
ar
X

iv
:1

31
2.

46
28

v1
 [

cs
.C

G
]

 1
7

D
ec

 2
01

3

Counting Triangulations and other Crossing-free Structures

via Onion Layers

Victor Alvarez∗ Karl Bringmann† Radu Curticapean‡ Saurabh Ray§

November 11, 2018

Abstract

Let P be a set of n points in the plane. A crossing-free structure on P is a
plane graph with vertex set P . Examples of crossing-free structures include trian-
gulations of P , spanning cycles of P , also known as polygonalizations of P , among
others. There has been a large amount of research trying to bound the number of
such structures. In particular, bounding the number of (straight-edge) triangula-
tions spanned by P has received considerable attention. It is currently known that
every set of n points has at most O(30n) and at least Ω(2.43n) triangulations. How-
ever, much less is known about the algorithmic problem of counting crossing-free
structures of a given set P . For example, no algorithm for counting triangulations
is known that, on all instances, performs faster than enumerating all triangulations.

In this paper we develop a general technique for computing the number of
crossing-free structures of an input set P . We apply the technique to obtain algo-
rithms for computing the number of triangulations, matchings, and spanning cycles
of P . The running time of our algorithms is upper bounded by nO(k), where k is
the number of onion layers of P . In particular, for k = O(1) our algorithms run in
polynomial time. In addition, we show that our algorithm for counting triangula-
tions is never slower than O∗(3.1414n), even when k = Θ(n). Given that there are
several well-studied configurations of points with at least Ω(3.464n) triangulations,
and some even with Ω(8n) triangulations, our algorithm asymptotically outperforms
any enumeration algorithm for such instances, and it has better worst-case behav-
ior than the recent algorithm shown in [1], which also beats enumeration in those
instances. In fact, it is widely believed that any set of n points must have at least
Ω(3.464n) triangulations. If this is true, then our algorithm is strictly sub-linear in
the number of triangulations counted. We also show that our techniques are general
enough to solve the Restricted-Triangulation-Counting-Problem, which we
prove to be W [2]-hard in the parameter k. This implies a “no free lunch” result: In
order to be fixed-parameter tractable, our general algorithm must rely on additional
properties that are specific to the considered class of structures.

∗Fachrichtung Informatik, Universität des Saarlandes, alvarez@cs.uni-saarland.de. Partially Sup-

ported by CONACYT-DAAD of México.
†Max-Planck-Institut für Informatik, kbringma@mpi-inf.mpg.de.
‡Fachrichtung Informatik, Universität des Saarlandes, curticapean@cs.uni-saarland.de
§Max-Planck-Institut für Informatik. saurabh@mpi-inf.mpg.de.

1

http://arxiv.org/abs/1312.4628v1

1 Introduction

Let P ⊂ R2 be a set of n points. A crossing-free structure on P is a plane graph
whose vertex set is precisely P . Examples of such crossing-free structures, whose proper
definition will be given later on, are triangulations, spanning cycles, matchings, spanning
trees, etc. Thus one can naturally ask: () What are upper and lower bounds on the
number of such structures over all possible sets of n points on the plane? or () Given
P , how can the number of such geometric objects be computed? The search for bounds,
the first question, has spawned a large amount of research over almost 30 years, starting
with an upper bound of 1013n on the number of crossing-free graphs on every set of n
points, see [2]. This bound implies that the size of each class of crossing-free structures
can be upper-bounded by cn, with c ∈ R depending on the particular class. Since then,
research has focused on tightening the upper and lower bounds on c. For example, in the
case of spanning cycles, it is currently known that c ≤ 54.55, see [3], and a configuration
where c ≥ 4.65 is known, see [4]. Thus, every set of n points has at most O(54.55n)
spanning cycles. For triangulations, [5] provides the bound c ≤ 30, and [6] provides
c ≥ 2.4. The interested reader can visit [7, 8] for an up-to-date list of bounds on other
classes of crossing-free structures. The references therein give a good account of all listed
bounds.

The second question on crossing-free structures, which was mentioned above, is of
algorithmic flavor since we consider the problem of computing the number of crossing-free
structures of a particular class for a given input set P . This problem is closely related
to that of sampling crossing-free structures of the class uniformly at random. That is, if
P spans, say t spanning cycles, we want to sample every spanning cycle with probability
1/t. A first approach to the counting problem would be to produce all elements of the
class, using methods for enumeration (see e.g. [9]), and then simply count the number of
elements. This has the obvious disadvantage that the total time spent will be, at best,
linear in the number of elements counted. By the first part, this number is in general
exponential in the input size. Thus an important question is whether we can count
crossing-free structures of a given class in time sub-linear in the number of elements
counted. Only for the super class of all plane graphs of P this is known to be always
possible, see [10], while for the class of all triangulations it is known to be sometimes
possible using a recent algorithm shown in [1]. There are nevertheless other algorithms
to count triangulations that are reported to be faster than enumeration [11, 12], but
that have no theoretical runtime guarantees.

2 Our contribution

Although the algorithm to count triangulations presented in [1] could potentially always
do the counting in sub-linear time in the number of elements counted, and thus beat
brute force enumeration, its running time might still be pretty large. This is because its
running time depends linearly on the number of T-paths that the algorithm encounters

2

during its execution, and there are configurations having at least Ω(4n) T-paths, see [13].
We suggest the paper [12] by O. Aichholzer, where T-paths were first introduced, to find
out more about them.

In this paper we present yet another new algorithm to count triangulations. Along
with this new algorithm we also present algorithms to count the elements of the classes
of spanning cycles and matchings of P respectively. It is important to keep in mind that,
so far, no algorithm is known that always beats enumeration on those classes.

In order to state the results we present in this paper we need the following definitions:

Definition 1. Let S be a crossing-free structure on P . Thus:

• S is called a triangulation of P if and only if the boundary of the unbounded face
of S coincides with the convex hull, CH(P), of P , and every bounded face of S is
an empty triangle.

• S is called a matching of P if and only if every vertex of S has degree at most
one.

• S is called a spanning cycle of P if and only if S is single simple polygon with n
sides whose vertex set is P .

We will denote by FT (P),FM (P) and FC(P) the class of all triangulations, match-
ings, and spanning cycles of P respectively.

Definition 2 (Onion layers). Let P be a set of n points on the plane and let CH(P)
denote its convex hull. We define the onion layers of P as follows: The first onion layer
P (1) of P is CH(P). For i > 1, the i-th onion layer P (i) of P is defined inductively

as CH
(

P \⋃i−1
j=1 P

(j)
)

. By “number of onion layers of P” we mean the number of

non-empty onion layers of P .

Observe that the number of onion layers of any non-degenerate set of n points is
always at most

⌈

n
3

⌉

. We are now able to state our results.

2.1 The result on counting triangulations

Theorem 1. Let P be as before and let k be its number of onion layers. Then the exact

value of |FT (P)| can be computed in time O
(

k2 · g
(

n
k

)n)
, where g(x) =

(

x3+3x2+2x+2
2

)
1

x

.

Since k ≤
⌈

n
3

⌉

, this bound never exceeds O∗(3.1414n). This running time can alterna-

tively be bounded by nO(k), which is polynomial for constant k.

The algorithm of the previous theorem has better worst-case behavior than the one
presented in [1], which is O∗ (9n). Moreover, it has other nice properties:

3

• It is the first algorithm to be known that can compute the exact value of |FT (P)|
in polynomial time in at least some non-trivial cases.

• As stated before, for every set of n points, the size of FT (P) can be lower-
bounded by Ω(2.4n), but it is widely believed that this bound can be improved

to Ω
(√

12
n
)

≈ Ω(3.464n). If this stronger bound is true, then the algorithm of

Theorem 1 would always count triangulations in time O∗(3.1414n) = o(|FT (P)|).
Thus setting in the positive the answer of whether or not one can always count
triangulations of set of points faster than enumerating them.

2.2 The results on counting other crossing-free structures

Moving away from triangulations, the other result that will be proven is the following:

Theorem 2. Let P be as before and let k be its number of onion layers. Then the exact
values of |FM (P)| and |FC(P)| can be computed in nO(k) time.

Thus again, as long as k = O(1), the algorithms of Theorem 2 compute the said
numbers in polynomial time, which then gives a partial answer to Problem 16 of The
Open Problems Project, which asks whether |FC(P)| can always be computed in poly-
nomial time, see [14]. This time, however, we are not able to prove a running time of
the sort cn for large k, like in Theorem 1.

The general layout of the algorithms of Theorems 1 and 2 is similar to the one found
in [15], where these ideas have been used for optimization problems.

2.3 A hardness result

Observe that the running times of the algorithms of Theorems 1 and 2 can be stated as
nf(k), for some function f that does not depend on n. With regard to parameterized
complexity it is natural to ask if these running times can be improved to something
of the sort g(k) · nO(1), for some function g independent of n, thus proving that our
problems belong to the FPT complexity class. Which is the class of fixed-parameter
tractable problems. However, the techniques involved in the algorithms of Theorems 1
and 2 are general enough to solve harder problems, such as the following:

Restricted-Triangulation-Counting-Problem: Given a set of points P and
a subset of edges E over P , count the triangulations of P that use only edges from E.

We also present the following hardness result:

Theorem 3. The Restricted-Triangulation-Counting-Problem is W[2]-hard if
the parameter is considered to be the number of onion layers of P . This result even holds
for the problem of just deciding the existence of a restricted triangulation.

