
AVERAGE STRETCH FACTOR: HOW LOW DOES IT GO?

Vida Dujmović, Pat Morin, and Michiel Smid

November 2, 2018

Abstract. In a geometric graph, G, the stretch factor between two vertices, u and w, is the
ratio between the Euclidean length of the shortest path from u to w in G and the Euclidean
distance between u and w. The average stretch factor of G is the average stretch factor taken
over all pairs of vertices in G. We show that, for any constant dimension, d, and any set, V ,
of n points in Rd , there exists a geometric graph with vertex set V , that hasO(n) edges, and
that has average stretch factor 1 + on(1). More precisely, the average stretch factor of this
graph is 1 +O((logn/n)1/(2d+1)). We complement this upper-bound with a lower bound:
There exist n-point sets in R2 for which any graph with O(n) edges has average stretch
factor 1 + Ω(1/

√
n). Bounds of this type are not possible for the more commonly studied

worst-case stretch factor. In particular, there exists point sets, V , such that any graph with
worst-case stretch factor 1 + on(1) has a superlinear number of edges.

ar
X

iv
:1

30
5.

41
70

v2
  [

cs
.C

G
] 

 2
9 

N
ov

 2
01

3



1 Introduction

A geometric graph is a simple undirected graph whose vertex set is a set of points in Rd .
The average stretch factor of a finite connected geometric graph, G = (V ,E), with vertex set
V ⊂ Rd and edge set E is

asf(G) =
(
n
2

)−1 ∑
{u,w}∈(V2)

‖uw‖G
‖uw‖ (1)

where ‖uw‖ denotes the Euclidean distance between u and w and ‖uw‖G denotes the cost
of the shortest path from u to w in the graph G, where each edge of G is weighted by the
Euclidean distance between its endpoints. (Here, and forever, n = |V |.)

The related notion of worst-case stretch factor, defined as

sf(G) = max
{u,w}∈(V2)

‖uw‖G
‖uw‖ ,

has been studied extensively. A graph, G, with sf(G) ≤ t is called a t-spanner. The con-
struction of and applications of t-spanners is the subject of intensive research and there is
a book [16] and handbook chapter [13] devoted to the topic.

The average or worst-case stretch factor of the complete graph with vertex set V ⊂
Rd is 1 and, if V contains no collinear triples, then any graph on V with fewer than

(n
2
)

edges will have (average and worst-case) stretch factor strictly greater than 1. At the other
extreme, any connected graph with vertex set V has at least n−1 edges. Thus, there seems
to be a tradeoff between the following two requirements on a graph G = (V ,E) that is
constructed from a given point set, V :

1. G should be as sparse as possible, ideally |E| ∈O(n); and

2. G should have small (average or worst-case) stretch factor, ideally (a)sf(G) = 1+on(1).

In this paper we are interested in determining to what extent we can simultaneously satisfy
these two conflicting goals.

For worst-case stretch factor, it is not possible to achieve the preceding two goals
simultaneously: Elkin and Solomon [11] show that there exists point sets V ⊂ Rd such that
any graphG = (V ,E) having sf(G) ≤ 1+ε has maximum degree Ω(1/εd−1). A variant of their
argument shows that, for some point sets, a constant fraction of vertices must have degree
Ω(1/εd−1) and therefore the graph must have Ω(n/εd−1) edges [19]. In short: achieving a
worst-case stretch factor of 1 + on(1) requires ω(n) edges.

1.1 New Results and Outline

In this paper we show that, for average stretch factor, it is possible to simultaneously
achieve both desired properties: For any constant dimension, d, and any set V ⊂ Rd , there
exists a geometric graph G = (V ,E) having |E| ∈O(n) edges and such that asf(G) = 1+on(1).
More precisely,

asf(G) = 1 +O((logn/n)1/(2d+1)) .

The proof of this result is in Section 2 and constitutes the bulk of the paper.

1



In Section 3, we show that graphs with small average stretch factor can be con-
structed efficiently. In particular, we present an O(n logn) time Monte-Carlo algorithm
that, with high probability, constructs a graph with average stretch factor 1 + on(1). In
Section 4 we present a simple lower-bound that shows our upper-bound is at least of the
right flavour: For every positive integer n, there exists an n point set in R2 on which any
graph with O(n) edges has average stretch factor 1 + Ω(1/

√
n). In Section 5 we relate the

parts of our construction to some real-world networks and discuss directions for future
work.

1.2 Relation to Previous Work

In the more general context of embedding metric spaces into ultrametrics, Abraham et
al. [1, 2] show that for any point set, V , there exists a spanning tree, T = (V ,E), with
asf(T ) ∈ O(1). Thus, it is always possible to construct a very sparse graph with constant
average stretch factor. This contrasts sharply with worst-case stretch factor: Any spanning
tree on the vertices of a regular n-gon has worst-case stretch factor Ω(n) [12, Lemma 15].

Aldous and Kendall [3, Section 5.3] show that, for any well-distributed1 point set
V ⊂ [0,

√
n]2 and any ε > 0 there exists a Steiner network, N = (V ′ ,E), with V ′ ⊇ V , of total

edge length
∑
uw∈E ‖uw‖ ≤ (1 + ε)msst(V ) and for which,(

n
2

)−1 ∑
{u,w}∈(V2)

‖uw‖N
‖uw‖ = 1 +O((logn/n)1/3).

Here msst(V ) denotes the length of the minimum Steiner spanning tree of the points in V .
Thus N is a graph that is only slightly longer than the minimum length connected graph
that contains V and the average stretch factor of N (taken over pairs in V ) tends to 1. In
this construction, we call the points in V ′ \V Steiner points.

In the work of Aldous and Kendall, which was the starting point for the current
work, the authors focus on finding a light network; one whose total edge length is small. In
the current paper, we focus instead on finding a sparse network; one with a small number
of edges. With this shift of focus in mind, Aldous and Kendall’s work immediately raises
three questions: (1) Can a similar result be proven without making any form of “well-
distributed” assumption on the points in V ? (2) Can a similar result be proven without
using Steiner points? (3) Can a similar result be proven for point sets in Rd? Our results
answer all three of these questions in the affirmative.

We note that it does not seem easy to answer any of the preceding questions us-
ing a modification of Aldous and Kendall’s construction. (1) Their proof uses the well-
distributed assumption to argue that most pairs of points are at distance at least nγ , for
any γ < 1/2 [3, Section 5.3]. (2) their construction consists of a minimum Steiner spanning
tree of V , some additional random line segments, and some additional segments that form
a grid. Anywhere two segments cross, a vertex is added to V ′, so this construction makes
essential use of Steiner points. (3) The main technical tool used in their proof is a new
result on the lengths of boundaries of certain cells in arrangements of random lines [3,

1For example, any family of point sets that satisfies the quantitative equidistribution condition [3, Defini-
tion 3].

2



Theorems 3 and 4]. In dimensions greater than 2, arrangements of lines do not decompose
space into cells, so it seems difficult to generalize this result to higher dimensions.

2 The Construction

Our construction of a good average stretch factor graph, G = (V ,E), makes use of a cluster-
ing of the points of V into O(n/k) clusters, each of size at most k, that we call a k-partition.
In the next subsection, we define k-partitions and show how to compute them. In the
subsequent subsection we show how to construct the graph G.

2.1 k-Partitions

We make use of the following construct: A k-partition of a set V of n points in Rd consists
of a set, D, of balls and an assignment f : V →D such that

1. |D | ∈O(n/k);

2. for each u ∈ V , u ∈ f (u) (i.e., u is assigned to a ball that contains u);

3. for each ∆ ∈D, |{u ∈ V : f (u) = ∆}| ≤ k (i.e., at most k points are assigned to each ball);

4. for every r > 0 and p ∈ Rd , the number of balls in D whose radius is in the range
[r,2r) and that contain p is O(1); and

5. for every r ≥ 0 and every ball, B, of radius r,

|{u ∈ V : u ∈ B and radius(f (u)) ≥ r}| ∈O(k)

(i.e., there are only O(k) points of V that are in B and that are assigned to balls of
radius at least r).

Note that, aside from Properties 4 and 5, there is very little structure to the balls in
D. In particular, balls in D may overlap and may even contain each other.

