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Abstract

We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar 

frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting 

theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-

triangulations, generalizing features known for their finite counterparts. These properties are then 

applied to questions originating in mathematical crystallography and materials science, concerning 

planar periodic auxetic structures and ultrarigid periodic frameworks.
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1 Introduction

A remarkable correspondence between planar stressed graphs, their duals and polyhedral 

surfaces with a spherical topology has been established in 1870 by James Clerk Maxwell:

Maxwell’s Theorem [36]

A planar geometric graph (G, p) supports a non-trivial stress on its edges if and only if it has 

a dual reciprocal diagram and, at the same time, if and only if it has a non-trivial lifting to 

3D as a polyhedral terrain.

The necessary definitions are recalled below in Section 2. A closely related instance of this 

theorem is the classical duality between Voronoi diagrams and Delaunay tesselations, where 

the 3D lifting is onto a paraboloid. Maxwell’s diagrams, further popularized in Cremona’s 

book [16], were widely used for engineering calculations throughout the 19th and 20th 

centuries. The theorem has many other applications, for example in problems of robustness 

for geometric algorithms, rigidity theory, polyhedral combinatorics and computational 

geometry [15, 30,43,44,12,48]. Most relevant to our undertaking is its role in establishing 

the existence of planar expansive motions used in the solution to the Carpenter’s Rule 

problem [12], and in proving the expansive properties of pointed pseudo-triangulation 
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mechanisms that are central to the algorithm for convexifying simple planar polygons of 

[47,48].

Our results

In this paper we prove the following periodic analog of Maxwell’s theorem. Figure 2 

illustrates the concepts, whose precise definitions will be given in Section 3.

Main Theorem

Let (G, Γ, p, π) be a planar non-crossing periodic framework. A stress induced by a periodic 

lifting is a periodic stress and conversely, any periodic stress is induced by a periodic lifting, 

determined up to an arbitrary additive constant.

Non-crossing periodic graphs can be seen as graphs embedded on the flat torus. However, as 

it will become clear from this paper, to reason on a fixed torus would be too restrictive a 

perspective. The most important foundational element that makes the new result possible is 

our recent deformation theory of periodic frameworks [3], which allows the periodicity 

lattice to deform. The corresponding notion of periodic stress is precisely the notion of 

stress that is needed for the Main Theorem. This stress is more constrained than the direct 

generalization of the classical self-stress used for finite frameworks, which is based solely 

on equilibrium at all vertices. In order to maintain the proper distinction, we refer to the 

latter type of stress as an equilibrium stress.

Our theorem was motivated by questions arising in mathematical crystallography and 

computational materials science. We demonstrate its usefulness with two applications: 

constructions of ultrarigid frameworks and auxetic mechanisms.

Ultrarigidity of periodic frameworks

Leaving some technical details aside, our proof of the correspondence between periodic 

liftings and periodic stresses will proceed by showing how to obtain a transparent, algebraic 

matching of all the concepts involved after a sufficient relaxation of periodicity. Relaxations 

of periodicity are a central concern in displacive phase transitions [20,6] and successive 

relaxations give rise to difficult and important problems for estimating the asymptotic 

behavior of a periodic framework.

By definition, a periodic framework is ultrarigid if it is and remains infinitesimally 

periodically rigid under arbitrary relaxations of periodicity to subgroups of finite index (see 

Figure 3). This concept was introduced in [5], and illustrated with a few examples of 

crystalline materials exhibiting this property. Ultrarigidity provides a rigorous tool for 

studying the asymptotic rigidity of a periodic framework when successive relaxations of 

periodicity are applied. The proof techniques developed in this paper will allow us to 

construct infinite families of ultrarigid examples.

For some related considerations and observations on rigidity and relaxation, we mention 

[41,13]. The basic theory of periodic frameworks from the point of view of rigidity and 

flexibility can be found in [3,4,6]. For wider or complementary aspects of periodic 

framework theory we suggest [50,11] and references therein.
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Periodic pseudo-triangulations

We use the Main Theorem to study a new class of planar non-crossing periodic frameworks 

called periodic pointed pseudo-triangulations or shortly periodic pseudo-triangulations. 

They represent a natural analog of the finite pointed pseudo-triangulation frameworks 

defined and studied in [47,48] and possess mutatis mutandis many outstanding 

characteristics related to rigidity and deformations [47,48,45,46]. Here we focus on the 

expansive one-degree-of-freedom mechanisms they provide and on the property of turning 

into ultrarigid periodic frameworks after the insertion of a single (adequate) edge-orbit.

Deformations of periodic frameworks: auxetic and expansive behavior

The significance of the idea of expansive motion is well recognized in the finite setting 

[12,48,46]: when the distance between any pair of vertices cannot decrease, self-collision of 

the framework is avoided. In the periodic setting, expansive mechanisms have not been 

explicitly considered before, although a related, yet weaker notion of auxetic behavior has 

recently attracted a lot of attention in materials science [21,33,39]. Since the existing 

literature on auxetics is based on elasticity theory, we include a brief and necessarily 

selective overview of the relations existing between the purely geometric theory pursued in 

this paper and the larger context of periodic structures explored in crystallography, solid 

state physics and materials science [34,50,22].

Interest in crystal morphology and structure motivated mathematical studies of symmetry, 

lattice sphere packings and crystallographic groups [14,34]. With the advent of X-ray 

diffraction, materials science gained access to atomic-scale configurations and bonding 

networks. An explicit mention of a periodic framework deformation appears in Pauling’s 

1930 paper [40]. Nevertheless, such geometric investigations addressed only specific 

crystalline materials and remained mostly concerned with a number of instances of one-

parameter deformations related to particular displacive phase transitions, as in [18,20].

The notion of auxetic behavior is formulated using the concept of negative Poisson’s ratio 

[22,23,21], which relies on physical properties of the material: when two forces pull in 

opposite directions along an axis, most materials are expected to expand along this axis and 

to contract along directions perpendicular to it. Auxetic behavior refers to the rather counter-

intuitive lateral widening upon application of a longitudinal tensile strain. A purely 

geometric expression of this behavior is not anticipated in all situations. However, for 

periodic frameworks, we have recently proposed the general geometric notion of auxetic 

path in the deformation space of the periodic framework [7]. Relying on this formulation, 

we prove that an expansive deformation path is necessarily an auxetic path. Periodic pseudo-

triangulations thus exhibit auxetic behavior and offer an infinite supply of planar examples 

of “auxetic frameworks”. By contrast, only a limited collection of sporadic and artisanal 

auxetic periodic examples (Figure 5) has appeared in the literature. One may already notice 

that the reentrant framework from Figure 5 looks “almost” like a pointed pseudo-

triangulation, except that it is not maximal. It needs one more edge-orbit for all its faces to 

become pseudo-triangles, as illustrated in Figure 16 of Section 6.
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Organization of the paper

In Section 2 we define the basic concepts needed to study the correspondence between 

liftings and stresses in (finite or infinite) frameworks. Section 3 specializes these concepts to 

periodic liftings and stresses. Section 4 concludes the proof of the Main Theorem by 

providing the necessary link with periodic rigidity and flexibility. The Main theorem is 

applied in Section 5 to prove the expansive properties of periodic pseudo-triangulations. The 

connection with auxetic behavior and the ultrarigid character of periodic frameworks 

obtained from pseudo-triangulations are presented in the final Sections 6 and 7.

2 Liftings and stresses

To formulate and prove our Main Theorem, we start with those concepts and properties that 

do not depend (yet) on periodicity, which is introduced in the next section.

Graphs and frameworks

We consider finite or countably infinite graphs which are simple (i.e. without loops or 

multiple edges), unoriented and of finite degree (or valency) at each vertex. Such a graph is 

given as a pair G = (V, E), with V the set of vertices and E the set of (unoriented) edges. We 

use lower case symbols u, v, ··· for vertices in V. An edge e = {u, v} = {v, u} ∈ E has two 

endpoints u, v ∈ V, u ≠ v and can be given two orientations (u, v) and (v, u). Two edges e1, 

e2 ∈ E are adjacent if they have a common endpoint: |e1 ∩ e2| = 1. The set of edges incident 

to a vertex v consists of all edges e ∈ E having v as one of their endpoints. The degree (or 

valency) of a vertex is the number of edges incident to it.

A placement of G in ℝd is given by a mapping p : V ↦ ℝd of the vertices to points in ℝd, 

such that the two endpoints of each edge e = {u, v} ∈ E are mapped to distinct points in ℝd: 

p(u) ≠ p(v). An edge {u, v} is seen geometrically as an edge-segment [p(u), p(v)], and an 

oriented edge (u, v) determines an edge-vector p(v) − p(u) ∈ ℝd. We work under the 

assumption that all placements are locally finite maps, that is, the preimage of any 

bounded set is finite. This is certainly true for the periodic placements defined in the next 

section.

