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Abstract

T. Keleti [5] asked, whether the ratio of the perimeter and the area
of a finite union of unit squares is always at most 4. In this paper we
present an example where the ratio is greater than 4. We also answer the
analogous question for regular triangles negatively and list a number of
open problems.

1 Introduction

Tamás Keleti [5] proved that if we take a finite union of unit squares, then
the perimeter-to-area ratio of the union cannot be arbitrarily large. In fact,
he proved a general result: the perimeter to the area ratio of a finite union of
congruent compact convex sets is bounded.

One would be tempted to think that the upper bound is realised by a single set,
however this is not the case, even if we consider solely compact convex polygons.
Gyenes [2] gave an example, where the perimeter-to-area ratio of the union of
two polygons exceeds the perimeter-to-area ratio of a single one. On the other
hand for discs this statement holds true.

So it is very natural to ask the following:

Question 1.1. (Keleti) Is it true that the perimeter-to-area ratio of a single
regular n-gon with side length 1 maximises the perimeter-to-area ratio of the
union of regular n-gons with side length 1?

Gyenes gave a new proof for the boundedness of the ratio, improving the upper
bound to approximately 5.6 in the case of squares. Also, he proved that the
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upper bound is 4, if we consider squares with common centre or with sides
parallel to the axis, or if we consider the union of two squares (see [1],[2]).

P. Humke, C. Marcott, B. Mellem and C. Stiegler [3],[4] investigated the dif-
ferentiation properties of the perimeter and area functions related to Keleti’s
question. This question has also generated quite some interest on MathOverflow
[6], with comments e.g. from W. T. Gowers.

In this paper we give a negative answer to this question for n = 3 and n = 4 with
completely elementary proofs. We present some examples with large perimeter-
to-area ratio for n = 4 and finally we list a number of open problems. The
idea of the counterexamples is originated from the results obtained using a
probabilistic computer algorithm. In our experiments, we used the open source
JTS Topology Suite library.

Acknowledgement. We are very grateful to Tamás Keleti, Márton Elekes and
András Máthé for their useful remarks and suggestions.

2 Results

We will denote the area of a polygon P by a(P ), and the perimeter by p(P ). O
stands for the origin. First we need some technical definitions.

Definition 2.1. Let k and n be coprime natural numbers. A basic (k, n)-setup
is k many regular n-gons with side length 1 so that all of the n-gons have origin
centre and their vertices form a regular kn-gon.

Definition 2.2. Suppose that we have a finite collection of regular polygons
P1, . . . , Pk in general position, i.e., no vertex lies on the side of another poly-
gon. Suppose that the boundary of

⋃

1≤j≤k Pi is a closed simple (not self-
intersecting) polygonal chain. Let A1, . . . , Al be an enumeration of the vertices
of the boundary. We call the translation by v ∈ R

2 of one of the polygons Pi

pattern preserving, if for every t ∈ [0, 1]

• the polygons P1, . . . , Pi + tv, . . . , Pk are in a general position

• the boundary of (
⋃

j 6=i Pj) ∪ (Pi + tv) is also a closed simple polygonal
chain with l vertices, and its vertices can be enumerated as A′

1, . . . , A
′
l so

that for all 1 ≤ j ≤ k and 1 ≤ m ≤ l we have

A′
m ∈ Pj ⇐⇒ Am ∈ Pj if j 6= i

and
A′

m ∈ Pi + tv ⇐⇒ Am ∈ Pi.

The translation is called regular, if v is parallel to the vector from the centre of
Pi to one of the vertices of Pi.
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The latter definition intuitively means that the translation preserves the pattern
of intersections on the boundary of the union of the polygons.

Definition 2.3. Consider a basic (k, n)-setup. Let us mark one vertex of each
n-gon in such a way that these marked vertices form a regular k-gon with centre
O and denote them by A1, . . . , Ak. It is easy to see that for a small enough

ε > 0 the translations by ε · −→OA1, . . . , ε ·
−→
OAk, realised in this order, are pattern

preserving regular transformations. After applying these transformations to the
polygons, the collection of the translated n-gons is called an shifted (k, n)-setup.

An instance of a shifted (5, 4)-setup can be seen on Figure 4.

2.1 A counterexample of 5 squares

Theorem 2.4. There exists a polygon that is the union of 5 squares with side
length 1 for which the perimeter-to-area ratio is greater then 4.

