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Abstract.

The problem of maximizing the p-th power of a p-norm over a halfspace-presented
polytope in Rd is a convex maximization problem which plays a fundamental role in
computational convexity. It has been shown in [19] that this problem is NP-hard for all
values p ∈ N, if the dimension d of the ambient space is part of the input. In this paper,
we use the theory of parametrized complexity to analyze how heavily the hardness of
norm maximization relies on the parameter d.
More precisely, we show that for p = 1 the problem is fixed parameter tractable but that
for all p ∈ N \ {1} norm maximization is W[1]-hard.
Concerning approximation algorithms for norm maximization, we show that for fixed
accuracy, there is a straightforward approximation algorithm for norm maximization in
FPT running time, but there is no FPT approximation algorithm, the running time of
which depends polynomially on the accuracy.
As with the NP-hardness of norm maximization, the W[1]-hardness immediately carries
over to various radius computation tasks in Computational Convexity.

1 Introduction and Preliminaries

The problem of computing geometric functionals of polytopes arises in many appli-
cations in mathematical programming, operations research, statistics, physics, chem-
istry or medicine (see e.g. [16] for an overview). Hence, the question how efficiently
these functionals can be computed or approximated has been studied extensively, e.g. in
[1, 2, 13, 15, 19].
Of particular interest is the problem of maximizing (the p-th power of) a p-norm over a
polytope. Despite its simple formulation, this problem already exhibits the combinato-
rial properties which are responsible for hardness or tractability of the computation of
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many important geometric functionals. As for most computational problems on poly-
topes, the presentation of the input polytope is crucial for the computational complexity
of norm maximization: If the input polytope is presented as the convex hull of finitely
many points, norm maximization is solvable in polynomial time by the trivial algorithm
of computing and comparing the norm of all these points. The situation changes dra-
matically when the input polytope is presented as the intersection of halfspaces. The
present paper is concerned with the investigation of the parametrized complexity of this
problem.
For p ∈ N ∪ {∞}, a precise formulation of the norm maximization problem that we
consider is as follows:

Problem 1.1 (Normmaxp)

Input: d ∈ N, γ ∈ Q, rational H-presentation of a symmetric polytope P ⊆ Rd
Parameter: d
Question: Is max{‖x‖pp : x ∈ P} ≥ γ?

Here, a rational H-presentation of a polytope is a presentation as intersection of finitely
many halfspaces which are defined by inequalities that have only rational coefficients.

As shown in [19], for p = ∞ (with the understanding that ‖x‖∞∞ = ‖x‖∞), Norm-
max∞ is solvable in polynomial time via Linear Programming. For all p ∈ N, on the
other hand, Normmaxp is NP-complete. (When speaking of NP-hardness of parame-
terized problems, we mean the same decision problem, simply ignoring the parameter.)
Moreover, in [1], it is shown that NP-hardness persists for all p ∈ N even when the
instances are restricted to full-dimensional parallelotopes presented as a Minkowski sum
of d linearly independent line segments. Moreover, by [2], there is no polynomial time
approximation algorithm for norm maximization for any constant performance ratio,
unless P = NP.

It is important to note that, as usual in the realm of computational convexity, the
dimension d is part of the input and the hardness of Normmaxp relies heavily on this
fact, especially for the very restricted instances in [1]. Indeed, if d is a constant, the
obvious brute force algorithm of converting the presentation of P yields a polynomial
time algorithm with running time O(nd), where n denotes the number of halfspaces in
the presentation of P . However, this algorithm quickly becomes impractical as n grows,
even for moderate values of d. The main purpose of this paper is to close the gap between
NP-hardness for unbounded dimension and a theoretically polynomial, yet impractical
algorithm for fixed dimension.
A suitable tool that allows us to analyze how strongly the hardness of Normmaxp
depends on the parameter d is the theory of Fixed Parameter Tractability. For an
introduction to Fixed Parameter Tractability, we refer to the textbooks [8, 21]. This
theory has already been applied successfully to show the intractability of several problems
in Computational Geometry even in low dimensions, see e.g. [4, 5, 10, 11, 12, 18].
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Our analysis of Normmaxp shows that, although Normmaxp is NP-hard for all p ∈
N, the hardness has a different flavor for different types of norms: Whereas hardness
of Normmax1 only comes with the growth of the dimension, Normmaxp has to be
considered intractable already in small dimensions for all other values of p.
More precisely, we prove the following theorem:

Theorem 1.2 (Fixed-parameter complexity of Normmax)
Normmax1 is in FPT, whereas Normmaxp is W[1]-hard for all p ∈ N \ {1}.

The presented reduction also shows that in the hard cases no no(d) algorithm for Nor-
mmaxp exists, unless the Exponential Time Hypothesis1 is false. Thus, the brute force
algorithm for Normmaxp mentioned above already has the best achievable complexity,
if p ∈ N \ {1}.