A framework or geometric graph (G, p) is a graph G together with a placement p, restricted 

in this paper to ℝ2 or ℝ3. We use the term planar placement for ℝ2, when the distinction is 

necessary.

Planar non-crossing frameworks

A planar placement is non-crossing if any pair of edges induces disjoint closed segments, 

with the possible exception of the common endpoint, in the case when the edges are 

adjacent. A graph G is planar1 if it admits a non-crossing placement (G, p). We consider 

only connected graphs, therefore a non-crossing placement (G, p) induces a connected 

subset of the plane, made of the points p(v), v ∈ V and the edge segments [p(u), p(v)] with 

{u, v} ∈ E. A face U is a connected component of the complement of the placement (G, p). 

1Note that we use planar for the graph, as is customary in graph theory, and non-crossing for the framework. Our use of planar 
framework is customary in rigidity theory, and refers to a placement in the plane.
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We assume throughout the paper that the boundary of each face is a simple finite 
polygon. A face is described combinatorially by the cyclic collection of its boundary 

vertices or edges, and each edge is on the boundary of exactly two distinct faces.

For a planar non-crossing framework it is convenient to use now the same symbol G to 

denote the entire collection G = (V, E, F) of vertices V, edges E and faces F. For notational 

simplicity, we allow the capital letters U, V, … to stand for open face domains, closed faces, 

or the corresponding boundary cycles (as needed in various contexts).

When referring to a planar graph G (with no reference to a particular placement) we assume 

that the choice of face cycles F is also given, i.e. G = (V, E, F). We note that even when the 

underlying graph G = (V, E, F) of a framework (G, p) is a planar graph, the particular 

placement p of the framework may have crossings: we still refer to the realization of a face, 

although it may be a self-intersecting polygon.

To a planar graph G = (V, E, F) we can associate a dual structure G* = (V*, E*, F*) defined 

as the abstract triple whose vertices V* correspond to the faces F of G i.e. V* = F, and whose 

edges E* are in one-to-one correspondence with the edges E of G, as follows: if two faces U 

and W share an edge e, then the dual vertices U* and W* are connected by the dual edge e*. 

The dual faces F* correspond to the vertices of G i.e. F* = V, with the cycle of faces around 

a vertex inducing its corresponding dual face. By abuse of language, we may refer to G* = 

(V*, E*, F*) as the dual graph of G = (V, E, F), although it may have multiple edges.

Orientation rule

In a planar non-crossing framework, an edge {u, v} induces a segment [p(u), p(v)], and it 

belongs to the boundary of exactly two faces, say U and V. In the dual graph G* = (F, E) 

these two faces U and V represent two vertices connected by the unoriented edge {U, V} 

dual to {u, v}. Later on, we will need to match an oriented edge in the primal graph G = (V, 

E) with an orientation of its dual edge in G* = (F, E). We use the following convention. The 

oriented edge segment [p(u), p(v)] gives opposite senses for going around face U and face V, 

say counter-clockwise around V and clockwise around U. Then the matching orientation of 

the edge in the dual graph G* is from U to V. In short: ‘from clockwise to counterclockwise’, 

as illustrated in Figure 6.

The matching orientation described above for elements in the edge set E, when considered 

as oriented edges in G = (V, E), respectively G* = (F, E), gives a well-formed double pair 

((u, v), (U, V)), or simply a tetrad (u, v, U, V). In computational geometry, these tetrads are 

implicit in the quad-edge data structure used for representing general surfaces [29]. 

Reversing orientation on the edge gives the tetrad (v, u, V, U). Below, we will refer to cycles 

(called face-cycles) of oriented edges in the dual graph G* = (F, E): the orientation rule 

described above gives an unambiguous correspondence with oriented edges (u, v) in the 

primal graph G and their corresponding edge vectors p(v) − p(u) in a geometric placement p 

of G.
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Stressed frameworks

An equilibrium stress or, shortly, a stress on a planar (finite or infinite, possibly crossing) 

framework2 is an assignment s : E → ℝ of scalar values {se}e∈E to the edges E of G in such 

a way that the edge vectors incident to each vertex u ∈ V, scaled by their corresponding 

stresses, are in equilibrium, i.e. sum up to zero:

(1)

When all se are zero, the stress s is trivial; when all se ≠ 0, the stress is called nowhere zero. 

The space of all equilibrium stresses of a framework is a vector space, so if a framework has 

a non-trivial stress, then it is not unique; in particular, any rescaling of it is also a stress.

Lifting

A lifting of the planar framework (G, p) is a continuous function H : ℝ2 → ℝ whose 

restriction to any face is an affine function. The lifting assigns a height, or altitude H(q) to 

each point q in ℝ2 (seen as the plane z = 0 in ℝ3), in such a way that the lifted faces are flat 

(all face cycle vertices lie in the same plane) and connect continuously along the lifted edge 

segments. The height function is completely determined by the values H(p(v)) at the vertices 

of the framework, and its graph appears as a polyhedral surface or terrain over the face-

tiling in the reference plane. A lifting is trivial if all its faces are lifted in the same plane, that 

is, when H is affine on ℝ2. A lifting is strict if no two adjacent faces are lifted to the same 

plane.

With these concepts in place, we move on to the correspondences involved in Maxwell’s 

theorem.

Equilibrium stress associated to a lifting

Let H be a lifting of a framework (G, p). With usual dot product notation, the expression of 

H restricted to a face U takes the form

(2)

where νU ∈ ℝ2 is the projection on the reference plane of the normal to face U and CU ∈ ℝ.

The system of vectors and constants H ≡ (νU, CU)U∈F is subject to the compatibility 

conditions on edges {u, v} shared by pairs of adjacent faces {U, V}:

(3)

2Also called a self-stress in the rigidity theory literature.
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From this, we infer that the vector νV − νU is orthogonal to the edge vector p(v) − p(u). Fig. 

7 illustrates the relationship.

Given a tetrad (u, v, U, V) of dual edges, and using the notation (x, y)⊥ = (−y, x) for the 

clockwise rotation with π/2 of a vector (x, y) ∈ ℝ2, we define the stress factor on the edge 

{u, v} ∈ E, associated to the lifting H, as being the proportionality factor suv given by:

(4)

Since the sum involves the vectors around a closed polygon (the face-cycle around a vertex), 

the equilibrium condition (1) is satisfied. This proves:

Proposition 1—For any lifting H of a planar non-crossing framework (G, p), there exists a 

canonically associated equilibrium stress on the framework.

The correspondence between liftings and stresses described above is essentially the one 

given by Maxwell, who formulated it through the following geometric construction. The 

normal direction to the planar region corresponding to a face U ∈ F in the lifted terrain is 

given by NU = (νU, −1) ∈ ℝ3, U ∈ F. When all these normal vectors are taken through the 

point (0, 0, 1), they intersect the reference plane z = 0 in the system of points {νU ∈ ℝ2}U∈F. 

The classical “theorem of the three perpendiculars” implies the orthogonality (νV − νU) · 

(p(v) − p(u)) = 0 observed above. In Figure 7 we see the normals to two adjacent lifted faces, 

taken from a point of the lifted common edge. They intersect the reference plane in N(U) 

and N(V), with vectors p(v) − p(u) and N(V) − N(U) orthogonal.

Reciprocal diagram

A framework (G*, p*) associated to the dual graph G* of a planar framework (G, p) is called 

a reciprocal diagram if the corresponding primal-dual edges are perpendicular. If in the 

previous construction we join the points {νU ∈ ℝ2 | U ∈ F} by edges dual to the primal 

ones, we obtain a reciprocal diagram associated to the lifting H. We note that it is possible 

for several vertices νU to coincide, and this happens precisely when several planar regions in 

the lifting have identical normal directions. An extreme case arises for liftings with globally 

affine functions H. They give a planar (trivial) terrain over the reference plane, have 

constant νU and induce the trivial stress {se}e∈E = 0.

From equilibrium stresses to liftings

The direction from stresses to Maxwell liftings requires more work.

Proposition 2—Let s = (se)e∈E be an equilibrium stress for the framework (G, p). Then 

there exists a lifting H which induces s, determined up to addition of a global affine 

function.

Proof: We have to find a set of parameters (νU, CU), indexed by faces and satisfying the 

conditions (3) and (4) in terms of the given placement p. Let us choose an initial face U0 
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with an arbitrary lifting (νU0, CU0) = (ν0, C0). We show that once this initial choice has been 

made, the lifting is then uniquely determined by the placement p and the stress values s.

For this purpose, we solve the linear system (3) in a step-by-step manner, progressing from 

face to adjacent face, starting at U0. We remark that an infinite graph induces an infinite 

such linear system, but nevertheless it can be solved incrementally, as we now show. We 

consider a path through adjacent faces labeled U0, U1, …, Un, with corresponding liftings 

(νi, Ci) and successive tetrads (pi, qi, Ui, Ui+1). Thus, [pi, qi] is the common edge between 

faces Ui and Ui+1, with the proper orientation induced by the direction in which we walk 

through the path of adjacent faces, and the orientation rule described earlier. The given 

stress on this edge is denoted here by si.