4

The book by J. Flum and M. Grohe, see [16], is a standard reference for Param-
eterized Complexity Theory, where the classes FPT and W[2] are defined. For now,
however, it suffices to say that the separation FPT 6= W[2] is widely believed. Thus an
algorithm with a running time of the sort g(k) · nO(1) is most likely not attainable for
the Restricted-Triangulation-Counting-Problem. This might be an indication
that we may have to exploit the particular structure of the problems in order to obtain
fixed-parameter tractable algorithms for counting crossing-free structures, in the general
non-restricted case.

We will divide the rest of the paper as follows: In § 3 we give a rough idea on how
our algorithms work. We prove Theorems 1, 2, and 3 in § 4, § 5, and § 6 respectively.
In § 7 we show experiments comparing our algorithm for counting triangulations with
the algorithm presented in [11], which is supposed to be very fast in practice. We close
the paper in § 8 with some conclusions.

3 A general framework for counting crossing-free struc-

tures

The overall idea of all our algorithms can be roughly described as follows. Suppose we
want to count the elements of some particular class F of crossing-free structures on P . A
set S of non-crossing edges on P is called a separator if the union of the edges in S splits
the interior of CH(P), possibly along with CH(P), into at least two regions. In such a
case we will say that S splits CH(P) into those regions. Now assume that there exists
a set S of separators with the following properties: () Every element of F contains a
unique separator S ∈ S, and () we can “quickly” enumerate the members of S. With
a set of separators S, the elements of F can be counted as follows: For each S ∈ S, let
RS

1 , R
S
2 , . . . , R

S
t be the regions S splits CH(P) into. Recursively compute the number

nS
i of elements of F of each region RS

i . The number of elements of F containing S is
then NS =

∏t
i=1 n

S
i . Thus the total number of elements of F is simply

∑

S∈S NS . Of
course, in the recursion, a set of separators is required in each RS

i , and the efficiency of
the algorithm depends heavily on the choice of S. For example, one well-known family
of separators S for triangulations is the set of T-paths, see [12, 13, 1]. We will introduce
some other families of separators, some of them with additional properties, however, for
the time being we believe that this vague description of how the algorithms work conveys
the main idea appropriately.

4 Counting triangulations using the onion layers

In this section we will present yet another new algorithm for counting triangulations
that uses the onion layers of the given set of points P .

Now, for any p ∈ P , let ℓ(p) denote the index of the onion layer to which p belongs.
Let us label the points p ∈ P with distinct labels in {1, . . . , n} such that if ℓ(p) < ℓ(q)

5

then p also receives a label smaller than q. This is clearly possible. Figure 1 shows the
onion layers of a set of 17 points and the labels assigned to them. From now on we will
refer to the points of P by their labels i.e., we will think of P as the set {1, . . . , n} and
when we say “p ∈ P”, we will mean the point with label p.

9

1

3

4
5

6

8

10
11

7
13

12

15

14

17

16

2

Figure 1: Four onion layers.

Let T be any triangulation of P . For p ∈ P \P (1), let snT (p) be the smallest neighbor
of p in T . Observe that any such point p has at least one neighbor q such that ℓ(q) < ℓ(p)
and therefore snT (p) < p. If p ∈ P (1), we set snT (p) = p. When T is clear from context,
we will just write sn(p) instead of snT (p). We denote by sn-pathT (p) the unique path
p = a0, a1, . . . , am in T such that for each 0 ≤ i < m, we have that ai+1 = sn(ai) and
sn(am) = am. We will also direct this path from a0 towards am and call this the direction
of “descent” since ℓ(·) decreases along the path. Note that any sn-path consists of at
most one point from each onion layer and precisely one point from the first onion layer.

Let (p, q) be some edge in T and suppose that sn-path(p) ends at p′ ∈ P (1) and
sn-path(q) ends in q′ ∈ P (1). There are two paths in T from p′ to q′ along CH(P),
one in the clockwise direction and the other in the counter-clockwise direction. Each
of these paths along with the edge (p, q) and the two sn-paths starting at p and q
respectively, defines a region within CH(P). We call these two regions the sn-regions of
(p, q). See Figure 2. Given any sn-region R, we refer to the number of triangles in any
triangulation of R as the size of R. This is well defined since the number of triangles is
the same regardless of the triangulation chosen.

Let ab be an edge on CH(P). Observe that in any triangulation, CH(P) is one of the
sn-regions of (a, b), the other region being empty. In any triangulation T of P , there is
precisely one triangle apb that the edge ab belongs to. Let Rap be the sn-region of (a, p)
that does not contain apb and similarly let Rpb be the sn-region of (p, b) that does not
contain apb, see Figure 3.

4.1 The algorithm

Let ab be again an edge on CH(P). The core idea of our algorithm is as follows: We can
easily enumerate all the points p such that the triangle apb appears in some triangulation.

6

9

1

3

4
5

6

10

7

1214 16

2

p

p′

q′

R

R′

q

Figure 2: R and R′ are the sn-regions of
(p, q).

1

3

4
5

6

13

2

a b

p

Rap
Rpb

Figure 3: Rap and Rpb are the sn-regions
of (a, p) and (p, b), respectively, that do
not contain triangle apb.

This is just the set Q of points p such that the triangle apb is free of other points of P .
For every element p of Q, suppose that we can enumerate the sn-paths ρ of p over all
triangulations of P . For ever pair (p, ρ), let T(p,ρ) = T(p,ρ)(P) be the set of triangulations
of P that contain the triangle apb and in which ρ is the sn-path of p. If, for each such pair
that we can obtain, we can compute |T(p,ρ)|, then we are done, since each triangulation
of P must contain precisely one pair (p, ρ), adding the numbers over all pairs gives us
the total number of triangulations.

Let us fix a pair (p, ρ) for which we would like to compute |T(p,ρ)|. The pair already
defines the regions Rap and Rpb for all triangulations in T(p,ρ). Observe that any tri-
angulation in T(p,ρ) contains a triangulation Tap of Rap and a triangulation Tpb of Rpb,
each of which satisfy the following sn-constraint: For each edge (q, r) in ρ there is no
edge (q, s) in the triangulation (either Tap or Tpb) such that s < r. Furthermore, putting
together any pair of triangulations Tap and Tpb, each satisfying the constraint, and the
triangle apb gives a triangulation in T(p,ρ). This observation follows from the fact that
ρ is an sn-path of p in any triangulation of Tp,ρ, and allows us to separately compute
the number of (sn-constraint-satisfying) triangulations Nap of Rap and Npb of Rpb whose
product gives |T(p,ρ)|.

The numbers Nap and Npb are computed recursively. We will maintain the invariant
that at any point in the recursion we are dealing with an sn-region of some edge. This
is certainly true in the beginning since we start with an sn-region of the edge ab and
also in the next step since we recurse on sn-regions defined by the edges (a, p) and (p, b)
respectively. At any point, let us say that we are dealing with an sn-region R defined by
an edge (x, y) and let ρx and ρy be the sn-paths starting at x and y respectively.

Now, we recurse almost exactly as we did before: We enumerate the set of points
z such that the triangle xzy lies within R and is free of other points of P contained in
R, see Figure 4. Furthermore, we ensure that if z happens to be a point in either ρx
or ρy, and (z, t) is an edge in that sn-path, then both x and y are bigger than t. This

7

way, we do not violate the sn-constraint. For each such z we enumerate the portions of
sn-paths starting at z that lie within R. See Figure 4. Each such path splits the region
R into regions Rxz and Rzy which are sn-regions defined by (x, z) and (z, y) respectively.
Each of the regions Rxz and Rzy have sizes smaller than R, i.e., fewer triangles in any
triangulation. The recursion bottoms out when the size is ≤ 1, in which case we know
that there is exactly one triangulation. Note that even though we enumerate only the
portions of the sn-paths of z that lie within R, these portions implicitly define the entire
sn-path of z. This is because such a portion either ends at a point on the first onion
layer in which case it is the entire sn-path, or at a point w on either ρx or ρy. The
direction of descent along that sn-path, starting at w, is then the remaining portion of
the sn-path of z.

9

1

3

4
5

6

8

10

7

1214

17

16

2

x

x′

y′

R

R′

z y

Figure 4: R and R′ are the sn-regions of (x, y).

One detail is still missing. How do we enumerate the portions of the sn-paths of
z that belong to at least one triangulation of R? and the answer is: We will not do
it. Instead, we enumerate a superset of paths which are descending in the sense that
they start at z and each successive point is in a strictly upper layer (a layer containing
points with smaller indices). Again, we only enumerate the portion of such paths that
lie inside R since the rest is implicitly defined. For any descending path that does not
really belong to any triangulation of R, at least one of the regions Rxz or Rzy has no
triangulations satisfying the sn-constraint. This will be detected somewhere down the
recursion where we will not be able find any z satisfying the sn-constraint. At that point,
we return 0 as the number of triangulations. Thus the algorithm still works in these
cases.

There is one other ingredient that we add for efficiency: Memoization. Whenever we
compute the number of triangulations of a certain sn-region that satisfy the sn-constraint
dictated by the sn-paths defining the region, we store it in a hash table (or any other
data structure). Now consider a call graph in which each node represents an sn-region
and there is a directed edge from a region R to a region R′ if from R we make a recursive
call to R′. The number of egdes in this graph is an upper bound1 on the running time
of the algorithm since, because of memoization, no edge is traversed more than once.

1Up to a polynomial overhead arising from the construction and handling of sub-problems.