In this case, one can also ask how strongly the inapproximability result of [2] relies on
the fact that Normmaxp is a problem in unbounded dimension. For this purpose, call
an algorithm that produces an x̄ ∈ P such that, for some β ∈ N,

‖x̄‖pp ≥
(
β − 1

β

)p
max{‖x‖pp : x ∈ P}

a β-approximation-algorithm for Normmaxp. The proof of the fact that Normmax1 is
in FPT then suggests the following: Replace the unit ball of the p-norm by a suitable
symmetric polytope which approximates it sufficiently well and use the maximum of
this polytopal norm as an approximation for the maximum of the p-norm. As polytopal
norms can be maximized by solving a linear program for every facet of the unit ball and
linear programs can be solved in TLP (d, n) := O(22dn) (see [20]), which is polynomial in
n for fixed d, this yields an FPT-time approximation algorithm for fixed accuracy β.

Theorem 1.3 (Approximation complexity of Normmax)
Let p ∈ N \ {1}. For every fixed β ∈ N, there is a β-approximation-algorithm for
Normmaxp which runs in time O(βdTLP (d, n)). Conversely, there is no scheme of β-
approximation-algorithms for Normmaxp with running time O(f(d)q(β, d, n)) with a
polynomial q and an arbitrary computable function f .

Hence, although the problem is not in APX, approximation of Normmaxp is possible
for moderate values of β and d. On the other hand, approximation tends to become
costly as soon as the dimension or the desired accuracy grows.

1The Exponential Time Hypothesis conjectures that n-variable 3-CNFSAT cannot be solved in 2o(n)-
time; cf. [17].
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Finally, analogously to the NP-hardness of Normmaxp, the W[1]-hardness of Nor-
mmaxp implies the intractability of various problems in Computational Convexity as
immediate corollaries. In Section 4, we show that for the respective values of p, the
problems Circumradiusp-H, Diameterp-H, Inradiusp-V and Widthp-V (all param-
eterized by the dimension) are W[1]-hard.

This paper is organized as follows. In the remainder of this section, we explain our
notation. In Section 2, we will analyze the parameterized complexity of Normmaxp,
i.e. we prove Theorem 1.2 and prepare some technical lemmas, which we will also use
in Section 3 where we prove Theorem 1.3. Finally, in Section 4, we prove the corollaries
for the mentioned radius computation tasks.

Notation.
The symbols N,Z,Q and R are used to denote the set of positive integers, integers,

rational numbers and real numbers, respectively.
For a positive integer n ∈ N, we will abbreviate [n] := {1, . . . , n}.
Throughout this paper, we are working in d-dimensional real space Rd and for A ⊆ Rd
we write lin(A), aff(A), conv(A), pos(A), int(A), relint(A), and bd(A) for the linear,
affine, convex or positive hull and the interior, relative interior and the boundary of A,
respectively.
For a set A ⊆ Rd, its dimension is dim(A) := dim(aff(A)). Furthermore, for any two
sets A,B ⊂ Rd and ρ ∈ R, let ρA := {ρa : a ∈ A} and A+ B := {a+ b : a ∈ A, b ∈ B}
the ρ-dilatation of A and the Minkowski sum of A and B, respectively. We abbreviate
A + (−B) by A − B and A + {c} by A + c. A set K ⊆ Rd is called 0-symmetric if
−K = K. If there is a c ∈ Rd such that −(c+K) = c+K we call K symmetric.
If a polytope P ∈ Pd is described as a bounded intersection of halfspaces, we say that
P is in H-presentation. If P is given as the convex hull of finitely many points, we call
this a V-presentation of P . For a convex set C ⊆ Rd, we let ext(C) denote the set of
extreme points of K.
For 1 ≤ p <∞, the p-norm of a point x = (x1, . . . , xd)

T ∈ Rd is defined as

‖x‖p :=

(
d∑

i=1

|xi|p
) 1

p

for p =∞, we let ‖x‖∞ := max{|xi| : i ∈ [d]}.
For p ∈ [1,∞], we write Bdp := {x ∈ Rd : ‖x‖p ≤ 1} for the unit ball of ‖ · ‖p and

Sd−1
p := {x ∈ Rd : ‖x‖p = 1} for the unit sphere in Rd.

For two vectors x, y ∈ Rd, we use the notation xT y :=
∑d

i=1 xiyi for the standard
scalar/inner/dot product of x and y and by

H≤(a, β) := {x ∈ Rd : aTx ≤ β}

we denote the half-space induced by a ∈ Rd and β ∈ R, bounded by the hyperplane
H=(a, β) := {x ∈ Rd : aTx = β}.
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If X is a finite set and k ∈ N, then
(
X
k

)
:= {Y ⊆ X : |Y | = k} denotes the set of all

subsets of X of cardinality k.
The standard basis in Rd is denoted by {ei : i ∈ [d]}; the all-ones vector by 1 :=
(1, . . . , 1)T ∈ Rd.

We denote by P (and NP, respectively) the classes of decision problems that are
solvable (verifiable, respectively) in polynomial time. For an account on complexity
theory, we refer to [9]. We write FPT for the class of fixed-parameter-tractable problems
and W[1] for the problems of the first level of the W-hierarchy in the theory of Fixed
Parameter Tractability. For an introduction to Fixed Parameter Tractability, we refer
to the textbooks [8, 21].

2 Fixed Parameter Complexity of Norm Maximization

2.1 Intractability

We will first prove the hardness result for Normmaxp for p ≥ 2 via an FPT reduction
of the W[1]-complete problem Clique to Normmaxp. The formal parametrized decision
problem of Clique is given in Problem 2.1; a proof of its W[1]-completeness can be found
e.g. in [8, Theorem 6.1].

