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Abstract

A bar framework determined by a finite graph G and configuration
p = (p1, . . . ,pn) in Rd is universally rigid if it is rigid in any RD ⊃ Rd.
We provide a characterization of universally rigidity for any graph G
and any configuration p in terms of a sequence of affine subsets of the
space of configurations. This corresponds to a facial reduction process
for closed finite dimensional convex cones.

Keywords: rigidity, prestress stability, universal rigidity, global rigidity, in-
finitesimal rigidity, super stability, framework, tensegrity, dimensional rigid-
ity, self stress, equilibrium stress, measurement set, generic, semi-definite
programming, positive semi-definite (PSD) matrices, point location, form
finding

1 Introduction

1.1 Basic Definitions

Given a configuration p = (p1, . . . ,pn) of n points in Rd, and a finite graph
G, without loops or multiple edges, on those n points one can ask the natural
and fundamental question: is there another configuration q = (q1, . . . ,qn) in
Rd, where the distance between pi and pj, is the same as the distance between
qi and qj when {i, j} is an edge of G? When this happens we say that (G,p)
is equivalent to (G,q). (Traditionally G(p) and G(q) is the notation used
for (G,p) and (G,q), which are called (bar) frameworks, but we break that
tradition here.) Of course, if there is a congruence between p and q, they
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are called trivially equivalent or congruent, since all pairs of distances are the
same.

The following are a sequence of ever stronger rigidity properties of frame-
works, where (G,p) is a framework on n vertices in Rd.

• If all the frameworks (G,q) in Rd equivalent to (G,p) and sufficiently
close to (G,p) are trivially equivalent to (G,p) we say that (G,p) is
locally rigid in Rd (or just rigid in Rd).

• If all the frameworks (G,q) in Rd equivalent to (G,p) are congruent to
(G,p) we say that (G,p) is globally rigid in Rd.

• If all the frameworks (G,q) in any RD ⊃ Rd equivalent to (G,p) are
trivially equivalent to (G,p), we say that (G,p) is universally rigid.

1.2 Main Result

It is well known that the existence of a certain kind of “stress” matrix associ-
ated with a specific framework is sufficient to prove its universal rigidity [13].
It is also known that when a “generic” framework is universal rigidity, it is
also necessary for it to have this type of associated stress matrix [22]. But
there do exist special frameworks that are universally rigid while not pos-
sessing such a matrix. In this paper, we propose a new criterion in terms of a
certain “sequence of stress matrices” which gives a complete (necessary and
sufficient) characterization of universal rigidity for any specific framework in
any dimension of any graph.

The validity of this certificate can be checked efficiently and determinis-
tically in the real computational mode of [8]. We need to use a real model,
since even if p is described using rational numbers, the stress matrix might
have irrational entries. As such, this means that universal rigidity is in the
class NP under this real computational model. Note that universal rigidity
is clearly in CO-NP under real valued computation since the non universal
rigidity of a framework p can always be certified by a providing an equivalent
non-congruent framework q.

The main result will be explained in Section 8 and Theorem 8.1. We
will derive our results in a self-contained manner, but note that technically,
what we have is really a thinly disguised version of a known technique called
“facial reduction” which is used to analyze convex cone programs [9]. The
connection is explained explicitly in Section 10.
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1.3 Relation to other forms of rigidity

Given (G,p), testing for local or global rigidity is known to be a hard com-
putational problem [1, 38]. Fortunately, this is not the end of the story. For
local and global rigidity, the problems become much easier if we assume that
p is generic. (We say that a configuration p is generic in Rd if all the coordi-
nates of all the points of p are algebraically independent over the rationals.
This means, in particular, there can be no symmetries in the configuration,
no three points are collinear for d ≥ 2, etc). Local and global rigidity have
efficient randomized algorithms under the assumption that the configuration
is generic, (and for d = 1 or d = 2, there are even purely combinatorial
polynomial-time algorithms). See [14, 15, 21, 46] for information about all of
these concepts. In particular, both local and global rigidity in Rd are generic
properties of a graph G. That is, either all generic frameworks are rigid, or
none of them are, and so these properties only depend on the graph G and
not on the configuration p.

One justification for assuming that a configuration is generic is that in any
region, the generic configurations form a set of full measure. In other words,
if a configuration is chosen from a continuous distribution, with probability
one, it will be generic, and with any physical system, there will always be
some indeterminacy with respect to the coordinates. But the problem is that
special features of a particular configuration, such as symmetry, collinear-
ity, overlapping vertices, etc, may be of interest and they are necessarily
non-generic. In this paper we do not want to restrict ourselves to generic
frameworks.

In order to test for local rigidity of a specific non-generic framework there
is a natural sufficient condition to use, namely infinitesimal rigidity. This says
that in Rd (for n ≥ d) the rank of the rigidity matrix R(p) is nd−d(d+1)/2,
whereR(p) is anm-by-nd (sparse) matrix with integer linear entries, wherem
is the number of members (another name for the bars) as defined in Section
6. See also [46], for example. Infinitesimal rigidity of (G,p) can can be
computed efficiently [46].

Infinitesimal rigidity is simply a linearized form of local rigidity and thus
is a very natural sufficient condition to use for testing the local rigidity of
(G,p). In fact, the matrix test for infinitesimal rigidity is central to the
determination of generic local rigidity for G just described. In contrast, we
do not have such a natural sufficient condition to use for global rigidity.
Indeed, the particular matrix test used to compute generic global rigidity for
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the graph G does not give us information about the global rigidity of any
specific framework (G,p) [15].

Thus, in order to test for global rigidity of a specific non-generic frame-
work, we often resort to “stronger” conditions; perhaps the most usable such
sufficient condition is, universal rigidity. In this context, one can choose the
ambient dimension D to be, say n−1 with no loss in generality. As such, un-
derstanding universal rigidity can be essential to determining global rigidity,
and it is the focus of this paper.

1.4 Complexity Issues

The theoretical complexity of testing universal rigidity for (G,p), (even when
p is given by integer-valued input) is technically unknown. There are no
known hardness results, nor are there any provably correct efficient algo-
rithms. One can pose the problem of universal rigidity in the language of
semi-definite programing (SDP) [49]. Unfortunately, the complexity for for
conclusively deciding an SDP feasibility problem is itself unknown [35].

In practice, one can use a numerical (say interior point) SDP solver for
these problems. Roughly speaking, this can efficiently find a framework with
an affine span of dimension n − 1 (the highest possible dimension) that is
within ε of being equivalent to the given framework. If this framework ap-
pears to “almost” have an affine span of dimension d, and appears to be “very
close” to the input p, then we have strong “evidence” for universal rigidity.
But it is unclear how to use this to make a determination with provable cor-
rectness properties. In effect, this means, in the case with imprecise input,
that the problem to determine whether the framework is universally rigid
cannot be solved because there is not enough information in the input to be
able to solve it.

An exasperating issue is that there can be great sensitivity between errors
in achieving desired edge lengths (which are what we get when using an
SDP solver) and errors in the resulting configuration. Figure 1.1 shows a
framework (with pinned vertices) that is universally rigid in R2. We will see
that this can be verified using methods described in this paper. If the lengths
in Figure 1.1 are all increased by less that 0.5%, Figure 1.2 shows the resulting
realization in the plane. Note that this slightly perturbed framework is far
from universally rigid. Here we see that a very small error in the numerical
calculation of the lengths of the members can lead to a very large perturbation
of the resulting configuration, and, indeed, the decision as to universal rigidity
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m EF = 6.67 cm

Figure 1.1: The large black
vertices are pinned to the plane,
and the whole framework is uni-
versally rigid as in Corollary
8.1.2.

m AC = 6.70 cm
m AB = 3.35 cm

CA B

Figure 1.2: This is the same
framework as in Figure 1.1 but
with the lengths of the bars in-
creased by less than 0.5%.

may be incorrect.

1.5 Certificates

The lack of conclusive algorithms for universal rigidity brings us, finally, to
the topic of “sufficient certificates” for universal rigidity. In this paper we
show that there is a kind of sufficient certificate that must exist for any
universally rigid framework. This certificate is described by a sequence of
real-valued matrices and can be verified efficiently using real computation.

Note, that we do not claim that given a universally rigid framework,
this certificate can always be found efficiently. But, as we describe below in
Section 15, there are many cases where we can systematically find the appro-
priate certificates for the universal rigidity of (G,p). We also discuss other
cases where we have at least a positive probability of finding the certificate.

Looking again at the situation of Figure 1.1 and Figure 1.2, we see that
universal rigidity itself can be a fragile property, that is destroyed (along with
its sufficient certificates) by any errors in the description of p. Given our new
characterization of universal rigidity, we suggest that when exploring and
designing frameworks that we wish to be universally rigid, it may be best to
explicitly maintain the appropriate certificates as part of the representation
and description of (G,p).
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2 Stress

The central tool we will use to analyze universal rigidity is the concept of a
stress.