8

We will now prove an upper bound on the number of edges in the call graph. Each
call from a region R to a region R′ can be charged to a triple of descending paths - two
defining R and a third that, along with a triangle, splits R into two regions, one of which
is R′. The triples (ρ1, ρ2, ρ3) that are produced in the algorithm have the property that
once two paths merge in the direction of descent, they never split again. This is ensured
by the fact that we only enumerate the portions of the third descending path within the
region R and the rest is implicitly defined, as noted before. Let ρ′2 be the portion of ρ2
that does not have any point in common with ρ1, and let ρ′3 be the portion of ρ3 that
does not have any point in common with either ρ1 or ρ2. The descending paths ρ1, ρ

′
2

and ρ′3 are vertex disjoint, and along with some additional information they completely
describe ρ1, ρ2 and ρ3. The additional information that is required is whether, and
where, ρ2 merges with ρ1, and whether, and where, ρ3 merges with one of the other
paths. If P has k onion layers, then each descending path has length at most k and
therefore there are at most k ways that ρ′2 may merge with ρ1, and at most 2k ways ρ′3
may merge with one of ρ1 or ρ2. Therefore, if U is an upper bound on the number of
triples of vertex disjoint descending paths, then 2k2U is an upper bound on the number
of triples (ρ1, ρ2, ρ3) as described above, and hence also an upper bound on the running
time of the algorithm.

4.2 Number of vertex-disjoint triples of descending paths

Each descending path uses at most one vertex from every onion layer. Let ni = |P (i)|
be the size of the i-th onion layer. Let us count how many ways there are for any triple
of paths to use at most one vertex each from this layer. There is one way for the triple
of paths to skip this onion layer. There are ni ways of choosing one point among the ni

which may then be used by any of the paths. This gives 3ni ways for the three paths.
There are

(ni

2

)

ways to choose two points, and any two of the paths may use them. This
gives 6

(ni

2

)

ways among the three paths. Finally there are
(ni

3

)

ways of choosing three
points, and there are three (not six) ways for the three paths to use one of these vertices.
This is because these paths are non-crossing planar curves, and therefore the clockwise
order of these paths along any CH

(

P (i)
)

that intersects all three of them is the same
for each i. The overall number of ways in which at most three points can be used from
the i-th layer is therefore f(ni), where f(x) = 1 + 3x+ 6x(x−1)

2 + 3x(x−1)(x−2)
6 .

The number of triples of vertex disjoint descending paths is therefore at most U =
∏k

i=1 f(ni). Since each ni is a positive integer, and the function f(·) is log-concave for
x ≥ 1, the above product is maximized when each ni is equal to

n
k . This gives an upper

bound of f
(

n
k

)k
= g

(

n
k

)n
, where g(x) = f(x)

1

x . Now, g(x) is maximized for some value
of x between 0 and 1 and is a decreasing function for x ≥ 1. Since each onion layer
except the k-th one must have at least three points, we have U = O (g(3)n). The fact
that the k-th onion layer may have fewer than three points makes only a difference of a
constant factor. Therefore the running time of the algorithm presented in this section is
O
(

k2g(3)n
)

= O∗(3.1414n). This concludes the proof of Theorem 1.

9

We want to point out that often the number of onion layers can be much smaller
than the maximum possible

⌈

n
3

⌉

. For example, Dalal [17] has shown that if n points are
chosen uniformly at random from a disk, then the expected number of onion layers of
the resulting point set is Θ

(

n2/3
)

.

From a theoretical point of view, the algorithm presented in this section, sn-path
algorithm for short, has a running time polynomial in n whenever the number of onion
layers of P is constant. This is the first known algorithm for counting triangulations
having this property. Also, its worst-case behavior is better than the one based on
T-paths presented in [1], O∗(3.1414n) of the former against O∗(9n) of the latter.

The sn-path algorithm is an excellent candidate for having good experimental be-
havior as well, due to its polynomial-time instances. Towards the end of paper we shall
see how the sn-path performs experimentally against the fastest-known (in practice)
algorithm for counting triangulations presented in [11].

5 Counting other crossing-free structures

In this section we show how the ideas of the sn-path algorithm can be “modified” or
“adapted” so we can develop a general framework that helps to count crossing-free
structures in general. We use this framework to count perfect matchings and spanning
cycles defined by P .

5.1 Counting matchings and spanning cycles

Assume we want to count crossing-free matchings spanned by P . Clearly any matching
can be completed to a triangulation by adding edges, and thus we might want to try
the technique used for counting triangulations: Take a set S of separators and for each
S ∈ S count the matchings in triangulations containing S, and finally add this up over
all S ∈ S. In any matching M that can be completed to a triangulation containing S,
each vertex in S is either unmatched, or it is matched to a vertex within some RS

i , or it is
matched to another vertex in S. We can annotate each separator S with this information.
When counting, for each S ∈ S, we iterate over all annotations of S, and take care to
be consistent with the current annotation when recursing into the sub-problems.

This simple algorithm fails because some matchings M could be contained in a
triangulation that could contain several, say sM > 1, separators and would thus fool our
algorithm to count M exactly sM times. If sM = s were a constant over all matchings
we would not have this problem, however, we are not aware of any set of separators S
with this property.

There is however a way in which we can modify the simple algorithm so that we
can count each matching exactly once: We embed each matching M into a unique
triangulation T ⊃ M . Given a family S of separators for the triangulations of P , we
associate a unique S ∈ S to each matching. For concreteness, let us associate to each

10

M the constrained Delaunay triangulation (CDT) △M constrained to contain M , which
we briefly describe next.

Constrained Delaunay Triangulation: The constrained Delaunay triangulation
(CDT) △S of P was first introduced in [18]. Formally, it is the triangulation T of
P containing S such that no edge e in T \ S is flippable in the following sense: Let
△1,△2 be triangles of P sharing e. The edge e is flippable if and only if � = △1 ∪△2

is convex, and replacing e with the other diagonal of � increases the smallest angle of
the triangulation of �. One of the most important properties of constrained Delaunay
triangulations is its uniqueness if no four points of P are cocircular. Thus, under stan-
dard non-degeneracy assumptions, there is a unique CDT for any given set of mandatory
edges. For a good study on constrained Delaunay triangulations we suggest the book [19]
by Ø. Hjelle and M. Dæhlen.

For our counting purposes we will assume that no four points of P are cocircular.
This can easily be taken care of by perturbing P . We can now go back to our simple
algorithm for counting matchings and revise it as follows: Whenever we recurse, in each
sub-problem we only count matchings M such that S ⊆ △M , where S ∈ S is a separator.
If this last condition can be satisfied locally in each sub-problem, i.e., choices in one sub-
problem do not depend on choices in others, we are done. While not every S admits
such a locality condition, some do as we will see next.

5.2 Triangular paths

We assume again that P has k onion layers. For every point p ∈ P (on layer P (i) which
is not the first layer) we fix in advance a ray ρp which emanates from p and does not
intersect the interior of CH

(

P (i)
)

.

For any triangulation T of P there is a unique triangle △p = p, q1, q2 adjacent to
p and intersecting ρp. Let qp be the smaller of q1 and q2, using the same labeling as
before. Clearly qp lies in a layer lower than the one containing p. Let p0, p1, . . . , pr be
the sequence so that p0 = p, pi+1 = qpi , ∀ 0 ≤ i < k, and pr lies on the first layer. We
call Pp(T) :=

⋃

i △pi the triangular path of p w.r.t. T , and we call pr the last point of
Pp(T). See Figure 5.

The triangular path Pp(T) is uniquely defined for any triangulation. Moreover, for
distinct triangulations T1 and T2, Pp(T1), Pp(T2) are either identical or they intersect
properly: Let i be the first position where △pi(T1) 6= △pi(T2), then those two triangles
intersect, as they both are adjacent to p, intersect ρp and have interiors free of points in
P . We are now ready to finish the algorithm for counting matchings.

5.2.1 Algorithm for counting matchings

Given a matching M , let △M be the CDT of M . By our assumption of no four cocircular
points, this CDT is unique for M . We annotate △M as follows:

11

p0
p1

ρp0

ρp1

p2

ρp2
p3

Figure 5: Triangular path Pp starting in onion layer P (4). Onion layers are shown in
dashed. Pp can be extended to a triangulation T , in such a case Pp will be unique for T .

• each vertex v of △M is annotated with a number mv that represents the vertex of
M that v is matched to. If mv is 0 say, then we know that v is not matched in M .

• each edge e of △M is annotated with a bit be that indicates whether e belongs to
M or not.

Let us denote by△M
the annotated version of△M . Let S be a separator contained in

△M that splits CH(P) into regions R1, . . . , Rt. Separator S inherits all the information

from △M
. We additionally keep track of whether mv is any of the adjacencies of v in S,

for each vertex v ∈ S. If not then we set mv to the index 1 ≤ i ≤ t of the region Ri the
matching vertex of v falls into (it must necessarily be a region having v as a vertex of

its boundary). The separator thus annotated will be denoted by △M
S .

We say that an annotated constrained Delaunay triangulation is legal if and only if

it is identical to △M
, for some matching M . Since there is a one-to-one correspondence

between matchings and legal constrained Delaunay triangulations, our goal is to count
the latter.

Our algorithm is essentially the same as for counting triangulations: Instead of sn-
paths we use annotated triangular paths. We start with an edge ab on CH(P), and
enumerate the set of points p such that the triangle apb is free of other points of P .
For each such p, the triangle apb along with the triangular path starting at p forms
a separator, see Figure 6. We enumerate such separators and all possible annotations
for each one of them. Each such annotated separator splits CH(P) into two smaller
regions in which we recurse. In each recursive sub-problem we count (legal) annotated
constrained Delaunay triangulations consistent with the annotated separator.

The reason for which we use triangular paths instead of simple sn-paths is the follow-
ing: No edge in a separator, formed by a triangular path, lies on the boundary of more
than one sub-problem. This allows us to verify flippability of edges separately in each
sub-problem. If an edge belonged to more than one sub-problem, then the flippability

12

a b

p

R2

R3

R1

Figure 6: In the first call of the algorithm, the triangular path shown in dark gray is
created. It divides the problem into regions R1∪R3 and R2. A call for the latter creates
the triangular path shown in light gray. Annotations are not shown for simplicity.

of this edge would depend on the choices made in each sub-problem, thus introducing
dependency between these sub-problems.

