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SMALL EXTENDED FORMULATIONS FOR CYCLIC

POLYTOPES

YURI BOGOMOLOV, SAMUEL FIORINI, ALEKSANDR MAKSIMENKO,
AND KANSTANTSIN PASHKOVICH

Abstract. We provide an extended formulation of size O(logn)⌊
d

2
⌋ for the

cyclic polytope with dimension d and n vertices (i, i2, . . . , id), i ∈ [n]. First,
we find an extended formulation of size log(n) for d = 2. Then, we use this
as base case to construct small-rank nonnegative factorizations of the slack
matrices of higher-dimensional cyclic polytopes, by iterated tensor products.
Through Yannakakis’s factorization theorem, these factorizations yield small-
size extended formulations for cyclic polytopes of dimension d ≥ 3.

1. Introduction

Extended formulations is a rapidly developing field with connections to, among
others, discrete mathematics and theoretical computer science. Two main reasons
that make this field interesting are the facts that: (i) small-size extended formula-
tions allow efficient formulations of various optimization problems; (ii) lower bounds
on the sizes of extended formulations show fundamental limits to what can be ef-
ficiently expressed through linear programs, and more generally conic programs.
Here our focus is on linear programming extended formulation, thus the underlying
cone is the nonnegative orthant.

In this paper, we provide an extended formulation of size (at most) 2(2⌊log2(n−
1)⌋+2)⌊d/2⌋ for the d-dimensional n-vertex cyclic polytope with vertices (i, i2, . . . , id),
i ∈ [n]. Here, [n] denotes the integer numbers from 1 to n, i.e. the numbers
1, 2, . . . , n. The size of this extended formulation is asymptotically significantly
smaller than the size of the trivial “vertex” extended formulation, provided d ≪
(2 log2 n)/

(

1 + log2 log2(4n)
)

.
As a possible application, consider the problem of minimizing a degree-d poly-

nomial p(t) over t ∈ [n], where d is bounded. Our result implies that this can be
formulated as a linear program with only a polylogarithmic number of constraints
in n.

1.1. Polytopes, Extensions and Extended Formulations. Recall that a poly-

tope P ⊆ R
d is the convex hull of a finite point set V ⊆ R

d. Without loss of
generality, we assume that P is full-dimensional, that is, dimP = d. Then P can
alternatively be described as the solution set of a system of finitely many linear
inequalities, i.e.

P = {x ∈ R
d : 〈aj , x〉 ≤ bj, j ∈ [m]}
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for some aj ∈ R
d and bj ∈ R, j ∈ [m]. The size of the above linear description

is the number of inequalities in the system, i.e. the number m. (When P is not
full-dimensional its linear description may contain linear equations. They are not

taken into account in the computation of the size.)

A polytope Q ⊆ R
d′

together with an affine map π : Rd′ → R
d is called an

extension of polytope P ⊆ R
d if π(Q) = P . The size of extension Q is defined as

the number of facets of Q, that is, the minimum number of inequality constraints
in a linear description of Q.

By choosing appropriately the origin and the basis vectors of Rd′

, we may assume
that the projection π is given by π(x, y) := x. In this case, the extended formu-

lation determined by the extension is simply a linear description of Q. Extended
formulations and extensions are two basically interchangeable concepts.

The extension complexity of polytope P is the minimum size of an extension
of P , or equivalently the minimum size of an extended formulation of P . This is
denoted by xc(P ). Thus xc(P ) is the minimum number of facets of a polytope that
projects to P .

It is a nontrivial problem to determine the extension complexity of a given poly-
tope P . In the first place, P has an infinite number of extensions. Fortunately,
it suffices to look at one single matrix for computing xc(P ). The slack matrix of
polytope P relative to point set V = {v1, . . . , vn} ⊆ R

d with P = conv(V ) and
linear description 〈aj , x〉 ≤ bj , j ∈ [m] of P is the matrix M ∈ R

n×m defined as1

M(i, j) := bj − 〈aj , vi〉 .
That is, the entry corresponding to point vi and inequality 〈aj , x〉 ≤ bj equals
the slack bj − 〈aj , vi〉 ≥ 0. We say that nonnegative vectors αi ∈ R

