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Abstract

In this paper, we consider the problem of determining in polynomial time whether a given planar point
set P of n points admits 4-connected triangulation. We propose a necessary and sufficient condition
for recognizing P , and present an O(n3) algorithm of constructing a 4-connected triangulation of P .
Thus, our algorithm solves a longstanding open problem in computational geometry and geometric
graph theory. We also provide a simple method for constructing a noncomplex triangulation of P
which requires O(n2) steps. This method provides a new insight to the structure of 4-connected
triangulation of point sets.

1 Introduction

Let P = {p1, p2, . . . , pn} be a set of points on the plane. We assume that no three points of P are
collinear. Consider the problem of constructing a planar graph of maximum connectivity by connecting
points of P with straight edges or line segments. A graph is said to be k-connected if the graph has
at least k + 1 vertices and there does not exist a set of k − 1 vertices whose removal disconnects the
graph. A planar point set P is k-connectible if there exists a k-connected plane graph G with vertex set
P and all edges as line segments. If G is not a triangulated graph, edges can be added to G preserving
planarity such that the resultant graph G′ is a triangulated graph. Observe that since G is k-connected,
G′ is also a k-connected graph. Henceforth, we consider k-connected plane graphs of P as triangulated
plane graphs. Observe that k can be at most 5 due to Euler’s Formula for planar graphs.

In this paper, we consider the problem of determining in polynomial time whether a given planar point
set P of n points admits a 4-connected triangulation. We propose a necessary and sufficient condition for
recognizing P , and present an O(n3) algorithm of constructing a 4-connected triangulation of P . Thus,
our algorithm solves a longstanding open problem in computational geometry and geometric graph theory
[2, 3].

A triangulation of P is a plane graph T with vertex set P such that all edges are line segments, the
boundary of the outer face of T is the boundary of the convex hull of P (denoted as CH(P )), and all
faces of T (with the possible exception of the exterior face) are bounded by triangles [5]. It can be seen
that G corresponds to a triangulation T of P , where CH(P ) in T is the outer face of G. A chord in T is
an edge connecting two nonconsecutive vertices on CH(P ). A complex triangle of T is a triangle formed
by three edges of T , containing a point of P in its interior and another point of P in its exterior. We
have the following properties on the connectivity of P and T from Dey et al. [2] and Laumond [4].

Lemma 1 A triangulation T of a point set P , |P | ≥ 3, in general position is always 2-connected.
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Corollary 1 A point set P , |P | ≥ 3, in general position is always 2-connectible.

Lemma 2 A triangulation T of P , |P | ≥ 4, is 3-connected if and only if it does not have a chord.

Corollary 2 A point set P , |P | ≥ 4, is 3-connectible if and only if there is at least one point in the
interior of CH(P ).

(a) (b)

px

py

pz

Figure 1: (a) An anomalous point set Q. (b) A triangulation of the anomalous set, containing a complex
triangle pxpypz.

Lemma 3 A triangulation T of P , |P | ≥ 5, is 4-connected if and only if:

1. T does not have a chord.

2. No point of P is connected in T to two non-consecutive points on CH(P ).

3. T does not have a complex triangle.

Corollary 3 If |P | ≥ 5 and |CH(P )| = 3, then a triangulation T of P is 4-connected if and only if T
has no complex triangle.

Let Q be a set of planar points such that |CH(Q)| = 3. Let pi be a point of CH(Q) . Let Q′ = Q \ {pi}.
If all points of Q′ are on CH(Q′), then Q is called an anomalous set (Figure 1(a)). It can be seen that
any triangulation of Q must have a complex triangle (Figure 1(b)). We have the following theorems from
Dey et al. [2].

Theorem 1 Q is 4-connected if and only if Q is not anomalous.

Theorem 2 A 4-connected triangulation of Q can be constructed in O(n log n) time.

A triangulation T of P is said to be noncomplex if T has neither chords nor complex triangles. So, a
noncomplex triangulation of P may contain an interior point (say, pk) connected to two non consecutive
points (say, pi and pj) of CH(P ). We refer to such a path (pi, pk, pj) of length 2 as a 2-chord. Dey et al.
[2] characterized point sets that admit noncomplex triangulation and gave a polynomial time algorithm
for constructing such a triangulation as follows.

Theorem 3 A point set P admits a noncomplex triangulation if and only if P is not anomalous and
the interior of CH(P ) is not empty.

Corollary 4 A noncomplex triangulation T of P can be constructed in O(n log n) time.
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In the next section, we present an alternative, simple and short proof for constructing a noncomplex
triangulation of P leading to an O(n2) time algorithm. In Section 3, we present three necessary condi-
tions for characterizing P that admits 4-connected triangulation. We prove that if P satisfies the third
necessary condition, then P also satisfies the first and second necessary conditions. Necessary Condition
1 and Necessary Condition 2 are stated here to provide intuition on geometric structures of point sets
that allow 4-connected triangulation. In Section 4, we give an O(n2) time algorithm for testing the third
necessary condition. In Sections 5, 6 and 7, we prove that if P satisfies the third necessary condition,
then P admits a 4-connected triangulation. We first find a simple polygon C containing all points of P
that are not in CH(P ) together with a suitable triangulation of the annular region bounded by CH(P )
and C. Then the interior of C is triangulated to complete the triangulation by suitably modifying the
triangulation of the annular region, if necessary. In Section 8, we conclude the paper with a few remarks
and open problems.

2 Noncomplex triangulations

(b)

p1

p4

p2
p3

p6

p5

P

p8

p7

(a)

p1

p4

p2
p3

p6

p5

P

p8

p7

Figure 2: (a) The triangle p3p4p5 is empty. (b) The triangle p3p4p5 is not empty.

Lemma 4 Assume that |CH(P )| ≥ 4 and CH(P ) has at least two points in its interior. A point pj can
always be located on CH(P ) such that |CH(P \ {pj})| ≥ 4 and CH(P \ {pj}) has at least one point in
its interior.