Problem 2.1 (Clique)

Input: n, k ∈ N, E ⊆
(

[n]
2

)

Parameter: k
Question: Does G = ([n], E) contain a clique of size k?

Moreover, it is shown in [6] that Clique cannot be solved in time no(k), unless the
Exponential Time Hypothesis fails.

In order to show the hardness result, we will first show how to construct a polytope
P for a graph G = ([n], E) with the property that

max{‖x‖pp : x ∈ P} = k ⇐⇒ G contains a clique of size k.

This “reduction” will be laid out as if irrational numbers were computable with infinite
precision. The second part of this section will then show that the numbers can be
rounded to a sufficiently rough grid in order to make the reduction suitable for the
Turing machine model.

The construction.
Let (n, k,E) be an instance of Clique and p ∈ [1,∞). Throughout this paper, we

assume without loss of generality that n is an even number. (If not, we add an isolated
vertex to the graph.)
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We choose d := 2k and consider

R2k = R2 × R2 × . . .× R2

i.e. we will think of a vector x ∈ R2k as k two-dimensional vectors stacked upon each
other. Therefore, it will be convenient to use the following notation.

Notation 2.2
By indexing a vector x ∈ R2k, we refer to the k two-dimensional vectors x1, . . . , xk ∈ R2

such that x = (xT1 , . . . , x
T
k )T . Further, for a ∈ R2 and β ∈ R, we let

H i
≤(a, β) := {x ∈ R2k : aTxi ≤ β}.

In order to construct an H-presentation of a polytope P ⊆ B2
p×B2

p× · · · ×B2
p, we will

first construct a 2-dimensional polytope P1 ⊆ B2
p as our basic building block by placing

vertices on the unit sphere S1
p (compare Figure 1):

For v ∈ [n2 ], let

p′v :=

(
1

0

)
+

2(v − 1)

n

(−1

1

)
and {pv} :=

(
p′v + [0,∞)

(
1

1

))
∩ S1

p; (1)

for v ∈ [n] \ [n2 ] let

p′v :=

(
0

1

)
+

2v − (n+ 2)

n

(−1

−1

)
and {pv} :=

(
p′v + [0,∞)

(−1

1

))
∩ S1

p. (2)

For v ∈ [2n] \ [n], let
pv := −pv−n

and
P1 := conv{p1, . . . , p2n} =

⋂

v∈[2n]

H≤(av, βv) ⊆ R2. (3)

Note that P1 is 0-symmetric by construction and that the required H-presentation of P1

in (3) can be computed in time O(n log(n)), see e.g. [7]. For notational convenience, we
also define

p2n+1 := p1 and p−1 := p2n.

Lemma 2.3 (Distance between the pv)
Let P1 := conv{p1, . . . , p2n} be the polytope defined in Equation (3) and v ∈ [2n]. The
distance between two neighboring points on S1

p satisfies

‖pv − pv+1‖2 ∈
[

2
√

2

n
,

4

n

]
.
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p′1 = p1

p4

p′4

p9 = −p1
p16

S12

S11
P1

Figure 1: Construction of P1 in the case p = 2, n = 8.

Proof.
Let Π : R2 → B2

1 denote the projection onto B2
1. By the definitions in (1) and (2), we

have Π(pv) = p′v. Since Π is contracting, the equidistant placement of p′1, . . . , p
′
n yields

‖pv − pv+1‖2 ≥ ‖p′v − p′v+1‖2 = 2
√

2
n for all v ∈ [2n].

For the other bound, assume that v ≤ n
4 . (The other cases can be handled with the same

arguments.) By elementary properties of B2
p, we have eT1 pv+1 ≤ eT1 pv and 1T pv+1 ≥ 1T pv

and thus pv+1 ∈ [q1, q2] with q1, q2 defined as in Figure 2.

pv

q1

q2
pv+1

p′v+1 + [0,∞)
(
1
1

)

S1p
e1

Figure 2: The situation in the proof of Lemma 2.3.

Inspection of the triangle conv{pv, q1, q2} shows that it is equilateral with a right angle
at q1. Thus, ‖pv − pv+1‖2 ≤ ‖pv − q2‖2 =

√
2‖pv − q1‖22 = 4

n . �

Using Notation 2.2, we define a polytope P2 ⊆ R2k via

P2 :=
⋂

i∈[k]

⋂

v∈[2n]

H i
≤(av, βv) ⊆ R2k.

Observe that P2 is 0-symmetric by construction and that any vertex x of P2 is of the
form x = (pv1 , . . . , pvk)T for suitable v1, . . . , vk ∈ [2n].

7



As for any x = (xT1 , . . . , x
T
k )T ∈ R2k the identity

‖x‖pp =
k∑

i=1

‖xi‖pp

holds, and as for p ∈ N \ {1} the unit sphere {x ∈ R2 : ‖x‖pp = 1} contains no straight
line segments, it follows that for x ∈ P2,

‖x‖pp ≥ k ⇐⇒ x =




pv1
...
pvk


 for some v1, . . . , vk ∈ [2n].