Definition 2.1 A stress associated to a graph G is a scalar ωij = ωji as-
signed to each edge {i, j} of G. Call the vector ω = (. . . , ωij, . . . ), the stress
vector.

We can suppress the role of G here by simply requiring that ωij = 0 for
any non-edge {i, j} of G. (One should also be careful not to confuse the
notion of stress here with that used in structure analysis, in physics or in
engineering. There, stress is defined as a force per cross-sectional area. In
the set-up here, there are no cross-sections; the scalar ωij is better interpreted
as a force per unit length.)

Since we will be concerned with configurations in an arbitrarily high di-
mension, we will fix a large dimension D, which can effectively be taken to
be n if our framework has n vertices. When we are given a particular con-
figuration, we generally will assume it is realized in RD. We can describe
a configuration p in RD using coordinates using a single vector in RDn. Of
course, for the purposes of deciding universal rigidity and some of the other
concepts defined here, there is no reason to restrict the configurations to lie
some particular Euclidean space RD. But it is clear that once the ambient
dimension D is greater than n, any configuration in any higher dimension is
congruent to one in RD, and it will be convenient to consider configurations
in dimensions larger than n. In order to define a finite dimensional space
of configurations appropriate for universal rigidity, though, it is useful to re-
strict just to those configurations in RD, and if a construction pops out of
RD, we can always rotate it back in to RD.

Given a stress, we can measure the energy of a configuration: Let ω =
(. . . , ωij, . . . ) be a stress for a graph G and let p = (p1, . . . ,pn) be a config-
uration in RD.

Definition 2.2 We define the stress-energy associated to ω as

Eω(p) :=
∑
i<j

ωij(pi − pj)
2, (2.1)

where the product of vectors is the ordinary dot product, and the square of a
vector is the square of its Euclidean length.
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Regarding the stress ω as fixed constants, Eω is a quadratic form defined on
vectors in RDn, it is easy to calculate that the configuration p is a critical
point for Eω when, for each vertex i of G,∑

j

ωij(pj − pi) = 0. (2.2)

Definition 2.3 When Equation (2.2) holds, we say that the stress ω is an
equilibrium stress for the configuration p. We also say that p is in equilib-
rium with respect to ω.

It is useful to represent a stress in matrix form: The n-by-n stress matrix
Ω associated to the stress ω is defined by making the {i, j} entry of Ω be
−ωij when i 6= j, and the diagonal entries of Ω are such that the row and
column sums of Ω are zero.

It is easy to see that with respect to the standard basis of RDn, the
matrix of Eω is Ω⊗ ID, where ID is the D-by-D identity matrix and ⊗ is the
matrix Kronecker product. Note that although Eω is defined over the high
dimensional space RnD, its being PSD only depends only on Ω, and its rank
only depends on the rank of Ω and D.

If p is a configuration in Rd with an equilibrium stress ω, it is easy to
check that for any affine map of a : Rd → RD, the configuration a(p) defined
by pi → a(pi), for all i, is also an equilibrium configuration with respect to
ω.

Definition 2.4 We say that a configuration p is universal with respect to
the stress ω if p is in equilibrium with respect to ω, and any other configu-
ration q in RD which is, also, in equilibrium with respect to ω, is such that
q is an affine image of p.

Definition 2.5 For a configuration p = (p1, . . . ,pn) we regard each pi as a
column vector in RD, as we define the D-by-n configuration matrix of p as

P =
[
p1 p2 . . . pn

]
.

Then it is easy to check that the equilibrium condition for a given stress
is

P Ω = 0,

where Ω is the stress matrix for the stress ω.
The following is easy to check and is in [13]. See also Lemma 7.1 for a

general universal construction.
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Proposition 2.1 Given a stress ω, let p be any configuration that is in
equilibrium with respect to ω and whose affine span is of maximal dimension
over all such configurations. Let this affine span have dimension d. Then p
is universal with respect to ω and the rank of Ω is n− d− 1.

3 The conic at infinity

In a sense, an equilibrium stress can only make distinctions “up to affine
motions” as seen in Proposition 2.1. For rigidity questions, we would like to
know when the affine motions can be restricted to Euclidean congruences.

Definition 3.1 We say that v = {v1, . . . ,vm}, a finite collection of non-
zero vectors in Rd, lie on a conic at infinity if when regarded as points in real
projective (d− 1) space RPd−1, they lie on a conic.

This means that there is a non-zero d-by-d symmetric matrix A such that
for all i = 1, . . . ,m, vt

iAvi = 0, where ()t is the transpose operation. The
following shows how affine motions can be non-trivial flexes of a framework.

Definition 3.2 A flex of a framework (G,p) is a continuous motion p(s),
0 ≤ s ≤ 1,p(0) = p, where p(s) is equivalent to p. It is non-trivial if p(s)
is not congruent to p for all s > 0. If p(s) = A(s)p(0), where A(s) is an
affine function of Euclidean space, then we say p(s) is an affine flex.

Proposition 3.1 A framework (G,p) in Rd, with d-dimensional affine span,
has a non-trivial affine flex if and only if it has an equivalent non-congruent
affine image in Rd if and only if the member directions {pi−pj}{i,j}∈E(G) lie
on a conic at infinity, where E(G) are the edges of G.

See [13, 10] for a simple proof of this property. Note that in the plane, the
conic lies in RP1, which consists of two points or one point. So affine motions
of a framework can only occur when the edge directions lie in two possible
directions.

4 The fundamental theorem

The major tool used for proving universal rigidity is the following. (See [13].)
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Theorem 4.1 Let (G,p) be a framework whose affine span of p is all of Rd,
with an equilibrium stress ω and stress matrix Ω. Suppose further

1. Ω is positive semi-definite (PSD).

2. The configuration p is universal with respect to the stress ω. (In other
words, the rank of Ω is n− d− 1.)

3. The member directions of (G,p) do not lie on a conic at infinity.

Then (G,p) is universally rigid.

The idea is that Eω(p) only depends on the edge lengths of p, and so any
configuration q equivalent to q must have zero energy. Since Eω is PSD, this
forces such a q to have coordinates in the kernel of Ω and thus q to be an
affine image of p. Thus by Proposition 3.1, their member directions must lie
on a conic at infinity. So Condition 3 implies that (G,p) is universally rigid.

Definition 4.1 If all three conditions of Theorem 4.1 are met we say that
the framework (G,p) is super stable.

There are many instances of such frameworks. For example, the rigid
tensegrities of [12] are super stable in R3, where the number of edges of G is
m = 2n, and n is the number of vertices. Theorem 4.1 is the starting point
for most of our results in this paper, where this result will be generalized
significantly.

Given such a matrix Ω and (G,p) as real valued input, one can efficiently
verify (under, say a real-model of computation) that Ω is PSD and that it is
an equilibrium stress matrix for (G,p).

We note, in passing, the following result in [3] which replaces the conic
condition with a more natural one.

Definition 4.2 A configuration p = (p1, . . . ,pn) in Rd is in general posi-
tion if no k points lie in a (k − 1)-dimensional affine space for 1 ≤ k ≤ d.

Theorem 4.2 If Conditions 1 and 2 hold in Theorem 4.1 and Condition 3
is replaced by the assumption that the configuration p is in general position,
then Condition 3 still holds and (G,p) is super stable.
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This natural question is whether the conditions of Theorem 4.1 are neces-
sary for universal rigidity. The answer in the generic case is in the affirmative.
The following is from [22]:

Theorem 4.3 A universally rigid framework (G,p), with p generic in Ed

and having n ≥ d+ 2 vertices, has a PSD equilibrium stress matrix with rank
n− d− 1.

This result does not hold for non-generic frameworks (even in general
position). For example, see the universally rigid framework in Figure 4.1.
In this paper, we will describe a (weaker) sufficient condition that is also
necessary for universal rigidity for all frameworks.

A

Figure 4.1: This is a framework, where the vertices are all in general
position, there is only a one-dimensional space of equilibrium stresses,
and the associated stress matrix does not have maximal rank. The
stresses on the members at the vertex A must be all zero. The dotted
lines extending the members coming from the vertices of the outside
triangle meet at a point and are not part of the framework, as shown.
As described in this paper, we will use multiple levels of stresses. In
this figure and later ones, the first level stresses and the corresponding
members are colored in dark blue, the next level in red and the third
level in green.

5 Dimensional rigidity

In [4] a notion called dimensional rigidity is introduced. This is closely re-
lated to, but distinct from, universal rigidity. Our main result can be best
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understood in terms of dimensional rigidity, first. Then we can derive the
appropriate statements about universal rigidity.

Definition 5.1 We say that a framework (G,p) in Rd, with affine span of
dimension d, is dimensionally rigid in Rd if every framework (G,q) equivalent
to (G,p) has an affine span of dimension no greater than d.