Proof: Consider three consecutive points pi−1, pi and pi+1 in the anticlockwise order on CH(P ). If the
interior of the triangle pi−1pipi+1 is empty (Figure 2(a)), then delete pi, giving the required conditions
for CH(P \ {pi}). Otherwise, delete any point on CH(P ) except pi−1, pi and pi+1 (Figure 2(b)). This
method works for |CH(P )| > 4, but it may not always work if |CH(P )| = 4 as CH(P \ {pi}) can
become a triangle. Let p1, p2, p3 and p4 be the vertices of CH(P ), and p5 and p6 are interior points.
Without the loss of generality, we assume that CH(P \{p2}) is a triangle (Figure 3(a)). This implies that
CH(P \ {p4}) cannot be a triangle. So, |CH(P \ {p4})| ≥ 4. However, the interior of CH(P \ {p4}) may
be empty (Figure 3(b)). In that case, CH(P \ {p1}) or CH(P \ {p3}) satisfies the required conditions.
�

Lemma 5 If |CH(P )| ≥ 4, then P admits a noncomplex triangulation if and only if at least one point
of P is not on CH(P ).

Proof: The proof is by induction on the number of points. Let Pi denote a set of i points, such that
|CH(Pi)| ≥ 4 and the interior of CH(Pi) is not empty. The base case is for all Pi, i ≥ 5, such that the
interior of CH(Pi) contains exactly one point. In this case, a noncomplex triangulation can be obtained
by joining the interior point to all points on CH(Pi).

Assume that Pn is not a base case (Figure 2). Since the number of internal points of CH(Pn) is at least
two, a point on CH(Pn) (say, pj) can always be located using Lemma 4 such that removing pj from Pn
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(a) (b)
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p5

P

Figure 3: (a) CH(P \ {p2}) is a triangle. (b) CH(P \ {p4}) is not a triangle.

gives Pn−1 whose all points do not belong to CH(Pn−1), i.e., the interior of CH(Pn−1) is not empty. By
the induction hypothesis, we assume that Pn−1 admits a noncomplex triangulation Tn−1. We show that
Pn admits a noncomplex triangulation.

(a) (b)

pj

pl

pk

pm

pl

pj

pk

Figure 4: (a) In Tn−1, (pl, pk) is not an edge of CH(Pn−1). (b) In Tn−1, (pl, pk) is an edge of CH(Pn−1).

Draw two tangents from pj to CH(Pn−1) meeting it at pk and pl (Figure 4). If (pl, pk) is not an edge of
CH(Pn−1) (Figure 4(a)), then draw edges from pj to all of these points of CH(Pn−1) between pk and pl
that are facing pj . Add these edges to Tn−1 to obtain Tn. Since there is no chord in Tn−1 by assumption,
new edges from pj cannot form a complex triangle in Tn. So, Tn is a noncomplex triangulation of Pn.
If (pl, pk) is an edge of CH(Pn−1) (Figure 4(b)), (pl, pk) becomes a chord in Tn after adding the edges
(pl, pj) and (pj , pk) to Tn−1. In order to obtain a noncomplex triangulation of Pn, (pk, pl) is replaced
by a new edge (pj , pm), where (pk, pl, pm) and (pk, pl, pj) are two triangles on (pk, pl) forming a convex
quadrilateral (pj , pk, pm, pl) in Tn. Thus a noncomplex triangulation Tn is obtained from Tn−1. �

Lemma 6 If |CH(P )| = 3, then P admits a noncomplex triangulation if and only if P is not anomalous.

Proof: If P is anomalous, then there exists a point px ∈ CH(P ) such that all points of P \ {px} are
on CH(P \ {px}) (Figure 1). So, there exists a chord pypz in any triangulation of CH(P \ {px}) which
forms a complex triangle pxpypz. So, there is no noncomplex triangulation of P .

Consider the other situation when P is non-anomalous. Remove a convex hull point (say, p1) from P
and let Q1 = P \ {p1} (Figure 5(a)). If |CH(Q1)| ≥ 4, then triangulate Q1 using Lemma 5, and connect

4



(a)
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p3
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Figure 5: (a) In a non-anomalous point set P , points p1, p2, p3 and p4 are deleted. (b) A noncomplex
triangulation of P , where interiors of CH(Pi) and CH(Px) are not empty.

p1 to all points of CH(Q1) facing p1 to complete the triangulation of P . If |CH(Q1)| = 3, and the
interior of CH(Q1) is not empty, then the new convex hull point (say, p2) is removed from Q1 as before
and let Q2 = Q1 \ {p2}. This process of deletion is repeated till the remaining point set (say, Qi) forms
an empty triangle or |CH(Qi)| ≥ 4. Let Q′i = {p1, p2, . . . , pi}. Let CH(Qi) = {pj , px, px+1, . . . , py, pk},
where pj and pk are two convex hull points of P not deleted during the process (Figure 5(b)). Let
Qx = Q′i ∪ {px} ∪ {pj} and Qy = Q′i ∪ {py} ∪ {pk}. If all points of Q′i do not belong to the triangle
p1pjpx, then |CH(Qx)| ≥ 4 and therefore CH(Qx) can be triangulated using Lemma 5. Otherwise,
|CH(Qy)| ≥ 4 which can again be triangulated using Lemma 5. The remaining portion of P between
the convex hull boundaries can be triangulated arbitrarily.

(a)

p1

pj pk

px

py
Q4

(b)

p1

pj pk

px

py
Q4

Qx

Qx

Figure 6: (a) The interior of CH(Qi) is empty, but the interior of CH(Qx) is not empty. (b) The interiors
of both CH(Qi and CH(Qx) are empty.

Observe that Lemma 5 cannot be used to triangulate CH(Qi), CH(Qx) and CH(Qy) if their interiors
are empty. In such situations, a different method is used to triangulate P . Assume that the interior of
CH(Qi) is empty and Qx has already been triangulated using Lemma 5 (Figure 6(a)). Draw edges from
pk to all points on CH(Qx) between p1 and px. Also, draw chords from pj to all points on CH(Qi).
Note that these edges cannot form any complex triangle because there is no chord in the triangulation of
Qx. Consider the other situation when both CH(Qi) and CH(Qx) have empty interiors (Figure 6(b)).
As before, draw edges from pj and pk. In order to avoid forming any complex triangle, draw edges from
px to all points on CH(Qx). The remaining portion of P between the convex hulls of Qi and Qx can be
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triangulated arbitrarily. �

Based on the above lemmas, we now present the main steps of our algorithm for constructing a noncom-
plex triangulation of P .

Step 1. Compute the convex layers of P ; indicator := false.

Step 2. If |CH(P )| = 3 then goto Step 7.

Step 3. Locate a point pj ∈ CH(P ) such that |CH(P \ {pj})| ≥ 4 and the interior of CH(P \ {pj}) is
not empty (see Lemma 4).