We first compute the parameters νk by unfolding the relationships (4) along the path from 

U0 to Uk:

(5)

Similarly, we compute the parameters Ck by unfolding the first of the two relationships (3) 

along the path from U0 to Uk, and using (4) at each step:

(6)

Using the identity (qi − pi)⊥ · pi = det(qi pi) and the notation |qi pi| := det(qi pi) in (5) and (6), 

the expression (2) of the height function becomes:

(7)

It remains to check that the expression (7) is independent of the face-path chosen from U0 to 

Un. To verify this property, we have to check that the following sums vanish for any face-

cycle:

(8)

It suffices to verify these relations over face-cycles corresponding to simple topological 

loops. In this case, Jordan’s simple curve theorem gives a set of vertices inside the loop. 

When we sum the equilibrium stress condition (1) over the vertices inside the loop, terms 

cancel in pairs for adjacent vertices and yield the first identity. For the second part, we 

observe that the equilibrium stress condition (1) induces the identity |Σ{u, v}∈E suv(p(v) − 

p(u)) p(u)| = 0, for fixed vertex u. Rewritting it as Σ{u, v}∈E suv|p(v) p(u)| = 0 and again 

taking the sum over the vertices inside the loop, we obtain the second identity in (8).
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Since the initial choice (ν0, C0) was arbitrary, the lifting H is determined only up to a global 

affine function.

Mountain-valley edge liftings and stress factor signs

We review now an elementary geometrical criterion for determining the sign of a stress 

factor suv in a stress s associated to a lifting. Let us consider the lifted 3D polygonal surface 

projecting over the faces of the graph in the reference plane, as in Figure 1, and let uv be part 

of a tetrad (u, v, U, V). A vertical translation of the whole polygonal surface does not affect 

the stress considerations. We assume therefore that the lifting of the two faces U and V is 

above the reference plane. Figure 7 illustrates the case of a negative stress factor suv, 

corresponding visually with a lifted edge that looks like a ‘mountain ridge’. The normal 

directions to the lifted faces over U and V are here taken through a point of the lifted 

common edge and intersect the reference plane in points denoted N(U) and N(V). For the 

tetrad (u, v, U, V), the sign of the stress factor is that of the determinant |p(v) − p(u) N(V) − 

N(U)| and is consistent with the orientation rule described in Section 2.

For the geometrical interpretation, let us look at the dihedral angle of the lifted faces, 

understood as the intersection of the two half-spaces below the respective supporting planes. 

Then, when the measure of this dihedral angle is less than π, we have a negative stress factor 

and the visual landscape suggestive of a mountain range, while for a dihedral angle greater 

than π, we have a positive stress factor and the visual landscape suggestive of a valley. 

When the dihedral angle is exactly π, the stress factor is zero and the two lifted faces are in 

the same plane. A non-flat edge in the lifting is therefore said to be a mountain edge if the 

terrain is concave in its neighborhood, and a valley otherwise. The correspondence between 

stresses and liftings is now refined by this well-known property [15]:

Proposition 3—The Maxwell correspondence between stressed graphs and liftings takes 

planar edges with a negative stress to mountain edges in the 3D lifting, those with positive 

stress to valley edges and those with zero stress to the common plane of the two adjacent 

lifted faces.

Comment—As mentioned, this correspondence between liftings and stresses is a direct 

adaptation of the one formulated by Maxwell in the finite setting [35,36] (see also the 

expositions given in [30,15,43]). The arrangement and presentation given in this section, 

including the notation, are meant to serve as a preamble for the more elaborate periodic 

version, which relies on notions developed recently in our deformation theory of periodic 

frameworks [3,4,6].

We conclude this section with a noteworthy example, illustrated in Fig. 8, which will be 

used in the next two sections to illustrate the critical distinction between equilibrium stress 

and periodic stress.

Example 1 (Delaunay tesselations and Voronoi diagrams of periodic point 
sets)—The classical Voronoi-Delauney duality, applied to a (countable locally finite) 

periodic point set p in ℝ2, yields a dual pair of non-crossing periodic frameworks whose 

corresponding dual edges are orthogonal. For a fixed point pi in the given set p, its (open) 
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Voronoi cell is defined as the planar domain made of all the points in ℝ2 whose distance to 

pi is strictly less than the distance to any other point in the set p. The union of all these cell 

boundaries give the vertices and edges of the Voronoi framework. The Delauney framework 

is its dual, with vertices at the original point set p and with edges orthogonal to those of the 

Voronoi framework; its faces are convex polygons whose vertices are cocircular, and the 

circumscribed cirles are empty of any other vertices in the given point set [17]. Fig. 8 gives 

an illustration with periodicity lattice generated by the standard basis. There are four orbits 

of vertices, with representatives at the corners of one of the diamonds in Fig. 8(a). All faces 

are inscribed polygons and the centers of the corresponding circumscribed circles give the 

vertices of the Voronoi diagram.

3 Equilibrium and periodic stresses on periodic frameworks

We turn now to the main object studied in this paper, the infinite periodic framework as 

defined in [3,4]. We emphasize from the outset that a periodic graph is not just an infinite 

graph, as it was in the previous section: the definition includes a periodicity group of graph 

automorphisms. In this paper we focus on the planar case d = 2 and on connected non-

crossing periodic frameworks. Some statements and constructions will be valid in broader 

contexts, but for the sake of a streamlined presentation we will stay within this class.

Planar periodic frameworks

A 2-periodic framework [3,4], denoted as (G, Γ, p, π), is given by an infinite graph G, a 

periodicity group Γ acting on G, a placement p and a representation π. The graph G = (V, E) 

is simple (has no multiple edges and no loops) and connected, with an infinite set of vertices 

V and (unoriented) edges E. The periodicity group Γ ⊂ Aut(G) is a free Abelian group of 

rank two acting on G without fixed vertices or fixed edges. We consider only the case where 

the quotient multigraph G/Γ (which may have loops and multiple edges) is finite, and use n 

= |V/Γ| and m = |E/Γ| to denote the number of vertex and edge orbits. The function p : V → 

ℝ2 gives a specific placement of the vertices as points in the plane, in such a way that any 

two vertices joined by an edge in E are mapped to distinct points. The injective group 

morphism π: Γ → (ℝ2) gives a faithful representation of Γ by a lattice of translations π(Γ) 

= Λ of rank two in the group of planar translations (ℝ2) ≡ ℝ2. The placement is periodic 

in the obvious sense that the abstract action of the periodicity group Γ is replicated by the 

action of the periodicity lattice Λ = π(Γ) on the placed vertices: p(γv) = π(γ)(p(v)), for all γ ∈ 

Γ, v ∈ V.

Non-crossing planar periodic frameworks G = ((V, E, F), Γ) in ℝ2

They have an underlying planar graph G = (V, E, F) with the natural action of the periodicity 

group Γ. The dual 2-periodic graph G* = ((V*, E*, F*), Γ) is obtained from the abstract dual 

of the infinite graph G = (V, E, F), with the periodicity group Γ acting on it in the same 

manner as it acts on the sets of the primal graph F = V*, E = E*, V = F*. If we denote by n* 

= card(F/Γ) the number of face orbits under Γ, then Euler’s formula for the torus ℝ2/Λ ⊃ 

G/Γ gives the relation:

(9)
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Γ-invariant equilibrium stress on a periodic framework

An equilibrium stress s of the periodic framework (G, p, Γ, π) is called a Γ-invariant 

equilibrium stress if it is invariant on edge orbits E/Γ. A Γ-invariant equilibrium stress can 

be calculated by solving a finite linear system of equations of type (1), where the unknowns 

are the stresses for the edge representatives in E/Γ and the equations correspond to 

equilibrium conditions for the vertex representatives in V/Γ.

Preview: periodic stress from periodic lifting

Not all equilibrium stresses of a periodic framework are Γ-invariant. Although we have not 

yet defined periodic stresses (Definition (1) in the next Section 4), we mention, as a preview, 

that they must be Γ-invariant. But this will not be sufficient: for some periodic frameworks, 

the periodic stresses are a strict subset of the Γ-invariant ones. Figure 9 illustrates such a 

situation, using colors to indicate the stress sign (red for positive, blue for negative stress, 

gray for zero stress) for the various types of stresses that a periodic framework may support 

(not Γ-invariant, Γ-invariant non-periodic and periodic).

We will arrive at periodic stress indirectly, via periodic liftings, defined next. In the rest of 

this section we show that the stresses corresponding to these periodic liftings must satisfy 

additional constraints. Then, in the next section, we define periodic stress in rigidity 

theoretic terms, and show that it coincides with this constrained stress.