First we reiterate the proof of Gyenes for a basic (k, n)-setup.

Lemma 2.5. The perimeter-to-area ratio of the union of the n-gons in a basic
(k, n)-setup is equal to the perimeter-to-area ratio of a single n-gon.

Proof. The union is a polygon, let us denoted the vertices by A0A1 . . . Al and
the distance of the line segment AB from the origin by dAB. Now clearly
a(A0A1 . . . Al) =

1

2
(|A0A1|dA0A1

+ |A1A2|dA1A2
+ · · ·+ |AlA0|dAlA0

). But since
AiAi+1 are segments which are subsets of the boundaries of congruent regular
n-gons with origin centre, we have that dA0A1

= dA1A2
= · · · = dAlA0

= d. So

p(A0A1 . . . Al)

a(A0A1 . . . Al)
=

2

d

which is the same as in the case of a single n-gon.

Proof of Theorem 2.4. We begin with a basic (5, 4)-setup. Let us denote the
squares in the construction by P1, P2, P3, P4 and P5. We move the polygons to
a shifted (5, 4)-setup by translating to the directions of A1, B1, C1, D1 and E1

respectively, as in Figure 4. We will denote the other three vertices of P1 by A2,
A3 and A4, and suppose that they lie on the boundary in that order. We will
denote the vertices of the other polygons similarly. Also, we denote the vertices
of the translate of P1 by A′

1, A
′
2, A

′
3 and A′

4, and use analogous notations for
the translates of the other polygons.

From the previous lemma we have that the perimeter-to-area ratio of the union
of the polygons in the basic (5, 4)-setup is exactly 4. We show that the perimeter
of the union of the polygons in the shifted setup will remain the same while the
area decreases.

Lemma 2.6. The perimeter of the union of the squares in the shifted and in
the basic setup are equal.
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A′

1

A1

R

E2

M

N

Figure 1

Proof. Let ε be the size of the shift. First, shift
one square only, say P1. Let T be a triangle with
sides a, b and c, where c = ε and the angle opposite
of side a is 45◦, while the angle opposite of side b
is 63◦. We use the notations of Figure 1. As can
be seen, the triangle RMN is congruent to T , since
∠MNR = 45◦ and ∠NRM = 108◦ − 45◦ = 63◦,
where R was the intersection of a segment lying
on A1 and the adjacent segment lying on E2, M is the intersection of the
translated square with the same segment, and N is on the line MA′

1 such that
A1A

′
1 is parallel to RN . Hence the length of the segment passing through A1

increases with MN = b, the adjacent segment, passing through E2 decreases
with MR = a.

It is easy to see that it is the same with the other segment lying on A1. Mean-
while exactly the opposite happens near the vertex A3, since the figure is similar
and the length of the segments lying on A3 decreases with b and the length of the
adjacent segments increases with b. Hence the perimeter of the union remains
the same considering the changes only near this two vertices.

A2

A′

2

F

X

E3

G

B1

ZY

H

Figure 2

Now we take a look at the segments lying on A2. Let T ′ be a
triangle with sides a′, b′ and c′, where c′ = ε/

√
2, and the angle

opposite of side a′ is 18◦, while the angle opposite of side b is
90◦. We use the notations of Figure 2, where the node X is
the intersection of two adjacent segment of the boundary of the
original squares passing through B1 and B2, Z is the intersection
of the translated segment through A′

2 and the one through B1,
while Y is a point on A′

2Z such that XY is perpendicular to
ZA′

2. It is easy to see that triangle XY Z is congruent to T ′,
since ∠XY Z = 90◦ and ∠ZXY = 108◦ − 90◦ = 18◦. And the
triangle FGH is also congruent to T ′, where the points F,G and
H are achieved similarly to X,Y and Z, only they are on the

other side of the point A2 and A′
2.

The upper segment in the figure, passing through A2 decreased with ε/
√
2 and

increased with Y Z = a′. The lower one increased with ε/
√
2 and decreased

with HG = a′. The length of the segment on the boundary adjacent to the
upper segment passing through A2 decreased with XZ = b′, and the length of
the segment adjacent to the lower segment passing through A2 increased with
FG = b′, hence the changes near vertex A2 cancel each other out, the boundary
remains the same. A similar argument can be said about the line segments
around A4, so the perimeter does not change while translating P1.