As in the case for counting triangulations, we use memoization. The running time
as before is dominated by the number of triples of annotated triangular paths. The size
of each triangular path is O(k), thus there are clearly at most nO(k) triangular paths.
Also, trying all possible annotations per triangular path leads to no more than nO(k)

annotations per triangular path, as can be easily checked. Hence there are nO(k) anno-
tated triangular paths, and also nO(k) triples of annotated triangular paths. The overall
running time is thus nO(k), which even considers the polynomial overheads arising from
checking flippability of edges and inclusion of points into sub-problems. This concludes
one part of Theorem 2.

The annotations required for counting matchings are not very complicated, but for
many other counting problems this is a highly non-trivial task. An example of more
involved annotations is given next, where we consider the problem of counting spanning
cycles.

5.2.2 Algorithm for counting spanning cycles

Counting spanning cycles is more complicated than counting matchings. What we will
actually do is that, instead of counting spanning cycles, we will count rooted and oriented
spanning cycles. Given any cycle, we make it rooted by designating a starting vertex,
and we make it oriented by assigning an orientation- clockwise or counter-clockwise.
We then number the vertices in the cycle from 1 to n, beginning at the starting vertex
(which is the root of the cycle), and continuing along the assigned direction. We also
direct the edges along this direction. This way, each spanning cycle is counted exactly
2n times. At the end we divide the computed number by 2n to get the desired number.
In the remainder we use the term HamCycle for rooted and oriented spanning cycles.

13

Given a HamCycle H let △H be the CDT of H. We annotate △H as follows:

• each vertex v of △H is annotated with (posv,prevv,nextv), where posv is the
number assigned to v in H, prevv is the vertex lying immediately before v in H,
and nextv is the vertex lying immediately after v in H.

• each edge e in △H is annotated with a bit be that indicates whether e belongs to
H or not.

As in the case for matchings, the annotated △H will be denoted by △H
. Let S be

again a separator contained in △H that splits CH(P) into regions R1, . . . Rt. Separator

S inherits the following information from △H
: Each vertex v ∈ S inherits posv from △H

.
If prevv and nextv are already adjacent to v in S then this information is also inherited.
If prevv is absent in S then v is annotated with the index i, 1 ≤ i ≤ t, of the region Ri

that prevv falls in. The same holds for nextv. Each edge e of S carries the annotation

it has in △H
. The separator S of ∆H thus annotated will be denoted by △H

S .

The algorithm, as the reader might be thinking right now, is no other than the
algorithm for counting matchings. The only difference are the annotations, they encode
a different problem. Thus again, the number of triangular paths is nO(k). The number
of annotations per triangular path stays nO(k), and hence the total running time will
stay at nO(k), including again the other polynomial overheads. This finishes the proof
of Theorem 2.

6 The hardness result

In this section we show a hardness result related to our counting algorithms. Observe
that those algorithms are parameterized by the number k of onion layers of P . They have
running times of the sort nO(k). Thus, from the complexity point of view, it is natural
to ask whether algorithms with running times of the sort g(k) · nO(1), for some function
g independent of n, are possible. That would mean that our problems belong to the
FPT complexity class. Unfortunately, our techniques are general enough to solve harder
problems, such as the Restricted-Triangulation-Counting-Problem explained
before, on page 4.

Here we prove Theorem 3, which states that the Restricted-Triangulation-

Counting-Problem, RTCP for short, is W[2]-hard if the parameter is considered to
be the number of onion layers of P . More, this result even holds for the problem of just
deciding the existence of a restricted triangulation.

The algorithms of Theorems 1 and 2 require little to no modification to be run on
instances of RTCP, that is, those algorithms are quite generic. Since the separation
FPT 6= W[2] is widely believed, and we do not really know about the complexity of the
counting problems studied in this paper, we can still hope that, by exploiting structural
properties, we could obtain fixed-parameter tractable algorithms for them. The book by

14

J. Flum and M. Grohe, see [16], is an excellent reference for Parameterized Complexity
Theory.

6.1 Preliminaries

Let P be a set of n points with k onion layers, and let E be some set of pre-specified
edges spanned by P . We say that a triangulation T of P is restricted w.r.t. E if T ⊆ E.
Here we consider the following Restricted-Triangulation-Existence-Problem:
On input (P,E), decide whether there exists a triangulation of P that is restricted
w.r.t. E. This defines the Restricted-Triangulation-Counting-Problem in the
natural way, and the existence problem is trivially reducible to the counting problem.

The Restricted-Triangulation-Existence-Problem, RTEP for short, was
proven to be NP-complete in [20, 21]. Something very important can be observed here,
namely, both reductions are actually parsimonious2, implying #P-completeness of its
natural counting problem, RTCP.

So far all reductions involving restricted triangulations rely heavily on the ability to
specify a particular set E as part of the input. If E is instead fixed to the set of all
edges spanned by P , we obtain the problem of counting all triangulations of P , which
we strongly believe to be #P-complete.

In this section we parameterize RTCP and RTEP by k, the number of onion layers
of P . As we mentioned before, the counting algorithm, for triangulations, presented
in Section 4 can easily be adapted to solve RTCP, and thus also RTEP, in time nO(k).
Our proof is by reduction from the Parameterized-Hitting-Set-Problem, PHSP
for short, which is proven to be W[2]-hard in [16]. An instance A of this problem is
formed by numbers n,m, k ∈ N, along with sets S1, . . . , Sm ⊆ [n], where k is considered
a parameter, and [n] := {0, . . . , n−1}. The output to A is “yes” iff there is a set H ⊆ [n]
of size at most k, such that H ∩ Si 6= ∅ for every 1 ≤ i ≤ m.

In our reduction, several gadgets are used to transform an instance A of the hitting set
problem to an instance GA = (P,E) of the Restricted-Triangulation-Existence-

Problem. The reduction is an fpt-reduction in the sense of [16], that is, it maps every
instance A with parameter k to an instance GA with O(k) onion layers. Each gadget is
given by a set of points with O(1) onion layers, along with a set of pre-specified edges.
The gadgets that will be used are called: pipes, wires, ORs, terminals, testers, and
crossings, their specifications will be given later on, for now we would like to explain
how the gadgets fit together as well as the intuition behind it.

6.2 Construction and intuition

Given an instance A of PHSP, as explained above, we will create in polynomial time an
instance GA = (P,E) of RTEP of size poly(n,m) that has O(k) onion layers and admits

2This means that there is a one-to-one correspondence between the solution sets.

15

a triangulation w.r.t. E iff A admits a hitting set of size ≤ k. The mapping A 7→ GA

will clearly be polynomial-time computable, and thus an fpt-reduction. Figure 7 is a
reference for the construction that follows.

In the construction, we start with parallel pipes Q1, . . . , Qk of n states each, and of
length polynomial in m and n. Pipe Qi lies above pipe Qi+1. Let Qi be a pipe, 1 ≤ i ≤ k,
and let Sj = {sj,1, . . . sj,t} ⊆ [n] be a set of instance A. We define the stripe Bi,j as a
set of t testers attached to Qi that check if Qi carries any of the values of set Sj, see
Figure 7. The stripe Bi+1,j will lie in the same vertical slab as Bi,j. The testers of Bi,j

are connected to a chain of or-gadgets that lies between pipes Qi, Qi+1. For i < k, the
output of the last or-gadget in Bi,j is carried to Bi+1,j by a crossing-gadget, see Figure 7.
For i = k, the last or-gadget in Bi,j is connected to a terminal-gadget.

Q1

Q2

2 5 6

2 5 6

5 7

5 7

OR
B1,1

B2,1

B1,2

B2,2

pipe

tester

crossing

terminal

wire

OR

OROROROR

OR

OR

stripe B1,1

block B1 block B2

Figure 7: Instance GA produced from instance A of the Parameterized-Hitting-Set-

Problem with n = 8,m = 2, k = 2 and S1 = {2, 5, 6}, S2 = {5, 7}.

The block Bj is the union of the stripes B1,j , . . . , Bk,j. The blocks B1, . . . ,Bm are
arranged horizontally in such a way that the points in stripes Bi,1, . . . , Bi,m, with 1 ≤
i ≤ k, are horizontally collinear, that is, they are aligned by their y-coordinate.

Finally, P is defined to be the set of points of all the gadgets involved. To define the
set E of pre-specified edges, we first include the edges of all gadgets involved. Then, the
empty spaces between gadgets are triangulated arbitrarily, and these edges are added to
E. We now set GA = (P,E).

The intuition behind the construction is the following: Horizontally, pipe Qi trans-
mits a single value between 1 and n. The testers in stripe Bi,j verify if the value
transmitted by Qi hits one of the elements of the set Sj of A. If so, this information is
transmitted vertically along block Bj , in such a case the transmitted value is true. For
this transmission we need ORs, wires and crossing gadgets. At the end of block Bj the
terminal gadget can be triangulated iff the value transmitted to it is true. If Sj is not
hit by the value transmitted in Qi, then the testers will transmit false and this value will
be transmitted vertically along Bj until it is possibly flipped by another pipe Qr, with

16

i < r ≤ k, thus Sj is not hit by Qi but it is hit by Qr. If the value transmitted to the
terminal gadget in block Bj is false, this means that the terminal cannot be triangulated,
thus no restricted triangulation of GA exists. This in turns implies that Sj was not hit
by any value transmitted by the pipes Q1, . . . , Qk. If this is always the case then no
hitting set of size at most k exists for A.