Lemma 1. For any constant dimension, d, and any set V of n points in Rd , a k-partition of V
exists and can be computed in O(n logn) time.

Proof. We construct a k-partition using the binary fair-split tree, T = T (V ), which is defined
recursively as follows [9]: If V consists of a single point, u, then T contains a single node
corresponding to u. Otherwise, consider the minimal axis-aligned bounding box, B(V ),
that contains V . The root of T corresponds to B(V ) and this box is split into two boxes
B1(V ) and B2(V ) by cutting B(V ) with a hyperplane in the middle of its longest side. The
left and right subtrees of the root are defined recursively by constructing fair-split trees
for B1(V )∩V and B2(V )∩V . See Figure 1.

The k-Partition. For each node, u, of T there is a naturally defined subset V (u) ⊆ V of
points associated with u as well as a bounding box B(u) = B(V (u)). Since T is a binary tree
with 2n−1 nodes, it has a set of t −1 edges whose removal partitions the vertices of T into
t ∈O(n/k) maximally-connected components C1, . . . ,Ct, each having at most k vertices.

For each i ∈ {1, . . . , t}, let ui denote the node in Ci of minimum depth, and call ui ,
the root of Ci . To obtain the balls, ∆1, . . . ,∆t, of the k-partition we take, for each i ∈ {1, . . . , t}

3



Figure 1: A fair-split tree for V repeatedly splits the bounding box B(V ) in the middle of
its longest side.

4



u1

u2

u3

u4

u5

∆2

∆4 ∆5

∆3

Figure 2: The fair-split tree is partitioned into subtrees of size k ( = 3) by removing O(n/k)
edges. The root, ui , of each subtree defines a ball, ∆i , in the k-partition. (The ball ∆1 is
omitted from this figure.)

5



the smallest ball, ∆i that contains B(ui). For the mapping f , we map the point associated
with each leaf, w, of T to the unique ball ∆i , where Ci contains w. See Figure 2.

The fair-split tree, T , and the boxes, B(u), associated with each node, u, of T can
be computed in O(n logn) time [9]. The partition of the vertices of T into components
C1, . . . ,Ct can easily be done in O(n logn) time by repeatedly finding an edge of a compo-
nent of size k′ > k whose removal partitions that component into two pieces each of size at
most d2k′/3e. Thus, the construction of D and f can be accomplished in O(n logn) time.

The set of balls D = {∆1, . . . ,∆t} and the mapping f : V → D described in the pre-
ceding paragraphs clearly satisfy Properties 1–3 in the definition of a k-partition. What
remains is to show that they also satisfy Properties 4 and 5.

For a node u in T , with B(u) = [a1,b1]×· · ·×[ad ,bd], define Li(u) = bi−ai and let L(u) =
max{Li(i) : i ∈ {1, . . . ,d}} denote the length of B(u)’s longest side. To establish Properties 4
and 5, we make use of the following result on fair-split trees [16, Lemma 9.4.3]:

Lemma 2. Let C be a box whose longest side has length ` and let α > 0 be any positive real
number. Let w1, . . . ,ws be some nodes of a fair-split tree, T , such that

1. the sets V (wi) are pairwise disjoint, for all i ∈ {1, . . . , s};
2. L(wi) ≥ `/α, for all i ∈ {1, . . . , s};2 and

3. B(wi) intersects C, for all i ∈ {1, . . . , s}.
Then s ≤ (2α + 2)d .

Property 4. To prove that the balls in D satisfy Property 4, let {∆i1 , . . . ,∆iq } ⊆ D be the
subset of balls in D having radii in the interval [r,2r) and that all contain some common
point, p ∈ Rd . Then each such ball, ∆ij corresponds to a node uij of T such that

2r√
d
≤ L(uij ) ≤ 4r . (2)

Each box, B(uij ), intersects the ball of radius 2r centered at p. (Indeed, the center of B(uij )
is contained in this ball.) Therefore, each box B(uij ) intersects the box, C, of side-length 4r
centered at p.

We are almost ready to apply Lemma 2 to C—whose side length is ` = 4r—and the
vertex set w1, . . . ,wq = ui1 , . . . ,uiq . For each j ∈ {1, . . . , q}, B(uij ) intersects C, so Condition 3 of

Lemma 2 is satisfied. Furthermore, (2) states that L(uij ) ≥ 2r/
√
d = `/(2

√
d), so Condition 2

of Lemma 2 is satisfied with α = 2
√
d. Unfortunately, there is still a little more work to do

since the nodes ui1 , . . . ,uit do not necessarily satisfy Condition 1 of Lemma 2.
To proceed, we partition ui1 , . . . ,uiq into a small number of subsets, each of which

satisfies Condition 1 of Lemma 2. Observe that Condition 1 of Lemma 2 is equivalent to
the statement that no wi is an ancestor of wj for any {i, j} ⊆ {1, . . . , s}. A key observation is
that, if u is an ancestor of w in a fair-split tree, T , and the difference in depth between u
and w is at least d, then

L(u) ≥ 2L(w) .

2The original lemma [16, Lemma 9.4.3] is slightly stronger in that it only requires that L(w′i ) ≥ `/α, where
w′i is the parent of wi .

6



B

C

wi−1

Π

q

wiΠ+

Π−

x1

Figure 3: Proving Property 5 of k-partitions.

This, and (2), implies that, if uij is an ancestor of uij′ then

depth(uij′ )−depth(uij ) ≤ d log(2
√
d) .

Thus, we can partition ui1 , . . . ,uiq into z = dd log(2
√
d)e subsets, S0, . . . ,Sz−1, each of which

satisfies Condition 1 of Lemma 2, by assigning uij to the subset Sdepth(uij ) mod z.

Now, Lemma 2 implies that, for each i ∈ {0, . . . , z − 1},
|Si | ≤ (4

√
d + 2)d

so that

q =
z−1∑
i=0

|Si | ≤ (4
√
d + 2)dz = (4

√
d + 2)ddd log(2

√
d)e ∈O(1) .

Thus, for any point p ∈ Rd , the set of balls in D whose radius is in the interval [r,2r) and
that contain p has size O(1). Therefore the balls in D = {∆1, . . . ,∆t} satisfy Property 4 in the
definition of a k-partition.

Property 5. To study Property 5, it is easier to work with the bounding boxes, B(u),
associated with each node, u, in the fair-split tree as well as the box, C, of side length 2r
that contains the ball B. See Figure 3. Observe that if some ball, ∆i , is assigned a point in
B, then the box B(ui) intersects C. Thus, we need only consider the set U ⊆ {u1, . . . ,ut} that
contains only those nodes ui such that radius(∆i) ≥ r and B(ui) intersects C.

For each u ∈ U , (2) implies that L(u) ≥ 2r/
√
d. Therefore, by Lemma 2, U contains

a subset, U ′, of size at most (4
√
d + 2)d ∈ O(1) such that every node in U is an ancestor of

some node in U ′. Thus, the elements of U can be covered by O(1) paths, each of which
goes from a node in U ′ to the root of T . It suffices to consider the contribution of one such
path, w1, . . . ,w`, where w1 ∈U ′ and w` is the root of T .

For each i ∈ {1, . . . , `}, let Ci , denote the box C ∩ B(wi). Since B(w1) ⊂ · · · ⊂ B(w`),
we have that C1 ⊆ · · · ⊆ C`. Observe that, for each wi , the ball associated with wi is not
assigned any points in B(wi−1). Thus, it is sufficient to show that there are O(1) values of
i for which V ∩ Ci , V ∩ Ci−1; for each such i, the number of elements assigned to the
corresponding ball of the k-partition is at most k.

7



We extend the side-length notation, Li , to any box, B = [a1,b1] × · · · [ad ,bd], so that
Li(B) = |bi − ai | and define the total side length

∑d
i=1Li(B). We will show that, for each

i ∈ {2, . . . , `}, at least one of the following statements is true

1. V ∩Ci = V ∩Ci−1;

2. the total side length of Ci exceeds that of Ci−1 by at least L(w1)/2; or

3. Ci intersects a side of C that is not intersected by Ci−1.

This is sufficient to prove the result since Case 1 does not result in any new points included
in B, Case 2 can occur at most 4rd/L(w1) ∈ O(1) times, and Case 3 can occur at most
2d ∈O(1) times.