For v ∈ [2n], let xv, yv ∈ R be the coordinates of pv = (xv, yv)
T and define

qv :=

(
sgn(xv)|xv|p−1

sgn(yv)|yv|p−1

)
. (4)

Noting that for all x ∈ P1 and v ∈ [2n], qTv x = 1 if and only if x = pv, we define

ε := 1−max{qTu pv : u, v ∈ [2n], u 6= v} > 0 (5)

and for u, v ∈ [n] and i, j ∈ [k],

Eijuv := {x ∈ R2k : ε− 2 ≤ qTu xi + qTv xj ≤ 2− ε}

and
F ijuv := {x ∈ R2k : ε− 2 ≤ qTu xi − qTv xj ≤ 2− ε}.

Thus, if x is a vertex of P2 with xi = ±pu and xj = ±pv for some u, v ∈ [n], then

x 6∈ Eijuv ∩ F ijuv, i.e. if u, v ∈ [n] and {u, v} 6∈ E the constraints of Eijuv ∩ F ijuv make sure
that P does not contain a vertex with xi = ±pu and xj = ±pv.

Finally, to encode the Clique instance, we let N :=
(

[n]
2

)
\ E, define

P := P2 ∩
⋂

{u,v}∈N
i,j∈[k],i 6=j

(Eijuv ∩ F ijuv) ∩
⋂

v∈[n]
i,j∈[k],i 6=j

(Eijvv ∩ F ijvv),

and obtain the following lemma.

Lemma 2.4 (Reduction with infinite precision)
Let (n, k,E) be an instance of Clique, p ∈ [1,∞) and P ⊆ R2k the polytope obtained
by the construction above. Then,

max{‖x‖pp : x ∈ P} = k ⇐⇒ G = ([n], E) contains a clique of size k.
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Analysis of the constructed polytope.
We will now investigate how much we can perturb the (possibly irrational) polytope

P in order to make it suitable for an FPT-reduction without loosing its ability to decide
between Yes- and No-instances of Clique. For this purpose, we define the constant

U :=
1

n2pk2
. (6)

In the following, we show that rounding the vertices p1, . . . , p2n of our initial polytope
P1 ⊆ R2 to the grid U

2 Z
2 preserves all important features of our reduction. Since the

parameter p is a constant in Normmaxp, all the necessary computations can be carried
out with a precision of O(log(nk)) bits. Since we only need a polynomial number of
computations, the whole reduction can be carried out in polynomial time.

Lemma 2.5
Let P1 = conv{p1, . . . , p2n} ⊆ R2 with p1, . . . , p2n ∈ S1

p be the polytope from Equation

(3). For ε := 1 −max{qTu pv : u, v ∈ [2n], u 6= v} with qu defined as in Equation (4), we
have

ε ≥ 2p−1

pnp
.

Proof.
Let x := (x1, x2)T ∈ S1

p and y := (y1, y2)T ∈ S1
1 with x, y ≥ 0, ‖x − e1‖2 ≥ 2

√
2

n , and

‖y − e1‖2 ≥ 2
√

2
n . Since B2

1 ⊆ B2
p, x2 ≥ y2 ≥ 2

n . Combining this inequality with x ∈ S1
p

yields

x1 = (1− xp2)
1
p ≤

(
1−

(
2

n

)p) 1
p

≤ 1− 2p

pnp
, (7)

where the last inequality follows by bounding the concave function x 7→ x
1
p from above

by a linear approximation at x = 1.
Now, let u, v ∈ [2n] with u 6= v. Then,

qTu pv = qTu pu + qTu (pv − pu) = 1 + cos(qu, pv − pu) ‖qu‖2 ‖pv − pu‖2. (8)

Since the points of lowest curvature on S1
p are ±e1 and ±e2, and since e1 = p1 = q1, we

obtain cos(qu, pv − pu) ≤ cos(e1, p2 − e1), which in turn can be bounded by

cos(e1, p2 − e1) ≤ x1 − 1

‖p2 − e1‖2
with x1 = eT1 x for the point x ∈ Sp1 defined above. Further, qu ∈ S1

p
p−1

implies ‖qu‖2 ≥
√

2
2 ,

and ‖pv − pu‖2 ≥ 2
√

2
n by Lemma 2.3. Using (7), we can continue Equation (8) to

qTu pv ≤ 1− 2p

pnp‖p2 − e1‖
·
√

2

2
· 2
√

2

n
≤ 1− 2p−1

pnp
,

where the last inequality follows again from Lemma 2.3. �
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For v ∈ [n], let p̄v be the rounding of pv to the grid U
2 Z

2 and define p̄v = −p̄v−n for
v ∈ [2n] \ [n] and further

P̄1 := conv{p̄1, . . . , p̄2n}. (9)

For p̄v = (x̄v, ȳv)
T ∈ R2, define

q̄v :=

(
sgn(x̄v) |x̄v|p−1

sgn(ȳv) |ȳv|p−1

)
.

By choice of our grid, we get

‖pv − p̄v‖p′ ≤ U ∀p′ ≥ 1. (10)

Moreover, if q ∈ [1,∞) is such that 1
p + 1

q = 1, then ‖qv‖q = 1 for all v ∈ [2n] and since

x 7→ xp−1 is Lipschitz continuous on [−1, 1] with Lipschitz constant L = p−1, we obtain

‖qv − q̄v‖1 ≤ (p− 1)U. (11)

First, we show that the points p̄1, . . . , p̄2n are still in convex position, which is binned
into a separate lemma.