All this will be formally proven later on, for now we believe that this rough intuition
is enough. Therefore we will jump now to define the gadgets formally.

6.3 Defining the gadgets

The basic gadget is the pipe, shown in Figure 8, whose definition is the following:

Definition 3 (Pipe). A pipe Q with n states and length l > 4(n− 1) consists of points
p1 . . . pl, q1 . . . ql with pt = (t, 0), qt = (t, 1), 1 ≤ t ≤ l, and a set EQ = S ∪F ∪L0∪ · · · ∪
Ln−1 of pre-specified edges. The individual sets that form EQ are defined as follows:

For 1 ≤ i ≤ n − 1 and 1 ≤ t ≤ l − 4i we define the zig-edges ai,t = {pt, qt+4i}
and the zag-edges bi,t = {qt+4i, pt+1}. For i = 0, we define other zig- and zag-edges by
a0,t = {pt, qt+1} and b0,t = {qt, pt}, where this time 1 ≤ t ≤ l− 1. For i ∈ [n], we define
the zig-zag Li = {ai,1, . . . , ai,l−w, bi,1, . . . , bi,l−w} with w = 1 for i = 0, and w = 4i
otherwise.

Next, we add the set of completion edges S:

S = {{p1, qt} | 1 ≤ t ≤ 4(n − 1)} ∪ {{pl−t, ql} | 0 ≤ t ≤ 4(n − 1) + 2}

Finally, we add the frame edges F = {{pi, pi+1} | i < l} ∪ {{qi, qi+1} | i < l}.

q1

p1 p9

q9

Figure 8: (Top) A pipe with 3 states and l = 9. Thick black edges constitute F ,
thick gray edges constitute S, red edges are L2, solid thin black edges are zig-zag L1,
dashed edges are zig-zag L0. (Bottom) A stretched and bent wire with a terminal gadget
attached to it.

17

It is clear that any triangulation T of a pipe Q contains exactly one zig-zag Li, for
i ∈ [n], since different zig-zags lines cross. The sets S,F help to complete a triangulation
of Q whenever zig-zag Li is present. If Li ⊆ T , we say that Q “carries” the value i in T .
Note that F ⊆ T holds for every triangulation T of Q. We cannot say the same about
S however.

A pipe with n states will always be “horizontal”, i.e., it will not turn in any other
direction. This is required for the final set of points to feature a bounded number of
onion layers.

In our construction we will also require vertical connections between pipes. These
are obtained by wires, which are pipes with two states. Since they feature only two
states, wires can be stretched by arbitrary factors, and bent by arbitrary angles, while
increasing their length only by a constant additive term. This is shown in Fig. 8. For
wires, we relabel the values 0 and 1 by false and true respectively.

The remaining gadgets for our reduction are specified and defined as follows:

Or-gadget. This gadget is connected to two input wires W1,W2, and to an output wire
W3, as shown in Figure 9. We have that: () If one of W1 or W2 carries true in
some restricted3 triangulation T of the gadget, then W3 may carry true. () If W3

carries true in T , then at least one of W1 or W2 must necessarily carry true.

· · ·W1

· · ·W2

· · ·W3e

Figure 9: The or-gadget. The gray edges from W2 to W3 are “transfer edges”. An
analogous set of edges is also present from W1 to W3, but suppressed in this figure to
improve legibility.

A terminal-gadget. This gadget can be attachted to a wire W , replacing its “end
part” as exemplified in the bottom part of Figure 8. It admits a triangulation iff
W carries true.

A tester-gadget. This gadget is connected to a pipe Q, for value i at position t, be-
tween ai,t and bi,t, and has an output wire W , see to the left in Figure 10. We
have that: () If Q carries i in some restricted triangulation T of Q, then W may
carry true. () If W carries true, then Q must carry i in T .

3Restricted w.r.t. the shown adjacencies.

18

A crossing-gadget. This is a more intricate gadget which allows an input wire V
to intersect a pipe Q, leaving it as an output wire W . The value carried by Q
is not influenced by V . We have that: () If V carries true in some restricted
triangulation T of the gadget, then W may carry true. () If W carries true, then
V must necessarily carry true.

As shown in the middle in Figure 10, V enters the crossing-gadget from the top. If
V intersects Q between points qt and qt+1 then a new point r collinear with those
two points is added to Q. Wire V will now enter Q between r and qt+1 instead,
as shown in the middle in Figure 10. Let us assume that Q is an n-state pipe,
and consider the set S formed by the points pu such that ai,u is a zig-edge, of
zig-zag Li, adjacent to qt+1, with 0 ≤ i ≤ n− 1. By definition of ai,u we have that
u = t− 4i+ 1 for 1 ≤ i ≤ n− 1, and u = t for i = 0. There will be an output wire
Wi, for zig-zag Li, which will go out from Q between pu ∈ S and pu+1.

Since pipes and wires are purely combinatorial objects, we have some freedom
to move their points without affecting the adjacencies between the p’s and q’s,
and without losing collinearities. Thus we will move all the p points of Q from
pt−4(n−1)+1 to pt to the right, and condense them in such a way that we keep their
linear order, thus we also keep the planarity of the zig-zags Li, 0 ≤ i ≤ n − 1.
The condensing part is also done in such a way that the following empty convex
quadrilateral Ci

u for zig-zag Li at pu ∈ S exists: Both diagonals of Ci
u have negative

slopes. One diagonal of Ci
u is formed by r and pu+1. The other diagonal of Ci

u is
form by the point αu of V , which is vertically aligned with r and lies three points
behind r on V , and the point βu of Wi which is vertically aligned with pu+1 and
lies three points ahead of pu+1 on Wi. Points αu and βu, for u = t− 3, can be seen
in the middle and to the right in Figure 10. Observe that this re-arrangement of
elements is always possible.

Now, the zig-edge ai,u of Li adjacent to qt+1 is replaced by the edges a′i,u = {pu, r}
and {pu+1, r}. The latter edge is a diagonal of Ci

u and is shown in red in Figure 10.
The rest of the adjacencies of Li remains the same.

Intuitively speaking, the red edge {pu+1, r} will help V to transmit false to Wi,
as seen to the right in Figure 10 for i = 1. Thus we also need to add the edges
that will help V to transmit true to Wi. Those edges are shown on solid black
for i = 1 to the right in Figure 10. The adjacencies are equivalent for any other
0 ≤ i ≤ n− 1. Observe that all these adjacencies intersect neither a′i,u nor bi,u.

Finally, the output wires W0, . . . ,Wn−1 are connected to a chain of or-gadgets, as
shown in the middle in Figure 10, whose output is precisely the output wire W .

6.4 Formal proofs

Lemma 1. All the previous gadgets fulfill their specifications.

19

Q

ai,t bi,t

pt pt+1

qu

W
...

r

Q
qt r qt+1

V

...

pt

pt+1

pt−3

pt−2

a′
1,t−3

W1

W0

b1,t−3

b0,t+1

a′
0,t

Q

V

...

r

pt−3

a′
1,t−3

pt−2

qt+1

b1,t−3

W1
...

αt−3

βt−3

αt−3

βt−3

W · · ·OR

Figure 10: To the left the tester-gadget for i at t. Q is modified by shifting, for k > 0,
all pt+k and qu+k to the right until the triangle r, pt+1, qu is oriented counter-clockwise.
In the middle a crossing between pipe Q and input wire V which becomes output wire
W . To the right the details of the crossing for i = 1 at pt−3.

Proof. Or-gadget: () Assume without loss of generality that W2 carries true in some
restricted triangulation T of the gadget. Observe that W3 carries true or false in
T depending on whether the transfer edges, shown in gray in Figure 9, are chosen.
For () note that if W3 carries true in T , the transfer edges from either W1 or W2,
say W2 without loss of generality, must be present. If W2 carried false, it can do
it only up to edge e shown in Figure 9, since all following edges intersect transfer
edges. But then, the gray point fails to be part of a triangle in any restricted
triangulation of the gadget, thus W2 must necessarily carry true in T .

Terminal: If W carries true, the terminal is triangulated as shown at the bottom of
Figure 8. However, if W carries false, then the gray point shown in the same figure
fails to be in a triangle of the restricted triangulation of the gadget.

Tester: For () assume Q carries i in some restricted triangulation T . Since no gray
edges in the tester intersect Li, they can be added to T or not. That would make
W carry true or false respectively. For () given some restricted triangulation T ,
in which W carries true, all gray edges must be present in T . But the gadget is
designed such that for every 0 ≤ j 6= i ≤ n− 1, there is an edge e ∈ Lj of Q that
intersects both ai,t and bi,t, and thus all gray edges. Therefore e /∈ T , and hence
Lj * T , forcing Li ⊆ T .

Crossing: () Let T be a restricted triangulation of the whole gadget in which Q carries
i. Observe that if either, V or Wi, carries true in T , then the black solid edges that

20

cross Q from V to Wi, shown to the right in Figure 10 for i = 1, must be present.
Those edges in turn imply that the other gadget must necessarily carry true in T as
well, otherwise the red points shown to the right in Figure 10 will fail to be part of
T , which would give us a contradiction since T is a triangulation. Thus V carries
true iff Wi carries true, as long as Q carries i. By using the chain of or-gadgets
that the Wj ’s are connected to we could leave the output wire W carrying true.
() Assume that W carries true and Q carries i in T . Observe that in the chain
of or-gadgets that the Wj ’s are connected to, we can always force to transmit true
from W to Wi, while we transmit false to every other Wj, 0 ≤ j 6= i ≤ n− 1. This
in turn will force the edges that cross Q from Wi to V to be included in T , the
black solid edges that cross Q from Wi to V shown to the right in Figure 10 for
i = 1. This will make V carry true.