To see why one of the preceding cases must occur, suppose that neither Case 1 nor
Case 3 applies. Since Case 1 does not apply, there is some point q ∈ V ∩Ci that is not in
Ci−1. Without loss of generality, assume that the fair-split tree cuts B(wi) with a plane, Π,
that is perpendicular to the x1-axis. Let Π+ and Π− denote the closed halfspaces bounded
by Π that contain q and B(wi−1), respectively. Then we have that

L1(B(wi)∩Π+) = L1(wi)/2 ≥ L(wi−1)/2 ≥ L(w1)/2 .

Observe that B(wi) does not intersect the side of C that is parallel to Π and contained in
Π+ (since, otherwise, Case 3 would apply). This implies that

L1(Ci) ≥ L1(Ci−1) +L(w1)/2 .

Thus, if neither Case 1 nor Case 3 applies to ui , then Case 2 applies. This completes the
proof.

2.2 The Graph G

With the availability of k-partitions, we are now ready to construct a graph G with low
average stretch factor. In the following construction, positive valued variables c,k ∈ ωn(1)
and ε ∈ on(1) are used without being specified. Values of these variables that optimize the
average stretch factor of G will be given in the proof of Theorem 1. In the meantime, the
reader can mentally assign the values c = k = logn and ε = 1/ logn, which are sufficient to
prove that asf(G) = 1 + on(1).

Hubs. We begin with a k-partition ({∆1, . . . ,∆n′ }, f ) of V . For each i ∈ {1, . . . ,n′}, let ri de-
note the radius of ∆i . We will use the convention that ∆1, . . . ,∆n′ are ordered by increasing
radii, so that ri ≤ rj for each 1 ≤ i < j ≤ n′. For each i ∈ {1, . . . ,n′}, let Vi = {u ∈ V : f (u) = ∆i};
that is, Vi is the set of points assigned to the ball ∆i . For each set Vi , we choose a hub, ui ∈
Vi , arbitrarily. Let H = {u1, . . . ,un′ } denote the set of hubs and recall that |H | = n′ ∈O(n/k).

Roads and Highways. Our graph G starts with two spanner constructions. The first
spanner (the roads), denoted by G2 = (V ,E2), is a 2-spanner of V , and has O(n) edges
[8, 18, 20]. The next spanner (the highways), denoted by G1 = (H,E1), is a (1 + 1/k1/(d−1))-
spanner of H , and has O(k|H |) =O(n) edges [10, 17].

With G1 and G2 we have, for any u,w ∈ V :

‖uw‖G
‖uw‖ ≤

1 + 1/k1/(d−1) if u,w ∈H (by using G1)

2 in any case (by using G2).

8



∆1

∆2

∆3

∆4

∆5

∆6

∆7
∆8

Figure 4: G contains a 2-spanner of V (gray edges) as well as O(n/k) hubs whose centers
are interconnected by a (1 + 1/k1/(d−1))-spanner (red edges)

Covering a Nearby Cluster. Informally, the idea behind the graphs G1 and G2 is that, if
u ∈ Vi and w ∈ Vj are “far apart” (relative to ri and rj ), then the path from u to w that goes
from u to ui via roads (G2), then to uj via highways (G1), and then onto w via roads again
should have length (1+on(1))‖uw‖. Of course, this only works if u and w are far apart. The
final step of our construction attempts to deal with the majority of cases where u and w
are not far apart.

To make the preceding ideas precise, let Di be the ball centered at the center of ∆i
and having radius cri . Points of V that are in Di can be problematic for Vi ; there is no
guarantee that such points have paths with 1 + on(1) stretch factor to the points in Vi .

For each i ∈ {1, . . . ,n′}, we find a ball, Ei , of radius ri/c, that intersects Di , and that
contains the maximum number of points of V . (Note that this may include points of V
in Vi or outside of Di .) We then add edges joining each of the points in Vi to a carefully
chosen point wi ∈ Ei . See Figure 5.

The point wi is chosen as follows: For each point w ∈ V , let i(w) ∈ {1, . . . ,n′} denote
the smallest index such that w ∈ Ei(w) and |Ei(w) ∩ V | ≥ εn; if no such index exists, let
i(w) = ∞. The point wi ∈ Ei is selected to be any of the points in Ei that minimizes i(w).
This concludes the description of the graph G.

2.3 Two Illustrative Examples

Before delving into the proof that G has low average stretch factor, it may be helpful to
study two examples that illustrate why the balls E1, . . . ,En′ are needed and why the choice
of the representative vertices, wi ∈ Ei , is important.

Example 1: Exponential Grids. The first example is a set of points arranged as a se-
quence of

√
k × √k grids, G0, . . . ,Gn/k−1. The grid Gi has its center on the x-axis at x-

coordinate 2i+1 − 1, and has side length 2i (see Figure 6). The natural k-partition of this

9



∆i

Di

Ei

Vi

Figure 5: The ball Ei captures as many points of V as possible while still intersecting Di .

grid is the one that assigns all points in each Gi to a single ball, ∆i . In this grid, if we
consider Gi , for some large value of i, we see that all the points in G0, . . . ,Gi−1 are within
distanceO(2i) of all the points in Gi . Forcing every path from every u ∈ Gi to every w ∈ Gj ,
j < i, to go through a central vertex ui ∈ Gi would be too costly; on average the detour
through ui would increase the length of this path by Ω(2i).

The ball Ei solves the preceding problem; Ei is large enough to cover all points in
G0, . . . ,Gi−Θ(logc). The path from u ∈ Gi directly to wi ∈ Ei and then to any w ∈ Ei has length
at most

‖uw‖+O(2i/c) .

Furthermore, all of the points in Ei are at distance Ω(2i) from all the points in Gi , so
‖uw‖G/‖uw‖ = 1 +O(1/c). Part 3 of the proof of Theorem 1 is dedicated to showing that,
in general, the balls E1, . . . ,En′ help with many pairs of points that would otherwise be
problematic.

Example 2: The Importance of Choosing Wisely. Our second example is intended to
illustrate the importance of carefully choosing the representative vertex wi ∈ Ei . In this ex-
ample, there is a dense cluster of n/2 points that is contained in some ball Ej (see Figure 7).
Consider now some i > j such that ri is much greater than rj . It is easy to make a configu-
ration of points so that, for some cluster Vi , the corresponding ball Ei contains Ej as well as
a few other points that are far from Ej . If one of these points is used as the representative
vertex, wi , then all kn/2 paths from some u in Vi to some w ∈ Ej will have to make a detour
through wi . By repeating this for many different values of i, this is enough to produce an
average stretch factor significantly larger than 1.

The choice of wi is designed to avoid the preceding problem. In this example, wi

10



∆i

Ei

Figure 6: A sequence of exponentially increasing grids illustrates the need for connecting
all points in Vi to some point in Ei .

Ei

Ej

Vi
wi

∆i

Figure 7: An illustration of why it is important to choose wi carefully. A bad choice (like
the one illustrated) leads to a significant detour on the paths from every u ∈ Vi to every
w ∈ Ej .

11



would be chosen from the points in Ej , since rj < ri and Ei contains n/2 ≥ εn points of V .
Part 4 of the proof of Theorem 1 is dedicated to showing this careful choice of wi works.
In particular, it ensures that, for most pairs of the form u ∈ Vi , w ∈ Ei ,

‖uwi‖+O(‖wiw‖) = ‖uw‖(1 +O(1/c)) .

2.4 The Proof

Without further ado, we now prove that G has low average stretch factor.

Theorem 1. For every constant dimension, d, and every set, V , of n <∞ points in Rd , the graph
G = (V ,E) described above has O(n) edges and asf(G) = 1 + on(1). More precisely, asf(G) =
1 +O((logn/n)1/(2d+1)).

Proof. That G has O(n) edges follows immediately from its definition.
To upper-bound the average stretch factor of G, there are four types of pairs of

points, u ∈ Vi , w ∈ Vj , j ≤ i, to consider (recall that ∆1, . . . ,∆n′ are ordered so that rj ≤ ri):
1. pairs that are both from the same set, i.e., where i = j;

2. pairs for which w is outside of Di ;

3. pairs for which w is contained in Di \Ei ; and

4. pairs for which w is contained in Ei ∩Di .
We consider each of these types of pairs in turn. Our strategy is to study the

(n
2
)

terms
that define asf(G) in (1). We will show that o(n2) of these terms are at most 2 while the
remaining terms are at most 1 + on(1). Thus,

asf(G) ≤
(
n
2

)−1 (
2 · o(n2) +

(
n
2

)
(1 + on(1))

)
= 1 + on(1) .