r
+ for i ∈ [n]

and βj ∈ R
r
+ for j ∈ [m] form a rank-r nonnegative factorization of the matrix M

if the equation

M(i, j) = 〈αi, βj〉
holds for all i ∈ [n] and j ∈ [m]. The nonnegative rank of M is the minimum rank
of a nonnegative factorization of M , and is denoted rk+(M). The connection be-
tween nonnegative rank and extension complexity was provided by Yannakakis [6]:
xc(P ) = rk+(M), given that dimP ≥ 1. In other words, the minimum size of an
extension of a polytope equals the nonnegative rank of any of its slack matrices.

In the present paper, we mainly work with nonnegative factorizations for slack
matrices to guarantee the existence of extended formulations of certain size.

2. Cyclic Polytopes

In this section, we define cyclic polytopes and list some of their properties. For
more detailed information on cyclic polytopes we refer the reader to [4], [7].

For n ∈ N and d ∈ N, 2 ≤ d let us define the corresponding cyclic polytope P d
n ⊆

R
d as the convex hull of the points vi := (i, i2, . . . , id), i ∈ [n], i.e.

P d
n := conv{(i, i2, . . . , id) : i ∈ [n]} .

We assume n > d, then the cyclic polytope P d
n has n vertices and dimension d.

Moreover, the polytope P d
n is simplicial, i.e. every facet contains exactly d vertices.

1Throughout the paper we use superindices for dimensions, subindices for enumerating indices.
We use parentheses to refer to a row or an element of a matrix, depending on the number of indices
enclosed in the parentheses.
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It is known that, a set of d vertices vi, i ∈ S where S ⊆ [n] defines a facet if and
only if it satisfies Gale’s evenness condition: the cardinality of the set [ℓ1, ℓ2]∩S is
even for all ℓ1, ℓ2 ∈ [n], ℓ1 < ℓ2 with ℓ1, ℓ2 /∈ S. Therefore, the slack matrix for the
cyclic polytope P d

n can be obtained as

(1) Md
n(i, S) :=

∏

j∈S

|j − i| ,

where i ∈ [n] and S ⊆ [n], |S| = d satisfies Gale’s evenness condition.

3. Extended Formulation

In this section, we construct extended formulations for cyclic polytopes: starting
from the two dimensional case, going to even dimensions and finally considering odd
dimensions.

3.1. The case d = 2. For the sake of exposition, let us introduce the next notation.
For t1, t2 ∈ Z, t1 < t2 and d ∈ N, 2 ≤ d let us define the corresponding cyclic

polytope P d
[t1,t2]

P d
[t1,t2]

:= conv{(i, i2, . . . , id) : i ∈ [t1, t2] ∩ Z} .

Note, that for every n ∈ N we have P d
n = P d

[1,n].

It is not hard to see that for two pairs of integers (t1, t2) and (k1, k2) the polytopes
P d
[t1,t2]

and P d
[k1,k2]

are affinely isomorphic if and only if the equation t2−t1 = k2−k1

holds. Indeed, if t2 − t1 is not equal to k2 − k1 the polytopes P d
[t1,t2]

and P d
[k1,k2]

have different number of vertices, and thus can not be affinely isomorphic. On the
other hand, if t2 − t1 equals k2 − k1 then they have the same slack matrix because
translating indices preserves the difference j − i in (1). Concretely, the following
affine map defines an isomorphism between P d

[t1,t2]
and P d

[k1,k2]
: (x1, . . . , xd) 7→

(y1, . . . , yd), where

(2) yi := (k1 − t1)
i +

i
∑

j=1

(

i

j

)

(k1 − t1)
i−jxj .

Lemma 1. For the polytope P 2
n there is an extension of size at most 2⌊log2(n −

1)⌋+ 2.

Proof. Due to (2), we can affinely transform the polytope P 2
n into the polytope

P 2
[−(n−1)/2,(n−1)/2]

if n is odd and into the polytope

P 2
[−n/2+1,n/2]

if n is even.
In turn, for every k ∈ Z the polytope P 2

[−k,k] can be represented as the convex

hull of two polytopes P 2
[−k,0] and P 2

[0,k], i.e.