Periodic liftings

A lifting H for the planar periodic framework (G, Γ, p, π) is called periodic when Γ-

invariant, that is, when H(p + λ) = H(p), for all p ∈ ℝ2 and λ ∈ Λ = π(Γ), where translation 

by periods has been written additively. For a face U and its translate U + λ, this condition 

implies that:

(10)

Fig. 10 illustrates a periodic lifting which corresponds to the stress illustrated in Fig. 9(c).

Since Γ-invariant stresses may not always correspond to Γ-invariant liftings, additional 

properties are needed to characterize stresses induced by Γ-invariant liftings. We proceed 

now to find them.

Stress induced by a periodic lifting

When expressed as the system H ≡ (νU, CU)U∈F, a periodic lifting has constant coefficients 

νU on Γ-orbits of faces. Thus, there are at most n* = card(F/Γ) distinct normal directions to 

lifted faces.

For a closer investigation of the associated stress, we introduce the following notational 

conventions. A face-path from a face U to a face V will be indicated by U → V, in particular, 

a face-path from U to its translate U + λ will be indicated by U → U + λ. Sums over face-

paths or face-cycles are assumed to be written according to the orientation rule given 
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through tetrads. With this convention, we rewrite the relations (5) and (6) obtained in 

Section 2 as:

(11)

Applying (10) we obtain the following two conditions on the stress s:

(12)

(13)

We summarize these observations as:

Proposition 4—If the planar non-crossing periodic framework (G, Γ, p, π) has a periodic 

lifting H ≡ (νU, CU)U∈F, then the associated Γ-invariant equilibrium stress s satisfies 

conditions (12) and (13) for any face U and period vector λ ∈ Λ = π(Γ).

From constrained stress to periodic lifting

Our next goal is to show that conditions (12) on a Γ-invariant equilibrium stress are 

sufficient for determining a periodic lifting. Obviously, relations (13) will serve for 

identifying the lifting data H ≡ (νU, CU)U∈F.

Proposition 5—Let s = (se)e∈E be a Γ-invariant equilibrium stress for the planar non-

crossing periodic framework (G, Γ, p, π). If, for some face U0 and generators λ1, λ2 of the 

period lattice Λ = π(Γ), s satisfies the additional conditions that:

(14)

then the lifting H ≡ (νU, CU) defined, for all λ ∈ Λ, by:

is a periodic lifting inducing s, determined up to a choice of constant C0 = CU0.

Proof: Let us assume that s = (si)i is a Γ-invariant equilibrium stress which satisfies (14) for 

some face U0 and two generators λ1, λ2 of the periodicity lattice Λ = π(Γ). We first show 

that our assumption implies that condition (12) is satisfied for all U and λ ∈ Λ. It is clearly 

satisfied for U0 and all λ ∈ Λ since the edge vectors implicated in the sum are, by 
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periodicity, the same linear combination with integer coefficients as given in λ = n1λ1 + 

n2λ2.

Suppose next that V is adjacent to U0 and consider the face-cycle U0 → V → V + λ → U0 + 

λ → U0. Again, by periodicity in the framework, the edge vector implicated for U0 → V is 

the opposite of the edge vector implicated for V + λ → U0 + λ and (12) holds for V. This is 

enough for our claim since G and G* are connected.

As shown in the proof of Prop. 2, for any initial choice (νU0, CU0) = (ν0, C0), we obtain a 

lifting H ≡ (νU, CU) inducing s. We aim at finding a periodic representative in this 

equivalence class.

Let H ≡ (νU, CU) be the lifting under investigation. Relations (11) will hold. Thus νU are 

constant on Γ orbits in F. We show now that the function

is independent of the orbit representative U. Indeed, using (12) we find

(15)

Moreover, (λ) is linear in λ and by (11):

(16)

By comparing CV − CU and CV+λ − CU+λ based on (11), we obtain

This gives

and shows that

(17)

Borcea and Streinu Page 13

Discrete Comput Geom. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This means that if we choose our initial ν0 = νU0 by ν0 · λ = (λ), for all λ ∈ Λ, the 

resulting lifting will be periodic.

In the next section we prove that this type of constrained stress is precisely the periodic 

stress implicated in the deformation theory of periodic frameworks introduced in [3].

4 Periodic deformations and stresses

We have arrived at one of the most important aspects of this paper, which brings in the 

connection with the infinitesimal rigidity or flexibility of a periodic framework. The 

application to periodic pseudo-triangulations and expansive mechanisms presented in the 

next section relies on this correspondence.

Periodic deformations

A planar framework (G, Γ, p, π) was defined by a placement of vertices p : V → ℝ2 and a 

faithful representation π : Γ → (ℝ2) of the periodicity group by a rank two lattice of 

translations Λ = π(Γ), with the necessary compatibility relation. In the framework, the edges 

of the graph are now seen as segments of fixed length, forming what is called in rigidity 

theory a bar-and-joint structure. According to our periodic deformation theory, introduced 

in [3] and pursued in [4,6], a periodic bar-and-joint framework is said to be periodically 

flexible if there exists a continuous (or equivalently smooth) family of placements, 

parametrized by time t, pt : V → ℝ2 with p0 = p, which is not given by global rigid motions 

and satisfies two conditions: (a) it maintain the lengths of all the edges e ∈ E, and (b) it 

maintains periodicity under Γ, via faithful representations πt : Γ → (ℝ2) which may 

change with t and give a corresponding variation of the periodicity lattice Λt = πt (Γ).

To represent πt we first choose two generators for the periodicity lattice Γ. The 

corresponding lattice generators λ1(t) and λ2(t) at time t may be viewed as the columns of a 

non-singular 2 × 2 matrix denoted, for simplicity, with the same symbol Λt ∈ GL(2). The 

infinitesimal deformations of the placement (pt, πt) are described using a complete set of n 

vertex representatives for V/Γ, i.e. the vertex positions are parametrized by (ℝ2)n. The m 

representatives for edges mod Γ are then expressed using the vertex parameters and the 

periodicity matrix Λ. An edge representative β originates in one of the chosen vertex 

representatives i = i(β) and ends at some other vertex representative j = j(β) plus some period 

Λcβ, where cβ is a column vector with two integer entries. The edge vectors eβ, β ∈ E/Γ thus 

have the form:

(18)

By taking the squared length of the m edge representatives, we obtain a map:

(19)

and the differential of this map at the point under consideration (i.e. the point of (ℝ2)n × 

GL(2) ⊂ ℝ2n+4 corresponding to the framework (p, π)), seen as a matrix with m rows and 2n
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+4 columns is called the rigidity matrix R = R(G, Γ, p, π) of the framework. The row 

corresponding to the edge described above has the form:

(20)

where  is the transpose of the column edge vector eβ and an obvious grouping convention 

is used for the columns.

The vector space of infinitesimal periodic motions (or infinitesimal periodic deformations) 

of the given framework (G, Γ, p, π) can be described as the kernel of the rigidity matrix R 
and the vector space of periodic stresses can be described as the kernel of the transpose Rt. 

It is understood that a stress described on the m representatives for E/Γ is extended by 

periodicity to all edges.

Thus, non-trivial periodic stresses express linear dependences between the rows of the 

rigidity matrix R. Grouping these dependences over groups of columns corresponding to 

vertex representatives, we obtain immediately the fact that a periodic stress is necessarily a 

Γ-invariant equilibrium stress as defined earlier in this paper. However, there are two 

additional vector conditions imposed by the columns corresponding to the infinitesimal 

variation of the periods.

This sets the stage for a comparison of the periodic stresses reviewed here and the stresses 

induced by periodic liftings. It is useful to restate now the definition.

Definition 1—A periodic stress for the framework (G, Γ, p, π) is a stress induced from an 

element in the kernel of the transposed rigidity matrix Rt, that is, a Γ-invariant equilibrium 

stress s satisfying the conditions

(21)

with integer coefficients  as given in the edge description (18).

Remarks—The fact that periodic stresses do not depend on the choices of representatives 

used in expressing the rigidity matrix follows from the fact that the image of the map (19) 

and the image of its differential do not depend on these choices. Periodic stresses give the 

orthogonal complement in ℝm for the image of the differential.

There is an equivalent form for the periodic stress conditions (21), which refers directly to 

the periods λβ = Λcβ implicated in the edge descriptions (18). It can be given in terms of 

tensor products, namely:

(22)
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The equivalence follows from a straightforward linear algebra verification.

For a comparison of conditions (14) and (21), we verify first the persistence of periodic 

stresses under relaxation of periodicity from Γ to a subgroup of finite index Γ̃ ⊂ Γ.

Proposition 6—Let s = (sβ)β∈E be a periodic stress for the periodic framework (G, Γ, p, 

π). Let Γ̃ ⊂ Γ be a subgroup of finite index. Then s remains a periodic stress for the 

framework with relaxed periodicity (G, Γ̃, p, π|Γ̃). Moreover, if a Γ-invariant equilibrium 

stress becomes periodic for a relaxed periodicity Γ̃ ⊂ Γ, it is already periodic for Γ.

Proof: A Γ-invariant equilibrium stress is obviously Γ̃-invariant. We look at the columns 

related to periods in the two rigidity matrices.

