Lemma 2 Then, by combining (3) and (2), we
have:

mhs(R) ≤ O(LP(R) log log(LP(R))) ≤ O(LP(R′) log log(LP(R′)))
= O(LP[α]2(R′) log log(LP[α]2(R′)))
≤ O(α log log(α) log log(α log log(α))) = O(α(log log(α))2). �

6. Graph classes inclussions

Lemma 1. Let Gint = {I(R) : R is diagonal-intersecting} be the class of
intersection graphs arising from diagonal-intersecting families of rectangles.
Let also Glow-int, Gsplit, Gc-sep and Gtouch be the classes arising from diagonal-
lower-intersecting, diagonal-splitting, diagonal-corner-separated, and diagonal-
touching families of rectangles, respectively. Then

Gtouch ( Glow-int = Gsplit = Gc-sep ( Gint.

Before proving Lemma 1, we give a simple characterization of diagonal
touching graphs that we call crossing condition, which was independently
found by Hixon [12] and Soto and Thraves [19].

Property 1. The diagonal touching graphs are the graphs such that there
exists an order < on the vertices, such that: for all a, b, c, d ∈ V such that
a < b < c < d, if both (a, c) ∈ E and (b, d) ∈ E then (b, c) ∈ E.

Proof. Given a set of diagonal touching rectangles, we consider the ordering
of the rectangles along the diagonal. Assume that the condition does not
hold for four vertices a < b < c < d. As (b, c) /∈ E, by symmetry we
can assume that ubx < `cx. But (a, c) ∈ E leads to `cx ≤ uax, so ubx < uax,
contradicting a < b.

Consider now a graph with the property. We describe how to construct the
rectangles in a way that their upper-right corner touches the diagonal. First
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Figure 11. G2C6 , the doubled 6-cycle and its diagonal
touching representation.

put the top-right corners on the diagonal, in the ordering. Each rectangle
will be just large enough to touch its furthest neighbors, i.e., for a rectangle i,
if k is the smallest neighbors (in the ordering) and l the biggest, we choose
`ix = ukx and `iy = uly. All the intersections in the graphs occur in this
rectangle representation. Assume that there is an intersection between two
rectangles i < j and (i, j) /∈ E. If the rectangle i goes down enough to touch
j it means that there exists k, with j < k and (i, k) ∈ E. By symmetry,
there also exists h, with h < i and (h, j) ∈ E. Then the crossing condition
does not hold. �

Claim 1. Gtouch ( Glow-int
Proof. The inclusion of the two classes is a consequence of the geometric
definitions of the classes. To prove that Gtouch and Glow-int are different we
exhibit a specific graph in Glow-int\Gtouch. Before doing that note that Glow-int

is closed under adding a universal vertex, i.e., if G = (V,E) is in Glow-int,

then Ĝ = (V ∪ {u}, E ∪ {(v, u)|v ∈ V }) is also in the class (however this
is not true for graphs in Gtouch). Indeed, in Glow-int one can always create
a rectangle R with aR < a1, bR > bn, so that R is dominated by all other
rectangles. This new rectangle will be a universal vertex of the underlying
graph.

Thus consider the graph G2C6 of Figure 11. This graph is clearly in Gtouch

(see the rectangle representation on the right of the figure). We show that
if a universal vertex is added to G2C6 , the graph is not in Gtouch anymore,
while by the previous observation it certainly belongs to Glow-int.

First remark that in diagonal touching position, the rectangle that cor-
responds to a universal vertex (i in the ordering), define a partition of the
vertices {r|r < i} ∪ {r|r > i} inducing two interval graphs. Indeed as all
the rectangles of {r|r < i} touch the upper side of i they form an interval
graph; similarly for {r|r < i} with the right side. The property is illustrated
by Figure 12.

For convenience we redraw G2C6 as in Fig. 13 (keeping in mind that there
are edges linking the two ends). Note that two vertices of the same column
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{r|r < i}

{r|r > i}

i (universal vertex)

Figure 12. Universal vertex and partition of the other rectangles.

Figure 13. Tube representation.
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Figure 14. The three steps for L=2

are topologically equivalent as they share exactly the same neighbors. In the
diagonal representation, they corresponds to the twin rectangles. Assume
that a universal vertex can be added to G2C6 while staying in Gtouch. Then
the rectangles can be partitioned into two interval graphs. We say that a
vertex is black (resp. white), if it is in the first (resp. second) interval graph.
An alternating chain is a path in the graph G2C6 such that two neighbors
in the path have different colors and no two twins can be in the path. We
consider the length L of a maximum alternating chain in the graph, and for
each L (1 ≤ L ≤ 6) we show a contradiction. For this recall that an interval
graph cannot have a 4-cycle.

L = 1. In this case there is only one color, say white, thus there is a white
4-cycle.

L = 2. In this case we proceed in three steps, see Figure 14. Take a max-
imum alternating chain (first step), as it is maximum the colors of
the column on the left and on the right are determined (second step
in the figure), then there is only one possibility to avoid the 4-cycles
(third step). Implying in any case that there is an alternating chain
of length 4, which is a contradiction.

L = 3. The argument is analogous to that of L = 2.
L = 4. In the case the coloring is uniquely determined (up to the obvious

color switching), and it is illustrated in Figure 15.
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Figure 15. The three steps for L=4.

l bbc bc ld

bc

b

b bc lbld
B1 W1 B2

W2

Figure 16. The case L=4, with the groups.