Lemma 2.6
Let P̄1 = conv{p̄1, . . . , p̄2n} ⊆ R2 the polytope from (9). Then, ext(P̄1) = {p̄1, . . . , p̄2n}
and the coding length of an H-presentation of P̄1 is polynomially bounded in the coding
length of p̄1, . . . , p̄2n.

Proof.
For v ∈ [2n], we have qTv p̄v ≥ 1−‖qv‖2U ≥ 1−‖qv‖qU = 1−U , since p ≥ 2 and therefore
q ≤ 2. For u ∈ [2n] \ {v}, we get qTv p̄u ≤ 1 − ε + U . Since 1 − ε + U < 1 − U , the
hyperplane H=(qv, 1 − ε + U) separates p̄v from conv({p̄1, . . . , p̄2n} \ {p̄v}) and hence
p̄v ∈ ext(P̄1).
Assume now that P̄1 := {x ∈ R2 : āTv x ≤ 1 ∀v ∈ [2n]} is an H-presentation of P̄1.
Applying Cramer’s Rule, we see that, for all v ∈ [2n], the entries of āv are quotients
of polynomials in p̄1, . . . , p̄2n and so the coding length of the H-presentation of P̄1 is
bounded by a polynomial in the coding length of p̄1, . . . , p̄2n. �

Since the coding length of P̄1 is polynomially bounded, we also get that the coding
length of

P̄2 :=
⋂

i∈[k]

⋂

v∈[2n]

H i
≤(āv, β̄v) ⊆ R2k.

is polynomially bounded.
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Now, let ε̄ := 1 − max{q̄Tu p̄v : u, v ∈ [2n], u 6= v}. By expanding the expression

q̄Tu p̄v =
(
qu + (q̄u − qu)

)T (
pv + (p̄v − pv)

)
and using (10) and (11), we obtain

ε̄ ≥ ε− 3pU > 0. (12)

Finally, define
Ēijuv := {x ∈ R2k : ε̄− 2 ≤ p̄Tuxi + p̄Tv xj ≤ 2− ε̄},

and
F̄ ijuv := {x ∈ R2k : ε̄− 2 ≤ p̄Tuxi−, p̄Tv xj ≤ 2− ε̄},

and, for N :=
(

[n]
2

)
\ E, let

P̄ := P̄2 ∩
⋂

{u,v}∈N
i,j∈[k],i 6=j

(Ēijuv ∩ F̄ ijuv) ∩
⋂

v∈[n]
i,j∈[k],i 6=j

(Ēijvv ∩ F̄ ijvv). (13)

The following two lemmas will now prepare the proof that we can still reduce Clique
to norm maximization over P̄ . To be able to state them in a concise way, we introduce
the following notation.

Notation 2.7
Let P̄ ⊆ R2k be the polytope from Equation (13) and x = (xT1 , . . . , x

T
k )T ∈ P̄ . By letting

mi(x) ∈ arg max{q̄Tv xi : v ∈ [2n]},

we can refer to the index of a vertex which is “closest” to x in the sense that q̄Tmi(x)x ≥ q̄Tv x
for all v ∈ [2n]. This is illustrated in Figure 3.

p1

x1
p8 x2

Figure 3: Illustration of Notation 2.7. The figure shows a point x = (xT1 , x
T
2 )T ∈ R4

with m1(x) = 1 and m2(x) = 8.

First, we show that if P̄ contains a point which is “close” (in the sense specified in
Notation 2.7) to a clique vertex, then P̄ contains the clique vertex itself.

Lemma 2.8
Let P̄ ⊆ R2k be the polytope constructed above in Equation (13). If there exists x̄ ∈ P̄
such that q̄Tmi(x̄)x̄ > 1− ε̄

2 for all i ∈ [k], then (p̄Tm1(x̄), . . . , p̄
T
mk(x̄))

T ∈ P̄ .

11



Proof.
Since q̄Tmi(x̄)x̄i > 1 − ε̄

2 for all i ∈ [k], for no pair (i, j) ∈ [k]2 the inequalities q̄Tmi(x̄)xi +

q̄Tmj(x̄)xj ≤ 2 − ε̄ can be present in the description of P̄ . Since, by definition of ε̄, we

have q̄Tv p̄mi(x̄) ≤ 1− ε̄ for all v ∈ [2n] \ {mi(x̄)} and i ∈ [k], we can conclude that

(p̄Tm1(x̄), . . . , p̄
T
mk(x̄))

T ∈ P̄ .

�

In view of Lemma 2.8, it remains to show that the norm of a vertex which is “far”
from a clique vertex is sufficiently small:

Lemma 2.9
Let v ∈ [2n] and Q := conv{0, p̄v, p̄v+1} ∩H≤(q̄v, 1− ε̄

2) ∩H≤(q̄v+1, 1− ε̄
2). Then, for n

sufficiently large,

max{‖x‖pp : x ∈ Q} ≤ 1− 2p−3

pnp
.