(One might better call this concept dimensionally maximal, since a di-
mensionally rigid framework may not even be locally rigid, but we refrain
from that indulgence.)

In many applications, one often wants to find the minimum dimension
for a graph (G, e) with given edge lengths e = {. . . , eij, . . . }, so the concept
of the maximal dimension seems backwards from what is normally desired.
For example, finding the minimal dimension of (G, e) is the point of [6, 29].
Nevertheless, dimensional rigidity is quite relevant for universal rigidity.

It is clear that if a framework (G,p) is universally rigid in Rd, then it
is dimensionally rigid in Rd, but we shall see several examples of non-rigid
dimensionally rigid frameworks. Such cases always occur due to a conic at
infinity, (in which case, the framework is not even locally rigid). For example,
two bars, with a single vertex in common, is dimensionally rigid in the plane,
but it is flexible, i.e. not rigid, in the plane.

An important connection between dimensional rigidity and universal rigid-
ity is the following. (This is proved in [4], but we provide a more direct proof
here.)

Theorem 5.1 If a framework (G,p) with n vertices in Rd is dimensionally
rigid in Rd, and (G,q) is equivalent to (G,p), then q is an affine image of
p.

Proof. Suppose that h : p→ q is the correspondence between the configu-
rations. Consider the graph of this correspondence Γ(h) = {(pi,qi)}i=1,...,n ⊂
Rd × RD, where D is sufficiently large to contain q. It is easy to check (See
[7] or the proof of Lemma 7.1 below) that 1√

2
Γ(h) is equivalent to p and q.

Thus there is a d-dimensional affine hyperplane that contains 1√
2
Γ(h). This

implies that q is an affine image of p. �
A key consequence of Theorem 5.1 shows that universal rigidity can be

determined from dimensional rigidity and Property 3.) of Theorem 4.1.
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Corollary 5.1.1 A framework (G,p) with n vertices in Rd is universally
rigid if and only if it is dimensionally rigid and the edge directions do not lie
on a conic at infinity.

One result that follows from the proof of Theorem 4.1 from [13] is the
following.

Theorem 5.2 If a framework (G,p) with n vertices in Rd has an equilibrium
stress with a PSD stress matrix of rank n−d−1, then (G,p) is dimensionally
rigid in Rd.

See [4] for similar conditions for dimensional rigidity. This just says that
the configuration p is universal with respect to the given stress. The only
other possible equivalent configurations of (G,p), in this case, are affine linear
images, which do not raise dimension.

Since universal rigidity implies dimensional rigidity, the examples of Fig-
ures 11.1 (on the right) and 4.1 also show that the PSD stress matrix of rank
n− d− 1 is not necessary for dimensional rigidity.

In order to start to understand what is necessary for dimensional (and
universal) rigidity we begin with the following, Theorem 6 in [2]. We also
provide a simple proof as a special case of the results is Section 7 here.

Theorem 5.3 If (G,p) is a dimensionally rigid framework with n vertices
whose affine span is d dimensional, d ≤ n − 2, then it has a non-zero equi-
librium stress with a PSD stress matrix Ω.

Note that the rank of Ω in Theorem 5.3 could be as low as one. As such,
it is weaker than the sufficient conditions above. Later, we will describe a
new condition, which is stronger than having a non-zero PSD stress matrix,
but weaker than having a non-zero PSD stress matrix of rank n−d− 1. Our
condition instead will be of the form of a sequence of PSD matrices, where
the combined rank is n−d−1. Briefly, we will apply Theorem 5.3 repeatedly
to a smaller and smaller space of possible configurations.

6 The measurement set

Fix a finite graph G with n vertices, m edges and fix a Euclidean space RD,
where the dimension D is at least as large as n. Let

C := {p | p = (p1, . . . ,pn) is a configuration in RD}

12



be the set of configurations in RD. Each configuration can be regarded as a
vector in RDn.

Definition 6.1 We define the rigidity map as

f : C = RnD →M⊂ Rm

by f(p) = (. . . , (pi − pj)
2, . . . ), where the {i, j} are the corresponding edges

in G, and M = M(G) is the image of f in Rm for the graph G, which we
call the measurement set.

In other words, M is the set of squared lengths of edges of a framework
that are actually achievable in some Euclidean space. There are some basic
properties of C and any affine set A as below.

1. M is a closed convex cone in Rm.

2. For any e ∈ M, f−1(e) consists of an equivalence class of frameworks
p ∈ C.

The convexity of Condition 1 is well-known and even has an explicit formula
for the convexity in [7] and follows from Lemma 7.1 in Section 7. Condition
2 follows directly from the definition.

Definition 6.2 The rigidity matrix is defined as R(p) = 1
2
dfp, with respect

to the standard basis in Euclidean space, and f(p) = R(p)p, where df is the
differential of f . Then the energy function associated to a stress ω can also
be written as

Eω(p) = ωR(p)p,

where ω is regarded as a row vector.

7 Affine sets

Definition 7.1 A subset A ⊂ C that is the finite intersection of sets of the
form

{p ∈ C |
∑
ij

λij(pi − pj) = 0}, (7.1)

for some set {. . . , λij, . . . } of constants, is called an affine set.
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Clearly an affine set is a linear subspace of the configuration space C and it
is closed under arbitrary affine transformations acting on RD. Moreover, any
such set can be defined by equations of the form (7.1).

For example, if there are three collinear points p1,p2,p3, and p2 is the
midpoint of p1 and p3, then {p ∈ C | (p1 − p2)− (p3 − p2) = 0} is an affine
set. Or {p ∈ C | p1 − p2 + p3 − p4 = 0}, which is a configuration of four
points of a parallelogram (possibly degenerate), is another example.

A special case of such an affine set is determined by a stress ω, where the
equilibrium condition (2.2) at each vertex supplies the condition (7.1).

In Definition 2.4 we defined what it means for a configuration p to be
universal with respect to a single stress ω. This just means that any other
configuration q that is in equilibrium with respect to ω is an affine image of
p. We generalize this the case to that of any affine set as follows.

Definition 7.2 We say that a configuration p in an affine set A is universal
with respect to A, if any other configuration q in A is an affine image of
p. We denote by Å ⊂ A, the set of configurations that are universal with
respect to A.

For any set X in a linear space, 〈X〉 denotes the affine linear span of X.

Lemma 7.1 A configuration p ∈ C is universal with respect to an affine set
A if and only if it has maximal dimensional affine span for configurations in
A. Let f : A → Rm be the restriction of the rigidity map to the measurement
space for some graph G. Then f(A) is convex and f(Å) is the relative interior
of f(A) ⊂ 〈f(A)〉.

Proof. Clearly any possible universal configuration must have maximal
affine span in order for it to map affine linearly onto any other configuration
in A. Conversely, let p be any configuration with maximal dimensional affine
span, say d, in A, and let q be any other configuration in A. Define p̃ to be
another configuration where p̃i = (pi,qi) ∈ RD × RD for i = 1, . . . , n. The
configuration p̃ is also in A since all its coordinates satisfy the equations
(7.1). Since projection is an affine linear map and the affine span of p is
maximal, namely d, the dimension of the affine span of p̃ must also be d,
and the projection between their spans must be an isomorphism. So the map
p→ p̃→ q provides the required affine map since projection onto the other
coordinates is an affine map as well.
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If p,q ∈ A, then, regarding p and q as being in complementary spaces,

f((cos θ)p, (sin θ)q) = (cos θ)2f(p) + (sin θ)2f(q), (7.2)

for 0 ≤ θ ≤ π/2 is the segment connecting f(p) to f(q) is in f(A) showing
that f(A) and f(Å) are convex.

The rank of dfp is constant for non-singular affine images of p (see [18],

for example), which are in Å, the universal configurations. This implies that
f is locally a projection into f(A) at p, which implies that f(Å) is open
in 〈f(A)〉. This, combined with its being dense in f(A), and its convexity
makes f(Å) equal to the relative interior of f(A). �

The dimension of an affine set A is dim(A) = D(d + 1), where D is the
dimension of the ambient space and d is the dimension of the affine span of
a universal configuration p for A.

For any (symmetric) bilinear form B for a vector space V , the radical of
B is the set {v | B(v,w) = 0 for all w ∈ V }. If V is a finite dimensional
vector space and B is given by a symmetric matrix, then the radical of B is
the kernel (or co-kernel) of that matrix. We can interpret the stress-energy
Eω as such a bilinear form. If B acting on V is PSD, then its zero set must
be equal to its radical.

Lemma 7.2 Let q ∈ A ⊂ RnD. Then f(q) is in the boundary of the relative
interior of f(A) ⊂ 〈f(A)〉 if and only if there is a non-zero stress ω for
(G,q) such that when Eω is restricted to A, the resulting form is PSD and
has f(q) in its radical.