Type 1 Pairs. Each Vi , for i ∈ {1, . . . ,n′}, defines at most
(k
2
)

Type 1 pairs, so the total
number of Type 1 pairs that contribute a term to the sum in (1) is at most(

k
2

)
·O(n/k) ∈O(nk) .

Type 2 Pairs. For each Type 2 pair u ∈ Vi , w ∈ V \Di , there is a path from u to ui in G2,
then from ui to uj in G1 and then finally from uj to w in G2 whose length is at most

4ri + ‖uiuj‖G + 4rj ≤ (1 + 1/k1/(d−1))(‖uw‖+ 16ri) .

Furthermore, ‖uw‖ ≥ (c − 1)ri since w is outside of Di . Therefore, for each Type 2 pair, the
term that appears in (1) is of the form

‖uw‖G
‖uw‖ ≤ (1 + 1/k1/(d−1))(1 +O(1/c)) = 1 +O(1/k1/(d−1) + 1/c) .

12



Type 3 Pairs. The number of Type 3 pairs is no more than

k ·
n′∑
i=1

|V ∩Di \Ei | .

We will prove, by contradiction, that this quantity is o(n2). Suppose, for the sake of con-
tradiction, that this is not the case and that

n′∑
i=1

|V ∩Di \Ei | ≥ δn
2

k
, (3)

where δ > 0 will be determined later. Each term on the left hand side of (3) is at most n
and there are n′ ≤ αn/k terms, for some constant α > 0. We say that a term on the left hand
side of (3) is small if it is less than δn/2α and large otherwise. The sum of the small terms
is at most δn2/2k and therefore the sum of the large terms is at least δn2/2k. Let J be the
index set of these large terms. Then∑

i∈J
|V ∩Di \Ei | ≥ δn

2

2k
.

By the pigeonhole principle, there must exist some point w∗ ∈ V such that there are at least
δn/2k indices i ∈ J such that w∗ ∈ V ∩Di \ Ei . To summarize the discussion so far: There
exists a point w∗ ∈ V and index set, I ⊆ J , such that:

A1. w∗ ∈ V ∩Di \Ei , for all i ∈ I
A2. |V ∩Di \Ei | ∈Ω(δn), for all i ∈ I ; and

A3. |I | ∈Ω(δn/k).

Suppose, without loss of generality, that the smallest ball, ∆i , with i ∈ I has unit
radius. Partition I into groups G0,G1, . . . such that Gt contains all indices i ∈ I such that ∆i
has radius in the interval [2t ,2t+1). We claim that each such group, Gt, has size O(cd). To
see why this is so, observe that, for each group Gt, there exists a point—namely w∗—that
is contained in |Gt | balls Di where i ∈ Gt. Di has radius at most c2t+1. This means that the
set of balls

{∆i : i ∈ Gt}
is contained in a ball, centered at w∗, of radius at most (c + 2)2t+1. Since each ball in this
set has radius in [2t ,2t+1), a standard packing argument implies that some point p ∈ Rd is
contained in Ω(|Gt |/cd) of these balls. But then Property 4 of k-partitions implies that the
size of |Gt |/cd ∈O(1), so |Gt | ∈O(cd).

Thus far, we have shown that each group, Gt, has size O(cd) and the total size of all
groups is |I | ∈Ω(δn/k). Therefore, there must be at least Ω(δn/(kcd)) groups. In particular,
we can find h ∈Ω(δn/(kcd logc)) groups, Gt1 , . . . ,Gth , such that ti+1 ≥ ti + 2logc + 2 for each
i ∈ {1, . . . ,h−1}. By selecting a representative element from each of these groups, we obtain
a sequence of indices i1, . . . , ih such that the radius of ∆ij+1

is at least 4cd times the radius of
∆ij for each j ∈ {1, . . . ,h− 1}.

13



∆i1
Di1

Ei1

E′i2

Di2

w∗

Figure 8: Di2 ∪Ei2 contains at least 2an points of V .

By choice, Di1 contains at least aδn elements of V , for the constant a = 1/2α. Also
by choice, Di2 \Ei2 contains at least aδn elements of V . Both Di1 and Di2 contain the point
w∗. We claim that Ei2 contains at least aδn elements of V as well since there exists a ball,
E′i2 , centered at w∗, of radius ri2/c > 4cri1 , that containsDi1 and therefore contains all the (at
least aδn) points in Di1 (see Figure 8). The ball Ei2 was chosen to contain as many elements
of V as possible, so it contains at least as many elements as E′i2 . Therefore,Di2∪Ei2 contains
at least 2aδn points of V .

We can now argue similarly to show that Ei3 contains at least 2aδn points of V so
Di3 ∪Ei3 contains at least 3aδn points of V . In general, this argument shows that Dih ∪Eih
contains at least haδn points of V . But this yields a contradiction for h > 1/aδ, since V
contains only n points. To obtain this contradiction, our choice of δ, c, and k must satisfy

h ∈Ω
(

δn

kcd logc

)
≥ 1
aδ

which is satisfied by any choice of δ, c, and k such that

δ2n

kcd logc
≥ C
a

for some sufficiently large constant C. In particular, the value

δ =

√
Ckcd logc

an

works. So the total number of terms of the sum in (1) contributed by Type 3 pairs is at
most

δn2 ∈O
(√
kn3cd logc

)
.

14



Type 4 Pairs. Let β > 0 be a constant whose value will be discussed later. We say that a
Type 4 pair of points u ∈ Vi , w ∈ Ei ∩Di is a bad pair if

‖uwi‖+ 2‖wiw‖ ≥ (1 + β/c)‖uw‖ ,
and otherwise it is a good pair. For any good pair (u,w),

‖uw‖G
‖uw‖ = 1 +O(1/c) ,

so we can focus our study on bad pairs. To upper-bound the number of bad pairs we will
assume, for the sake of contradiction, that the number of bad pairs is at least εn2.

Let bi denote the number of bad pairs (u,w) with u ∈ Vi and w ∈ Ei ∩Di . Then, by
assumption,

n′∑
i=1

bi ≥ εn2 .

Applying the same reasoning used to study Type 3 pairs, we can find a point w∗ ∈ V and a
set of indices i1, . . . , i` such that

B1. w∗ ∈ Eij , for all j ∈ {1, . . . , `};
B2. bij ∈Ω(εkn), for all j ∈ {1, . . . , `}; and

B3. ` ∈Ω(εn/k).

Assume that the indices i1, . . . , i` are ordered so that rij ≤ rij+1
for all j ∈ {1, . . . , ` − 1}.

Consider the sequences E′i1 , . . . ,E
′
i`

, where each E′ij is the ball of radius 2rij /c centered at w∗.
Recall that the radius of Eij is rij /c and w∗ ∈ Eij , so that E′ij ⊃ Eij , for each j ∈ {1, . . . , `}.

The plan for the rest of the proof is as follows: We will find an annulus A = E′ij∗+t+C \
E′ij∗ that does not contain very many points of V . We will then use the fact that A does not
contain many of points of V and Property 5 of k-partitions to prove that, for some index
j ∈ {j∗, . . . , j∗ + t}, bij < Dεkn for any constant D > 0. This yields the desired contradiction,
since i1, . . . , i` were chosen so that bij ∈Ω(εkn) for every j ∈ {1, . . . , `}.

To begin, we fix some positive integers C ∈ O(1) and t < ` −C to be specified later.
For each j ∈ {2, . . . , `}, let nij = |E′ij ∩ V \ E′ij−1

|. We have that
∑`
i=2nij ≤ n and ` ∈ Ω(εn/k).

Using these two bounds, a simple averaging argument is sufficient to show that there must
exist an index j∗ ∈ {1, . . . , ` − t −C} such that

j∗+t+C∑
j=j∗+1

nij = |V ∩E′ij∗+t+C \E′ij∗ | ∈O((t +C)k/ε) =O(tk/ε) . (4)

The careful choice of each wi ∈ Ei implies the following claim, whose proof is de-
ferred until later.