Step 4. Join pj with the vertices of CH(P \ {pj}) that are facing pj ; P := P \ {pj} ; Update the convex
layers for P (see Lemma 5).

Step 5. If CH(P ) has two or more interior points then goto Step 3.

Step 6. Join the interior point of CH(P ) to all vertices of CH(P ); if indicator = false then goto Step
15 else goto Step 14.

Step 7. C := φ. ; Let pi, pj , pk be the vertices of CH(P ); If P is anomalous then goto Step 15.

Step 8. Locate a point pi on CH(P ); C := C ∪ {pi}; P := P \ {pi}; Update convex layers of P .

Step 9. If P is a nonempty triangle then goto Step 8.

Step 10. Let px and py be the next clockwise and counterclockwise point of pj and pk on CH(P )
respectively ; If CH(P ) and CH(C ∪ {px} ∪ {pj}) do not overlap then C := C ∪ {px} ∪ {pj} else
C := C ∪ {py} ∪ {pk} (see Lemma 6).

Step 11. Triangulate the region between CH(P ) and CH(C).

Step 12. If P is empty then triangulate P ; If C is empty then triangulate C.

Step 13. If P is nonempty then indicator := true and goto Step 3.

Step 14. If C is nonempty then P := C and indicator := false and goto Step 3.

Step 15. STOP.

Theorem 4 Noncomplex triangulation of P (if it exists), can be constructed in O(n2) time.

Proof: Correctness of the algorithm follows from Lemmas 4, 5 and 6. In Step 1, the convex layers of P
can be computed recursively by computing convex hulls of P which takes O(n2) time. In Step 4, vertices
of CH(P \ {pj}) facing pj can be obtained by drawing appropriate tangents from its two neighbours to
the next layer of CH(P \ {pj}), which can be done in O(n) time. Remaining steps of the algorithm also
take O(n) time. Hence, the overall time complexity of the algorithm is O(n2).

�

3 Necessary conditions

Consider any 4-connected triangulation T of P . A triangle of T is said to be an annular triangle if one of
its vertices belong to CH(P ) (see Figure 7). The region covered by all annular triangles of T is referred
as the annular region of T (denoted by A(T )). Observe that A(T ) is a region bounded by CH(P ) and
the inner cycle of A(T ) formed by vertices of annular triangles not belonging to CH(P ). Note that
all the points of CH(P ′), where P ′ is the set of interior points of CH(P ), belong to the inner cycle of
A(T ). In Figure 7(a), the inner cycle is formed by the points {p9, p10, p11, p12, p13, p14, p15, p16, p17}. If
exactly one vertex of an annular triangle belongs to CH(P ), the triangle is called an outward triangle
of A(T ). Otherwise, the triangle is called an inward triangle of A(T ). For example, p4p12p5 in Figure 7
is an inward triangle while p12p5p13 is an outward triangle. Note that every inward or outward triangle
is empty by definition of triangulation. The vertex of an inward triangle belonging to P ′ is called the
inward vertex of the triangle. We have the following necessary condition from Dey et al. [2].
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P ′

CH(P )
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Figure 7: (a) The point set satisfies Necessary Conditions 1 and 2. (b) The point set satisfies Necessary
Condition 1 but not Necessary Condition 2.

Necessary condition 1 If P admits a 4-connected triangulation, then |P ′| ≥ |CH(P )|.

Proof: Let ab and cd be two edges of CH(P ). If two inward triangles abe and cde share a vertex e, then
(a, e, c) is a 2-chord, which is not permitted in a 4-connected triangulation. So, no two inward triangles
of A(T ) can share an inward vertex (see Figure 7(a)). Since every edge of CH(P ) belongs to one inward
triangle, the number of points on the inner cycle of A(T ), which are points of P ′, is at least |CH(P )|.�

Consider Figure 7(b). The inward triangle p7p8p13 has touched CH(P ′) at p13 from the opposite side
after intersecting the edge p9p15 of CH(P ′). This introduces a 2-chord as any triangulation of P must
connect p13 with p4 or p5. So, there cannot be any 4-connected triangulation of P with inward triangle
p7p8p13 as the inner cycle becomes self-intersecting. This observation leads to the following necessary
condition.

(a)

pr

pchainc(pr, pt)

pchaincc(pr, pt)

Q

pt

qchaincc(pr, pt)

a

b c

P

S

P ′

(a) (b)

ci
ci−1

c1

ck

P
P ′

d

Figure 8: (a) Any choice of inward triangles leads to a self-intersecting inner cycle of A(T ). (b) Candidate
triangles on ci−1ci in the clockwise order are stored in Li.

Necessary condition 2 Let P be 4-connectible. Let S be any set of consecutive points on CH(P ). If
S is deleted from P , the new convex hull of the set Q of remaining points of P must be of size at most
|P ′|+ 1.
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Proof: Let pr and pt be any two points on CH(P ) (Figure 8(a)). Let pchaincc(pr, pt) (or, pchainc(pr, pt))
denote the counterclockwise boundary (respectively, clockwise boundary) of CH(P ) from pr to pt.
For any pair of pr and pt, the corresponding S is defined as all points of pchaincc(pr, pt) excluding
pr and pt. Similarly, qchaincc(pr, pt) (or, qchainc(pr, pt)) is defined as the counterclockwise bound-
ary (respectively, clockwise boundary) of CH(Q) from pr to pt, excluding pr and pt. Note that
qchainc(pr, pt) = pchainc(pr, pt).