Note that this does NOT mean that the Eω is necessarily PSD over all of C
or that the configuration q is in the radical of the form Eω defined over all
of C.
Proof. Suppose that a stress ω 6= 0 exists for the framework (G,q). The
condition that Eω is PSD on A is equivalent to Eω(q) ≥ 0 for all q in A,
which is equivalent to the linear inequality ωf(q) ≥ 0 for any f(q) ∈ f(A),
and any configuration q in A. When Eω(q) = 0, then f(q) is in the closure
of the complement of that inequality in 〈f(A)〉 and thus in the boundary of
f(A) ⊂ 〈f(A)〉.

Conversely, suppose that f(q) is in the boundary of f(A) ⊂ 〈f(A)〉.
Since the set f(A) is convex, f(q) is in a supporting hyperplane

H = {e ∈ 〈f(A)〉 | ωe = 0},
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which is defined by a non-zero stress ω. Then

0 ≤ 1

2
ωf(q) = ωR(q)q =

∑
i<j

ωij(qi − qj)
2 = qtΩ⊗ IDq = Eω(q).

Thus the quadratic form defined by Eω restricted to the affine set A, is
PSD and has f(q) in its radical.

Lemma 7.3 Let A be an affine set and Eω be a stress energy which we
restrict to A. Then its radical must be an affine set.

Proof. Let q be universal for A. Then a configuration p ∈ A is in the
radical when ∑

i<j

ωij(pi − pj) · (q̃i − q̃j) = 0,

for any q̃ that is an affine image of q.
Suppose some p is in the radical. Then clearly so is any translation of

p. Any linear transform applied to the coordinates of p can be defined using
the above equation by applying its inverse transpose to q. Thus the radical
is invariant for affine transforms, making it an affine set. �

8 Iterated affine sets and the main theorem

Definition 8.1 If C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak is a sequence of affine sets,
we call it an iterated affine set.

Definition 8.2 Suppose an iterated affine set has a corresponding sequence
of stress energy functions E1, . . . , Ek as defined of the form (2.1) such that
each Ei is restricted to act only on Ai−1. Suppose that each restricted Ei is
PSD (over Ai−1), that Ei(q) = 0 for all q ∈ Ai, and that Ei(q) > 0 for all
q ∈ Ai−1 −Ai. Then we call E1, . . . , Ek an (associated) iterated PSD stress
for this iterated affine set.

Our main result is the following characterization of dimensional rigidity.

Theorem 8.1 Let (G,p) be a framework in Rd, where p has an affine span
of dimension d. Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak is an iterated affine
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set with p ∈ Ak and with an associated iterated PSD stress. If the dimension
of Ak is (d+ 1)D. Then (G,p) is dimensionally rigid in Rd.

Conversely, if (G,p) is dimensionally rigid in Rd, then there must be an
iterated affine set with p ∈ Ak, Dim(Ak) = (d + 1)D, with an associated
iterated PSD stress.

Proof. First we prove the easy direction. Since Ei operates on the squared
edge lengths, the energy function forces any equivalent framework (G,q) to
be in Ai and ultimately in Ak. Since the dimension of Ak is (d + 1)D, p
must be universal for Ak, and so q must be an affine image of p and thus
has, at most, a d-dimensional affine span.

For the converse, suppose that (G,p) is dimensionally rigid in Rd. The
configuration p is such that p ∈ C = A0. If f(p) is in the boundary of f(A0)
we apply Lemma 7.2 to find a stress ω1 and a corresponding stress-energy
function E1 whose radical includes p, and by Lemma 7.3 is an affine set A1

In order to iterate the process we define

Ai = {q ∈ Ai−1 | ωiR(q)q = 0}, (8.1)

where ωi 6= 0 is chosen such that ωiR(q)q = ωif(q) ≥ 0, for all q ∈ Ai−1,
ωiR(q)q = ωif(q) > 0 for some q ∈ Ai−1, and ωiR(p)p = ωif(p) = 0.
The quadratic form qtΩi ⊗ IDq is PSD when restricted to Ai−1, and from
Lemma 7.3, the resulting Ai must also be an affine set. When such an ωi 6= 0
cannot be found, we stop and that is the end of the sequence of affine sets.
This sequence must terminate as each of our subsequent affine sets is of
strictly lower dimension.

From Lemma 7.2 we see that we can continue creating stresses ω1, . . . , ωk

and affine sets until f(p) is in the relative interior of f(Ak), and is universal
with respect to Ak by Lemma 7.1. If the dimension of Ak is not D(d + 1),
then the dimension of Ak is strictly greater than D(d+1) and the dimension
of the affine span of p would have been greater than D(d+1), a contradiction.
�

Figure 8.1, similar to Figure 2 of [22], shows a symbolic version of this
process in the measurement set, where the indicated point represents the
image of the configuration and its relation to the measurement cone. The
arrows represent the stress vectors.
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Figure 8.1: The sets f(A1) and f(A2) shown as the point and line
segment.

8.1 The basis matrix

An affine set A can always be represented by a universal configuration b =
(b1 . . .bn) of n points in RD, with an affine span of some dimension, say d.
Without loss of generality, we can assume (using a translation if needed) that
the linear span of the bi (thought of as vectors) is of dimension d+ 1.

Definition 8.3 We define a basis matrix B, for an affine set as a rank d+1
matrix with n columns and D rows given by the coordinates of b.

Since this matrix has rank d+ 1, we can then apply row reduction oper-
ations so that B has only d + 1 rows. Additionally, (if we want) since the
affine span of b is only d dimensional, we can perform these operations so
that the final row is the all-ones vector.

Definition 8.4 Given an iterated affine set, C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak.
We define di to be the dimension of the affine span of a universal configura-
tion for Ai.

Definition 8.5 Given an iterated PSD equilibrium stress for an iterated
affine set, a basis matrix Bi−1 for each Ai−1, and the n-by-n stress ma-
trix Ωi corresponding to each Ei, we define a restricted stress matrix Ω∗i :=
Bi−1ΩiB

t
i−1. Each Ω∗i is a (di−1 + 1)-by-(di−1 + 1) PSD matrix.

The following is a Corollary of Theorem 8.1.
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Corollary 8.1.1 Let (G,p) be a framework in Rd with an affine span of
dimension d. Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak is an iterated affine set
with p ∈ Ak, and that this iterated affine set has an associated iterated PSD
stress, described by restricted stress matrices Ω∗i . Let ri be the rank of Ω∗i . If

k∑
i=1

ri = n− d− 1. (8.2)

then (G,p) is dimensionally rigid. Conversely, if (G,p) is dimensionally
rigid in Rd, then there must be an iterated affine set with p ∈ Ak, with an
associated iterated PSD stress such that Equation (8.2) holds.

The two versions of this theorem are related as follows: the zero set of
configurations for the energy function Ei corresponds via the change of basis
Bi−1, to the kernel of the matrix Ω∗i . Since the rank of Ω∗i is ri, its kernel has
dimension di−1 + 1 − ri = di + 1. Thus dk + 1 = n −

∑i
i=1 ri = (d + 1). So

Ak, which has dimension (dk + 1)D, is the set of all affine images of p in RD.
Figure 15.1, described later, is an example of an application of Theorem

8.1. The set of configurations of all the points, where for a pole, one is at
the midpoint between the other two, is an affine set. The stress is indicated.
Each of the restricted stress matrices has rank one. The horizontal members
also have a stress that is in equilibrium when restricted to the intersection
of the first two affine sets. This matrix also has rank one. Thus all the
stress matrices can be assumed to be (and are) PSD. But n = 6, d = 2, so
d+ 1 +

∑i
i=1 ri = 3 + 3 = 6 = n, and this (G,p) is dimensionally rigid in R2.

This framework has a flex in the plane that is an affine motion, but the point
is that it cannot be twisted into a 3-dimensional shape. The calculations are
done in Subsection 15.1.

One application of Theorem 8.1 is to universal rigidity.

Corollary 8.1.2 Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak is an iterated affine
set for a framework (G,p) with n vertices in Rd. Suppose that the iterated
affine set has an associated iterated PSD stress. If dim(Ak) = D(d + 1)
and the member directions do not lie on a conic at infinity, then (G,p) is
universally rigid.

Conversely if (G,p) is universally rigid in Rd, then there is such an it-
erated affine set with an iterated PSD stress, and the member directions do
not lie on a conic at infinity.
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For example, if another bar is inserted between any of two of the vertices
that do not already have a bar in Figure 15.1, the resulting framework will
be universally rigid.

9 Convexity interpretation

We now point out the connection of the results here from the point of view
of basic convexity considerations.

Definition 9.1 For any finite dimensional convex set X and any point x in
X, let F (x), called the face of x, be the largest convex subset of X containing
x in its relative interior. Equivalently [23], F (x) is the set of points z ∈ X
so that there is a z′ ∈ X with x in the relative interior of the segment [z′, z].

Definition 9.2 A subset X0 ⊂ X is called a face of X if X0 = F (x) for
some x ∈ X.