Claim 1. For every j ∈ {j∗ + 1, . . . , j∗ + t}, every u ∈ Vij , and every w ∈ Eij ∩E′ij∗ ∩V , G contains
a path of length at most ‖uw‖+O(rij∗ /c).

15



E′ij∗

E

∆ij∗+1

∆ij∗+2

∆ij∗+3

∆ij∗+t
u

w

Figure 9: The number of points in E that are assigned to ∆ij∗ , . . . ,∆ij∗+t is only O(k).

Refer to Figure 9. Let E denote the ball centered at w∗ and having radius rij∗ =
c · radius(Eij∗ ). Note that any point u < E is at distance at least (1 − 2/c)rij∗ from any point
w ∈ E′ij∗ . Therefore, by Claim 1, for any w ∈ Eij ∩ E′ij∗ ∩V , any j ∈ {j∗ + 1, . . . , j∗ + t} and any
u ∈ Vij \E,

‖uw‖G
‖uw‖ = 1 +O(1/c) .

In other words, by choosing an appropriate constant β in the definition of bad pairs, u can
not form a bad pair with a point w ∈ E′ij∗ unless u is contained in E.

Next we will upper-bound
∑j∗+t
j=j∗+1 bij , the number of bad pairs, (u,w), with u ∈ Vij ,

w ∈ Eij , and j ∈ {j∗+ 1, . . . , j∗+ t}. From the preceding discussion, each such pair falls into at
least one of the two following categories:

1. Category A: u ∈ E. To bound the number of these pairs, consider the balls ∆ij∗+1
, . . . ,∆ij∗+t .

Each of these balls has radius at least rij∗ = radius(E). Therefore, Property 5 of k-
partitions implies that ∣∣∣∣∣∣∣∣

j∗+t⋃
j=j∗+1

Vij ∩E
∣∣∣∣∣∣∣∣ ∈O(k)

Each u in Vij ∩E takes part in at most O(n) bad pairs, so the number of bad pairs of
this form is O(kn).

2. Category B: w < E′ij∗ . By (4), the number of points that are not in E′ij∗ but still in some

Eij ⊂ E′ij for j ∈ {j∗ + 1, . . . , j∗ + t} is O(tk/ε). Each such point, w, forms a bad pair with
at most tk different values of u—namely the elements of Vij∗+1, . . . ,Vij∗+t . Therefore,
the number of bad pairs in this category is at most O((tk)2/ε).

16



Thus, we have
j∗+t∑
j=j∗+1

bij ∈O(kn+ (tk)2/ε) . (5)

On the other hand, the indices i1, . . . , i` are chosen so that bij ∈Ω(εkn), for every j ∈ {1, . . . , `}.
Therefore

j∗+t∑
j=j∗+1

bij ∈Ω(tεkn) . (6)

Equating the right hand sides of (5) and (6), we obtain

C1tεkn ≤ C2(kn+ (tk)2/ε) ,

for some constants C1 and C2. This yields a contradiction when

t > D/ε

and

ε ≥D
√
tk
n
,

for some sufficiently large constant D. Setting t =D/ε leaves only the condition

ε ≥D2/3
(
k
n

)1/3

.

Thus, there exists some constant D0 such that the total number of bad Type 4 pairs is at
most

εn2 ,

provided that ε ≥D0(k/n)1/3.
All that remains in handling Type 4 pairs is to prove Claim 1.

Proof of Claim 1. Let u by any point in Vij , for any j ∈ {j∗ + 1, . . . , j∗ + t}. Since there is an
edge joining u and wij and ‖w∗w‖ ≤ 2rij∗ /c, there is a path from u to w of length at most

‖uw‖G ≤ ‖uwij ‖+ 2‖wijw∗‖+ 2‖w∗w‖
≤ ‖uw‖+ ‖wwij ‖+ 2‖wijw∗‖+ 4ri∗j /c

≤ ‖uw‖+ ‖ww∗‖+ 3‖wijw∗‖+ 4ri∗j /c

≤ ‖uw‖+ 3‖wijw∗‖+ 6ri∗j /c ,

so it is sufficient to prove that ‖w∗wij ‖ ∈ O(rij∗ /c). If wij = w∗, then we are done, so assume
wij , w

∗. Since w∗ ∈ Eij but was not chosen to act as wij , there must exist some index i′ such
that Ei′ ∩Eij , ∅, |Ei′ ∩V | ≥ εn, ri′ ≤ rij∗ , and wij ∈ Ei′ . (Note for later: This is the only place
in the entire proof of Theorem 1 where the choice of wij matters.)
There are two cases to consider:

17



Ei′w∗

Eij∗

E′ij∗

Eij

wij

2rij∗ /c

≤ 2rij∗ /c

w

Figure 10: If Ei′ intersects E′i∗j then ‖w∗wij ‖ ≤ 4rij∗ /c.

1. If E′ij∗ intersects Ei′ , then (see Figure 10)

‖w∗wij ‖ ≤ 2rij∗ /c+ 2ri′ /c ≤ 4rij∗ /c ∈O(rij∗ /c) ,

and we are done.

2. If Ei′ and E′ij∗ are disjoint, then we claim that Ei′ ⊂ E′ij∗+t+C (see Figure 11). To see why
this is so, we argue that, when C is a sufficiently large constant,

rij∗+t+C > 2rij∗+t ≥ 2rij . (7)

This implies that Ei′ ⊂ E′ij∗+t+C since every point in Ei′ is at distance at most 4rij from

w∗ and E′ij∗+t+C is centered at w∗ and has radius 2rij∗+t+C > 4rij .

To see why the first inequality in (7) holds, we first observe that, for any i ∈ {1, . . . ,n′},
if any u ∈ Vi and w ∈ Ei form a bad pair, then the distance from ∆i to Ei is less than ri .
Since each Vij and Eij define at least one pair, this implies that each ∆ij is contained
in a ball of radius (3 + 2/c)rij centered at w∗.
Now, if rij∗+t+C < 2rij∗+t , then ∆ij∗+t , . . . ,∆iij∗+t+C is a set of C + 1 balls all having radii

in [rij∗+t ,2rij∗+t ) and that are all contained in a ball of radius (6 + 4/c)rij∗+t centered at
w∗. Therefore, some point, p, in this ball is contained in Ω(C) of these balls. But
then Property 4 of k-partitions implies that C ∈ O(1). Thus, for a sufficiently large
constant, C, rij∗+t+C > 2rij∗+t and Ei′ ⊂ Eij∗+t+C , as promised.

Since Ei′ and Eij∗ are disjoint and Ei′ ⊂ Eij∗+t+C ,

|V ∩Eij∗+t+C \Eij∗ | ≥ |V ∩Ei′ | ≥ εn .

But, by definition,
|V ∩Eij∗+t+2µ

\Ei | ∈O(tk/ε) .

18



Ei′

w∗

Eij∗

E′ij∗

Eij

wij

E′ij∗+t+C

εn points

O(tk/ε) points

w

Figure 11: If Ei′ does not intersect E′i∗j then Eij∗+t+C \Eij∗ contains at least εn points.

This yields a contradiction when t < D ′ε2n/k, for a sufficiently small constant D ′ > 0.
Note that we have already set t =D/ε, so this requires that

D/ε < D ′ε2n/k⇔ ε >

(
Dk
D ′n

)1/3

.

Therefore, the condition on t is already contained in the requirement that ε ≥D0(k/n)1/3.

This completes the proof of Claim 1.

Finishing Up. We can now pull everything together to summarize and complete the proof
of Theorem 1.

1. The number of Type 1 pairs is at most O(kn).

2. For each Type 2 pair, (u,w), ‖uw‖G/‖uw‖ ≤ 1 +O(1/k1/(d−1) + 1/c).

3. The number of Type 3 pairs is at most O(
√
kn3cd logc).

4. For each good Type 4 pair, (u,w), ‖uw‖G/‖uw‖ ≤ 1 +O(1/c).

5. The number of bad Type 4 pairs is at most O(εn2) provided that ε ∈Ω((k/n)1/3).

Putting all these together, we obtain

asf(G) = 1 +O

1/k1/(d−1) + 1/c+
(
n
2

)−1 (
kn+

√
kn3cd logc+ εn2

) . (8)

19



Taking
ε = (k/n)1/3 ,

k =
(
n

logn

)(d−1)/(2d+1)

and

c =
(
n

logn

)1/(2d+1)

yields

asf(G) = 1 +O

( logn
n

)1/(2d+1)
 .