Let abc be an inward triangle, where bc is an edge of pchainc(pr, pt). Assume that a ∈ qchaincc(pr, pt).
Since any triangulation of P must join a with some point a′i on pchaincc(pr, pt), (d, a, b) or (d, a, c) be-
come 2-chords. So, there cannot be any such inward triangle (called forbidden triangle) in a 4-connected
triangulation of P . This implies that a must be an interior point of CH(Q) (i.e. P ′ \ qchaincc(pr, pt)),
and the number of interior points of CH(Q) must be at least the number of edges of pchainc(pr, pt) (i.e.
|CH(P )| − |pchaincc(pr, pt)| − 1). In other words,

|CH(P )| − |pchaincc(pr, pt)| − 1 ≤ |P ′| − |qchaincc(pr, pt)|
or, |CH(P )| − |pchaincc(pr, pt)|+ |qchaincc(pr, pt)| ≤ |P ′|+ 1

or, |CH(Q)| ≤ |P ′|+ 1

Consider Figure 9(a). Though |P ′| < |CH(P )|, the point set satisfies Necessary Condition 2 for every

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10p11

p13

p12

p14
p15

p16 p17

p18

p19

p20

p21

p22p23
p24

p25

P

(a) (b)

p1

p2 p3

p4

p5

p6

p7

Figure 9: (a) The point set satisfies Necessary Condition 2 but not Necessary Condition 1. (b) The point
set satisfies Necessary Condition 1 and Necessary Condition 2 but there is no 4-connected triangulation
of this point set.

pair of pr and pt. It may appear that if P satisfies both Necessary Conditions 1 and 2, then there always
exists a 4-connected triangulation of P . However, this is not true for the point set shown in Figure 9(b),
though it satisfies Necessary Conditions 1 and 2. Observe that the inward triangles p2p15p3, p6p18p7,
p8p21p9 and p12p24p1 must be present in any 4-connected triangulation of P . Consider the edges p9p10,
p10p11 and p11p12 between the two inward triangles p8p21p9 and p12p24p1. Since they need three inward
vertices, p22, p23 and p25 must be assigned as inward vertices for these three edges. Observe that p25
is also required as inward vertex in addition to p16 and p17 for the edges p3p4, p4p5 and p5p6. Since
p25 cannot be an inward vertex of two inward triangles, the point set does not admit a 4-connected
triangulation. This leads to another necessary condition.

A set Tc of inward triangles, that are not forbidden, is said to be compatible if no two inward triangles
in Tc share an edge or an inward vertex or an interior point. Tc is said to be maximal if no inward
triangle can be added to Tc while keeping Tc compatible. Let T ′c ⊆ Tc be the set of all compatible inward
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triangles whose inward vertices are vertices of CH(P ′). Let max|T ′c| denote the maximum cardinality of
T ′c among all Tc that are maximal.

Necessary condition 3 Let P be 4-connectible. Then, |P ′| − |CH(P ′)| ≥ |CH(P )| −max|T ′c|.

Proof: In a 4-connected triangulation, there are |CH(P )| compatible inward triangles and |Tc| =
|CH(P )|. Choose one such maximal Tc which gives max|T ′c|. In order to have |CH(P )| compatible
inward triangles for a 4-connected triangulation, |P ′| − |CH(P ′)| must be of size at least |Tc| −max|T ′c|.
Hence, |P ′| − |CH(P ′)| ≥ |CH(P ′)| −max|T ′c|. �

Lemma 7 If P satisfies Necessary Condition 3, then P also satisfies Necessary Conditions 1 and 2.

Proof: We have |P ′| − |CH(P ′)| ≥ |CH(P )| − max|T ′c|. So, |P ′| ≥ |CH(P )| + |CH(P ′)| − max|T ′c|.
Since inward vertices of T ′c are vertices of CH(P ′), |CH(P ′)| −max|T ′c| ≥ 0. Hence, |P ′| ≥ |CH(P )|
which is Necessary Condition 1.

Consider any two vertices pr and pt of CH(P ) and Tc which gives max|T ′c|. Since an inward triangle
on an edge in pchaincc(pr, pt) cannot have an inward vertex in qchaincc(pr, pt), we have max|T ′c| ≤
|CH(P ′)| − qchaincc(pr, pt) + pchaincc(pr, pt) + 1. However, by Necessary Condition 3, max|T ′c| ≥
|CH(P )| + |CH(P ′)| − |P ′|. This implies |CH(P )| − |P ′| ≤ pchaincc(pr, pt) − qchaincc(pr, pt) + 1, or,
|CH(P )| + qchaincc(pr, pt) − pchaincc(pr, pt) + 1 = |CH(Q)| ≤ |P ′| + 1, which is Necessary Condition
2. �

4 An algorithm for testing necessary conditions

For testing necessary conditions, it is enough to test Necessary Condition 3 due to Lemma 7. In this
section, we give an O(n2) time algorithm for checking whether P satisfies Necessary Condition 3. Our
algorithm first constructs a bipartite graph G(U, V,E) and then computes a maximum matching M in
G. Starting from M , another matching M ′ in G is constructed such that |M | = |M ′| and no two inward
triangles corresponding to edges in M ′ intersect. Hence, |M ′| = max|T ′c|.

Initially, U = V = E = φ. Let c1, c2, . . . , ck be the vertices of CH(P ) in the counterclockwise order (see
Figure 8(b)). For every edge ci−1ci of CH(P ), add a vertex ui in U . For every vertex ai of CH(P ′),
add a vertex vi to V . If ci−1ajci is empty and is not a forbidden triangle, then add the edge uivj to E.
Compute a maximum matching M of G by the Hopcroft-Karp algorithm [1]. Let T be the set of inward
triangles of P corresponding to M . We have the following lemma.

cj

cj−1

ci−1

ci

(a)

cl

cl−1

axaz

ay

cj

cj−1

ci−1

ci

(b)
cl

cl−1

ax
azay

Figure 10: (a) The inward triangle cl−1azcl intersects cj−1axcj and ci−1axci from right to left. (b) The
inward triangle cl−1azcl intersects cj−1axcj and cj−1aycj from left to right.

9



Lemma 8 Starting from a maximum matching M in G(U, V,E), another maximum matching M ′ in
G can be constructed such that no two inward triangles corresponding to the edges of M ′ intersect each
other.