Definition 9.3 Let X = X0 ⊃ X1 ⊃ X2 ⊃ . . . Xk be a sequence of faces of
X, which we call a face flag. If each Xi = Hi ∩ Xi−1, where Hi ⊂ 〈Xi−1〉
is a support hyperplane for Xi−1 ⊂ 〈Xi−1〉 for i = 1, . . . , k, then we call the
face flag supported.

The following is an easy consequence of these definitions.

Lemma 9.1 A subset Y of X is a face of X if and only if Y = Xk, for some
supported flag face.

We next specialize to the case when the space X =M, the measurement
space for the graph G defined in Section 6. The function f is the rigidity
map as before.

Lemma 9.2 A supporting hyperplane H ⊂ Rm forM corresponds to a non-
zero PSD stress ω for the graph G. A hyperplane H supports a convex subcone
of Xi ⊂M if and only if there is a quadratic energy form Eω which is PSD
on f−1(Xi) and Eω(p) = 0 for some p ∈ f−1(Xi).

Definition 9.4 If p ∈ C is a configuration, define A(p) to be the set of all
affine images of p. As before, we call any q of maximal dimensional affine
span in A(p) a universal configuration for A(p). Define Å(p) to be the set
of universal configurations of A(p).
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Lemma 9.3 Suppose (G,p) is dimensionally rigid. Then

f−1(F (f(p))) ⊂ A(p).

Thus additionally, we have

F (f(p)) ⊂ f(A(p)).

Proof. Suppose not. Then there is a configuration q 6∈ A(p)) but such
that f(q) ∈ F (f(p)). Since f(p) is in the interior of the face, and f(q) is
in the face, then, from the definition of a face, there must be some third
configuration r, such that f(p) is in the relative interior of the segment
[f(q), f(r)]. As in the proof of Lemma 7.1, we can use 2 complementary
spaces, and find appropriate scalars α and β such that p̃ := (αq, βr) is
equivalent to p. But since q is not an affine image of p, then neither is
p̃. This, together with Theorem 5.1, contradicts our assumption that p was
dimensionally rigid. �

Lemma 9.4 Suppose (G,p) is dimensionally rigid. Then

F (f(p)) ⊃ f(A(p)).

Thus additionally, we have

f−1(F (f(p))) ⊃ A(p).

Proof. From Lemma 7.1, we know that f(A(p)) is convex with f(p) in
its relative interior. Thus from the definition of a face, we have F (f(p))) ⊃
f(A(p)). �

Corollary 9.4.1 If (G,p) is dimensionally rigid and the configuration q is
a non-singular affine image of p, then (G,q) is dimensionally rigid as well.

Proof. Since q ∈ A(p), then from the above lemmas, we have f−1(f(q)) ∈
A(p). But q is universal for A(p) and so A(p) = A(q), thus making q
dimensionally rigid.

With the above two Lemmas in mind, we make the following definition:

Definition 9.5 We say that the affine set A is a G-affine set if A is equal
to the pre-image of some face of the measurement set.
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Proposition 9.1 A framework (G,p) is dimensionally rigid if and only if
A(p) is a G-affine set.

Proof. Suppose that (G,p) is dimensionally rigid. Then from Lemmas 9.3
and 9.4, we know f−1(F (f(p))) = A(p), which is thus a G-affine set.

For the other direction, let F ′ be any face of M containing f(p). Then
F (f(p)) ⊂ F ′. If (G,p) is not dimensionally rigid, then there is configuration
q 6∈ A(p) such that such that f(q) = f(p). Thus f−1(F (p)) is not a subset
of A(p), and f−1(F ′) is not a subset of A(p). So A(p) is not a G-affine set.
�

In summary this says that the face lattice of the measurement set M
exactly corresponds the lattice of G-affine sets. Theorem 8.1 follows directly.
The sequence of faces in a face flag ofM corresponds to an iterated sequence
of G-affine sets Ai cut out by an appropriate stress sequence Ei.

10 Relation to Facial Reduction

Facial reduction is a general technique used in the study of duality in cone
programming [9, 35, 34], and here we describe the translation between that
and our exposition here. In the general setup, one might have a cone pro-
gramming problem where the feasible set is expressed as points x ∈ RN that
are both in some convex cone K ⊂ RN and satisfy an equality constraint,
expressed as x ∈ L+ b, where L is a linear subpace of RN and b ∈ RN . Let
x0 be in the relative interior of the feasible set and let Fmin := F (x0) be its
face in K.

In the process of facial reduction, we start with F0 := K and find a
supporting hyperplane Ω⊥1 whose intersection with F0 is some subface F1

of F0 such that F1 ⊃ Fmin. This can be iterated on any Fi−1 by finding a
hyperplane Ω⊥i that supports Fi−1 and whose intersection with Fi−1 is some
subface Fi such that Fi ⊃ Fmin. In each step, we guarantee that we are not
excluding any part of Fmin by ensuring that Ωi ∈ (L⊥ ∩ b⊥). This process is
iterated until Fi = Fmin.

In the setting of graph embedding, we can think of K as Sn
+, the cone

of n-by-n symmetric PSD matrices. Any configuration p can be mapped to
its Gram matrix in K. Each affine set A corresponds to some face of Sn

+.
(Note that not every face F of Sn

+ corresponds to an affine set. The face F
must include the all-ones matrix so that its corresponding configuration set
is closed under translations in RD).
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The linear constraint x ∈ L+ b corresponds to a framework being equiv-
alent to (G,p). (The graph G determines the space L and the edge lengths
in p gives us a b). The constraint Ωi ∈ L⊥ means that Ωi is a stress ma-
trix for G (zero on non edges, and rows summing to zero). The constraint
Ωi ∈ b⊥ means that any p and any equivalent configuration has zero energy
under the quadratic form defined by Ωi. The constraint that Ωi supports
Fi−1 corresponds to Ωi being PSD over a corresponding affine set Ai.

Under this correspondence, one can see that our process of finding iterated
affine sets Ai using iterated stress matrices Ωi corresponds exactly to an
application of facial reduction.

We note, that in our exposition, we do not describe the process using
Sn
+ at all. On the one hand, we describe the affine sets Ai as subsets of

configuration space (instead of as faces of Sn
+). On the other hand, instead

of picturing of our stresses Ωi as support planes for Sn
+ we work over the

measurement set of our graph M(G) := Sn
+/L, which is a linear projection

of Sn
+. In this projected picture, our support planes are orthogonal to the

stress vectors ωi in Rm.
As described in Section 9, facial reduction “upstairs” on the cone K (such

as Sn
+) for the constraint x ∈ L+b is exactly mirrored by the facial reduction

“downstairs” on the cone K/L (such as M) for the constraint x = b/L.

11 Tensegrities

It is also possible to use the ideas here to get a similar complete characteri-
zation of universal rigidity for tensegrity frameworks, where there are upper
and lower bounds (cables and struts) on the member lengths corresponding
to the sign of the rigidifying stresses.

Definition 11.1 Each edge of a graph G is designated as either a cable,
which is constrained to not get longer in length, or a strut, which is con-
strained not to get shorter in length, or a bar, which, as before, is constrained
to stay the same length. So when we have a framework (G,p), where each
edge, which we call a member, is so designated, we call it a tensegrity frame-
work, or simply a tensegrity, and we call G a tensegrity graph.

We can then ask whether (G,p) is locally rigid, globally rigid, or univer-
sally rigid. For local rigidity and the corresponding concept of infinitesimal
rigidity, there is an extensive theory as one can see in [16, 10, 37, 48, 40, 36,
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18], for example. For global rigidity and universal rigidity, there is a natural
emphasis on stress matrices and related ideas.

Definition 11.2 We say that a stress ω = (. . . , ωij, . . . ) for a tensegrity
graph is a proper stress if ωij ≥ 0, when the member {i, j} is cable, and
ωij ≤ 0, when the member {i, j} is a strut. There is no condition for a bar.

Theorem 4.1 takes on the following form for tensegrities. See [13].

Theorem 11.1 Let (G,p) be a tensegrity framework whose affine span of p
is all of Rd, with a proper equilibrium stress ω and stress matrix Ω. Suppose
further

1. Ω is PSD.

2. The configuration p is universal with respect to the stress ω. (In other
words, the rank of Ω is n− d− 1.)

3. The member directions of (G,p) with a non-zero stress, and bars, do
not lie on a conic at infinity.

Then (G,p) is universally rigid.

When we draw a tensegrity, cables are designated by dashed line seg-
ments, struts by solid line segments, and bars by thicker line segments, as in
Figure 11.1.

12 Iterated stresses for tensegrities

For the case of tensegrities, the iterated case is similar.

Definition 12.1 We say that a tensegrity (G,p) in Rd is dimensionally
rigid, if any other configuration q in any RD, satisfying the member con-
straints of G has an affine span of dimension d of less.