Notice that the proof here only used that the angles of the adjacent segments
is the same as in a basic (5, 4)-setup, and that the pattern on the boundary is
preserved, hence shifting the squares one by one, the same argument yields that
the perimeter remains the same.

Lemma 2.7. The area of the union of the squares in a shifted (5, 4)-setup is
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less than the area in a basic (5, 4)-setup.

B

C
F

A

D
E

Figure 3

Proof. Let ε be the size of the shift and let x be the common
length of the segments on the boundary of the original construc-
tion, with centres at the origin. Let T be the area of the hexagon
ABCDEF , where EF = FA = x, AB = DE = ε/

√
2, the an-

gles at A, B, D and E are right angles, and the angle at C is
108◦ (Figure 3). Let t be the area of the same hexagon, only
this time the length of the sides BC and CD will equal x. It is
easy to see that t < T .

As it is shown on Figure 4, let us use the notations P = A′
1A

′
2 ∩

E′
1E

′
2, Q = E1E2 ∩E′

2E
′
3, R = A1A2 ∩E1E2, T = C3C4 ∩B3B4,

U = B1B4∩B′
3B

′
4, V = C′

3C
′
4∩B′

3B
′
4. Because of the symmetry

of the construction, the area added to the union is exactly ten times the area

of the polygon A1A
′
1PE′

2QR which is t− ε2

4
, since A1R = RE2 = x. The area

subtracted from the union is ten times the area of the hexagon C3C
′
3V UB4T

which is T − ε2

4
, because C3T = TB4 = x. So the area subtracted is greater

than the area added, which finishes the proof.

Hence the proof of the theorem is also complete.

−0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

0

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

D1

D2

D3

D4

E1

E2

E3

E4

A′

1

A′

2

A′

3

A′

4

B′

1

B′

2

B′

3

B′

4

C′

1

C′

2

C′

3

C′

4

V

D′

1

D′

2

D′

3

D′

4

E′

1

E′

2

E′

3

E′

4

Q

R P

T

U

Figure 4: The shifted (5, 4)-setup

5



2.2 A counterexample of 4 regular triangles

Theorem 2.8. There exists a polygon that is the union of 4 regular triangles
with side length 1 for which the perimeter-to-area ratio is greater then 4

√
3

(which is the perimeter-to-area ratio of a single triangle).

Proof. The idea is the similar as before, we start with a basic (4, 3)-setup. In
this case the calculation is particularly convenient if we translate solely two of
the triangles, since the translation will not change the perimeter of the union,
however the area will decrease.

For the sake of exactness we prove the theorem through three easy lemmas.

Lemma 2.9. Suppose that we have 4 triangles obtained by pattern preserving
translations of the basic setup. Then if we apply a pattern preserving regular
translation to one of the triangles then it does not change the perimeter of the
union.

Proof. Without loss of generality we can assume that we translate a triangle to
the positive direction of the y axis, as in Figure 5.

B0

B1 B2

B′

0

B′

1
B′

2

I4 I5

J0 J1

I′

0

I0

I′

2

I2

I′

1

I1

I′

3

I3

J′

2

J2

J′

3

J3

Figure 5: Calculation of the perimeter
Clearly, the perimeter of the union decreases with the length of I0I

′
0, . . . , I3I

′
3

and I4B1 and I5B2, where I4 and I5 are assigned so that the triangles B′
1I4B1

and B′
2I5B2 are right-angled. The increase of the perimeter is equal to the sum

of the lengths of J0B
′
0, J1B

′
0 and J2J

′
2, J3J

′
3.

Now notice that the triangle B′
1I4B1 has angles 60◦, 90◦, 30◦ respectively and

|B′
1I4| = |I0I ′0| = |I2I ′2|, and |B′

1B1| = |J2J ′
2|. Therefore |J2J ′

2| = |I0I ′0|+ |I2I ′2|.
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The triangles B′
1I4B1 and B0J0B

′
0 are congruent, so |I4B1| = |J0B′

0|. Similarly
|J3J ′

3| = |I1I ′1|+ |I3I ′3| and |I5B2| = |J1B′
0|.

Thus, the increase equals to the decrease so the translation does not change the
perimeter.