A triangulation is also possible if V and W carry false. If Q carries i in T , then
the edges a′i,u = {pu, r} and {pu+1, r}, for some t− 4(n − 1) + 1 ≤ u ≤ t, are also
present in T . Thus we transmit false from W to every Wj, 0 ≤ j ≤ n−1. However,
as we said before, the red edge {pu+1, r} will help to transmit false from Wi to V
through Q. Thus V would also carry false in T . �

Theorem 3 follows from the following lemma:

Lemma 2. GA has O(k) onion layers and admits a triangulation iff A admits a hitting
set of size ≤ k.

Proof. Consider the number of different y-coordinates of P . This is an upper bound
for the number of onion layers of P . The pipes contribute 2k different y-coordinates.
Every other gadget features O(1) different y-coordinates. Each wire can be stretched
and bent with O(1) overhead, thus giving O(1) different y-coordinates. Since the points
in stripes Bi,1, . . . , Bi,m are aligned by their y-coordinates, each set Bi,1 ∪ · · · ∪Bi,m has
O(1) different y-coordinates. This totals to 2k + O(k) = O(k) different y-coordinates
among all points in P .

Given a hitting set H = {x1, . . . , xk} of k elements, we construct a triangulation that
uses only edges from E as follows: For every i ≤ k, make Qi carry xi. For every j ≤ m
pick some x = xi ∈ H such that x ∈ Sj. In stripe Bi,j triangulate the output wire of
the tester for x to carry true, and transmit this true value along the or-gadgets of Bi,j.
When crossing a pipe Qz, with z > i, the true value will get transmitted through the
output wire Wz of the corresponding crossing-gadget. The true value will eventually
reach the terminal of Bj , which can then be triangulated without problems.

On the other hand, the values H = {x1, . . . , xk} carried by the pipes Q1, . . . , Qk in
any restricted triangulation of GA form a hitting set. To see this, observe that every
terminal must be triangulated, so the wire of every block Bj must carry true at some
place. Thus, the output of some or-gadget in Bj must carry true. Consider the first
or-gadget that fulfills this top-down, and say it lies in stripe Bi,j. This or-gadget must
be connected to a tester that outputs true. This implies xi ∈ Sj and H ∩ Sj 6= ∅. �

21

7 Experimental results on counting triangulations

We have implemented the sn-path algorithm presented in § 4, and in this section we
compare it with the algorithm presented in [11]. All experiments were run on a server
generously provided by Prof. Bernd Finkbeiner, head of the Reactive Systems group
at Saarland University. All implementations are single-threaded, so all algorithms were
run a on single core of a dual-core processor AMD Opteron at 2.6 Ghz. Linux was
the used operating system, and the amount of RAM available was 122 GB. Finally, all
implementations use the GMP library to handle big numbers. All statistics reported
here were obtained from the output of the command ‘time -v’.

The main idea behind the experiments was to obtain evidence of the practical limits
of the algorithms, thus they are really provided without statistical analysis. If we denote
the number of points by n, the number of onion layers by k, and the size of the convex hull
by h, we were interested in knowing for different values of those parameters what are the
largest sets of points we can solve. Also, besides providing the number of triangulations,
we also provide: () Total number of sub-problems generated by each algorithm, ()
Memory consumption, and () Total running time. Since we used memoization in all
algorithms, the total number of sub-problems is just the size of the database at the end
of execution.

We have four kinds of sets of points, of selected cardinalities, we ran the algorithms
on: () Sets of points having three onion layers. () Sets of points generated in a
square () Sets of points having the largest possible number of onion layers, w.r.t. the
cardinality of the set () Grids. Sets (), () and () were generated at random. For ()
we generated random points on three concentric circles and we only kept configurations
having three onion layers.

Table 1 summarizes the largest sets of points, of each type, that we were able to
solve within 140 hours, the complete results can be seen in the tables at the end of the
paper. Results for () are shown in Tables 2 and 3, for () in Tables 4 and 5, for ()
in Tables 6 and 7, and for () in Tables 8 and 9. In the tables the algorithm of [11] is
called “ray-seidel”, and our algorithm simply “sn-paths”. We did not run ray-seidel on
sets of kind () due to degeneracy; this functionality was not implemented. All columns
are self-explanatory except for the columns “Base” and “Exp”. The former refers to the
base c, truncated to two decimal digits, of a number expressed as cn. The latter refers
to the term d, also truncated to two decimal digits, of a number expressed as nd·k, this
makes sense for sn-paths since we know that for fixed k the running time is nO(k).

Since we are interested in the largest n we can solve, we started the experiments with
at least 25 points, below this threshold all algorithms perform very well, where ray-seidel
is notably the fastest, giving answers in at most a couple of seconds, and sn-paths the
slowest for k = 8. All empty entries, except for the last entry of sn-paths in Tables 4
and 5, mean that the corresponding algorithm consumed all available RAM memory
before finishing the corresponding set of points. In the same sense, one complete empty
row means that no algorithm managed to finish the corresponding set of points. The

22

Points

() () () ()

ray-seidel 43 43 34 NA

sn-paths 80 43 28 6x17

Table 1: Largest sets of points of kind (i), 1 ≤ i ≤ 4, solved by each algorithm within
140 hours.

last entry of sn-paths in tables 4 and 5 was explicitly stopped due to its potentially large
running time.

To verify the correctness of the algorithms we ran them on configurations available
in [22, 23], for which an answer is known via other algorithms. We also run them on sets
of points in convex position, there the number of triangulations is a Catalan number. In
all cases the two algorithms confirmed the known answers.

The experiments turned out to be what we had expected, namely, generally worse
behavior as the number of onion layers increases, since the number of triangulations
should certainly increase with the number of onion layers. The experiments show however
that both algorithms are counting triangulations by generating far fewer sub-problems:
Having a glimpse at the number of sub-problems in Tables 2 to 9, each looks as something
of the sort

√

|FT (P)|, which was already reported in [11] for the ray-seidel algorithm.

The ray-seidel algorithm showed a consistent behavior across all experiments. This
algorithm lived up to its expectations, it turned out to be simply the fastest algorithm,
but this came with the price of being very resource-consuming. We can see in the
tables that the resources the algorithm uses increase very fast, at that rate we could
say that increasing RAM to a couple of Terabytes will not really allow us to run the
algorithm on significantly larger set of points. However, there are other techniques we
could use to alleviate this situation, we could for example decide to store only a subset
of the produced sub-problems and re-compute a sub-problem whenever needed. Since
apparently computing sub-problems is very fast, we could expect that this method does
not severely blow up the running time.

Now turning to sn-paths, the algorithm really performed best for three convex layers,
see Tables 2 and 3. For those configurations the algorithm allowed us to go up to 80 points
in a “reasonable” amount of time without exhausting the RAM, which is almost twice
as much as the ray-seidel algorithm allowed. In this regard we believe that increasing
computational power and resources, say 512 GB of RAM, could allow us to go somewhere
near 160 points. The ray-seidel algorithm would get nowhere close to this number of
points per se. This “nice” behavior can also be seen in Tables 8 and 9 with grids having
three and four onion layers, however, grids are believed to have far less triangulations
than sets of points in general position. This is also supported by the experiments. For
fewer than three onion layers the algorithm gets better, so they are really not an issue.
Also, since the running time of sn-paths can be expressed as nd·k, for some positive d,

23

the idea of column Exp in the tables was to see whether that value comes out roughly
as a constant for the same values of k, however, the data set seems to be small to show
this. We believe that the right value should be 3 ≤ d ≤ 4. Finally, by increasing the
number of onion layers, Tables 4 to 7, we can see how the behavior of sn-paths quickly
deteriorates, in all aspects.

The conclusions of the experiments really suggest themselves. In the “low” end, up
to 25 points, any algorithm will do but ray-seidel is the fastest. In the “high” end it
really seems that sn-paths is a better choice due to its smaller memory footprint, so up
to 6–7 onion layers we would stick with it, but beyond that number of onion layers we
would consider ray-seidel a better option.

8 Conclusions

In this paper we have presented algorithms to count triangulations, crossing-free match-
ings and crossing-free spanning cycles of a given set of points P . All algorithms use the
onion layers of P and the divide-and-conquer paradigm.

The algorithm to count triangulations presented in this paper has the best prov-
able worst-case running time as of this writing, O∗(3.1414n). We consider important to
note that configurations of points having from Ω (3.464n), see [24], to Ω (8.65n), see [25],
triangulations are known. Thus the algorithm presented in this paper counts triangu-
lations faster than enumeration algorithms in at least those cases. Also, this algorithm
has polynomial-time instances whenever the number of onion layers of the given set of
points is constant. As we saw in the experiments we showed, for up to 3 onion layers this
algorithm outperforms the algorithm of [11], which is reported to be extremely fast in
practice. At this point the most interesting open questions w.r.t. counting triangulations
are the following: () Is it possible to always count triangulations in polynomial time?
or is this problem #P-complete? () Is it true that every set of n points, n being large
enough, spans at least Ω (3.464n) triangulations? If this is true, then the algorithm we
presented in this paper always counts triangulations in o (|FT (P)|).