(The O(kn/
(n

2
)
) term and the εn2/

(n
2
)

term are dominated by the three other terms, which
are all O((logn/n)1/(2d+1)).)

Remark 1. In the next section, efficient algorithms will require that ε = (logκ n)/k for some
constant κ ≥ 0. Since the bound on the average stretch factor requires that ε ∈Ω((k/n)1/3),
this implies that the value of k must be at most n1/4. The following table shows the optimal
choices of k and c for different dimensions, d:

d k c asf(G)

2 (n/ logn)1/5 (n/ logn)1/5 1 +O((log5κ+1n/n)1/5)

≥ 3 n1/4 (logn/n3/4)1/(d+2) 1 +O(1/n1/(4d−4))

3 Algorithms

In this section, we discuss efficient algorithms for computing a graph G = (V ,E) that
has low average stretch factor, given the point set V ⊂ Rd . We first present a fairly
straightforward adaptation of the construction given in the preceding section that yields
an O(n logd n) time algorithm. We then show that some refinements of this algorithm lead
to an O(n logn) time algorithm.

Our algorithms are randomized. Throughout this section, we say that an event
within an algorithm happens with high probability if the event occurs with probability at
least 1 − O(nα) and α can be made into an arbitrarily large constant by increasing the
running time of the algorithm by a constant factor.

3.1 A Simple Algorithm

For ease of exposition, we start with a simple algorithm that is relatively faithful to the
proof of Theorem 1.

Theorem 2. For every constant dimension, d, and every set, V , of n < ∞ points in Rd , there
exists a randomized O(n logd n) time algorithm that constructs a graph G′ = (V ,E) that has
O(n) edges and, with high probability,

asf(G′) =

1 +O((logn/n)1/5) for d = 2

1 +O(1/n1/(4d−4)) for d ≥ 3

20



Proof. Throughout this proof, a box is an axis-aligned box of the form [a1,b1]× · · · × [ad ,bd]
and we call this a square box if bi − ai = bj − aj for all i, j ∈ {1, . . . ,d}. As before, L(B) denotes
the length of the longest side of the box, B. The graph G′ constructed by our algorithm
is similar to the graph, G, described in the previous section, except for three major differ-
ences:

1. Every element in G that is defined in terms of a ball is now defined in terms of a
square box. In particular,

(a) ∆1, . . . ,∆n′ are minimal square boxes that contain the corresponding boxes de-
fined by nodes of the fair-split tree;

(b) D1, . . . ,Dn′ are square boxes where each Di is a square box of side-length cL(∆i)
centered at the center of ∆i ; and

(c) E1, . . . ,En′ are square boxes where each Ei is a square box of side-length L(∆i)/c
that intersects Di .

2. The box Ei does not perfectly maximize the number of points it contains. Instead, we
guarantee that, if there exists any box of side-length L(∆i)/2c that intersects Di and
contains m ≥ εn points of V , then Ei is chosen so that it contains at least m points of
V .

3. We change the value of ε to ε = 1/k and use the values of c and k given in Remark 1.

It is straightforward, but tedious, to check that the proof of Theorem 1 using these new
definitions of ∆i , Di , and Ei shows that the graph G′ satisfies the requirements of the
theorem. What remains is to show how the graph G′ can be constructed in O(n logd n)
time.

As described in the proof of Lemma 1, computing the fair-split tree, and the re-
sulting ∆1, . . . ,∆n′ , V1, . . . ,Vn′ , u1, . . . ,un′ and D1, . . . ,Dn′ is easily accomplished in O(n logn)
time. The 2-spanner of the points in V can be constructed in O(n logn) time using any of
several different possible methods [8, 18, 20]. An algorithm of Ruppert and Seidel [17] can,
for any γ > 0, construct a (1 +γ)-spanner of n′ points in Rd that has O((1/γ)d−1n′) edges in
O((1/γ)d−1n′ logd−1n′) time. Using this algorithm with γ = 1/k1/(d−1), the (1 + 1/k1/(d−1))-
spanner of the n′ points in H can be constructed in time

O(kn′ logd−1n′) =O(n logd−1n) .

All that remains is to show how to compute E1, . . . ,En′ and w1, . . . ,wn′ efficiently.
The reason for moving from balls to square boxes is that boxes allow for the use of

range trees [6, 15]. Range trees allow us to preprocess, using O(n logd−1n) time and space,
a set of n points in Rd so that, for any query box, B, we can find, inO(logd−1n) time: (1) the
number of points in B, or (2) the point with minimum index in B.3 Furthermore, by using
a box-point duality that maps square boxes in Rd onto points in Rd+1, a set of square boxes
in Rd can be preprocessed, using O(n logd n) time and space, so that, for any query point
p ∈ Rd , we can, in O(logd n) time, determine the index of the smallest box that contains p.

3For this third type of query, we use a constant-time range-minimum data structure [5] as the 1-
dimensional substructure.

21



Our first task is to find the boxes E1, . . . ,En′ and for this we use random sam-
pling. Let D ′i be the square box that is centered at the center of ∆i and has side-length
(c + 1/2c)L(∆i). We repeatedly select a random point u ∈ V . If u is not in D ′i , then we
discard it. Otherwise, we count the number of points in the box, E(u), that is centered at u
and has side length L(∆i)/c. The sample box containing the maximum number of points is
chosen as Ei . (If all samples were discarded, then we take Ei to be any square box of side
length L(∆i)/c that intersects Di .)

Let E′i , be some square box of side length L(∆i)/2c that intersects Di and that con-
tains the maximum number of points in V . Suppose, furthermore, that |E′i ∩V | ≥ εn (since
this is the only case in which we make any guarantees about Ei). If we repeat the above
sampling procedure α lnn/ε times, then the probability that none of our samples is a point
in |E′i ∩V | is at most

(1− ε)α lnn/ε ≤ 1/eα lnn = 1/nα .

Therefore, with high probability, at least one of our sample points, u, is in E′i . In this case,
E(u) contains E′i , so we obtain a box, Ei that intersects Di and contains E′i .

By storing the points of V in a range tree, we can therefore identify the boxes
E1, . . . ,En′ in time

O(n′(logn/ε) logd−1n) =O
(
n logd n
εk

)
=O(n logd n) .

Let E ⊆ {E1, . . . ,En′ } be the subset of boxes that contain at least εn points of V . By
using the point-box duality, we can store E in a range tree so that, for each point w ∈ V ,
we can determine the index, i(w), of the smallest box that contains at least εn points of
V and contains w. Building the range tree for (the duals of) E1, . . . ,En′ takes O(n′ logd n) ⊂
O(n logn) time and searching this range tree for each point w ∈ V takes time

O(n logd n) .

Finally, we can store the point/index pairs (u, i(u)), for all u ∈ V , in a range tree so
that, for each box, Ei , we can find a point wi ∈ Ei that minimizes i(u). Building this range
tree takes O(n logd−1n) time and the queries on this tree take O(n′ logd−1n) ⊂O(n logd−1n)
time.

3.2 A Faster Algorithm

In the preceding section we gave an O(n logd n) time algorithm. In this section, we show
that the running time can be reduced toO(n logn) with only a small increase in the average
stretch factor.

Theorem 3. For every constant dimension, d, and every set, V , of n < ∞ points in Rd , there
exists a randomizedO(n logn) time algorithm that constructs a graph G′′ = (V ,E) that hasO(n)
edges and, with high probability,

asf(G′′) =

1 +O((log6n/n)1/5) for d = 2

1 +O(log(d−2)/(d−1)n/n1/(4d−4)) for d ≥ 3

22



Proof. The construction of G′′ is similar to the construction of G′ described in the proof of
Theorem 2. In the construction of G′, there are three issues that lead to a running-time
of ω(n logn): (1) the construction of the (1 + (1/k)1/(d−1))-spanner of H takes Θ(n logd−1n)
time; (2) the sampling algorithm used to find the boxes E1, . . . ,En′ that contain at least εn
points takes Θ(n logd n) time; and (3) determining the index, i(u), of each point u ∈ V takes
Θ(n logd n) time. We address each of these issues in turn:

1. We only construct a (1 + (logd−2n/k)1/(d−1))-spanner of H . Using the algorithm of
Ruppert and Seidel, the construction of this spanner takes only O(n logn) time. This
modification increases the average stretch factor of the resulting graph, so that the
lower-order term increases by a factor of log(d−2)/(d−1)n.