Let ρ = card(Γ/Γ̃) denote the index of relaxation of periodicity. For the relaxed case we use 

the following representatives. We first choose representatives in Γ for the elements of the 

quotient group Γ/Γ̃. Then, a complete set of vertex representatives mod Γ̃ will consist of the 

representatives chosen mod Γ translated by the periods corresponding to the representatives 

chosen for Γ/Γ̃. The subscripts for the relaxed case take the form of pairs i, γ, with the ρ 

representatives γ covering Γ/Γ̃.

The proof amounts to verifying identities which can be better controlled when using a tensor 

product expression for the stress condition on the periodicity columns as in [3], page 2641 

and as recalled above in (22). Altogether, with representatives for periodicity Γ given in 

coordinates as

we have representatives for periodicity Γ̃ given in coordinates as

where, for simplicity, no further notational distinction has been made for γ ∈ Γ and its image 

by π. Now, we must take into account that we have unique expressions

(23)

with γβ among the chosen representatives for Γ/Γ̃ and γ̃ ∈ Γ̃. Moreover, as we add 

representatives, we must record relations of the form

(24)

with λβ,γ among the chosen representatives for Γ/Γ̃ and λβ̂,γ ∈ Γ̃.

Borcea and Streinu Page 16

Discrete Comput Geom. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The periodic stress condition for Γ reads

(25)

and the one for Γ̃ reads

(26)

In order to see that these conditions are equivalent, we notice that (23) gives

(27)

Similarly, from (24), we obtain

(28)

Now, we take into account the identity:

(29)

which follows from the fact that when operating with an element of a group, one obtains a 

permutation of the elements in the group. Here, for any β, the two lists γ and λβ,γ of 

representatives for Γ/Γ̃ are made of the same elements.

Thus, equations (27), (28) and (29) imply

(30)

and establish the equivalence of (25) and (26). Our proposition is proven.

Comment—Tedious as it may be, this verification has the important consequence that 

upon relaxation of periodicity, the dimension of the space of periodic stresses can only go up 

or stay the same.

We recall (from [3], page 2641) the relation

(31)

connecting periodic stresses and infinitesimal deformations, where σ denotes the dimension 

of the space of periodic stresses and δ is the dimension of the space of infinitesimal periodic 
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deformations. Subtracting the trivial infinitesimal deformations induced by infinitesimal 

isometries, we obtain:

(32)

where ϕ denotes the dimension of the space of infinitesimal flexes ϕ = δ − 3. This formula 

will be relevant for evaluating behavior under relaxations, with σ and ϕ non-decreasing and 

the term (m − 2n) multiplied by the index of relaxation ρ.

The last ingredient needed for the proof of our Main Theorem is Lemma 7 below, which can 

be summarized as saying that for sufficiently relaxed periodicity Γ̃, a complete set of edge 

representatives can be found that are either inside a fundamental parallelogram PΓ̃ or cross 

the border with an endpoint in a neighboring parallelogram, intersecting one of two 

prescribed spanning sides. The Lemma gives a more transparent interpretation for the 

conditions (21) satisfied by periodic stresses, in terms of a sufficiently large relaxation of 

periodicity.

Lemma 7—Let (G, Γ, p, π) be a planar non-crossing periodic framework. One can find 

generators λ1, λ2 for the lattice of periods Λ = π(Γ) and large enough positive integers r1 and 

r2 such that the relaxation of periodicity given by the sublattice Γ̃ of index ρ = r1r2 of Γ 

corresponding to the two generators λ̃
j = rjλj, (j = 1, 2) allows the following setup:

a. a choice of fundamental parallelogram PΓ spanned by λ1, λ2 such that its boundary 

avoids vertices and its vertices avoid the framework;

b. a representation of the associated fundamental parallelogram PΓ̃ for Γ̃, spanned by 

λ̃
j = rj λj, (j = 1, 2) as tiled by ρ = r1r2 translated copies of the previous 

parallelogram;

c. using as representatives of vertex-orbits for Γ all the vertices inside the 

fundamental parallelogram PΓ and then as representatives of vertex-orbits for Γ̃ all 

the vertices inside the fundamental parallelogram PΓ̃, a description of edge-orbits 

as used for the two rigidity matrices (for Γ and the relaxation Γ̃) involving, for Γ̃, 

all edges inside the parallelogram in (b) and those crossing the two spanning sides 

given by λ̃
j, j = 1, 2;

d. the Λ̃ periods implicated in the description of the above crossing edges are either 

−λ̃
1 or −λ̃

2 or possibly their sum −(λ̃
1 + λ̃

2).

Comment—The intention, content and principle of proof of this lemma can be elucidated 

by referring to Figure 11. The aim is to show that convenient choices of lattice generators 

and relaxation can provide a setting where a fundamental parallelogram for the relaxed 

lattice Λ̃ is the central (yellow) zone, marked OA1(A1 + A2)A2, with all representatives for 

edge-orbits contained in the union of the central zone with the three neighbours (in green) 

around the O corner. With this corner taken as the origin, the two generators λ̃
j, j = 1, 2 of Λ̃ 

are represented by vectors OAj, j = 1, 2, we see that any edge in the union of the central zone 

and the blue zone around A1 + A2 has, by translation with −(λ̃
1 + λ2̃), an equivalent 

representative in the desired union (of yellow and green). Thus, the lemma can be proven by 
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showing that convenient choices lead to a setting with no edges crossing from the central 

(yellow) zone to the remaining two (red) zones abutting corners A1 and A2. In fact, by 

translation with λ̃
2 − λ1̃, it is enough to insure that no edge crosses from the central 

parallelogram to the (red) neighbor abutting at A1.

Proof: A generic choice of origin O will easily satisfy the avoidances desired in (a) when 

we represent the periodicity vectors as emanating from O. Assuming such a choice, rational 

will refer to the common rational grid determined by the initial periodicity lattice (and 

containing all its relaxations).

Since there is a finite number of edge vectors, their length is bounded and it is clear that for 

any initial choice of fundamental parallelogram PΓ we can find a relaxation with all edges 

originating in PΓ̃ ending either in itself or one of the eight neighboring translated copies. 

Thus, what remains to be argued is how to obtain the aditional property that no edge crosses 

from the central parallelogram PΓ̃ = OA1(A1 + A2)A2 to the (red) neighbor abutting at A1.

For this purpose, we remark that our problem is not affected by a rational linear 

transformation and we may use this invariance to arrange and assume that all our edge 

vectors are, in direction, sufficiently close to a single direction, which we designate as our 

“vertical”. We look now at the line through O which is orthogonal to our vertical and refer 

to is as our “horizontal” line.

Let us depict (with their periodicity along this horizontal) all the edges crossing it, as 

illustrated in Figure 12. Then, we can take a more slanted rational line with respect to the 

vertical as our direction for λ̃
2. Under our assumptions, this choice obtains the property that 

no edge crosses from the yellow region to the red region. We can find first Γ-periods along 

the horizontal and slanted directions. In fact, by the relative freedom we have when 

choosing the slanted direction, we may assume that we obtain generators λj, j = 1, 2. As 

already explained, a relaxation Γ̃ can be found which satisfies the setting in Figure 11 and 

the additional property that all edge representatives for Γ̃ can be found in the union of the 

four parallelograms around O. This completes the proof of our lemma.

All the elements for the correspondence between periodic liftings and periodic stresses are 

now in place to prove:

Main Theorem—Let (G, Γ, p, π) be a planar non-crossing periodic framework. A stress 

induced by a periodic lifting is a periodic stress and conversely, any periodic stress is 

induced by a periodic lifting, determined up to an arbitrary additive constant. The 

correspondence relates the stress signs to the mountain/valley types of the lifted edges.

Proof: We use Proposition 6 and the setting described in Lemma 7 obtained after an 

adequate relaxation of periodicity Γ̃ ⊂ Γ with generators related by λ̃
j = rj λj, j = 1, 2. We 

first observe that, for periodicity Γ̃ the stated correspondence between periodic liftings and 

periodic stresses becomes obvious, since conditions (21) and (14) ask exactly the same 

thing: that the stress-weighted sums of edges implicated along U→U + λ̃
j, j = 1, 2 be zero. 

The case of full periodicity Γ now follows from Proposition 6 and the corresponding fact 
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that a Γ-invariant lifting which is Γ̃-periodic for some relaxation Γ̃ ⊂ Γ, must be already Γ-

periodic, as immediately seen from conditions (14). The sign relationship follows from 

Proposition 3.

This concludes the proof. We turn now to applications of our Main Theorem.

5 Periodic pointed pseudo-triangulations

In this section we define periodic pointed pseudo-triangulations or, for short, periodic 

pseudo-triangulations. We prove properties analogous to those possessed by their finite 

counterparts [47,48], with respect to expansive motions. In addition, we show some entirely 

new properties, specific to the periodic setting, related to ultrarigidity.