Speaking about counting other kinds of crossing-free structures, we showed again
two algorithms. These algorithms could be seen more as a framework for counting
essentially “every” kind of crossing-free structures, since it depends on a labeling scheme,
which is the hardest part of the algorithm to come up with. This “framework” implies
algorithms with running times of the sort nO(k), where k is the number of onion layers
of the given set of points, which again, for fixed k implies polynomial time. Algorithms
like these were not known before for this kind of problems. This gives a partial answer
to Problem 16 of The Open Problems Project, which asks whether |FC(P)| can always
be computed in polynomial time, see [14]. These counting algorithms also allow us to
generate crossing-free matchings and spanning cycles uniformly at random. The latter
being a problem that has attracted the attention of researchers for almost 20 years, in
the form of generating random simple polygons on P , which is nothing but a crossing-
free spanning cycle of P . Since our algorithms are based on the divide-and-conquer

24

paradigm, we can adapt the method explained in [12] to produce such random structures,
once the counting has been done. Other methods to generate random simple polygons
without having to count are known, for example, in [26] many heuristics for polygons are
presented. There the authors reported that (uniform) random generation can be done
in polynomial time when the random polygon is star-shaped, but in the general case the
algorithms therein presented are either unpractical or unable to generate uniformly at
random.

It is worth noting that although we could have tried to come up with an annotation
scheme for pseudo-triangulations, and thus we could have obtained an algorithm to count
pseudo-triangulations using the onion layers, the resulting algorithm would have had a
running time of the sort nO(k). This running time is in general not better than that
of the algorithm presented in [1] for pseudo-triangulations, at least from the theoretical
point of view, since for the latter we have O∗ (cn), for some constant c ∈ R, while for the
former k can get linearly large. The most important open problem here is whether the
number of matchings and spanning cycles can always be computed in polynomial time.

We also showed a hardness result of a very particular instance of the problem of
counting triangulations exactly, namely the Restricted-Triangulation-Counting-

Problem (RTCP). We showed that this problem is W[2]-hard if the parameter is the
number of onion layers of the set of points it is defined on. The algorithm for counting
triangulations of Theorem 1 needs little to no modifications to be run on instances
of RTCP, and the separation FPT 6= W[2] is widely believed, so we can still hope
that, by exploiting structural properties of triangulations, and also of other crossing-
free structures, we can obtain FPT algorithms for the counting problems studied in § 4
and § 5. Thus, another interesting question at this moment is: Do those counting
problems belong to FPT or not?

Finally, we showed experimental results comparing the algorithms for counting trian-
gulations of Theorem 1 and the algorithm of [11]. Those experiments give a rough idea
of what to expect when running each one of those algorithms on real configurations of
points. It would be very interesting to see a hybrid algorithm that uses the sn-path and
the ray-seidel algorithms, if possible. That algorithm could combine the small memory
footprint of the sn-path algorithm with the fast execution of the ray-seidel algorithm.
This could allow us to solve larger sets of points.

9 Acknowledgement

We thank Raimund Seidel for valuable feedback and interesting discussions.

25

Time in hh:mm:ss.ms RAM in Mb

n h #Triangulations Base ray-seidel sn-paths ray-seidel sn-paths

30 10 161014656152655441 ≈ 3.74 20.18 55.77 303 33
10 312513373686594183 ≈ 3.82 1:07.72 1:09.17 1160 38

33 11 32155601714553665796 ≈ 3.90 3:50.96 2:19.19 2762 62
11 68598010833407738067 ≈ 3.99 58.43 2:30.94 857 62

37 12 9334947679230323509429 ≈ 3.92 1:53.60 3:43.51 1521 90
12 31113068813012076443512 ≈ 4.05 3:20.41 4:42.24 2465 97

40 14 2642143054680217856074126 ≈ 4.07 18:12.16 8:10.26 12557 131
15 2903778262295075928823011 ≈ 4.08 7:01.40 9:50.98 4325 149

43 14 452371697808162396583055656 ≈ 4.16 1:34:48 21:39.66 53263 243
14 461550214764369881018564051 ≈ 4.16 19:25.53 242

47 16 157759710540671985436621922639 ≈ 4.18 32:46.68 363
15 341037585238678346710372748758 ≈ 4.24 39:33.42 420

50 16 54782168649020627430413001433261 ≈ 4.31 1:06:53 606
16 158997592723683977758501079915910 ≈ 4.40 1:07:19 553

60 21 383051932722566765683591748023039 ≈ 4.56 7:51:53 2006
0004428

20 190030780266337926700033771493586 ≈ 4.69 8:59:36 2063
96361338

70 25 481423578642758908977651277967532 ≈ 4.64 22:59:43 3937
53695164862078

23 224411547729672469823709078962020 ≈ 4.74 26:54:49 4506
667530864087588

80 26 396978851668966053957582788796899 ≈ 4.81 81:29:23 8932
3403864755422464030090

26 185279982277182715207126583259662 ≈ 4.90 90:34:22 9617
53393485474040452858832

Table 2: n random points on a square, having three onion layers and h points on their convex hull.

26

Sub-problems

n h ray-seidel Base sn-paths Base Exp

30 10 2050514 ≈ 1.62 215732 ≈ 1.50 ≈ 1.20
10 7879754 ≈ 1.69 246657 ≈ 1.51 ≈ 1.21

33 11 18992928 ≈ 1.66 405580 ≈ 1.47 ≈ 1.23
11 5812991 ≈ 1.60 410357 ≈ 1.47 ≈ 1.23

37 12 10027300 ≈ 1.54 575255 ≈ 1.43 ≈ 1.22
12 16250100 ≈ 1.56 626274 ≈ 1.43 ≈ 1.23

40 14 82635240 ≈ 1.57 866278 ≈ 1.40 ≈ 1.23
15 28333612 ≈ 1.53 982791 ≈ 1.41 ≈ 1.24

43 14 347603518 ≈ 1.57 1604269 ≈ 1.39 ≈ 1.26
14 1591423 ≈ 1.39 ≈ 1.26

47 16 2287764 ≈ 1.36 ≈ 1.26
15 2720786 ≈ 1.37 ≈ 1.28

50 16 3631525 ≈ 1.35 ≈ 1.28
16 3998798 ≈ 1.35 ≈ 1.29

60 21 12527119 ≈ 1.31 ≈ 1.33
20 13076694 ≈ 1.31 ≈ 1.33

70 25 23762305 ≈ 1.27 ≈ 1.33
23 27937551 ≈ 1.27 ≈ 1.34

80 26 54047260 ≈ 1.24 ≈ 1.35
26 58561612 ≈ 1.25 ≈ 1.36

Table 3: Number of sub-problems generated by the configurations (entry-wise) presented
in Table 2.

27

Time in hhh:mm:ss.ms RAM in Mb

n k h #Triangulations Base ray-seidel sn-paths ray-seidel sn-paths

30 5 9 29762284427845618 ≈ 3.54 7.60 3:56.61 130 141
6 7 54648952555202115 ≈ 3.61 30.69 16:17.12 470 535

33 5 11 8830953374442248378 ≈ 3.75 34.80 14:47.26 643 394
6 7 23407918365649149382 ≈ 3.86 15.10 1:10:34 288 1292

37 5 11 8317197892568798832050 ≈ 3.91 3:35.27 1:15:00 2796 1524
5 13 15347609782987966767248 ≈ 3.97 15:23.53 2:16:32 10707 1957

40 6 12 1146138971033715203926926 ≈ 3.99 25:42.43 13:29:43 18525 8889
7 10 5050493282169462429012536 ≈ 4.14 1:35:45 46:49:41 54128 25533

43 6 10 981403313298259834292202925 ≈ 4.24 3:20:54 107:48:48 116506 37407
7 8

Table 4: n random points on a square, having k onion layers and h points of their convex hull.

Sub-problems

n k h ray-seidel Base sn-paths Base Exp

30 5 9 854579 ≈ 1.56 947262 ≈ 1.58 ≈ 0.80
6 7 3150228 ≈ 1.64 3590878 ≈ 1.65 ≈ 0.73

33 5 11 4245399 ≈ 1.58 2554063 ≈ 1.56 ≈ 0.84
6 7 1907449 ≈ 1.54 8731943 ≈ 1.62 ≈ 0.76

37 5 11 18477670 ≈ 1.57 9735430 ≈ 1.54 ≈ 0.89
5 13 70483691 ≈ 1.62 12535632 ≈ 1.55 ≈ 0.90

40 6 12 121049523 ≈ 1.59 56587195 ≈ 1.56 ≈ 0.80
7 10 354717051 ≈ 1.63 155716531 ≈ 1.60 ≈ 0.73

43 6 10 752596823 ≈ 1.60 239084256 ≈ 1.56 ≈ 0.85
7 8

Table 5: Number of sub-problems generated by the configurations (entry-wise) presented in Table 4.

28

Time in hh:mm:ss.ms RAM in Mb

k n #Triangulations Base ray-seidel sn-paths ray-seidel sn-paths

9 25 248441701550196 ≈ 3.76 7.82 1:36:07 154 3828
27 6632755933105064 ≈ 3.85 1:16.84 9:56:09 1239 17406

10 28 134806114688321888 ≈ 4.09 1:04.33 39:29:17 1130 56197
28 259051751512786147 ≈ 4.18 58.55 32:31:58 903 41745

11 32 188748482026800154083 ≈ 4.30 1:43:22 70647
33 2680138023948109608080 ≈ 4.46 1:38:04 62477

12 34 16605186163166445755560 ≈ 4.50 2:52:16 114676
34

Table 6: n random points having k =
⌈

n
3

⌉

onion layers.

Sub-problems

k n ray-seidel Base sn-paths Base

9 25 1078399 ≈ 1.74 24811886 ≈ 1.97
27 8738535 ≈ 1.80 110817524 ≈ 1.98

10 28 8015023 ≈ 1.76 347448787 ≈ 2.01
28 6303203 ≈ 1.74 266661064 ≈ 1.99

11 32 478692844 ≈ 1.86
33 423236754 ≈ 1.82

12 34 773361622 ≈ 1.82
34

Table 7: Number of sub-problems generated by the configurations (entry-wise) presented in Table 6.