Lemma 2.10. Suppose that we have 4 triangles in the basic (4, 3)-setup. If we
apply a pattern preserving regular translation to one of the triangles then it does
not change the area of the union.

Proof. Again, without loss of generality we can assume that we have translated
the triangle B0B1B2 with the vector (0, ε) and we obtain the triangle B′

0B
′
1B

′
2

as shown in Figure 6. According to the notation of the figure, it is clear that
the change in the area is equal to 2(a(B0B

′
0I

′
0I0)+a(I ′2I2L1B

′
1)−a(L1J

′
2J2B1))

(i.e., the area of the red and pink figures is added and the area of the green
figures is subtracted). Let us denote |B1J2| by d. Now we calculate this value.

Clearly,

a(L1J
′
2J2B1) =

d+ d− ε/
√
3

2
· ε

and by symmetry |B1I2| = |B0I0| = d and we have |I ′2I2| = |I ′0I0| = ε/2.

a(B0B
′
0I

′
0I0) =

d+ d+ (
√
3/2)ε

2
· ε
2

and

a(I ′2I2L1B
′
1) =

d− (2/
√
3)ε+ d− ε/(2

√
3)

2
· ε
2
.

Adding up these equalities gives the lemma.

7



A0

A1

A2

B0

B1

B2

B′

0

B′

1
B′

2

A′

0

A′

1

A′

2

I′

0

I0

I1

I′

1

L2

I′

3
I3

J3J′

2

J2 J′

3

I′

2
I2

L1

K2

K′

2

K3

K′

3

K′

0

K0

Figure 6: Calculation of the area

Lemma 2.11. Suppose that we translate away two different neighbouring tri-
angles from the basic setup by pattern preserving regular translations such that
the directions of the translations are perpendicular. Then the area of the union
of the triangles decreases.

Proof. Suppose that we translate the triangles consecutively. By the previous
lemma we have that the translation of one triangle does not change the area.
This would be true for the ’second’ triangle as well, except that after the trans-
lation of the ’first’ triangle, the picture is already modified. To obtain the
difference in the area, it is enough to consider the modifications what the trans-
lation of the ’first’ triangle gives (the blue and pink rectangles on the figure).
In our case it will decrease the area.
To be precise, let the translated triangles be A0A1A2 and B0B1B2 and the
translations are (δ, 0) and (ε, 0) (Figure 6). Then suppose that we have trans-
lated A0A1A2 to A′

0A
′
1A

′
2 ’first’. Now the translation of B0B1B2 to B′

0B
′
1B

′
2

increases the area of the union by

a(B′
0B0K0K

′
0) + a(I ′2I2L1B

′
1) + a(B′

2L2K3K
′
3) + a(B′

0B0I1I
′
1)

and decreases it by a(B1L1K2K
′
2) + a(J3L2B2J

′
3) (the quadrilaterals added

coloured by red, the subtracted ones coloured by green and blue on Figure 6).
Thus we have

a(B′
0B0K0K

′
0) + a(I ′2I2L1B

′
1) + a(B′

2L2K3K
′
3) + a(B′

0B0I1I
′
1)

−a(B1L1K2K
′
2)− a(J3L2B2J

′
3)

8



< a(B′
0B0I0I

′
0) + a(I ′2I2L1B

′
1) + a(B′

2L2I3I
′
3) +A(B′

0B0I1I
′
1)

−a(B1L1J2J
′
2)− a(J3L2B2J

′
3) = 0.

Putting together the 3 lemmas we have that after translating two different neigh-
bouring triangles by regular pattern preserving translations, the area decreases,
but the perimeter does not change. Since by Lemma 2.5 the perimeter-to-area
ratio of the basic (4, 3)-setup equals to 4

√
3, we are done.

3 Other counterexamples

Let us mention that there exist four squares in the plain forming a counterexam-
ple and are close to a (4, 4)-setup in some sense. Without proof we present a con-
struction of such squares with perimeter-to-area ratio of the union ≈ 4.02 > 4.
The four squares will be the following:

S1 = conv

{(

1

2
,
1

2

)

,

(

−1

2
,
1

2

)

,

(

−1

2
,−1

2

)

,

(

1

2
,−1

2

)}

,

S2 = conv

{(

149

650
,
399

650

)

,

(

−451

650
,
149

650

)

,

(

−201

650
,−451

650

)

,

(

399

650
,−201

650

)}

,

S3 = conv

{(

399

650
,
201

650

)

,

(

−201

650
,
451

650

)

,

(

−451

650
,−149

650

)

,

(

149

650
,−399

650

)}

,

S4 = conv

{(

− 91

1450
,
41

58

)

,

(

−1141

1450
,
1

58

)

,

(

− 141

1450
,−41

58

)

,

(

909

1450
,− 1

58

)}

.