A pseudo-triangle is a simple closed planar polygon with exactly three internal angles 

smaller than π. A set of vectors is pointed if there is no linear combination with strictly 

positive coefficients that sums them to 0. Equivalently, a set of pointed vectors lie in some 

half-plane determined by a line through their common origin. A planar non-crossing 

periodic framework (G, Γ, p, π) is a periodic pointed pseudo-triangulation when all faces 

are pseudo-triangles and the framework is pointed at every vertex. Thus, at every vertex, the 

incident edges lie on one side of some line passing through the vertex. As in the finite case, 

pointedness at every vertex is essential. Pseudo-triangular faces mark the ‘saturated’ stage 

where no more edge orbits can be inserted without violating non-crossing or pointedness. 

An illustration for n = 3 is given in Figure 13. We show that periodic pointed pseudo-

triangulations, viewed as bar-and-joint mechanisms, satisfy two remarkable rigidity-

theoretic properties: they have the right number of edges to be flexible mechanisms with 

exactly one degree of freedom (in the finite case [47,48], the flexible mechanisms were 

obtained after removing a convex hull edge), and they encounter no singularities in their 

deformation for as long as they remain pseudo-triangulations.

Proposition 8—A periodic pseudo-triangulation has m = 2n, that is, the number of edge 

orbits m = card(E/Γ) is twice the number of vertex orbits n = card(V/Γ).

Proof: The proof combines Euler’s formula on the torus (9) with counting the corners of 

pseudo-triangular faces. A corner is an angle smaller than π at some vertex of a given face.

We denote by dv the degree of a vertex (valency) in the quotient multi-graph G/Γ, and use 

the classical formula Σv∈G/Γ dv = 2m relating the degree sum to the number of edges in a 

graph. Since there are dv − 1 corners incident to each vertex, we obtain a second relation:

Combined with Euler’s formula (9) n − m + n* = 0 between the number of vertex, edge and 

face orbits, this yields m = 2n = 2n*. An illustration for n = 3 is given in Figure 13.
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Comment—Since for pseudo-triangulations we have m = 2n, formula (32) relating the 

dimensions ϕ and σ of the spaces of periodic flexes and respectively periodic stresses 

implies that:

(33)

Moreover, the relation remains unaffected by relaxations of periodicity of finite index. We 

will make use of this observation further down and in the next section.

Proposition 8 shows that periodic pointed pseudo-triangulations have the right number of 

edges to provide smooth one-degree-of-freedom periodic mechanisms. The next proposition 

shows that this is actually the case. The argument amounts to showing that they have no 

non-trivial periodic stress.

Proposition 9—A periodic pseudo-triangulation cannot have nontrivial periodic stresses. 

The local deformation space is therefore smooth and one-dimensional and continues to be so 

as long as the deformed framework remains a pseudo-triangulation. The same statement 

holds true for any relaxation of periodicity Γ̃ ⊂ Γ of finite index.

Proof: A nontrivial stress would give, by our Main Theorem, a periodic lifting. Such a 

lifting must have at least one vertex achieving the global maximum and another achieving 

the global minimum. However, with an angle exceeding π on some face around each vertex, 

neither a maximum nor a minimum is possible. Thus, the edge length conditions are 

infinitesimally independent and the implicit function theorem gives a local deformation 

space which is smooth and of dimension one.

We present now a proof of a most remarkable property of periodic pseudo-triangulations.

Theorem 1 (Periodic pointed pseudo-triangulations have expansive 1dof 
flexes)—Let (G, Γ, p, π) be a planar periodic pseudo-triangulation. Then the framework 

has a one-parameter periodic deformation, which is expansive for as long as it remains a 

pseudo-triangulation.

Proof outline—We compare the infinitesimal variation of the distance between two pairs 

of vertices (which do not belong to rigid subcomponents) and show that one cannot increase 

while the other decreases. An argument already used by Maxwell in [37] shows that it is 

enough to reason with two pairs of vertices which do not create self-crossing when inserted 

as edges (and replicated by periodicity). After one edge insertion, the framework becomes 

infinitesimally rigid and after the second edge insertion it becomes periodically stressed, 

with a one dimensional periodic stress space. Since either pointedness or non-crossing of 

edges is violated only by the newly inserted edges, and since a pointed vertex cannot be a 

local extremum for the height function, we infer that the associated periodic lifting must 

have its global maximum and global minimum at two of the vertices in the two added edges. 

Considerations of stress sign and of the related mountain/valley type of the lifted edges, as 

summarized in Prop. 3) show that the new edge orbits have stress factors of opposite signs. 
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This in turn implies (by linear programming duality) that the infinitesimal variation of the 

distance between the two pairs of vertices is of the same kind: expansion or contraction.

Proof details—We develop our arguments in a sequence of Lemmas. First, we consider 

what happens after one edge is inserted in a non-crossing manner.

Lemma 10—The periodic framework obtained by inserting a new Γ-orbit of non-crossing 

edges in a periodic pointed pseudo-triangulation is minimally rigid, that is, infinitesimally 

rigid with 2n + 1 edge orbits.

Proof: Relation (32) for the extended framework implies that the dimension of the space of 

periodic flexes equals the dimension of the space of periodic stresses, i.e. σ = ϕ. We argue 

now that no nontrivial periodic stress exists, i.e. σ = 0. Indeed, a nontrivial periodic stress 

would give a nontrivial periodic lifting. The latter must have a global maximum vertex and a 

global minimum vertex. Since pointed vertices cannot be either maxima or minima, the two 

extrema must occur at the endpoints of the new edge. However, a maximum vertex requires 

at least three non-pointed ‘mountain’ edges and a minimum vertex requires at least three 

non-pointed ‘valley’ edges. The new edge would have to be a ‘mountain’ because of the 

maximum at one end and would have to be a ‘valley’ because of the minimum at the other 

end. This contradiction proves the lemma.

We analyze now what happens after a non-crossing second edge orbit insertion. By inserting 

this new edge and its Γ-orbit in the minimally rigid framework obtained above, we must 

have a one-dimensional space of periodic stresses since the space of infinitesimal flexes 

remains null.

Lemma 11—If we add two new edge orbits to a periodic pseudo-triangulation, then we 

cannot have the same sign for the stress factors on the two new edge orbits inserted in the 

pseudo-triangulation.

Proof: We argue first for the case of no common vertex mod Γ for the two new edges. Then, 

as shown above in Lemma 10, we cannot have the maximum and the minimum at the two 

ends of the same new edge. Thus the edge reaching to the maximum is a ‘mountain’ and the 

other one, reaching to the minimum, is a ‘valley’.

In case the two new edges share a vertex, we note that at least one extremum must be at 

some unshared vertex. But then the other extremum cannot be at the shared vertex and must 

be at the other unshared vertex. Thus, as above, the two edges must be a ‘mountain’ and a 

‘valley’.

With opposite signs confirmed for the stress factors on the two new edges, we look now at 

the infinitesimal displacement induced by the infinitesimal deformation of the pseudo-

triangulation on these same edges.

For the framework with two new edge orbits, the non-zero stress vector must be orthogonal 

on the image of the corresponding rigidity matrix. In particular, it must be orthogonal on the 

image vector obtained by evaluating the rigidity matrix on the infinitesimal displacement 
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induced by the pseudo-triangulation. But all entries corresponding to ‘old’ edge orbits, that 

is, edge orbits in the pseudo-triangulation, will be zero. With opposite stress signs for the 

two new edges, orthogonality requires the same sign for the two non-zero entries. This 

means: simultaneous infinitesimal expansion or simultaneous infinitesimal contraction.

By now, the following result has been established.

Proposition 12—Let (G, Γ, p, π) be a planar pseudo-triangulation. Let two pairs of 

vertices be such that both corresponding distances vary infinitesimally under the 

infinitesimal deformation of the pseudo-triangulation. Assume that inserting the 

corresponding two edges (and their Γ orbits) does not produce self-crossing. Then, the two 

edges vary infinitesimally in the same way: both expand or both contract.

As a final step to complete the proof of Theorem 1, we want to remove the assumption that 

the two new edges maintain the non-crossing nature of the periodic framework, and thus to 

prove the full expansive character of the pseudo-triangulation mechanism. In fact, because 

we are comparing the stresses and infinitesimal flexes of pairs of edges, it suffices to assume 

that the first one is not crossing the rest, hence we only need to remove the non-crossing 

assumption for the second inserted edge.

Figure 14 illustrates the (descending) inductive step whereby stress considerations in a 

situation where an edge intersects several other edges can be reduced to an equivalent 

situation without self-crossing. In [37] the procedure is called Bow’s method.

We briefly review the nature of the argument by explaining the stress correspondence for the 

step shown in Figure 14. A new vertex has been inserted at the last crossing of the marked 

edge vectors. With obvious notations (by which an edge α is split into two edges α1 and α2, 

and similarly for the edge β), we have, for the corresponding edge vectors:

Geometric stress conditions at the new vertex require

and the correspondence of stresses (valid for periodic stresses as well) is expressed through 

the formulae:

(34)

with all other stress factors (on edges different from α and β) remaining the same.