Theorem 12.1 Let (G,p) be a tensegrity in Rd, where p has an affine span
of dimension d. Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak is an iterated affine set
with p ∈ Ak with an associated iterated proper PSD stress. If the dimension
of Ak is (d+ 1)D, then p is dimensionally rigid in Rd.

Conversely, if (G,p) is dimensionally rigid in Rd, then there must be an
iterated affine set with p ∈ Ak, Dim(Ak) = (d + 1)D, with an associated
iterated proper PSD stress.
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Figure 11.1: These are three examples of super stable tensegrities.
The one on the left is trivially universally rigid when all the members
are bars. But as a tensegrity it is also super stable, which follows from
its rank one equilibrium stress matrix. The tensegrity in the middle is
an example of a Cauchy polygon, one of the class of convex polygonal
tensegrity polygons as defined in [13]. The one on the right has a degree
three vertex attached by bars to another super stable planar tensegrity
in R3. The bars must have zero stress, but in order to insure that there
is no affine motion, the bar directions must be included in the directions
that are to avoid the conic at infinity.

Proof. The proof of this is essentially the same as in Section 8 for Theorem
8.1. For the necessity direction, we just need to be careful to maintain
the proper signs for a tensegrity stress. When a tensegrity is dimensionally
rigid, this means that not only is f(p) on the boundary of M, but that P ,
the polyhedral cone of tensegrity constraints of Definition 11.2 (the squared
lengths e2ij ≤ (pi − pj)

2, for each cable, and e2ij ≥ (pi − pj)
2, for each strut),

is disjoint from M, except for f(A(p)). By a standard separation theorem,
we can choose a hyperplane that separates the relative interiors of the two
convex sets P andM. (See Figure 12.1 in the next section.) This means that
the corresponding stress will be a proper stress for the tensegrity. It may be
the case, that this hyperplane contains other points of the boundary of P
besides just f(p), which means that some of the edges of G will have zero
stress components. This argument can be applied at each level of iteration.

Note once an edge has a non-zero stress component at some level, this
strictness can be maintained at any subsequent level. In particular, the stress
ωi is orthogonal to the configurations in f(Aj), thus we can always replace
ωj, for j > i, with ωi + ωj. So once a member gets stressed, it can remain
stressed from then on.�
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ω1p

Figure 12.1: This shows a section of a cone as in Figure 8.1, but with
the rectangular cone given by the cable and strut constraints. The stress
vectors ω1 determine the rectangular cone since it is proper.

The major application of this result is the following.

Corollary 12.1.1 Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak is an iterated affine
set for a tensegrity (G,p) with n vertices in Rd, with an associated iterated
proper PSD stress described by PSD restricted stress matrices Ω∗i . Let ri be
the rank of Ω∗i . If (8.2) holds, and the member directions with non-zero stress
directions and bars do not lie on a conic at infinity, then (G,p) is universally
rigid.

Conversely if (G,p) is universally rigid in Rd, then there is an iter-
ated affine set with an associated iterated PSD stress determined by proper
stresses, the dimension of Ak is (d + 1)D, and the members with non-zero
stress directions and bars do not lie on a conic at infinity.

Proof. This proof also follows that of the case of a bar framework. The
only thing new that we need to establish in the necessity direction is that
we will be able to find non-zero stress values on the cable and strut edges
to certify that they do not lie on a conic at infinity. The iterated stresses
that are guaranteed from the above theorem need not be non-zero on any
particular set of edges (See the example of Figure 12.2 below).

To establish this we can use, if needed, one extra stress beyond that
needed to establish dimensional rigidity. Suppose at the last level of iteration,
we have a sequence of stresses that restricts us to frameworks in the affine set
Ak, such that p is universal for Ak. In this case, we have that f(p) is in the
relative interior of f(Ak). The assumption of universal rigidity means that
the polyhedral cone P is disjoint from f(Ak), except for the shared point
f(p). Since f(p) is in the relative interior of f(Ak), this means that we can
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find a hyperplane that includes f(Ak) and excludes all of P except for the
single point f(p). The corresponding stress must have zero energy for all of
Ak and will have non-zero values on all of the edges. �
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Figure 12.2: These are two universally rigid tensegrities in the plane.
The signs on the members not on the pole can be reversed and it still
remains universally rigid.

Figure 12.2 is an example where one extra iteration is needed for universal
rigidity after the iteration process shows dimensional rigidity. There is just
one pole, in the plane, and just one vertex attached to all three vertices.
There are two ways (as shown) to assign cables and struts to the remaining
three members so that there will be an equilibrium at that vertex. Both
possibilities provide a universally rigid tensegrity. At the first level, we can
find a rank 1 stress on the vertical pole. This is sufficient to serve as a
certificate for dimensional rigidity. For a bar framework, universal rigidity
follows since the edge directions do not lie at a conic at infinity. But for a
tensgrity framework, we are not done, since in that case, the conic test only
can use cable and strut edges with non-zero stress coefficients. As shown in
Figure 12.2, for this we can use a second level stress that has a constant 0
energy over A1.

13 Projective invariance

It is well known that a bar framework (G,p) is infinitesimally rigid if and only
if (G,q) is infinitesimally rigid, where the configuration q is a non-singular
projective image of the configuration p. See [18, 44, 45] for a discussion
of this property. Infinitesimal rigidity for tensegrities is also projectively
invariant, but a cable that “crosses” the hyperplane at infinity is changed to
a strut and vice-versa, because the sign of the stress changes. It is also true
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that any equilibrium stress is also altered by the projective transformation.
Indeed a stress matrix Ω is replaced by another stress matrix DΩD, where
the matrix D is a non-singular diagonal matrix and comes from the non-
singular projective transformation. This transformation preserves the rank
and PSD nature of the stress. At any subsequent level, we also can set
Ωi := DΩiD using the same D matrix. The basis matrix, which derives
from the kernel is transformed as Bi → BiD

−1. Thus, the restricted stress
matrix, Ω∗i := BiD

−1(DΩiD)D−1Bt
i is not changed at all due the projective

transform, thus maintaining its rank and PSD nature. See [19], Proposition
7, for this same idea applied to a bar framework. Thus we get the following
result.

Theorem 13.1 Let f : Rd − X → Rd be non-singular projective transfor-
mation, where X is a (d− 1)-dimensional affine subspace of Rd, and suppose
that for each i, pi /∈ X. Then for any tensegrity framework, (G,p) is di-
mensionally rigid if and only if (G, f(p)) is dimensionally rigid, where the
strut/cable designation for {i, j} changes only when the line segment [pi,pj]
intersects X and bars go to bars.

It is not always true that the universal rigidity of a bar framework is
projectively invariant. For example, the orchard ladder, narrower at the
top than at the bottom, as in Figure 13.1, is universally rigid, whereas the
straight ladder of Figure 15.1 below, a projective image, is flexible in the
plane.

Figure 13.1: This is an example of a universally rigid framework, but
the framework of Figure 15.1 below is a projective image that is not
universally rigid. The two poles on the sides are collinear triangles.
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14 Calculation methods

We test for dimensional rigidity of (G,p) by finding the maximal dimension
of any framework (G,q) that is equivalent to p. This is done by building
up a maximal iterated affine set with an associated iterated PSD stress as
guaranteed by Corollary 8.1.1. To do this calculation, we always maintain a
basis matrix Bi, where at the start, B0 = I.

Given Bi−1 we perform the following steps.
Find the next stress: Look for a matrix Ωi such that the restricted

stress matrix, Ω∗i := Bi−1ΩiB
t
i−1, is non zero, PSD and such that the “energy”

linear constraint pt(Ωi ⊗ ID)p = 0 holds. If there is no such solution we are
done with the iteration.

Definition 14.1 Given an affine set Ai−1 described by a basis matrix Bi−1.
We say that a restricted stress matrix Ω∗i = Bi−1ΩiB

t
i−1, is a restricted equi-

librium stress matrix for p if PΩiB
t
i−1 = 0 holds for Ωi.

For any stress matrix Ωi that satisfies the energy constraint and such
that the restricted stress matrix, Ω∗i , is PSD, we also see that Ω∗i must be a
restricted equilibrium matrix for p. Since we want to get the most milage
out of our linear constraints, we replace the the energy constraint with this
constraint, which we call a restricted energy constraint.

The resulting problem can be posed as an SDP feasibility problem. If
possible we would like to avoid using an SDP solver, since that is not only
expensive, but, as a numerical algorithm, only approaches, and never exactly
hits, a feasible solution. We discuss this issue more below in Section 16.

Sometimes, we can avoid calling an SDP solver by simply looking at the
problem and guessing the correct Ωi. For example, if we see, within some
two-dimensional framework, a degenerate triangle, (which we will call a pole),
it is self evident how to stress that subgraph.