A1 A2

A3

B1 B2

B3

C1

C2

C3

Figure 7

In the case of triangles we do not need 4 to
a form a counterexample. We show a con-
struction for 3 triangles but omit the proof
of correctness (Figure 7).

Let S be the biggest square that can be writ-
ten into a unit equilateral triangle, with one
line segment in common with the triangle.
Now draw three equilateral triangle around
S, with three sides of the square lying on
one-one side of the triangles. For this con-
struction the perimeter-to-area ratio of the
union is ≈ 6.97 > 4

√
3. Actually, we get a

counterexample even if we add the forth tri-
angle to the figure. In that case the ratio is
≈ 7.06.

Using an optimisation algorithm, we found the following figure of a construction
containing 25 squares with ratio of about 4.28.
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Figure 8: 25 squares with ratio ≈ 4.28

4 Open problems

We believe that the constructions containing five squares and four equilateral
triangles can be generalised to give a counterexample of n+ 1 regular polygons
with n vertices and unit side length.

Conjecture 4.1. The perimeter-to-area ratio of a shifted (n + 1, n)-setup is
greater than the ratio in the case of a single regular n-gon with unit side length.

According to the results obtained by computer, we think the following is true:

Conjecture 4.2. Let k and n be coprime natural numbers. Then the perimeter-
to-area ratio of a shifted (k, n)-setup is greater than the ratio in the case of a
single regular n-gon with unit side length if and only if k > 1 and k ≡ 1 (mod n).

Since Keleti’s boundedness result works in R
d as well it is natural to ask the

following:

Question 4.3. Do the analogous constructions work in higher dimensions for
regular polyhedrons?
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As we saw it in Section 3 there is an example of four squares with perimeter-
to-area ratio greater than 4, but we could not find any using only three.

Question 4.4. What is the minimum number of squares that form such an
example? Or in general, what is the minimum number of regular n-gons for
which the perimeter-to-area ratio of the union is greater than the ratio in case
of a single regular n-gon? Is it equal to n?

Since we have found the first examples with a probabilistic computer algorithm,
it would be interesting to know that whether the ’majority’ of the setups close
to the basic setup give an example in some sense. For k-many regular n-gons
let us denote the centres by C1, C2, . . . , Ck and the rotations of the polygons by
r1, . . . , rk respectively. Let fk,n(C1, . . . , Ck, r1, . . . , rk) be the perimeter-to-area
ratio of such a setup and p0 = (C0

1 , . . . , C
0
k , r

0
1 , . . . , r

0
k) the centres and rotations

of the basic (k, n)-setup (of course, C0
i = (0, 0)).

Question 4.5. What are the derivatives of the function fk,n at the point p0?
Is this point a local minimum of fk,n? Or does there exist a neighbourhood of
p0 where almost all points form an example with greater perimeter-to-area ratio
than the basic setup?

We also could not go close to the current best upper bound of about 5.6 proved
for the ratio by Gyenes. The best example we could find with the help of a
computer has ratio about 4.34 and contains 100 squares. Since with increased
number of squares we could increase significantly the ratio it may happen that
the lowest upper bound for the ratio cannot be realised by an a single example.

Question 4.6. What is the optimal upper bound for the ratio? Does there exist
a construction which maximises the ratio?

Even if there is no such a construction, it is possible that there exists a con-
struction which maximises the ratio for a fixed number of polygons.

Question 4.7. What is the optimal upper bound for the ratio if we can use k
many polygons? Does there exist a construction which maximises the ratio in
this case?

Finally, except for the result of Gyenes concerning the union of discs, there is no
example of a compact convex set, for which the analogous question to Keleti’s
conjecture would be true.

Question 4.8. Does there exist a compact convex set C apart from a disc, so
that p(C)/a(C) maximises the perimeter-to-area ratio among the finite unions
of sets congruent to C?
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