Relations (34) show that in this isomorphic correspondence of stresses, the sign of the stress 

factors along the fragmented edges is the same as in the initial framework, hence the 

argument given in Lemma 11 carries over. Thus, whether crossing or not crossing other 

edges, the insertion of a second new orbit of edges in a periodic pseudo-triangulation 
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produces a stressed framework with opposite signs for the stress factors on the two added 

edge orbits. As shown, this implies the same type of infinitesimal variation of the two 

corresponding vertex distances when deforming the periodic pseudo-triangulation. The limit 

case, when the inserted edge passes through one or several vertices of the framework is 

treated similarly. In fact, the step for crossing through a vertex is simpler and only requires 

the splitting of the inserted edge into two edges. This concludes the proof of Theorem 1.

Comment—We retain from this section the conspicuous property of periodic pseudo-

triangulations of maintaining the same deformation space under arbitrary relaxations of 

periodicity of finite index. We make use of this property in the final section, where we 

uncover the ultrarigidity of a family of frameworks obtained from pseudo-triangulations.

We conclude the paper with two applications motivated by questions arising in materials 

science.

6 Expansive and auxetic paths

Periodic pseudo-triangulations determine a large, yet distinctive class of planar periodic 

frameworks. We have presented above some of their remarkable properties: their local 

deformation space is smooth and one-dimensional and this deformation path is expansive as 

long as the framework remains a pseudo-triangulation, that is, for the proper sense of 

variation of the parameter, all distances between pairs of vertices increase or stay the same. 

Moreover, a relaxation of periodicity to a subgroup of finite index does not change these 

characteristics.

In this section we emphasize, from a purely geometric perspective, the relevance of periodic 

pseudo-triangulations and their expansive paths for what has been termed auxetic behavior 

in materials science.

In materials science, the term auxetic, suggestive of increase or growth, refers to solids with 

a negative Poisson’s ratio [32,21]. Quoting from [33]: “A negative Poisson’s ratio in a solid 

defines the counter-intuitive lateral widening upon application of a longitudinal tensile 

strain.” For anisotropic solids, such as single crystals, “the variation of elastic moduli with 

direction is also relevant” (ibid. p.6445). Thus, auxetic behavior is primarily de-fined in 

terms of physical characteristics of the material under consideration. However, in many 

instances with pronounced geometric structural underpinnings, geometrical explanations 

have been proposed [51,24,25,39].

In our context, which is that of periodic frameworks and their deformations, we must rely on 

a comprehensive but strictly geometrical concept of auxetic path. This concept is introduced 

in our companion paper [7] and will be briefly reviewed here.

The geometric approach to auxetics presented in [7] is formulated in arbitrary dimension d 

and addresses one-parameter deformations of a given periodic framework in ℝd. Two 

aspects may be emphasized from the start: (i) that when present, the auxetic property refers 

to the deformation path under consideration and not the framework itself, which oftentimes 

allows other deformation paths which need not be auxetic and (ii) the auxetic character is an 

Borcea and Streinu Page 24

Discrete Comput Geom. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression of a particular type of variation of the periodicity lattice along the deformation 

path.

Mathematically, we rely on the notion of contraction operator in a Hilbert space, which we 

recall below. For our purposes, ℝd with the standard norm |x| = (x·x)1/2, will sufffice. Let T: 

ℝd → ℝd be a linear operator. Then, the operator norm, or simply the norm of T is

T is called a contraction operator, or simply a contraction, when ||T|| ≤ 1.

Comment—From |T x| ≤ ||T|| · |x| it follows that contraction operators are characterized by 

the property of taking the unit ball to a subset of itself. For a strict contraction one requires ||

T|| < 1.

Let us assume now that we have a one-parameter deformation (G, Γ, pτ, πτ), τ ∈ (−ε, ε) of a 

periodic framework in ℝd. The corresponding periodicity lattices Λτ = πτ (Γ), offer by 

themselves a way to compare any two sequential moments τ1 < τ2 by looking at the unique 

linear operator Tτ1τ2 defined by

(35)

Definition 2—A differentiable one-parameter deformation (G, Γ, pτ, πτ), τ ∈ (−ε, ε) of a 

periodic framework in ℝd is called an auxetic path, or simply auxetic, when for any τ1 < τ2, 

the linear operator Tτ2τ1 defined by (35) is a contraction.

In [7] we prove the equivalence of this geometric criterion for auxetic paths with the 

following characterization involving the evolution of the Gram matrix of a generating basis 

for the period lattice of the framework. With conventions already used in previous sections, 

after choosing an independent set of generators for Γ, the image πτ (Γ) is completely 

described via the d × d matrix Λτ with column vectors given by the images of the generators 

under πτ. The associated Gram matrix will be

Proposition 13—A deformation path (G, Γ, pτ, πτ), τ ∈ (−ε, ε) is auxetic if and only if the 

curve of Gram matrices ω(τ) defined above has all its tangents in the cone of positive 

semidefinite symmetric d × d matrices.

Remarks—This infinitesimal characterization of auxetic paths is easily seen to be 

independent of the choice of generators used for obtaining the Gram matrices. There is an 

obvious analogy here with causal lines in special relativity. Causal paths must have all their 
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tangents in the light-cone of Minkowski space-time. Likewise, auxetic paths must have all 

their tangents  in the cone Ω(d) of positive semidefinite symmetric matrices. For the 

geometry and linear symmetries of this cone see [26,1].

This criterion is particularly convenient when frameworks and deformations are described as 

in [6] using parameters in (ℝd)n−1 ×Ω (d). The coordinates in (ℝd)n−1 describe the position 

of (n − 1) chosen representatives for vertex orbits relative to the periodicity basis Λ which 

can be retrieved, up to orthogonal transformations from its Gram matrix ω = Λt Λ ∈ Ω (d). 

The orbit of a first vertex representative is identified with the periodicity lattice.

We now address the comparison of expansive and auxetic paths.

Theorem 2—Let (G, Γ, pt, πt), t ∈ (−ε, ε) be a one-parameter deformation of a periodic 

framework in ℝd. If the path is expansive, that is, if the distance between any pair of vertices 

increases or stays the same for increasing t, then the path is also auxetic. However, auxetic 

paths need not be expansive.

Proof: As emphasized earlier, the auxetic property depends only on the curve ω(τ) and it 

will be enough to use the expansive property on one orbit of vertices. We have to verify that 

the operator Tτ2τ1 which takes the period lattice basis Λτ2 to the period lattice basis Λτ1 is a 

contraction for τ2 > τ1

Let us observe that in the unit ball of ℝd, the vectors with rational coordinates relative to the 

basis Λτ2 give a dense subset. Since some integer multiple of such a point is a period at 

moment τ2, and this period, as a distance between two vertices in a vertex orbit, can only 

decrease or preserve its norm when mapped by Tτ2τ1 to the corresponding period at moment 

τ1, we see that a dense subset of points in the unit ball must be mapped to the unit ball. This 

is enough to conclude that ||T|| ≤ 1.

The fact that small auxetic deformations need not be expansive is to be expected from the 

fact that the relative motion of different vertex orbits is not sufficiently constrained by the 

auxetic property. A simple example is offered by the Kagome framework in dimension two. 

The Kagome framework is a familiar planar example and has been explored from various 

points of view [27,28,31,19,49]. The auxetic character of its one-parameter deformation is 

frequently mentioned [24,38,39]. The brief review here is meant to offer a simple illustration 

of our geometric criterion for auxetic paths and to distinguish the expansive portions of this 

deformation.

Example 2 (Deforming the Kagome framework)—The basic elements for describing 

the framework are shown in Figure 15. The parametrization for the deformation is described 

in Figure 15. Triangles OAB and OCD are assumed congruent and equilateral. With origin 

at O, coordinates may be chosen so that A = (−1, 0) and . The resulting 

Gram matrix for the marked periods and a rotation of triangle OCD with angle θ from the 

standard position is:
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(36)

with:

(37)

The image of the deformation path in the positive semidefinite cone Ω (2) for θ ∈ (−π, π) is 

the segment from the null matrix to ω(0), covered twice. The standard position θ = 0 is a 

maximum for the area of a fundamental parallelogram. Proposition 13 shows immediately 

that the symmetric paths obtained for θ running from π to 0, respectively −π to 0, are 

auxetic.

The range of θ corresponding to periodic pseudo-triangulations is the union (−2π/3, −π/3) ∪ 

(π/3, 2π/3). Expansive behavior cannot occur beyond this range, since the distance variation 

between the two pairs of vertices (A, D) and (B,C) has opposite character when θ is in the 

complement: when one segment increases, the other one decreases.