Proof: Let T denote the inward triangles corresponding to M . If no two triangles in T intersect then
M = M ′. So, we assume that T contains intersecting inward triangles. Let ci−1axci and cj−1aycj
be two intersecting inward triangles in T . Replace ci−1axci and cj−1aycj by ci−1ayci and cj−1axcj to
remove the intersection (see Figure 10). Observe that ci−1ayci and cj−1axcj are not forbidden triangles
and hence, they are represented as edges in G. So, two edges in M are replaced by two other edges of
G. Observe that if any inward triangle cl−1azcl in T intersects cj−1axcj , then the same triangle also
intersects ci−1axci or cj−1aycj as cl−1cl and az must lie on the opposite sides of cj−1axcj (see Figure
10). So, the number of intersecting triangles in T is reduced by the above replacement. Repeat this
process of replacement of triangles till no two inward triangles, corresponding to the modified matching,
intersect. Thus a new matching M ′ in G is constructed from M with |M | = |M ′|. �

testing necessary conditions(P)
compute CH(P ) and CH(P ′);
let the points of CH(P ) be {c1, c2, . . . , ck} in counterclockwise order;
// test

U := φ, V := φ, E := φ;
G := (U, V,E);
i := 1;
while i ≤ |CH(P )| do

U := U ∪ {ui};
i := i+ 1;

end
// creates U
i := 1;
while i ≤ |CH(P ′)| do

V := V ∪ {vi};
i := i+ 1;

end
// creates V
i := 1;
while i ≤ |CH(P )| do

j := 1;
while j ≤ |CH(P ′)| do

if ci−1ajci is empty and it is not a forbidden triangle of P then
E := E ∪ {uivj};

end
j := j + 1;

end
i := i+ 1;

end
// creates E
// completes construction of G
compute a maximum matching M of G;
T := φ;
add inward triangles of P to T that correspond to the edges of M ;
while two triangles ci−1axci and cj−1aycj in T intersect do

T = (T \ {ci−1axci, cj−1aycj}) ∪ {ci−1ayci, cj−1axcj};
M = (M \ {uivx, ujvy}) ∪ {uivy, ujvx};

end
// computes final M and T with non-intersecting and non-forbidden inward

triangles

report T ;
if |CH(P )| − |T | ≤ |P ′| − |CH(P ′)| then

report that P satisfies Necessary Condition 3;
end

10



Lemma 9 The procedure testing necessary conditions(P) correctly computes max|T ′c| in O(n3)
time.

Proof: The correctness of the algorithm follows from Lemma 8. Constructing G requires O(n2) time.
The Hopcroft-Karp algorithm for computing maximum matching of bipartite graphs takes O(n2.5) time.
Since there can be at most n2 intersections among triangles, locating each such pair takes O(n) time.
Hence, replacement of all intersecting pairs of triangles takes O(n3) time. �

5 Construction of initial set of inward triangles

In this section, we introduce the notion of a good set S of inward triangles which is used as the first step for
constructing a 4-connected triangulation of P . Let us start with a few definitions (see Figure 11(a)). Two
triangles are said to be pairwise disjoint if their interiors do not intersect. Since the definition permits
two triangles to share vertices or edges, pairwise disjoint triangles may not be compatible triangles as
defined earlier. We refer to a line segment joining a vertex ci of CH(P ) to a point u of P ′ as a degenerate
inward triangle, where u is the inward vertex of this degenerate inward triangle. The line segment ciu
is called forbidden if u is a point of CH(P ′) and ciu intersects the interior of CH(P ′). In our definition
of S, we allow S to include degenerate inward triangles. We allow repetition of only degenerated inward
triangles in S, making S a multiset. For every vertex ci, let Si denote the set of inward triangles of S
incident on ci. For all i, order the triangles of Si around ci in the clockwise order starting from ci−1.
Construct a list L(S) by concatenating S1,S2, . . . ,Sk in the same order, and remove the duplicate inward
triangles from L(S). The edge c1ai of an inward triangle ci−1aici (or a degenerate inward triangle ciai)
is referred to as the right edge of ci−1aici. A point u in P ′ is said to be free if it is not the inward vertex
of any triangle in S. Let −→ciy denote the ray drawn from ci through a point y ∈ P ′. The segment ciy is
called the left tangent of ci to P ′ if all points of P ′ lie to the right of −→ciy.

We say S is good if it satisfies the following properties (see Figure 11(b)):

1. |S| = |P ′|.

2. S does not contain any forbidden triangle.

3. The triangles in S are pairwise disjoint.

4. Every vertex of CH(P ′) is the inward vertex of some triangle in S.

5. Every edge of CH(P ) has an inward triangle in S.

6. No line segment joining two free points intersects any triangle in S.

7. Let t be a triangle in S with right edge ciai such that the next triangle in L(S) has the same inward
vertex ai (i.e., the counterclockwise next triangle of t in L(S) is either ciaici+1 or a degenerate
triangle ciai) (see Figure 12(a)). For any free point x, the following properties hold:

(a) The point x lies to the right of −−→ciai.
(b) If t′ is a triangle in S with right edge cjaj intersecting the line segment cix, then cj lies to

the right of −→cix, aj lies to the left of −→cix, and either aj = ai or aj lies to the right of −−→ciai.

8. Let t be a triangle in S with right edge ciai such that the next triangle in L(S) has inward vertex
ai+1 6= ai (i.e., the counterclockwise next triangle of t in L(S) is either ciai+1ci+1 or a degenerate
triangle ciai+1) (see Figure 12(b)). For any free point x, the following properties hold:

(a) The line segment ai+1x does not intersect t.

(b) If t′ is a triangle in S with right edge cjaj intersecting the line segment ai+1x, then cj lies to
the right of −−−→ai+1x, aj lies to the left of −−−→ai+1x and the line segment ai+1aj does not intersect t.

(c) There is no point of P ′ in the interior of the triangle aiciai+1.
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(a) (b)

c1

c8

a1 a1

c1
c2

c3

c4

c5

c6

c7

c2

c3

c4

c5

c6

c7

c8a2

a3

a4

a5a6
a2
a3

a4

a5a6

a7

a8

S S

Figure 11: (a) S = {c8a1c1, c1a2c2, c2a3c3, c3a4c4, c5a5, c5a6, c5a2c6, c6a2c7} is a set of inward triangles
but not a good set. (b) S = {c8a1c1, c1a2, c1a2, c1a2, c1a3c2, c2a4c3, c3a4c4, c4a5c5, c5a6, c5a6, c5a6,
c5a3c6, c6a7c7, c7a8c8} is a good set.

Lemma 10 If P satisfies Necessary Condition 3, then there exists a good set S of inward triangles.

Proof: Assume that a set P satisfies Necessary Condition 3. So, a set T of inward triangles having
maximum cardinality can be computed while testing for Necessary Condition 3 (see Procedure test-
ing necessary conditions() and Lemma 9). Observe that T may not satisfy all properties of a good set.
We show that T can be converted to a good set S as follows.