29

Time in hhh:mm:ss.ms RAM in Mb

n m k #Triangulations Base sn-paths sn-paths

6 6 3 260420548144996 ≈ 2.51 10.36 16

6 7 3 341816489625522032 ≈ 2.61 45.79 41

6 8 3 464476385680935656240 ≈ 2.69 2:31.70 107

6 9 3 645855159466371391947660 ≈ 2.76 7:28.22 213

6 10 3 913036902513499041820702784 ≈ 2.81 17:27.63 460

6 11 3 1306520849733616781789190513820 ≈ 2.85 39:35.88 840

6 12 3 1887591165891651253904039432371172 ≈ 2.89 1:22:15 1555

6 13 3 2747848427721241461905176361078147168 ≈ 2.93 2:50:42 2479

6 14 3 4024758386310801427793602374466243714608 ≈ 2.96 5:14:23 4439

6 15 3 5924744736041718687622958191829471010847132 ≈ 2.98 8:43:14 6315

6 16 3 8757956199571261116690226598764501142088496860 ≈ 3.01 14:55:29 10344

6 17 3 12991215957916577635251095613859465176216530106080 ≈ 3.03 26:08:38 15023

7 7 4 1999206934751133055518 ≈ 2.72 6:09.75 187

7 8 4 12169409954141988707186052 ≈ 2.80 36:59.53 869

7 9 4 76083336332947513655554918994 ≈ 2.87 2:28:42 2344

7 10 4 484772512167266688498399632918196 ≈ 2.93 8:12:59 6465

7 11 4 3131521959869770128138491287826065904 ≈ 2.97 27:42:55 14870

7 12 4 20443767611927599823217291769468449488548 ≈ 3.01 67:06:41 34752

8 8 4 332633840844113103751597995920 ≈ 2.89 6:00:49 6171

8 9 4 9369363517501208819530429967280708 ≈ 2.96 32:49:11 19071

8 10 4 269621109753732518252493257828413137272 ≈ 3.02 139:58:01 75220

Table 8: Grid of n by m with k onion layers.

30

Sub-problems

n m k sn-paths Base Exp

6 6 3 69908 ≈ 1.36 ≈ 1.03

6 7 3 207193 ≈ 1.33 ≈ 1.09

6 8 3 465416 ≈ 1.31 ≈ 1.12

6 9 3 1002029 ≈ 1.29 ≈ 1.15

6 10 3 1883205 ≈ 1.27 ≈ 1.17

6 11 3 3409331 ≈ 1.25 ≈ 1.19

6 12 3 5705962 ≈ 1.24 ≈ 1.21

6 13 3 9417222 ≈ 1.22 ≈ 1.22

6 14 3 14471156 ≈ 1.21 ≈ 1.24

6 15 3 22201708 ≈ 1.20 ≈ 1.25

6 16 3 32491047 ≈ 1.19 ≈ 1.26

6 17 3 46979052 ≈ 1.18 ≈ 1.27

7 7 4 972496 ≈ 1.32 ≈ 0.88

7 8 4 3527752 ≈ 1.30 ≈ 0.93

7 9 4 10558836 ≈ 1.29 ≈ 0.97

7 10 4 25013282 ≈ 1.27 ≈ 1

7 11 4 55453561 ≈ 1.26 ≈ 1.02

7 12 4 109901193 ≈ 1.24 ≈ 1.04

8 8 4 14569428 ≈ 1.29 ≈ 0.99

8 9 4 50333235 ≈ 1.27 ≈ 1.03

8 10 4 122283519 ≈ 1.26 ≈ 1.06

Table 9: Number of sub-problems generated by the configurations (entry-wise) presented
in Table 8.

31

References

[1] V. Alvarez, K. Bringmann, and S. Ray, “A simple sweep line algorithm for counting
triangulations and pseudo-triangulations,” Submitted, 2012. 1, 2, 3, 5, 10, 25

[2] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi, “Crossing-free subgraphs,”
in Theory and Practice of Combinatorics A collection of articles honoring Anton
Kotzig on the occasion of his sixtieth birthday (G. S. Peter L. Hammer, Alexan-
der Rosa and J. Turgeon, eds.), vol. 60 of North-Holland Mathematics Studies,
pp. 9 – 12, North-Holland, 1982. 2

[3] M. Sharir, A. Sheffer, and E. Welzl, “Counting plane graphs: Perfect matchings,
spanning cycles, and kasteleyn’s technique,” CoRR, vol. abs/1109.5596, 2011. 2

[4] A. G. Olaverri, M. Noy, and J. Tejel, “Lower bounds on the number of crossing-free
subgraphs of kn,” Comput. Geom., vol. 16, no. 4, pp. 211–221, 2000. 2

[5] M. Sharir and A. Sheffer, “Counting triangulations of planar point sets,” Electr. J.
Comb., vol. 18, no. 1, 2011. 2

[6] M. Sharir, A. Sheffer, and E. Welzl, “On degrees in random triangulations of point
sets,” J. Comb. Theory, Ser. A, vol. 118, no. 7, pp. 1979–1999, 2011. 2

[7] A. Sheffer, “Numbers of plane graphs.” http://www.cs.tau.ac.il/~sheffera/

counting/PlaneGraphs.html. 2

[8] E. Demaine, “Simple polygonizations.” http://erikdemaine.org/

polygonization/. 2

[9] N. Katoh and S. ichi Tanigawa, “Fast enumeration algorithms for non-crossing
geometric graphs,” Discrete & Computational Geometry, vol. 42, no. 3, pp. 443–
468, 2009. 2

[10] A. Razen and E. Welzl, “Counting plane graphs with exponential speed-up,” in
Rainbow of Computer Science (C. S. Calude, G. Rozenberg, and A. Salomaa, eds.),
vol. 6570 of Lecture Notes in Computer Science, pp. 36–46, Springer, 2011. 2

[11] S. Ray and R. Seidel, “A simple and less slow method for counting triangulations
and for related problems,” in EuroCG, 2004. 2, 5, 10, 22, 23, 24, 25

[12] O. Aichholzer, “The path of a triangulation,” in Symposium on Computational
Geometry, pp. 14–23, 1999. 2, 3, 5, 25

[13] A. Dumitrescu, B. Gärtner, S. Pedroni, and E. Welzl, “Enumerating triangulation
paths,” Comput. Geom., vol. 20, no. 1-2, pp. 3–12, 2001. 3, 5

[14] E. Demaine, J. S. B. Mitchell, and J. O’Rourke, “Problem 16: Simple polygonal-
izations.” http://cs.smith.edu/~orourke/TOPP/P16.html#Problem.16. 4, 24

32

http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html
http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html
http://erikdemaine.org/polygonization/
http://erikdemaine.org/polygonization/
http://cs.smith.edu/~orourke/TOPP/P16.html#Problem.16

[15] E. Anagnostou and D. G. Corneil, “Polynomial-time instances of the minimum
weight triangulation problem,” Comput. Geom., vol. 3, pp. 247–259, 1993. 4

[16] J. Flum and M. Grohe, Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series, Springer, 2006. 5, 15

[17] K. Dalal, “Counting the onion,” Random Struct. Algorithms, vol. 24, no. 2, pp. 155–
165, 2004. 10

[18] L. P. Chew, “Constrained delaunay triangulations,” in Symposium on Computa-
tional Geometry, pp. 215–222, 1987. 11

[19] Ø. Hjelle and M. Dæhlen, Triangulations and Applications (Mathematics and Vi-
sualization). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. 11

[20] E. L. Lloyd, “On triangulations of a set of points in the plane,” in FOCS, pp. 228–
240, IEEE Computer Society, 1977. 15

[21] A. Schulz, “The existence of a pseudo-triangulation in a given geometric graph,” in
EuroCG, 2006. 15

[22] O. Aichholzer, “Counting triangulations - olympics.” http://www.ist.tugraz.

at/staff/aichholzer/research/rp/triangulations/counting/. 23

[23] V. Kaibel and G. M. Ziegler, “Counting lattice triangulations,” in Surveys in Com-
binatorics (C. D. Wensley, ed.), vol. 307 of London Mathematical Society Lecture
Note Series, pp. 277–307, Cambridge University Press, 2003. 23

[24] F. Santos and R. Seidel, “A better upper bound on the number of triangulations of
a planar point set,” J. Comb. Theory, Ser. A, vol. 102, no. 1, pp. 186–193, 2003. 24

[25] A. Dumitrescu, A. Schulz, A. Sheffer, and C. D. Tóth, “Bounds on the maximum
multiplicity of some common geometric graphs,” in STACS (T. Schwentick and
C. Dürr, eds.), vol. 9 of LIPIcs, pp. 637–648, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011. 24

[26] T. Auer and M. Held, “Heuristics for the generation of random polygons,” in CCCG
(F. Fiala, E. Kranakis, and J.-R. Sack, eds.), pp. 38–43, Carleton University Press,
1996. 25

33

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/counting/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/counting/

	1 Introduction
	2 Our contribution
	2.1 The result on counting triangulations
	2.2 The results on counting other crossing-free structures
	2.3 A hardness result

	3 A general framework for counting crossing-free structures
	4 Counting triangulations using the onion layers
	4.1 The algorithm
	4.2 Number of vertex-disjoint triples of descending paths

	5 Counting other crossing-free structures
	5.1 Counting matchings and spanning cycles
	5.2 Triangular paths
	5.2.1 Algorithm for counting matchings
	5.2.2 Algorithm for counting spanning cycles

	6 The hardness result
	6.1 Preliminaries
	6.2 Construction and intuition
	6.3 Defining the gadgets
	6.4 Formal proofs

	7 Experimental results on counting triangulations
	8 Conclusions
	9 Acknowledgement