P 2
[−k,k] = conv(P 2

[−k,0] ∪ P 2
[0,k]) .

A similar representation exists for the polytope P 2
[−k+1,k], k ∈ Z, namely

P 2
[−k+1,k] = conv(P 2

[−k+1,0] ∪ P 2
[1,k]) .

3



Y. Bogomolov, S. Fiorini, A. Maksimenko, K. Pashkovich

There is a particularly nice relationship between P 2
[−k,0] and P 2

[0,k]: the poly-

tope P 2
[−k,0] is an image of the polytope P 2

[0,k] under the reflection with respect

to the hyperplane x1 = 0 (a map defined by the sign change of the first coor-
dinate). A similar statements holds for the polytopes P 2

[−k+1,0] and P 2
[1,k]: the

polytope P 2
[−k+1,0] is an image of the polytope P 2

[1,k] under a sheared transforma-

tion (x1, x2) 7→ (1 − x1, x2 − 2x1 + 1).
This fact allows us to use reflection relations (see Theorem 2 in [5]) and (2)

to state that every size-f extended formulation of the polytope P 2
⌈n/2⌉ leads to a

size-(f + 2) extended formulation of the polytope P 2
n . In particular, the extended

formulation for P 2
[−k,k] can be given as follows

P 2
[−k,k] = {(x1, x2) ∈ R

2 : ∃z1 such that (z1, x2) ∈ P 2
[0,k] and − z1 ≤ x1 ≤ z1} .

An extended formulation for P 2
[−k+1,k] can be constructed analogously (see remarks

after Proposition 3 in [5])

P 2
[−k+1,k] = {(x1, x2) ∈ R

2 : ∃z1, z2 such that (z1, z2) ∈ P 2
[1,k]

and z2 − z1 = x2 − x1, 2− 3z1 + z2 ≤ x1 + x2 ≤ z1 + z2} .
Thus, xc(P 2

2k) ≤ xc(P 2
k ) + 2 and xc(P 2

2k−1) ≤ xc(P 2
k ) + 2.

Let us note that xc(P 2
n) ≤ 2⌊log2(n−1)⌋+2 can be easily verified for n = 3, 4, 5, 6.

Hence, to finish the proof it suffices to use the inequalities below

xc(P 2
2k) ≤ xc(P 2

k ) + 2 ≤ 2⌊log2(k − 1)⌋+ 4 = 2⌊log2(2k − 2)⌋+ 2

and

xc(P 2
2k−1) ≤ xc(P 2

k ) + 2 ≤ 2⌊log2(k − 1)⌋+ 4 = 2⌊log2
(

(2k − 1)− 1
)

⌋+ 2 .

Therefore, we have

xc(P 2
n) ≤ 2⌊log2(n− 1)⌋+ 2

for all n ≥ 3. �

We would like to note, that an explicit factorization of the slack matrix M2
n can

be constructed in a similar way as the factorization in [3] .

3.2. The case d = 2q. Unfortunately, in the three dimensional case and higher
the relationship between the polytopes P d

[−k,0] and P d
[0,k] is more complicated: the

polytope P d
[−k,0] is an image of the polytope P d

[0,k] under the sign change of all

coordinates with an odd index. This does not correspond to a symmetry with
respect to a hyperplane, and thus we are not able to use reflection relations here.

However, we may use the nonnegative factorization for the slack matrix of P 2
n

guaranteed by Lemma 1 together with Yannakakis’ theorem [6], in order to prove
that there is a nonnegative factorization of the slack matrix for P 2q

n of certain size.
Let us consider even dimensions first, i.e. assume d to be equal to 2q, q ∈ N.

For two matrices A and B of the same size, we define the elementwise or
Hadamard product A ◦ B by the following equation (A ◦ B)(i, j) := A(i, j)B(i, j).
We will need the following folklore result.