We know that T satisfies Properties 2, 3 and 6 of a good set. However, all edges of CH(P ) may not
have inward triangles i.e., T = {ci−1aici} for some values of i. Let cici+1 be one such edge where the
inward triangle ci−1aici belongs to T . If ciaici+1 is empty (see Figure 13(a)), add the inward triangle
ciaici+1 to T . Otherwise, ciaici+1 contains a vertex aj of CH(P ′) which forms an empty triangle on
cici+1 (see Figure 13(b)). Add the inward triangle ciajci+1 to T . The process is repeated so that every
edge of CH(P ) has an inward triangle in T , satisfying property 5 of a good set. If a point u ∈ CH(P ′)
has not been assigned as an inward vertex, then add the degenerate inward triangle ciu to T , where u
lies between two inward triangles on ci−1ci and cici+1 with distinct inward vertices. (see Figure 13(c)).
Note that ciu does not intersect any inward triangle in T . This process is repeated so that every vertex
of CH(P ′) is the inward vertex of some inward triangle (possibly degenerate) in T , satisfying property
4 of a good set.

Observe that since all vertices of CH(P ′) are assigned as inward vertices, all free points lie in the interior
of CH(P ′). So, for any inward triangle ci−1aici and free point x, the line segment aix does not intersect
any inward triangle in T , satisfying Property 8(a). Let ai+1 be the next counterclockwise vertex of ai on
CH(P ′). Since ai+1 is also an inward vertex, aiciai+1 does not contain any point, satisfying Properties
8(b) and 8(c).

Let a′i be the inward vertex for two or more triangles in T , say, {ci−1a′ici, cia′ici+1, . . . , ci+j−1a
′
ici+j}. Let

a′i−1 be the next clockwise vertex of a′i on CH(P ′). If the triangle cia
′
i−1ci does not intersect the interior

of CH(P ′) (see Figure 14(a)), replace the triangle ci−1a
′
ici by ci−1a

′
i−1ci in T (see Figure 14(b)). Repeat

this process for all such triangles wherever possible. This process must terminate once the right edge of
a triangle becomes the left tangent to CH(P ′), or each vertex of CH(P ′) becomes the inward vertex of

only one (possibly degenerate) inward triangle. Observe that for all i ≤ l ≤ i+ j,
−−→
cla
′
i is the left tangent

of cl to CH(P ′). So, consecutive triangles in L(T ) having the same inward vertex satisfy Property 7.
Note that this step does not guarantee that all inward triangles have distinct inward vertices.

Consider the other case where every vertex of CH(P ′) is the inward vertex of only one inward triangle
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(a) (b)c1

ci−1

ci

ci+1

x

t

cj

aj

t′

ci−1 ci

ci+1

cj

aj

x

ai

ai+1

t

t′ai

S S

Figure 12: (a) S satisfies Property 7 for where consecutive inward triangles ci−1aici and ciaici+1 are
sharing the common inward vertex ai. (b) S satisfies Property 8 for two consecutive inward triangles
ci−1aici and ciai+1ci+1 for ai 6= ai+1.

in T . If ci−1a
′
ici is the current inward triangle and

−−→
cia
′
i is not the left tangent to CH(P ′), then replace

ci−1a
′
ici by ci−1a

′
i−1ci in T for all i (see Figure 14(c)). This step is required to ensure that T satisfies

Property 7 even after adding some degenerate inward triangles to T in the next step, making T a mul-
tiset.

In order to satisfy |T | = |P ′|, degenerate inward triangles are added to T . We find an inward triangle

ci−1a
′
ici in T such that

−−→
cia
′
i is a left tangent to CH(P ′). Such a triangle must exist in T due to the

shifting of triangles mentioned earlier. We consider cia
′
i as a degenerate inward triangle and repeat it in

T till |T | = |P ′|, satisfying Property 1. Hence T becomes a good set S. �
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(a) (b)

ci−1

ci−1ci
ci+1

cj

cj−1

ai

aj
cjaj

cj−1
ci

ai

ci+1
(c)

ci−1
ci ci+1

a′i a′i+1u

c1

ck

a1T

c1

ck

a1T

c1

ck

a′1T

Figure 13: (a) The inward triangle ciaiai+1 is added to T . (b) The inward triangle ciajai+1 instead of
ciaiai+1 is added to T . (c) The degenerate inward triangle ciu is added to T .

(a)

ci−1
ci

ci+1

a′i

c1
ck

a′1T

ci+2

(b)

ci−1
ci

ci+1

a′i

c1
ck

a′1T

ci+2

a′i−1 a′i−1

(c)

ci−1
ci

ci+1

c1
ck

T

ci+1

Figure 14: (a) The inward triangles ci−1aici, ciaici+1 and ci−1aici+1 have a common inward vertex ai.
(b) The triangle ci−1aici is replaced by ci−1ai−1ci in T . (c) The inward vertex of each inward triangle
can be shifted to the vertex in the clockwise order along CH(P ′).
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constructing good set(P)
compute CH(P ) and CH(P ′);
let the points of CH(P ) be {c1, c2, . . . , ck} in counterclockwise order;
T := testing necessary conditions(P);
// T satisfies Properties 2, 3 and 6

aj := a1;
while i < |CH(P )| do

if ci−1ci has an inward triangle in T then
i := i+ 1;

else
scan CH(P ) for ci in the counterclockwise order to locate the first inward triangle cj−1ajcj ;
l := i;
while l < i and cl−1aicl is empty do

T := T ∪ cl−1ai−1cl;
l := l + 1;

end
while l < i and cl−1ajcl is empty do

T := T ∪ cl−1ai−1cl;
l := l + 1;

end

end
i := j;

end
// T satisfies Property 5

i := 1;
while i < |CH(P )| do

if inward vertices a′i and a′i+1 of ci−1ci and cici+1 are different then
connect every vertex u of CH(P ′) inside a′icia

′
i+1 to ci and add ciu to T ;

end
i := i+ 1;

end
i := 1;
// T satisfies Properties 4 and 8

while i < |CH(P )| do
if ci−2a

′
i−1ci−1, ci−1a

′
ici and cia

′
ici+1 have two different inward vertices and

−−→
cia
′
i is not the

left tangent to CH(P ′) then
T = T \ {ci−1a′ici};
T = T ∪ {ci−1a′i−1ci};
i := i− 1;

else
i := i+ 1;

end

end
// T satisfies Property 7

while all inward triangles have distinct inward vertices and the right edge cia
′
i of no inward

triangle is the left tangent to CH(P ′) do
i := 1;
while i < |CH(P )| do

T = T \ {ci−1a′ici};
T = T ∪ {ci−1a′i−1ci};
i = i+ 1;

end

end
// inward triangles in T are shifted to the left

if |T | < |P ′| then
if a right edge cia

′
i is a left tangent to CH(P ′) then

add |P ′| − |T | copies of cia
′
i to T ;

end

end
// T is a multiset and satisfies Property 1

S := T ;
report S;
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The correctness of the procedure follows from Lemma 10. It is straight forward to show that the procedure
runs in O(n2) time. We have the following theorem.