Another easy case arises when the is when the space of solutions for Ω∗i
is only one dimensional. In this case, there is no need to search for PSD
solutions, one only needs to pick one solution Ω∗i and check its eigenvalues.
If it is postive semi-definite, then we have succeeded. If it is negative semi-
definite, then we can negate the matrix, and we have succeeded. If it is
indefinite, then there is no such solution and we are done with the iteration.

An even easier sub-case of this is when the space of Ω∗i is not only one-
dimensional, but also that the maximal rank of these matrices is 1. Then we
know immediately that Ω∗i is semi-definite.
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Update the basis: Given Bi−1 and a stress Ωi we need to update the
basis. We do this by finding a maximal set of linearly independent row
vectors of length n that is in the row span of Bi−1, and such that each of
these vectors is in the co-kernel of ΩiB

t
i−1.

These vectors form the rows of our new basis, Bi. We then continue the
iteration.

When the iteration is done: We simply count the number of rows of
the final Bk, which we call dk + 1. If dk equals d, the dimension of the affine
span of p, then we have produced a certificate that p is dimensionally rigid.
Otherwise, we have found a higher dimensional affine set that includes frame-
works equivalent to p and we have a certificate that p is not dimensionally
rigid.

15 Examples

15.1 The ladder

2

-2
2

-1

2

1

1

2

-1 65

32

1 4

Figure 15.1: This shows a framework with two collinear triangles,
each of which provides an affine relation on the space of configurations
of the framework (G,p). The stresses are indicated and the member
connecting the external vertices of poles is indicated by a curved arc.
This framework is dimensionally rigid in the plane, but it is not univer-
sally rigid, since it has an affine flex in the plane, and since there are
only two member directions. The vertices are labeled in bold.
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We first show the process described in Section 8.1 and Section 14 applied
to the example in Figure 15.1. The first level stress matrix, using just the
stresses on the vertical members of the ladder, is the following:

Ω1 =


1 1 0 0 −2 0
1 1 0 0 −2 0
0 0 1 1 0 −2
0 0 1 1 0 −2
−2 −2 0 0 4 0

0 0 −2 −2 0 4

 .

This matrix has rank r1 = 2, a 4-dimensional kernel, and d = 2. The kernel
of this matrix defines the affine set A1. A basis matrix for A1 is

B1 =


1 0 0 0 1/2 0
0 1 0 0 1/2 0
0 0 1 0 0 1/2
0 0 0 1 0 1/2

 .

At the second level, we enforce the restricted equilibrium constraint and
find that the possible candidates for Ω∗2 must be up to scale, equal to

B1Ω2B
t
1 = Ω∗2 =


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1


These are rank 1 with positive trace and thus positive semi-definite. This

Ω∗2 has an assocated second level stress Ω2 where ω14 = ω23 = 1 and ω56 = −2
as in Figure 15.1. We have rank Ω1 + rank Ω∗2 = 3 = n − d − 1, making the
ladder dimensionally rigid.

15.2 The 4-pole Example

Consider the configuration shown in Figure 15.2 with four vertical parallel
line segments, the poles, where each pole is connected to the other three by
horizontal members.

The poles are labeled A,B,C,D, and the vertices are simply labeled by
their number, 1, . . . , 12. The horizontal spacing between the AB,BC, and
CD poles is equal. The vertical spacing of the horizontal members is such
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Figure 15.2: This is a framework that is dimensionally rigid in the
plane. Each set of three (nearly) vertical line segments are considered to
be a collinear triangle, while the other horizontal members are connected
as shown. This involves at least three levels of iteration as described
Section 8, where the levels, in order, are dark blue, red, green.

that the distance between the 2−11 line and the 1−7 line is twice the distance
between the 2 − 11 line and the 3 − 5 line. The 5 vertex is the midpoint of
the B pole, and the 8 vertex is the midpoint of the C pole. The stresses
on this framework are as indicated. These are simply arranged so that the
lever arm moments are all 0. The question is whether the appropriate stress
matrices are PSD of the right rank.

The stress for each pole is rank one and they can all be combined to one
rank 4 stress, which can be considered as a stress at the first level. It is
simply the certificate, in any equivalent framework, that each pole remains
straight maintaining the ratio of each of the lengths. The stress for each
of those members is proportional to the reciprocal of its length in absolute
value. The stress for the longest member of each collinear triangle is negative,
while the other two are positive.

One can then choose a basis for A1 and search for the restricted equilib-
rium matrices as in Section 14. It turns out that, as in the ladder example,
the space of a possible equilibrium Ω∗2 is only one-dimensional, and these have
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rank 4. We check and find that these matrices are semi-definite. An associ-
ated Ω2 is shown in red in Figure 15.2. We then choose a basis for A2 and use
the methods of Section 14 one final time. Again, we find a one-dimensional
space of equilibrium matrices Ω∗3, and these have rank 1. An associated Ω3

can be constructed with ω1,3 = ω10,12 = 4 and ω4,6 = ω7,9 = −1.
The sum of the ranks is 4 + 4 + 1 = 9 = 12 − (2 + 1) = n − (d + 1), so

this framework is dimensionally rigid in the plane. It is not universally rigid
since the original framework has only two member directions.

One interesting feature of this example is that the stress Ω2 involves all
of the vertices of the graph G from the second level, and yet it still needs
another level for the complete analysis of its dimensional rigidity.

The first stage in this example involves only the four collinear trian-
gles, which imply the corresponding affine constraints on the the configura-
tion. Suppose one initially starts with those four affine constraints and then
proceeds with the analysis, where the distance constraints on the poles is
dropped? It turns out that the configuration is not dimensionally rigid in
the plane, since at the third level the member constraints in the poles are
needed again. The maximal dimensional realization, in that case, is R3.

15.3 The 4-pole Extended Example

Definition 15.1 A spider web is a tensegrity, where some subset of the ver-
tices are fixed, and all the members are cables.

For a spider web, it was shown in [13] that it is locally rigid if and only
if it is universally rigid, and that when it is universally rigid the iterated
construction simplifies to a sequence of proper subgraphs, where the number
of vertices decreases at each stage as in Figure 1.1. Another example of the
iteration process is shown in Figure 4.1, where the vertex A is added at the
second stage. In each of those examples, there is a proper subgraph that is
universally rigid on its own without using the presence of the other vertices.

Figure 15.3 shows that, in general, when the framework is universally
rigid in more than one step of the iteration, there may be no proper sub-
framework that is universally rigid on its own. The stresses at each level are
shown.

This is a perturbed version of Figure 15.2, and it turns out to be univer-
sally rigid by the process described here, but using only two stages instead
of three as in Subsection 15.2. Since the stressed members have more than
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Figure 15.3: This is an example of a universally rigid tensegrity frame-
work in the plane that has only one stress that is PSD of rank 8, one less
than the maximal possible n− d− 1 = 12− 2− 1 = 9. There is a stress
at the second stage which is PSD of rank one in the affine set defined
by the stress at the first stage. The vertices of this configuration are
the same as those in Figure 15.2, except the interior point of each pole
has been moved half the distance (left or right as indicated) between
adjacent poles.

two directions in the plane, and since it is dimensionally rigid in the plane
as with Figure 15.2, it is universally rigid.

In both of these cases, we were able to find the certifying sequence of
stresses without calling a PSD solver. This was because, at each step, there
was only a one-dimensional space of restricted equilibrium matrices Ω∗ as
candidates. Since they were rank 1, we automatically knew that they were
semi-definite, and for the second step, for the 4 poles, we just checked that
it was of rank 4.

More generally, if we end up with a higher dimensional space of equi-
librium Ω∗ as candidates, we might have a harder time determining if that
space includes a positive semi-definite one. We discuss this more below in
Section 16.
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15.4 A hidden stress

One of the problems with SDP is finding even one PSD equilibrium stress (or
more generally restricted equilibrium stresses at later stages). The following
example is a framework, where the dimension of PSD equilibrium stresses is
a low dimensional subcone of the space of all equilibrium stresses.

Figure 15.4: This is an example of a universally rigid bar framework
in the plane that has a three-dimensional space of equilibrium stresses
but only a one-dimensional space that is PSD.

The two triangles and the members joining corresponding vertices con-
stitute a super stable PSD subframework as in Figure 4.1. Since the whole
(bar) framework is infinitesimally rigid in the plane, and that there are 18
members and 9 vertices, the dimension of the stress space is 18−2 ·9+3 = 3.
Equilibrium at each blue vertex implies that the three stresses at a blue ver-
tex must all have the the same sign. But any equilibrium stress, non-zero
on any of the members adjacent to the blue vertices, cannot be all have the
same sign for all the members adjacent to all the blue vertices. This is be-
cause the twisting infinitesimal motion of the inner triangle relative to the
outer triangle either decreases all the members adjacent to the blue vertices
or increases them all. So one of the set of three members adjacent to a blue
vertex has to have all negative stresses. This stress cannot be PSD since by
moving that single blue vertex the stress energy must decrease.
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16 Computational matters

An important property of universal rigidity is that often it can be calculated
efficiently using various SDP algorithms. For example, see [5, 47, 34, 41,
28, 9, 35] for information on this vast subject including facial reduction. In
particular, if one is given the edge lengths e for a graph G, one can use SDP
to find a configuration p whose edge lengths approximate e. More precisely,
an ε-approximate configuration p can be found, in some unconstrained di-
mension D if it exists, in time polynomial in log(1/ε), where n is the number
of vertices of G, and m is the number of members of G, as described in [47].
So this can be used to attempt to see if the existence problem is feasible and
to attempt to find a satisfying configuration when it is feasible.