Observe that we have two independent groups of black vertices
and two independent groups of white vertices (of course the colors
are interchangeable), and in the ordering induced by the diagonal all
vertices of one color are followed by all vertices of the other. Then in
the ordering there is first the three vertices of the first black group
B1, then the other black group B2, then a white group W1 and then
the other white group W2. Note that by symetry the situation is fully
equivalent to exchanging the role of B1 and B2, and/or that of W1

and W2 in the ordering. If follows that there exists i ∈ B1, j ∈ B2,
k ∈ W1, l ∈ W2, such that (i, k) ∈ E, (j, l) ∈ E and (k, l) /∈ E.
(See for example the diamonds on Figure 16.) Then the graph is not
diagonal because the crossing condition is violated, and therefore we
obtain a contradiction.

L = 5. If there is an alternating chain of length 5 then there are two vertices
of the same color at the end, and we have a 4-cycle like in Figure
17, obtaining a contradiction.

b

bb

bb b bbc bc

Figure 17. The case L=5.

L = 6. We consider the induced subgraph with just the maximum chain,
which has to be a cycle. This graph must be a diagonal-touching
graph with an ordering having first three black vertices and then
three whites ones. By inspection one can easily check that this is
not possible.

Then G2C6 does not accept a universal vertex. �

Claim 2. Gc-sep = Gsplit = Glow-int.



24 J.R. CORREA, L. FEUILLOLEY, P. PÉREZ-LANTERO, AND J.A. SOTO

Proof. First observe that Gc-sep ⊆ Gsplit, because to separate the top-right
corners, the diagonal must intersect the upper sides of the rectangles. Also
Gsplit ⊆ Glow-int, because if two rectangles i < j in splitting position intersect
above the diagonal, the point aj is also in the intersection, and this point is
on the diagonal. Finally, if all the intersections of the rectangles are present
below the diagonal, one can replace the top-right corner of a rectangle i
by (bix, a

i
y). This transformation does not change the intersection graph, as

the parts of the rectangles below the diagonal do not change, and it does
not create new intersections. The new rectangles are in corner-separated
position. Then Glow-int ⊆ Gc-sep. �

Claim 3. Gc-sep ( Gint
Proof. The inclusion of the two classes is again a consequence of the geomet-
ric definitions of the classes. We now prove that the cube, Gcube, depicted
in Figure 18, is in Gint, but not in Glow-int. The first assertion follows di-
rectly from the figure on the right. In what follows we prove the latter.
Assume that there is a representation of Gcube in lower-intersecting position

Figure 18. The cube graph and diagonal intersecting representation.

and consider the ordering < of the points ai along the diagonal. We say
that a rectangle v is nested in a rectangle u if au < av < bv < bu. We now
remark four basic properties about the graphs in Glow-int and their rectangle
representations.

R1 If i < j < k and i is nested in k, then i and j intersect.
R2 If there exists i < j < k < l with (i, k) ∈ E, (j, l) ∈ E and (j, k) /∈ E

(i.e., the crossing pattern) then j is nested in i or l is nested in k.
Indeed, if the crossing pattern is present there exists a path in the
plane, below the diagonal, from ai to ak inside rectangles i and k,
and a path from aj to al inside j and l, and these paths intersect.
As j and k do not intersect, the intersection has to be in i∩ j or i∩ l
or k ∩ l. In the first and second cases, j is nested in i, in the third
case, l is nested in k.

R3 It is not possible to have i < j < k < l with: (i, k) ∈ E, (j, l) ∈
E, (i, j) /∈ E, (j, k) /∈ E and (k, l) /∈ E (corollary of the previous
remark).
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R4 It is not possible to have i < j < k < l with: (i, l) ∈ E, (j, k) ∈ E,
(i, k) /∈ E and j nested in i. Indeed, if j is nested in i, then as
(j, k) ∈ E and (i, k) /∈ E, we have `iy > aky , but (i, l) ∈ E so `iy ≤ aly,
which is not possible as aky > aly.

Consider now the cube with the vertices named like in Figure 18. By sym-
metry, we may assume that the first vertex is 1 and that its neighbors, 2,3
and 4, appear in that ordering (2 < 3 < 4). Then we consider the different
cases for vertex 7.

• If 7 is before 3 in the ordering (i.e., just after 1 or between 2 and 3),
then (1,7,3,4) contradicts R3.
• If 7 is between 3 and 4. Using R3 on (1,2,3,7), 2 must be nested in

1. Then (1,2,7,4) contradicts R4.
• If 7 is at the end, there is no contradiction if 2 is nested in 1. Thus

we consider the possible positions of vertex 8 in the ordering: If
1 < 8 < 2 then (1,8,2) contradicts R1; If 2 < 8 < 3 (resp. 3 <
8 < 4) then (1,2,8,3) (resp. (1,2,8,4)) contradicts R4; If 4 < 8 < 7
(resp. 7 < 8) then (3,4,8,7) (resp. (2,3,7,8)) contradicts R3. This
covers all possible positions of vertex 8 in the ordering, obtaining a
contradiction in each one.

Then the cube is not in Gc-sep and the classes are different. �

7. Discussion

To conclude the paper we mention open problems that are worth further
investigation. First, note that the computational complexity of MHS is open
for all classes of rectangle families considered in this paper. The complexity
of recognizing the intersection graphs of different rectangles families is also
open. It is known that the most general version of this problem, that is
recognizing if a graph is the intersection graph of a family of rectangles, is
NP-complete [21]. However, little is known for restricted classes. Finally, it
would be interesting to determine the duality gap for the classes of rectangle
families studied here.
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for stimulating discussions. This work was partially supported by Núcleo
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