Theorem 5 A good set S of P can be computed in O(n2) time.

6 Construction of inward triangles with distinct inward vertices

In this section, we show that S constructed in the previous section can be transformed into another good
set such that no two inward triangles have the same inward vertex. The process of transformation is
carried out by applying shift operations repeatedly. Suppose there exists a point a′ which is the inward
vertex of more than one inward triangle in S. In a shift operation, one of the inward triangles of a′, say,
ci−1a

′ci is replaced by another inward triangle ci−1a
′′ci on the same edge of CH(P ) such that a′′ lies

to the right of
−−→
cia
′. Note that the inward triangle can be degenerate, in which case ci−1 = ci. Observe

that a′ and a′′ can be points in the interior of CH(P ′) (denoted as P ′′) unlike in the previous section
where inward vertices are restricted to vertices of CH(P ′). In fact, the shift operations add points of P ′′

to the set of existing inward vertices which allows inward triangles in S to have distinct inward vertices.
Before we discuss shift operations, we state the following lemma on the properties of free points of P ′,
which is used later in this section.

(a)

x

a′i

a′j

a′l

a′l+1

cici−1
cj−1

cj

cl

cl−1

cl+1

(b)

x
a′i

a′j

a′l

a′l+1

cici−1
cj−1

cj

cl

cl−1

cl+1

cm

cm−1

a′m

cm−1

cm

a′m

Figure 15: (a) The inward triangle cj−1a
′
jcj intersects a′ix and a′l+1x. (b) The inward triangle cj−1a

′
jcj

intersects a′ix but does not intersect a′l+1x.

Lemma 11 Let ci−1a
′
ici be an inward triangle in a good set S and x be a free point (Figure 15). If an

inward triangle cj−1a
′
jcj in S intersects a′ix then cj lies to the right of

−→
a′ix and a′j lies to the left of

−→
a′ix.

Further, there is no inward triangle in S cl−1a
′
lcl intersecting a′ia

′
j such that cl lies to the left of

−−→
a′ia
′
j,

and a′l lies to the right of
−−→
a′ia
′
j.

Proof: Traverse L(S) in the clockwise order from ci till an inward triangle cm−1a
′
mcm is reached such

that a′m 6= a′i (see Figure 15). If any triangle cj−1a
′
jcj intersects a′ix, then by the Property 8(b) of

cm−1a
′
mcm, cj lies to the right of

−→
a′ix, a′j lies to the left of

−→
a′ix, and the line segment a′ia

′
j does not

intersect cm−1a
′
mcm.

Assume on the contrary that there exists an inward triangle cl−1a
′
lcl that has intersected a′ia

′
j and cl

lies to the left of
−−→
a′ia
′
j . If cl−1a

′
lcl is the next inward triangle in the clockwise order where a′l 6= a′i, then

cl−1a
′
lcl does not intersect a′ia

′
j by Property 8(b) of cl−1a

′
lcl. Otherwise, there exists inward triangles

between cl−1a
′
lcl and ci−1a

′
ici having different vertices. Without the loss of generality, we assume that

cla
′
l+1cl+1 is one such inward triangle such that a′l 6= a′l+1 6= a′i and cla

′
l+1cl+1 does not intersect a′ia

′
j .

If cj−1a
′
jcj intersects a′l+1x (see Figure 15(a)), then cl−1a

′
lcl cannot intersect a′l+1a

′
j due to Property
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8(b) and therefore cl−1a
′
lcl cannot intersect a′ia

′
j without intersecting a′l+1a

′
j which is a contradiction.

Again, if cj−1a
′
jcj does not intersect a′l+1x (see Figure 15(b)), then cl−1a

′
lcl cannot intersect a′ia

′
j without

intersecting a′l+1x due to Property 8(a). Hence no such triangle cl−1a
′
lcl in S intersects a′ia

′
j . �

Let us now explain shift operations. Let Z = (ci−1a
′
ici, cia

′
ici+1, . . . , ci+j−1a

′
ici+j) be a maximal sequence

of consecutive inward triangles in L(S) with a′i as inward vertex. We call Z a zone of a′i. If a′i is a vertex
of CH(P ′) (see Figure 16(a)), it can have only one zone. Otherwise, S must have a forbidden triangle,
violating property 2 of good sets. However, if a′i ∈ P ′′, then a′i can have multiple zones (see Figure
16(b)). The right edge of the last triangle in a zone in counterclockwise order is called the right edge of
the zone. The right edges of the zones, which are all line segments joining a′i to some points of CH(P ),
partition the interior of CH(P ) into disjoint regions. All free points must be contained in one region
R, since a line segment joining two free points does not intersect any triangle in S. Note that if a′i is a
vertex of CH(P ′), then there is only one region in CH(P ).

Suppose R is a convex region. Let cia
′
i and cja

′
i be the right edges of zones bounding R, such that cj is

to the right of
−−→
cia
′
i (see Figure 16(b)). Let t1 = ci−1a

′
ici be the last triangle in anti-clockwise order in

the zone with right edge cia
′
i. If t1 is a degenerate triangle then t1 = cia

′
i. Consider the case where R is

nonconvex. Let cia
′
i and cja

′
i be the right edges of zones bounding R such that cj is to the left of

−−→
cia
′
i

(see Figure 16(c)). Again, let t1 = ci−1a
′
ici be the last triangle in the counterclockwise order in the zone

with right edge cia
′
i. If t1 is a degenerate triangle then t1 = cia

′
i. We choose the triangle t1 to shift. The

choice of t1 ensures the properties stated in the following lemma.

Lemma 12 Let t1 = ci−1a
′
ici be the triangle selected for shifting (see Figure 16). Then the following

properties hold:

1. The triangle following t1 in L(S) has an inward vertex different from a′i.

2. Every free point is to the right of
−−−→
ci−1a

′
i and hence also of

−−→
cia
′
i.