2. The sampling process used to find E1, . . . ,En′ has two phases. In Phase 1, a range
tree is constructed that contains the points of V . In Phase 2, O(n′ logn/ε) queries are
performed on this range tree.

Phase 1 takes O(n logd−1n) time. To speed up Phase 1, we instead construct a range
tree, T1, on a Bernoulli sample V ′ ⊆ V where each point is sampled independently
with probability p = α/ logd−2n. A standard application of Chernoff’s Bounds [4,
Appendix A.1] shows that, with high probability,

(a) T1 can be constructed in O(n logn) time;

(b) for all boxes, B, with |B∩V | ≥ εn,

(1/2)|B∩V | ≤ |B∩V ′ |/p ≤ 2|B∩V | ;

(c) for all boxes, B, with |B∩V | ≤ εn/2,

|B∩V ′ |/p ≤ εn .

Properties (b) and (c) above ensure that the quantity |B∩ V ′ |/p, which can be com-
puted in O(logd−1n) time using T1, is an accurate enough estimate of |B∩V |.
Phase 2 requires sampling αn′ lnn/ε points and, for each sample point, u, counting
the number of points of V in some box centered at u. By increasing the value of
ε from ε = 1/k to ε = logd−1n/k, this counting can be done in O(n logn) time using
T1. Remark 1, with the value κ = d − 1, explains why this new choice of ε does not
increase the average stretch factor for d ≥ 3, and increases it by a factor of logn for
d = 2.

3. To determine the index, i(u), of each point u ∈ V , we first construct a range tree,
T2 for (the duals of) some boxes in {E1, . . . ,En′ }. In T2, we include every box, B ∈
{E1, . . . ,En′ } such that |B∩V ′ |/p ≥ εn. From the preceding discussion, with high prob-
ability, T2 then contains only boxes, B such that |B∩V | ≥ εn/2 and T2 includes every
box, B such that |B∩V | ≥ 2εn.

Determining which boxes to include in T2 requires n′ queries in T1, so this takes
O(n′ logd−1n) ⊂ O(n logn) time. Building the tree T2 takes O(n′ logd n) ⊂ O(n logn)
time. At this point, we would like to use T2 to compute i(w) for every point w ∈ V ,

23



but this would take Ω(n logd n) time. Instead, we take another sample, V ′′ ⊆ V of
size n/ logd−1n and compute i(w) for each w ∈ V ′′. This takes only O(n logn) time.

Finally, we put each pair (u, i(u)) for each u ∈ V ′′ into another range tree T3. This
takes onlyO(|V ′′ | logd−1n) =O(n) time. We then query T3 with each box in {E1, . . . ,En′ }
to determine the pointwi ∈ Ei∩V ′′ that minimizes i(wi). This takes onlyO(n′ logd−1n) ⊂
O(n logn) time.

It remains to argue that the point, wi , which minimizes i(wi) over all wi ∈ Ei∩V ′′ is a
good-enough replacement for the point, w∗i , that minimizes i(w∗i ) over all w∗i ∈ Ei∩V .
To establish this, it is necessary to revisit the proof of Theorem 1. The only place
in the proof of Theorem 1 in which the choice of wi plays a role is in counting the
number of bad Type 4 pairs.

Recall that this part of the proof of Theorem 1 assumes that the number of bad Type 4
pairs is greater than εn2 and uses this assumption to derive a contradiction. In par-
ticular, the proof shows the existence of a point w∗ that satisfies Conditions B1–B3.
Walking through the proof, we see that it continues to work if there is any point
w∗ ∈ V ′′ that satisifies Conditions B1–B3. In particular, w∗ ∈ V ′′ is sufficient to estab-
lish Claim 1, which is the only place in the entire proof of Theorem 1 that makes use
of the fact that wi minimizes i(wi) over all wi ∈ Ei .
In the proof of Theorem 1, the existence of w∗ is established by the pigeonhole prin-
ciple; we have subsets S1, . . . ,Sr of V whose total size is Ω(εn2/k) and we conclude
that some element w∗ ∈ V must occur in Ω(εn/k) subsets. However, the number of
subsets, r, is only O(n/k). We can therefore make a stronger conclusion: There are
Ω(εn) elements w∗ ∈ V such that w∗ appears in Ω(εn/k) subsets.

Thus, there exists a set W ∗ ⊆ V of size Ω(εn) such that any point w∗ ∈ W ∗ is good
enough to derive the contradiction required to bound the number of bad Type 4
pairs. If even one point of W ∗ appears in V ′′, then the bound on the number of bad
Type 4 pairs holds. The sample, V ′′, is taken after the boxes E1, . . . ,En′ and therefore
after W ∗ has been defined, so V ′′ and W ∗ are independent. The size of W ∗ is Ω(εn),
so the probability that a randomly chosen element of V is in W ∗ is Ω(ε). The sample
V ′′ contains n/ logd−1n randomly chosen elements of V , so the probability that V ′′
and W ∗ are disjoint is at most

(1−Ω(ε))n/ logd−1 n ≤ exp(−Ω(εn/ logd−1n)) ≤ nα ,

for any constant α > 0 and all sufficiently large values of n. Therefore, with high
probability V ′′ contains at least one element of W ∗ and the number of bad Type 4
pairs is at most εn2.

This completes the proof of Theorem 3.

4 Lower Bounds

Next, we prove a simple lower-bound which shows that our bound on the average stretch
factor is at least of the right flavour: Combined with the upper-bound of Theorem 1, the
following result shows that the optimal bound is 1 +O(1/nδ) for some δ ∈ (1/(2d + 1),1/2].

24



n/2

n/2

u

w

n/
√
2

√
αn

n/2−√αn

n/2

n/2

(a) (b)

Figure 12: The lower-bound (a) point set for Theorem 4, and (b) the best-case ratio
‖uw‖G/‖uw‖ for a pair (u,w) that is not covered by any edge.

Theorem 4. For every positive integer, n, there exists a set, V , of n points in R2, such that every
geometric graph, G, with vertex set V and having O(n) edges has asf(G) ≥ 1 +Ω(1/

√
n).

Proof. For simplicity, we assume n is even. The point set, V , has its points evenly dis-
tributed on two opposite sides of a square. The point set V = A∪B, where

A = {(0, i) : i ∈ {1, . . . ,n/2}}
and

B = {(n/2, i) : i ∈ {1, . . . ,n/2}}
is an example (see Figure 12.a).

Let G be any graph with vertex set V . We say that an edge uw with u ∈ A and w ∈ B
covers the set of pairs

{(u + (0, i),w+ (0, j)) : i, j ∈ {−√αn, . . . ,√αn}}
for some constant α to be discussed later. Thus, any edge of G covers at most 4αn pairs in
A×B.

Next, observe that if some pair of points u ∈ A and w ∈ B is not covered by any edge
of G, then a straightforward minimization argument (see Figure 12.b) shows that

‖uw‖G
‖uw‖ ≥

√
αn+

√
(n/2)2 + (n/2−√αn)2

n/
√

2

=
√
αn+

√
n2/2−√αn3/2 +αn/2

n/
√

2

≥
√
αn+n/

√
2−√αn/2

n/
√

2
(9)

≥ 1 +Ω(1/
√
n) .

25



(Inequality (9) is obtained by comparing
(√
n2/2−√αn3/2 +αn/2

)2
and

(
n/
√

2−√αn/2
)2

.)
If G has m ∈O(n) edges, then we select α ≤ (n

2
)
/(8mn) so that

m4αn ≤
(n

2
)

2

In this way, at least half of the
(n

2
)

pairs of points in V are not covered by any edge and
therefore,

asf(G) ≥ 1 +
(
n
2

)−1

·
(n

2
)

2
·Ω(1/

√
n) = 1 +Ω(1/

√
n) .