Proof.
Let Q′ := conv {0, e1, p̄2} ∩H≤

(
e1, 1− ε̄

2

)
∩H≤

(
q̄2, 1− ε̄

2

)
. Since e1 is a point of lowest

curvature on the boundary of B2
p, we have max{‖x‖pp : x ∈ Q} ≤ max{‖x‖pp : x ∈ Q′} =

‖x∗‖pp, where x∗ fulfills eT1 x
∗ = 1− ε̄

2 and x∗ = λe1 + (1− λ)p̄2 for some λ ∈ [0, 1]. From
the first property, we can deduce λ = 1− ε̄

2 , which implies eT2 x
∗ = ε̄

2e
T
2 p̄2. By Lemma 2.3,

eT2 p̄2 ≤ 2
n + U . Putting things together, we obtain

‖x∗‖ ≤
(

1− ε̄

2

)p
+

(
ε̄

2

(
2

n
+ U

))p
≤
(

1− ε̄

2

)
+

(
ε̄

2

(
2

n
+ U

))p
. (14)

By Lemma 2.5 and Equation (12), ε̄ ≥ 2p−1

pnp −3pU . By the choice of U and the assumption
that n is sufficiently large, we can therefore continue (14) and obtain

(
1− ε̄

2

)
+

(
ε̄

2

(
2

n
+ U

))p
≤ 1− 2p−3

pnp
.

�

Hardness part of Theorem 1.2.
The following lemma shows that it is sufficient to carry out the reduction described by

Lemma 2.4 with finite precision as described in this subsection. It completes the proof of
the hardness part of Theorem 1.2. For notational convenience, we use the clique number
ω(G) to denote the size of the biggest clique in a graph G = ([n], E).
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Lemma 2.10 (Reduction with finite precision)
Let (n, k,E) be an instance of Clique, G = ([n], E) and P̄ ⊆ R2k the polytope with
rounded coordinates constructed above in (13). Then,

ω(G) ≥ k ⇐⇒ max{‖x‖pp : x ∈ P̄} ≥ k(1− U)p (15)

and

ω(G) < k ⇐⇒ max{‖x‖pp : x ∈ P̄} ≤ (k − 1)(1 + U)p + 1− 2p−3

pnp
. (16)

Proof.
Since (k− 1)(1 +U)p + 1− 2p−3

pnp < k(1−U)p, if suffices to show the “forward” direction
in both (15) and (16).
If ω(G) ≥ k and {v1, . . . , vk} ⊆ [n] is the vertex set of a k-clique in G, then P̄ contains
the vertex x∗ = (p̄Tv1 , . . . , p̄

T
vk

)T and ‖x∗‖pp ≥ k(1− U)p by (10).
Assume now that ω(G) < k and let x∗ ∈ P̄ be a vertex of maximal norm in P̄ . If
q̄Tmi(x∗)

x∗ > 1− ε̄
2 for all i ∈ [k], Lemma 2.8 would imply that (p̄Tm1(x∗), . . . , p̄

T
mk(x∗))

T is

a vertex of P̄ and therefore contradict ω(G) < k. Hence, there is some i ∈ [k] such that
q̄Tmi(x∗)

x∗ ≤ 1 − ε̄
2 . By adding a constant number of vertices to G, we can assume that

n is sufficiently large and apply Lemma 2.9 in order to obtain ‖x∗i ‖pp ≤ 1 − 2p−3

pnp . As

‖x∗j‖pp ≤ (1 + U)p for all j ∈ [k] \ {i}, the right hand side of (16) follows. �

The construction of the polytope P (or P̄ ) relies on the fact that, for p ≥ 2, the
boundary of the unit ball of a p-norm contains no straight line segment. This is not the
case for p = 1 and we show in the next subsection that Normmax1 is indeed in FPT.

2.2 Tractability

This subsection completes the proof of Theorem 1.2 by showing that Normmax1 is
fixed parameter tractable.
The statement of Theorem 2.12 is slightly more general than needed for Theorem 1.2 but
will be of use in Section 3. The result for Normmax1 can be obtained from Theorem 2.12
by choosing ϕd : Rd → R;x 7→ ‖x‖1 in Problem 2.11.

Problem 2.11 (Max-Φ)
Suppose that for each d ∈ N, ϕd : Rd → R is positive homogeneous of degree 1 and let
Φ := (ϕd)d∈N. The problem Max-Φ is defined as follows:

Input: d ∈ N, γ ∈ Q, rational H-presentation of a polytope P ⊆ Rd
Parameter: d
Question: Is max{ϕd(x) : x ∈ P} ≥ γ?

13



Theorem 2.12 (Tractability of Max-Φ)
For each d ∈ N, let ϕd : Rd → R be positive homogeneous of degree 1 and Φ :=
(ϕd)d∈N. Suppose that, for d ∈ N, the set Bd := {x ∈ Rd : ϕd(x) ≤ 1} is a full-
dimensional polytope, a rational H-presentation of which can be computed in time f(d)
for a computable function f : N → N. Then, Max-Φ is in FPT and can be solved in
time O(f(d)TLP (d, n)).

Proof.
Let Bd =

⋂m
i=1H≤(ai, 1) be an H-presentation of Bd. Then, m ∈ O(f(d)). Because of

the homogeneity of ϕd, {x ∈ Rd : ϕd(x) ≤ λ} = λBd and ϕd(x) = maxi∈[m] a
T
i x. Hence,

max{ϕd(x) : x ∈ P} = max
i∈[m]

max{aTi x : x ∈ P}.