But, as mentioned in Section 1, one problem is that even though the
member lengths of the approximation are close to the given lengths, the con-
figuration may be quite a distance from one implied by the actual constraints.
Small errors in the edge lengths can imply large errors in the proposed con-
figuration as in the framework in Figure 1.1, but see [26]. In principle, one
could use the calculation as evidence that a given configuration is univer-
sally rigid in R2, but Figure 1.2 shows that it may appear that (G,p) has
equivalent configurations in R3 or higher, even with ε > 0 is very small.

In contrast to this “primal appoach”, we have shown in this paper that
when a framework is dimensionally or universally rigid, there must exist a
certificate, in the form of an iterated PSD stress, that conclusively proves
the dimensional or universal rigidity of the framework.

Although finding these stresses also involves solving an SDP problem, in
many cases, though we can hope to exactly solve this “dual” SDP. At any
level of the analysis here, there is a linear space of restricted equilibrium
stress matrices Ω∗i as described in Section 14. If there is such a PSD matrix
of maximal rank among all such Ω∗i , then the PSD restricted equilibrium
stresses includes an open subset of the space of all restricted equilibrium
stresses. In this case, it reasonable to expect that we can exactly find such
a solution. Thus, even if the numerical solution from an SDP solver is, say,
PSD but not quite in restricted equilibrium, a sufficiently close restricted
equilibrium stress will still be PSD and of maximum rank.

In fact this “maximal rank case” must always occur in the last step of
our iterated process so, for example, if the framework (G,p) is super stable
(in other words, there is only one step in the iterated process described
here), then the PSD solutions are full dimensional within the linear space of
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equilibrium stress matrices. This is the situation if p is generic in Rd, and
the framework (G,p) is universally rigid, since this must be super stable by
Theorem 4.3. The two examples on the left in Figure 11.1 have that property.

In other cases, though we may not be able to exactly solve this “dual”
SDP, the example of Figure 15.4 shows a case where the PSD equilibrium
stresses are all of lower rank than the indefinite equilibrium stresses, and
thus do NOT form an open subset of the space of equilibrium stresses. If the
dimension of PSD matrices is lower than the dimension of all the equilibrium
matrices, then we may have to resort to using the SDP to “suggest” what
an actual PSD matrix is (since it will only converge to a PSD matrix in the
limit).

More generally, when the configuration is not generic, you have to ask:
how is the configuration even defined? It is possible to create configurations
precisely so that they become universally rigid. For example, the symmetric
tensegrities of many artists are created in such a way that they become super
stable, but not at all generic, not even infinitesimally rigid, even though they
are super stable. Indeed, they often have certain symmetries that can be used
to simplify the calculations and create tensegrities that are super stable. The
representation theory of some small finite groups can be exploited to create
these configurations. A brief explanation is in [11]. This is called form finding
in the Engineering literature, as in [30, 39].

Stresses and iterated stresses might also be useful during the process
of calculating a realization p from an input graph G and input set of edge
lengths e. Note though, when we are just given input lengths and are search-
ing for an appropriate Ω, we do not have enough information to express the
(restricted) equilibrium linear constraint and can only use the “energy lin-
ear constraint”: 0 =

∑
i<j e

2
ijωij. Therefore, we do not expect to be in a

“maximal rank” setting. Once we have computed the iterated stresses, then
we just need to look for p within the final affine set. As described in the
appendix in [20], when p is universally rigid, this calculation of p within its
affine set can be done easily by solving a certain small linear system. (In the
case that p is not universally rigid but is only dimensionally rigid, then that
linear system will be singular. Still, since we have restricted ourselves to the
correct affine set, we only need to solve small SDP problem, which must be
applied over the space of (d+ 1)-by-(d+ 1) matrices).

In addition to the example in [11], a graph coloring problem can be solved
using this idea as in [33].
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17 Extensions

In general, we propose the following procedure for determining/creating uni-
versally rigid frameworks and tensegrities. First a (tensegrity) graph G, and
a corresponding configuration p, is defined. A priori, a sequence of affine
sets in configuration space can be given as well, as in Section 8. These sets
may or may not be a consequence of the geometry of the configuration p.
Then at each stage, one either calculates a PSD stress for the given config-
uration or one assumes that there is a corresponding affine constraint. If
the constraints are consistent, then one has a proof that the configuration is
dimensionally rigid or universally rigid, depending on the stressed member
directions. For example, if there appears to be a (proper) PSD stress for a
given affine set, one can assume that it exists and proceed, getting further
affine sets. It would depend on the circumstance as to whether the particular
affine constraint is reasonable or not. For example, in Figure 1.1, one might
suspect that the eight subdivided vertical members are straight, but initially
not the others. Only then might one suspect that the four smaller horizontal
members are straight, etc. After this is finished one can conclude that the
whole framework is universally rigid.

The idea of assigning nested affine constraints is a generalization of the
idea of a body-and-bar framework as defined by Tay and Whiteley in [43, 42].
The concept of nested affine sets, introduced here, is closely related to the
concepts of hypergraphs of points and affine rigidity introduced in [20]. Also,
a recent result in [17] shows that body-and-bar frameworks are generically
globally rigid in Rd if they are generically redundantly rigid in Rd.

Definition 17.1 Redundant rigidity means that the framework is locally
rigid, and remains so after the removal of any member.

It is also true [17] that such body-and-bar graphs always have a generic
configuration that is universally rigid in Rd as well.

18 Possible future directions and questions

It is also possible to use stresses to estimate the possible perturbations of a
given tensegrity or framework. The sign of a PSD stress associated to each
member corresponds to an inequality constraint. If all of those constraints
are such that at least one of the constraints is violated, we know that the
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edge length perturbed configuration cannot be achieved. This imposes some-
what weak, but useful, conditions on which sets of members can increase or
decrease in length. If there are more PSD stresses on the members, there will
be more of these sign constraints that can be calculated even if the tensegrity
framework is not rigid.

One could use universal rigidity properties to understand flexible struc-
tures by adding members providing parameters for controlling the motion of
a flexible framework. For a fixed length of such additional members, the con-
figuration could be determined. As that length varies the whole configuration
could flex in a controlled way.

For the case of generic global rigidity, the notion of globally linked pairs
of vertices is discussed in [25, 24]. This means that although the whole
framework may not be globally rigid, some pairs of vertices would be forced
to have a fixed length for all equivalent configurations in the same dimension.
A similar question in the universally rigid category involving configurations
in higher dimensions that satisfy the tensegrity inequality constraints would
be interesting to explore.

Even to determine whether a framework is universally rigid on the line is
interesting. In [27] it is determined when a rigid one-dimensional complete
bipartite bar-and-joint framework in the line is universally rigid, as well as
several open questions in this direction. We have a forthcoming paper that
extends this result, and determines when any complete bipartite framework
in any dimension is universally rigid.

The weavings of [44, 45, 32, 31] concern lines in the plane that may or may
not arise from projections of configurations of lines in a higher dimension.
Particularly, there is a relation to stresses of dual configurations in [44, 45].
Can there be a connection to the poles in universal rigidity?

19 Acknowledgement

We would like to thank Dylan Thurston for countless helpful conversations
on convexity.

39



References

[1] Timothy Good Abbott. Generalizations of Kempe’s universality theo-
rem. Masters dissertation, Massachusetts Institute of Technology, 2008.

[2] A. Y. Alfakih. On bar frameworks, stress matrices and semidefinite
programming. Math. Program., 129(1, Ser. B):113–128, 2011.

[3] A. Y. Alfakih and Yinyu Ye. On affine motions and bar frameworks in
general position. Linear Algebra Appl., 438(1):31–36, 2013.

[4] Abdo Y. Alfakih. On dimensional rigidity of bar-and-joint frameworks.
Discrete Appl. Math., 155(10):1244–1253, 2007.

[5] Abdo Y. Alfakih, Miguel F. Anjos, Veronica Piccialli, and Henry
Wolkowicz. Euclidean distance matrices, semidefinite programming and
sensor network localization. Port. Math., 68(1):53–102, 2011.

[6] Maria Belk and Robert Connelly. Realizability of graphs. Discrete Com-
put. Geom., 37(2):125–137, 2007.
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