The framework shown in Fig. 5 is one of the emblematic illustrations of auxetic behavior in 

dimension two. It is called a reentrant honeycomb in [42]. It is often used to illustrate 

auxetic behavior: a vertical stretch involves a necessary horizontal expansion.

Example 3 (The “reentrant honeycomb”)—The framework in Fig. 5 has two degrees 

of freedom and not all deformations paths are auxetic. The expansive possibilities can be 

explained in terms of the two possible refinements to periodic pseudo-triangulations shown 

in Fig. 16.

The framework with all edges of the same length may be obtained by deforming the 2-

diamond framework (the regular hexagonal structure) [8]. An auxetic path would result from 

a ‘vertical stretch’ which visibly entails a horizontal expansion as well. However, an 

understanding of all expansive infinitesimal deformations within all auxetic possibilities 

requires some elaboration [10]. Here, we limit our discussion to the following remarks on 

the basic role of periodic pseudo-triangulations.

The local deformation space of the framework is smooth and two-dimensional. Indeed, by 

pointedness at every vertex, there can be no periodic stress. Since n = 2 and m = 3, there are 

two degrees of freedom. Figure 16 marks the two angles which may be used as parameters. 

By maintaining the central symmetry of the hexagon, the two depicted pairs of periods 

remain equal vectors. The framework can be refined in two ways to a periodic pseudo-

triangulation by insertion of an additional orbit of edges. It can be shown that the expansive 

infinitesimal deformations determined by these two pseudo-triangulations give the extremal 

rays of the infinitesimal expansive cone of the framework. For the larger auxetic cone, we 

refer to [7].
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7 Ultrarigidity

In this final application we discuss the relevance for ultrarigidity of the other remarkable 

feature of periodic pseudo-triangulations, namely the invariance of their local deformation 

space under arbitrary relaxations of the periodicity group to subgroups of finite index Γ̃ ⊂ Γ.

The deformation theory of periodic frameworks, as founded and developed in [3,4,6], is 

formulated for periodic graphs understood as pairs (G, Γ): the periodicity group Γ is an 

essential structural part of the data. The study of phenomena involving changes in 

periodicity or asymptotic behavior under successive relaxations of periodicity may be 

intricate. We have recently proposed [5] the notion of ultrarigidity for expressing the 

property of a periodic framework (G.Γ, p, π) of being infinitesimally rigid and remaining so 

under any relaxation of periodicity to Γ̃ ⊂ Γ of finite index.

Ultrarigidity is easily recognized in frameworks made of some rigid finite parts which are 

rigidly connected between themselves. However, this is not the general case, as the 

following constructions, based on planar periodic pseudo-triangulations, will demonstrate.

Let (G, Γ, p, π) be a periodic pseudo-triangulation. Then, the local deformation space is a 

smooth curve. The infinitesimal deformation corresponding to this one degree of freedom 

mechanism must induce on some pairs of vertices a non-trivial infinitesimal variation of 

length. Then, as argued above in Lemma 10, by selecting such a pair of vertices and by 

inserting the corresponding orbit of edges, we obtain a minimally rigid framework, that is, an 

infinitesimally rigid framework with m = 2n + 1.

In fact, the resulting framework is ultrarigid. Indeed, for any relaxation of periodicity to a 

subgroup Γ̃ ⊂ Γ of finite index, the older framework with relaxed periodicity remains a 

pseudo-triangulation and has the same local deformation space. Thus, the distance between 

the selected pair of vertices varies infinitesimally and the same argument applies, showing 

that insertion of the corresponding Γ̃ edge-orbit already yields an infinitesimally rigid 

framework. This concludes the proof of the following result.

Proposition 14—Let (G, Γ, p, π) be a periodic pseudo-triangulation in which we consider 

a pair of vertices with a non-trivial infinitesimal variation in distance under the infinitesimal 

deformation of the framework. Then the insertion of the corresponding Γ orbit of edges 

results in an ultrarigid framework.

Thus, periodic pseudo-triangulations and insertion choices provide endless examples of 

ultrarigid frameworks.

Example 4 (An ultrarigid periodic framework)—The framework illustrated in Figure 

18 is ultrarigid. The colors of the vertex orbits indicate the periodicity lattice of the pseudo-

triangulation used in this construction. The pseudo-triangulation itself is a deformed 2-

diamond framework with an additional edge orbit [8]. The edge orbit which turns the 

periodic pseudo-triangulation into an ultrarigid framework creates the rigid quadrilaterals 

shown in the picture.
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It is worth remarking that a finite fragment of the framework may be covered by a fragment 

resembling the one depicted in the figure. Such fragments, as finite linkages, are flexible and 

can accommodate small variations of the segments A1A2, A2, A3 etc. However, larger 

assemblies of these stacked rows of rigid quadrilaterals will have smaller leeway for 

variation of deformation parameters. In the limit, as an infinite periodic framework, the 

structure is rigid.

In conclusion, we anticipate that our periodic version of Maxwell’s Theorem and the 

expansive nature of periodic pseudo-triangulations will find, like their finite counterparts, 

further applications in discrete and computational geometry. In the larger scientific context, 

applications are expected in new materials and mechanism design.
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Fig. 1. 
A finite planar stressed graph and a Maxwell lifting.
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Fig. 2. 
The connection between periodic stresses and liftings proven in this paper. (a) A stressed 

periodic framework. Vertex and edge orbits are identically colored, and a fundamental 

polygon of the periodicity lattice is highlighted in grey. (b) Coloring the faces helps 

visualize the 3D lifting of the framework as a periodic arrangement of “cubes”. (c) The same 

periodic graph, in a placement with no non-trivial periodic stresses. (d) The face coloring 

visually confirms that this is not the projection of a polyhedral surface: the faces do not look 

“flat” in 3D.
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Fig. 3. 
A periodic framework and a 2 × 1 relaxation of its periodicity lattice.
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Fig. 4. 
A periodic pointed pseudo-triangulation.
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Fig. 5. 
This so-called ‘reentrant’ structure of hexagons is often used to illustrate auxetic behavior.
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Fig. 6. 
The orientation convention for face edges and vertex edges.
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Fig. 7. 
The normals to two adjacent lifted faces induce the dual orthogonal edge.
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Fig. 8. 
(a) A Delaunay framework (in black) corresponding to a periodic set with four site orbits 

under maximal translational symmetry. Dual vertices are shown as colored centers of the 

faces. Primal-dual edge pairs are orthogonal. (b) The equilibrium stress induced by the 

reciprocal diagram has a non-periodic lifting to the paraboloid z = x2 +y2. (c) The reciprocal 

diagram of the periodic graph on the left is the Voronoi diagram of the periodic sites.
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Fig. 9. 
The Voronoi diagram from Fig. 8(c) is a periodic framework supporting different types of 

stresses. (a) (Not Γ-invariant) Each of the “aligned” infinite paths supports a one-

dimensional stress (equal on each edge of the path and illustrated here with the oblique 

colored diagonals). The stress values can be independently chosen on each diagonal path, 

and thus yield equilibrium stresses, such as the one depicted here, which are not Γ-invariant. 

(b) (Non-periodic Γ-invariant) A Γ-invariant stress assigns the same stress value on all 

edges in an edge orbit. Illustrated here is a stress where all stress orbits have the same sign; 

this cannot be a periodic stress. (c) A periodic stress, as the one shown here, must have both 

positive and negative stresses on edge orbits.
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Fig. 10. 
A periodic 3D lifting for the stressed framework in Figure 9(c).
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Fig. 11. 
After a first relaxation one obtains the yellow parallelogram as fundamental domain and all 

edges with one end in it have the other end in it or in one of the eight neighbours.

Borcea and Streinu Page 42

Discrete Comput Geom. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
The horizontal line h intersected by edges. The marked vector is a period along h. Since all 

edges have nearly vertical directions a sufficiently more slanted line achieves the property 

that no edge crosses from the yellow zone to the red zone.
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Fig. 13. 
A periodic pseudo-triangulation with (n, m, n*) = (3, 6, 3).
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Fig. 14. 
Bow’s method allows a reduction of stress considerations to a non-crossing case. One step is 

illustrated above and another one would eliminate self-crossing.
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Fig. 15. 
(Left) The Kagome framework. (Right) Parametrizing the deformation of the Kagome 

framework. Triangle OAB is fixed, and triangle OCD rotates with an angle θ from the 

standard position. The two generators of the periodicity lattice are marked as arrows.
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Fig. 16. 
Two possible refinements to periodic pseudo-triangulations of the ‘reentrant’ structure of 

hexagons in Figure 5.
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Fig. 17. 
For the ‘reentrant’ structure of hexagons in Figure 5, which has two degrees-of-freedom, the 

figure on the right marks two angles which may be used as parameters. By maintaining the 

central symmetry of the hexagon, the two depicted pairs of periods remain equal vectors.
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Fig. 18. 
An ultrarigid framework obtained from a periodic pseudo-triangulation with an additional 

edge orbit. When ignoring periodicity, finite fragments are flexible.
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