Thus, Max-Φ can be decided by the following algorithm:
(1) Compute an H-presentation of Bd in time f(d).
(2) Solve m linear programs max{aTi x : x ∈ P} in time TLP (d, n).
(3) Compare the biggest objective value to γ.

As TLP (d, n) ∈ O(22dn), the above algorithm has FPT running time O(f(d)22dn). �

We can also establish fixed parameter tractability for the two problems [−1, 1]-Parmaxp
and [0, 1]-Parmaxp as considered in [1].

Problem 2.13 ([0, 1]-Parmaxp)

Input: d ∈ N, γ ∈ Q, v1, . . . , vn ∈ Qd linearly independent
Parameter: d

Question: Is max{‖x‖pp : x ∈∑d
i=1[0, 1]vi} ≥ γ?

Problem 2.14 ([−1, 1]-Parmaxp)

Input: d ∈ N, γ ∈ Q, v1, . . . , vn ∈ Qd linearly independent
Parameter: d

Question: Is max{‖x‖pp : x ∈∑d
i=1[−1, 1]vi} ≥ γ?

In [1], it was shown that Problem 2.13 and 2.14 are both NP-hard, so that the NP-
hardness of Normmaxp persists even on very restricted instances. However, the follow-
ing theorem shows that these problems are fixed parameter tractable, when parametrized
by the dimension. So in this case, the hardness of Parmaxp is really a phenomenon of
high dimensions.

Theorem 2.15 (Tractability of Parmaxp)
For all p ∈ N, Problems 2.13 and 2.14 are in FPT.

14



Proof.
We only consider Problem 2.13; the argument for Problem 2.14 is exactly the same. The
vertices of the polytope P :=

∑d
i=1[0, 1]vi are all of the form

∑d
i=1 λivi for some vector

λ = (λ1, . . . , λd)
T ∈ {0, 1}d. As the the maximum of ‖ · ‖pp is attained at a vertex of P ,

it suffices to compute the norm of all 2d possible choices of λ ∈ {0, 1}d. This clearly is
an FPT-algorithm for Problem 2.13. �

3 Approximation

3.1 FPT-Approximation for Fixed Accuracy

In [2], it is shown that, for all p ∈ N, Normmaxp is not contained in APX (i.e. there is
no polynomial time approximation algorithm with a fixed performance guarantee). As
norm maximization with a polytopal unit ball is in FPT, we can give a straightforward
approximation algorithm that has FPT running time for any fixed accuracy by replacing
the unit ball Bdp by an approximating polytope. The following proposition concerning
the complexity of such a polytope can be obtained from [3, Lemmas 3.7 and 3.8].

Proposition 3.1 (Approximation of balls by polytopes)
Let p ∈ N and β ∈ N be fixed. There is a symmetric polytope B ⊆ Rd with a rational
H-presentation and at most O(βd) facets such that

Bdp ⊆ B ⊆
β

β − 1
Bdp, (17)

and B can be computed in time O(βd).

Lemma 3.2 (FPT-Approximation algorithm for fixed accuracy)
Let p ∈ N and β ∈ N be fixed. There is an algorithm which for every H-presented
polytope P ⊆ Rd runs in time O(βdTLP (d, n)) and produces an x̄ ∈ P such that

‖x̄‖pp ≥
(
β − 1

β

)p
max{‖x‖pp : x ∈ P}.

Proof.
The following algorithm has the desired properties:

(1) Compute an H-presentation of a symmetric polytope B ⊆ Rd with the properties of
Proposition 3.1 and let ‖ · ‖B : Rd → R;x 7→ ‖x‖B := min{λ ≥ 0 : x ∈ λB}

(2) Choose x̄ ∈ arg max{‖x‖B : x ∈ P}.
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It follows from Proposition 3.1 that step (1) can be accomplished in time O(βd). As the
number of facets of B is in O(βd), it follows from Theorem 2.12 that the maximization
of ‖ · ‖B over P can be done in time O(βdTLP (d, n)).
In order to show the performance ratio of the above algorithm, observe that Property (17)
of B implies that β−1

β ‖x‖p ≤ ‖x‖B ≤ ‖x‖p for all x ∈ Rd. Hence, if x∗ ∈ arg max{‖x‖pp :
x ∈ P}, we get

‖x̄‖pp ≥ ‖x̄‖pB ≥ ‖x∗‖
p
B ≥

(
β − 1

β

)p
‖x∗‖pp =

(
β − 1

β

)p
max{‖x‖pp : x ∈ P}.

�

3.2 No FPT-approximation for Variable Accuracy

Finally, we will show that the straightforward approximation of the previous subsection
is already best possible in the sense that there is no algorithm with polynomial depen-
dence on the approximation quality and exponential dependence only on the dimension.
Hence, combined with Lemma 3.2, Lemma 3.3 completes the proof of Theorem 1.3. In
fact, the basis for this has already been established in Lemma 2.10 and we can give the
result right away.

Lemma 3.3 (No polynomial dependence on β)
Let f : N → R be a computable function and q : R3 → R a polynomial function. If
W[1]6=FPT, there is no algorithm which for every H-presented polytope P ⊆ Rd runs in
time O(f(d)q(β, d, n)) and produces an x̄ ∈ P such that

‖x̄‖pp ≥
(
β − 1

β

)p
max{‖x‖pp : x ∈ P}.