We remark that the proof of Theorem 4 is easily modified to provide a tradeoff
between the number of edges of G and the average stretch factor. In particular, if G has
m ∈ o(n2) edges, then

asf(G) ≥ 1 +Ω(1/
√
m) .

5 Discussion

We have shown that, for any set, V , of n points in Rd , we can construct, in O(n logn) time,
a graph on V whose average stretch factor is 1 + on(1). Our construction consists of three
parts, (1) a 2-spanner, G2 of V , (2) a 1 + on(1)-spanner of a subset H ⊂ V of so-called
hubs, and (3) a collection of edges that join all vertices within each group, Vi , to a single
representative vertex, wi , within a very dense (compared to Vi) set of vertices, Ei ∩V .

5.1 Realistic Networks(?)

We note that, if one has some form of reasonable well-distributed assumption about the
points in V , like that used by Aldous and Kendall, then it is fairly straightforward to show
that the first two parts of our construction are sufficient to obtain an average stretch factor
of 1 + on(1). The third part of our construction is only required to deal with instances in
which there are exponential differences in density of points of V . It seems natural to ask
whether this part of the construction is necessary in any real-world network or whether
the vertices of real-world networks are always well-distributed.

The first two parts of our construction are quite natural and can be recognized in
many real-world networks. The most common (though admittedly, imperfect) example
is road networks where individual buildings are interconnected by roads, which very of-
ten form a partial grid (a

√
2-spanner). The cities, towns, and villages, containing these

buildings are themselves interconnected by a relatively fast, and fairly direct, system of
highways.

The third part of our construction seems less natural. In road networks, this part
of the construction would correspond to densely-populated areas that have several direct
routes to them from well-separated locations. Since this part of our construction is only
required to deal with pathological cases involving inter-point distances that vary exponen-
tially, one might think that it does not appear in real-world networks.

A quick inspection of the U.S. Highway System shows that, even by 1926, there
were many direct highway connections to Chicago, Detroit, Kansas City, Memphis, New-
port, and other large cities (see Figure 13). These highways were expensive and would
have been built unless they added real value to the road network. While this does not

26



Figure 13: Large cities have many direct routes to them. (Source: Map of the final U.S.
Highway system as approved November 11, 1926. This map is in the public domain.)

correspond perfectly with the third part of our construction, it does suggest that a sim-
ple two-level network of clusters, each having a single hub, does not produce real-world
networks of sufficient quality; some form of extra augmentation is necessary.

5.2 Open Problems

Our results leave many areas open for further research. We say that a graph, G = (V ,E) has
good average stretch if asf(G) = 1 + on(1) and |E| =O(n).

The following open problems have to do with strengthenings of Theorem 1 in
which G has additional properties.

Open Problem 1. Given a point set, V , does there always exist a good average stretch
graph G = (V ,E) whose total edge length is close to that of the minimum spanning tree?

Open Problem 2. Given a point set, V , does there always exist a good average stretch
graph G = (V ,E) whose maximum degree is bounded by a constant?

Open Problem 3. Given a point set, V , does there always exist a good average stretch
graph G = (V ,E) that is k-fault tolerant? That is, for any set F ⊂ V , |F| ≤ k, asf(G \ F) =
1 + on(1).

Open Problem 4. Bose et al. [7] define f (k)-robust spanners in terms of the (worst-case)
stretch factor and their definition extends naturally to average stretch factor. Given a point
set, V , does there always exist a good average stretch graph G = (V ,E) that is f (k)-robust,
for some reasonable function f (k)?

The following question asks if the upper-bound can be proven in a more general
setting:

Open Problem 5. What conditions on a metric space (V ,d) are necessary and sufficient so
that there always exist a graph G = (V ,E), |E| ∈O(n) with asf(G) = 1 + on(1)? (Here shortest
paths in G are measured in terms of the cost of their edges in the metric space.)

It seems likely that some of the techniques used to prove Theorem 1 are applicable
to metric spaces of bounded doubling dimension [14, Section 10.13]. Is bounded doubling
dimension the weakest possible restriction on the metric space? It is clear that some re-
strictions on the metric space are required: In the metric space in which all points have
unit distance, the average stretch factor of a graph, G = (V ,E), having m edges is at least(

n
2

)−1 (
m+ 2

((
n
2

)
−m

))

27



since, if there is no edge between u and w in G, then ‖uw‖G ≥ 2. Therefore any graph with
average stretch factor 1 + on(1) must have

(n
2
)− o(n2) edges.

Acknowledgement

The authors of this paper are partly funded by NSERC and CFI. The author are indebted
to Shay Solomon for providing helpful feedback on an earlier version of this paper.

References

[1] I. Abraham, Y. Bartal, H. T.-H. Chan, K. Dhamdhere, A. Gupta, J. M. Kleinberg,
O. Neiman, and A. Slivkins. Metric embeddings with relaxed guarantees. In Proceed-
ings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), pages 83–100. IEEE Computer Society, 2005.

[2] I. Abraham, Y. Bartal, and O. Neiman. Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion. In N. Bansal, K. Pruhs,
and C. Stein, editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2007), pages 502–511. SIAM, 2007.

[3] D. J. Aldous and W. S. Kendall. Short-length routes in low-cost networks via Poisson
line patterns. Advances in Applied Probability, 40(1):1–21, 2008.

[4] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, Hoboken,
third edition, 2008.

[5] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of
Latin American Theoretical Informatics (LATIN 2000), pages 88–94, 2000.

[6] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(5):214–228, 1978.

[7] P. Bose, V. Dujmović, P. Morin, and M. Smid. Robust geometric spanners. In Proceed-
ings of the Twenty-Ninth ACM Symposium on Computational Geometry (SoCG 2013).
ACM Press, 2013.

[8] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. In Proceedings of the 4th ACM-SIAM Symposium onDiscrete
Algorithms, pages 291–300, 1993.

[9] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the
ACM, 42(1):67–90, 1995.

[10] P. Carmi and M. Smid. An optimal algorithm for computing angle-constrained span-
ners. Journal of Computational Geometry,, 3:196–221, 2012.

[11] M. Elkin and S. Solomon. Steiner shallow-light trees are exponentially lighter than
spanning ones. In Proceedings of the 52nd IEEE Symposium on Foundations of Computer
Science, pages 373–382, 2011.

28



[12] D. Eppstein. Spanning trees and spanners. Technical Report 96-16, Department of
Information and Computer Science, University of California, Irvine, 1996. Available
from: http://www.ics.uci.edu/˜eppstein/pubs/Epp-TR-96-16.pdf.

[13] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, chapter 9, pages 425–461. Elsevier, 1999.

[14] J. Heinonen. Lectures on Analysis on Metric Spaces. Universitext. Springer-Verlage,
2001.

[15] G. S. Lueker. A data structure for orthogonal range queries. In Proceedings of the 19th
Annual Symposium on Foundations of Computer Science (FOCS’78), pages 28–34. IEEE
Computer Society, 1978.

[16] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, New York, 2007.

[17] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean
graph. In Proceedings of the 3rd Canadian Conference on Computational Geometry
(CCCG 1991), pages 207–210, 1991.

[18] J. S. Salowe. Constructing multidimensional spanner graphs. International Journal of
Computational Geometry & Applications, 1:99–107, 1991.

[19] S. Solomon. Personal Communication with M. Smid, 2012.

[20] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K
dimensions. Discrete & Computational Geometry, 6:369–381, 1991.

Authors

Vida Dujmović. School of Mathematics and Statistics and Department of Systems and Com-
puter Engineering, Carleton University
Pat Morin and Michiel Smid. School of Computer Scence, Carleton University

29

http://www.ics.uci.edu/~eppstein/pubs/Epp-TR-96-16.pdf

	1 Introduction
	1.1 New Results and Outline
	1.2 Relation to Previous Work

	2 The Construction
	2.1 k-Partitions
	2.2 The Graph G
	2.3 Two Illustrative Examples
	2.4 The Proof

	3 Algorithms
	3.1 A Simple Algorithm
	3.2 A Faster Algorithm

	4 Lower Bounds
	5 Discussion
	5.1 Realistic Networks(?)
	5.2 Open Problems