Lemma 2. For all nonnegative matrices A, B with the same number of rows and

columns:

rk+(A ◦B) ≤ rk+(A) rk+(B)

4
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Proof. If matrices A,B admit nonnegative factorizations given by vectors αi ∈ R
r
+,

βj ∈ R
r
+ and vectors γi ∈ R

s
+, ζj ∈ R

s
+ respectively, then the matrix A ◦ B has

a size-(rs) nonnegative factorization defined by the vectors αi ⊗ γi ∈ R
r×s
+ and

βj ⊗ ζj ∈ R
r×s
+ . Here, for every two vectors µ ∈ R

r and τ ∈ R
s the vector µ ⊗ τ

lies in R
r×s and is defined as (µ⊗ τ)(i, j) := µ(i)τ(j). �

Lemma 3. The polytope P 2q
n has an extension of size at most

(

xc(P 2
n)
)q
.

Proof. We construct q matrices C1,. . . ,Cq of suitable dimension such that the ele-
mentwise product C1 ◦ · · · ◦ Cq equals the slack matrix M2q

n . In order to do that
note that every set S ⊆ [n], |S| = 2q satisfying Gale’s evenness condition can be
partitioned into q pairs S1,. . . ,Sq, where each pair is equal to {1, n} or consists of
two consecutive integers from [n]. Every set Sr, 1 ≤ r ≤ q also satisfies Gale’s
evenness condition and consists of two elements, thus for every set Sr there is a
corresponding column in M2

n and

M2
n(i, Sr) =

∏

j∈Sr

|j − i| .

Now, define the entries of the matrices C1,. . . ,Cq in the column indexed by the
set S as Cr(i, S) := M2

n(i, Sr). Notice that

(C1 ◦ · · · ◦ Cq)(i, S) =

q
∏

r=1

∏

j∈Sr

|j − i| =
∏

j∈S

|j − i| = M2q
n (i, S) .

Finally, it is straightforward to verify that the matrices C1,. . . ,Cq are obtained
fromM2

n by duplicating, deleting and reordering columns, and thus the nonnegative
rank of every of these matrices is bounded from above by the nonnegative rank of
the matrix M2

n. Hence, by Lemma 2 the slack matrix M2q
n admits a nonnegative

factorization of size at most
(

xc(P 2
n)
)q
. �

3.3. The case d = 2q + 1.

Lemma 4. The polytope P 2q+1
n has an extension of size at most 2 xc(P 2q

n−1).

Proof. Let us prove that xc(P 2q+1
n ) ≤ xc(P 2q

[2,n]) + xc(P 2q
[1,n−1]) = 2 xc(P 2q

n−1).

Every set S ⊆ [n], |S| = 2q + 1 satisfying Gale’s evenness condition has one of
the following forms:

(1) 1 ∈ S and the set S \ {1} defines a facet of the polytope P 2q
[2,n]

(2) n ∈ S and the set S \ {n} defines a facet of the polytope P 2q
[1,n−1].

The columns indexed by the sets S satisfying the condition (1) form a matrix, which

is equal to the matrix M2q
[2,n], where the row M2q

[2,n](i), i ∈ [2, n]∩Z is scaled by the

positive scalar i− 1, plus an appended zero row corresponding to the index i = 1.
Thus, the nonnegative rank of the submatrix of M2q+1

n indexed by sets S satisfying

the condition (1) and the nonnegative rank of M2q
[2,n] are equal. We can estimate

the nonnegative rank of the submatrix of M2q+1
n indexed by sets S satisfying the

condition (2) in a similar way. �

Finally, Lemmas 1, 3 and 4 together lead to our theorem.

Theorem 5. The polytope P d
n has an extension of size at most 2(2⌊log2(n− 1)⌋+

2)⌊d/2⌋.
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4. Concluding Remarks

We remark that Lemma 1 crucially uses the fact that P 2
n is the convex hull of the

points (i, i2) for n consecutive integers i ∈ [n]. Actually, [3] prove a Ω(
√
n/

√
logn)

lower bound on the worst-case extension complexity of a 2-dimensional cyclic poly-
tope of the form P = conv{(i, i2) : i ∈ X} where X ⊆ [2n] and |X | = n.

Finally, there seems to be currently no lower bound on the extension complexity
of P d

n that would match the upper bound given by Theorem 5. For instance, it
follows from [2] that the best lower bound that only relies on the combinatorial
structure is O(d2 logn).

We would like to thank the anonymous referees for their comments which led to
a better exposition of the results in the present paper.
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