Proof.
Let (n, k,E) be an instance of the W[1]-hard problem Clique and P̄ ⊆ R2k the polytope
constructed in Equation (13). By Lemma 2.10, it can be decided if G = ([n], E) has a
clique of size k by determining, whether

either max{‖x‖pp : x ∈ P̄} ≥ k(1− U)p

or max{‖x‖pp : x ∈ P̄} ≤ (k − 1)(1 + U)p + 1− 2p−3

pnp

(18)

Assume that an algorithm with the claimed properties exists and call it A. One easily
checks that there is a suitable constant C > 0 such that it suffices to choose β ≥ pnpk

C in
order to fulfill

(
β

β − 1

)p(
(k − 1)(1 + U)p + 1− 2p−3

pnp

)
< k(1− U)p.

Hence, we can run the following algorithm A′ in order to decide (18):
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1) Choose β :=
⌈
pnpk
C

⌉
.

2) Run A on the polytope P̄ and obtain an approximate normmaximal vertex x̄ ∈ P̄ .

3) If ‖x̄‖pp > (k − 1)(1 + U)p + 1− 2p−3

pnp , decide max{‖x‖pp : x ∈ P̄} ≥ k(1− U)p.

Else, decide max{‖x‖pp : x ∈ P} ≤ (k − 1)(1 + U)p + 1− 2p−3

pnp .

By the properties of A, the running time of the algorithm A′ is O(f(d)q(npk, d, n))
and by Lemma 2.10 and the choice of β, A′ decides (18) correctly. A′ is thus an FPT
algorithm for Clique. Unless FPT=W[1], this is a contradiction to the fact that Clique
is W[1]-hard. �

4 Some Implications

As stated in the introduction, norm maximization over polytopes plays a fundamental
role in Computational Convexity. This section gives corollaries concerning the hardness
of determining four important geometric functionals on polytopes.
If P ⊆ Rd is a polytope, we denote by R(P,Bdp) (r(P,Bdp), respectively) the circumradius
(inradius) of P with respect to the p-norm. Further, similar to the notation in [14], we
write R1(P,Bdp) (r1(P,Bdp)) for half of the width (diameter) of P , i.e. half the radius of a
smallest slab containing P (half the length of the longest line segment contained in P ).
For p ∈ N ∪ {∞}, we consider the following problems:

Problem 4.1 (Circumdadiusp-H)

Input: d ∈ N, γ ∈ Q, rational H-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is R(P,Bdp)p ≥ γ?

Problem 4.2 (Diameterp-H)

Input: d ∈ N, γ ∈ Q, rational H-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is r1(P,Bdp)p ≥ γ?

It has been shown in [15] that Problems 4.1 and 4.2 are solvable in polynomial time if
p =∞ and, by using an identity for symmetric polytopes from [14], that both problems
are NP-hard when p ∈ N. Using the same identity, we can establish (in-)tractability for
both problems when parameterized by the dimension:

Corollary 4.3 (Circumradius & Diameter)
For p = 1, Problems 4.1 and 4.2 are in FPT. For p ∈ N \ {1}, both problems are
W[1]-hard.
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Proof.
As shown in [14, (1.3)], for a 0-symmetric polytope P ⊆ Rd, we have

R(P,Bdp)p = r1(P,Bdp)p = max{‖x‖pp : x ∈ P}.

Thus tractability or hardness of Problems 4.1 and 4.2 follow from Theorem 1.2. �

Additionally, let q ∈ [1,∞] be such that 1/p+ 1/q = 1 (with 1/∞ = 0).

Problem 4.4 (Inradiusp-V)

Input: d ∈ N, γ ∈ Q, rational V-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is r(P,Bdq)p ≤ γ?

Problem 4.5 (Widthp-V)

Input: d ∈ N, γ ∈ Q, rational V-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is R1(P,Bdq)p ≤ γ?

As for the previous two problems, the question of NP-hardness of Inradiusp-V and
Widthp-V has been studied in [15]. It is shown that Problems 4.4 and 4.5 are solvable
in polynomial time if p = 1 and by using an identity for symmetric polytopes from [14]
that both problems are NP-hard when p ∈ N. Here again, we can use the same identity
to establish (in-)tractability for both problems when parameterized by the dimension:

Corollary 4.6 (Inradius & Width)
For p = 1, Problems 4.4 and 4.5 are in FPT. For p ∈ N \ {1}, both problems are
W[1]-hard.

Proof.
It is shown in [14] that if P ⊆ Rd is a 0-symmetric polytope and P ◦ is its polar the
identities

Rj(P,Bdq)rj(P ◦,Bdp) = 1

hold for all j ∈ [d]. As anH-presentation of P ◦ is readily translated into a V-presentation
of P , tractability or hardness of Problems 4.4 and 4.5 follow from Corollary 4.3. �

The reductions of Corollaries 4.3 and 4.6 also show that the algorithm in the proof of
Lemma 3.2 can be used to compute the respective radii of a symmetric polytope P ⊆ Rd
in the respective presentation. Lemma 3.3, in turn, shows that in these cases the given
running time is also best possible.
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