3. The line segment joining ci to any free point does not intersect any triangle with inward vertex a′i.

(a)

ci

(b)

a′i

a′i a′i

ci ci

(c)

ci−1
ci−2

ci−3

ci−1

ci−2

cj cj−1

ci−2

ci−1

cj

cj−1

R

R
R

t1

t1

t1

Figure 16: (a) Since a′i is a vertex of CH(P ′), there can be only one zone. (b) There are three zones
with a′i as the common inward vertex and all free points lie inside the convex region R. (c) All free points
lie inside the nonconvex region R.

After t1 is selected, a free point x is located in P such that all remaining free points lie to the right of −→cix.
Observe that at least one such free point x exists because |S| = |P ′| and there exist two inward triangles
in S sharing the same inward vertex. Let cia

′
i+1ci+1 be the next triangle of t1 in L(S) . Assume that

cix is intersected by a set Q of inward triangles in S. Let cj−1a
′
jcj be an inward triangle in Q such that

all inward vertices of inward triangles in Q lie to the right of
−−→
cia
′
j . We have the following four cases.

Case 1: The inward triangle ci−1xci is not intersected by any triangle in S, and cixa
′
i+1 is empty (see

Figures 17(a) and 17(b) ).
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Case 2: The inward triangle ci−1xci is intersected by a triangle cj−1a
′
jcj in S, and cia

′
ja
′
i+1 is empty

(see Figure 21(a)).

Case 3: The inward triangle ci−1xci is not intersected by any triangle in S, and cixa
′
i+1 is not empty

(see Figure 25(a)).

Case 4 The inward triangle ci−1xci is intersected by a triangle cj−1a
′jcj in S, and cia

′
ja
′
i+1 is not empty

(see Figure 29(a)).

For the shift operation in case 1, it is sufficient to show that S remains a good set after ci−1a
′
ici is

replaced by ci−1xci to obtain (S \ {ci−1a′ici}) ∪ {ci−1xci}. Note that the clockwise next inward triangle
of ci−1a

′
ici can share the same inward vertex (see Figure 17(a)) or have a different inward vertex (see

Figure 17(b)). We have the following lemma.

(a)

a′i

cici−1
ci−2

R

ci−3
ci+1

a′i+1

x

(b)

a′i

cici−1
ci−2

R

ci−3
ci+1

a′i+1

x

(c)

a′i

cici−1
ci−2

R

ci−3
ci+1

a′i+1

x

ycl

cl+1

cl−1

a′lt2

t1
a′i−1 a′i−1

Figure 17: (a) The inward triangle ci−1a
′
ici has been replaced by ci−1xci in S. (b) The inward triangle

ci−1a
′
ici has been replaced by ci−1xci in S, and a′i−1 6= a′i. (c) The set (S \ {ci−1a′ici}) ∪ {ci−1xci}

satisfies Property 7(b).

(b)

a′i

cici−1
ci−2

R
x

y

(a)

a′i

cici−1
ci−2

R
x

y

a′i−1 a′i−1

Figure 18: (a) The triangle ci−1xci satisfies Property 8(a) as a′i+1y does not intersect ci−1xci. (b) The
triangle ci−2a

′
ici−1 satisfies Property 8(a) as xy does not intersect ci−2a

′
ici−1.

Lemma 13 The set (S \ {ci−1a′ici}) ∪ {ci−1xci} is a good set after the shift operation in Case 1.
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(b)

a′i

cici−1
ci−2

R
x

y

(a)

a′i

cici−1
ci−2

R
x

y

ci+1

a′i+1

(c)

a′i

cici−1
ci−2

R
x

ycl−2

cl

cl+1

a′l

a′l+1
cl

cl−1

a′l
a′l cl

cl−1a′i−1 a′i−1 a′i−1

Figure 19: (a) The segment a′i+1y cannot be intersected by ci−1xci. (b) The segment xy cannot be
intersected by cl−1a

′
lcl. (c) The segment a′l+1y cannot be intersected by cl−1a

′
lcl.

Proof: It can be seen that (S \ {ci−1a′ici}) ∪ {ci−1xci} satisfies Properties 1, 3, 4 and 5. Property 2 is
also satisfied because x lies in the interior of CH(P ′). The triangle ci−1xci satisfies Property 6 because
all remaining free points are to the right of −→cix. Since all triangles in S \ {ci−1a′ici} satisfy Property 6,
(S \ {ci−1a′ici}) ∪ {ci−1xci} also satisfies Property 6.

Observe that ci−1xci does not satisfy the precondition of Property 7 by construction. After the triangle
replacement, it may appear that some triangle cl−1a

′
lcl, that satisfies the precondition of Property 7,

violates Property 7(b) due to the intersection of cly and ci−1xci, where y is a free point, cl−1a
′
lcl is an

inward triangle in S \ {ci−1a′ici}, and a′l is also the inward vertex of cla
′
lcl+1 ∈ S \ {ci−1a′ici} (see Figure

17(c)). We know that cl−1a
′
lcl satisfies Property 7(a). Since c′ly and cix are intersecting segments, and

y lies to the right of −→cix, ci must lie to the right of −→cly. Moreover, x lies to the right of
−−→
cla
′
l by Property

7(a). Hence, cl−1a
′
lcl satisfies Property 7(b).

Observe that ci−1xci satisfies the precondition of Property 8. After the replacement, it may appear
that ci−1xci violates Property 8(a) by intersecting a′i+1y in (S \ {ci−1a′ici}) ∪ {ci−1xci}, where y is a
free point and cia

′
i+1ci+1 is the next clockwise inward triangle in L((S \ {ci−1a′ici}) ∪ {ci−1xci}) with a

different inward vertex (see Figure 18(a)). Since both a′i+1 and y lie to the right of −→cix by Property 3
and by construction, ci−1xci cannot intersect a′i+1y. For the counterclockwise previous inward triangle
ci−2a

′
i−1ci−1 of ci−1xci in L((S \ {ci−1a′ici})∪ {ci−1xci}), xy cannot be intersected by ci−2a

′
i−1ci−1 due

to Property 6 in S, and therefore (S \ {ci−1a′ici})∪{ci−1xci} satisfies Property 8(a) (see Figure 18(b)).

After the triangle replacement, it may appear that ci−1xci in (S\{ci−1a′ici})∪{ci−1xci} violates Property
8(b) (see Figure 19(a)). Let y be a free point. Consider the first sub-case where an inward triangle
cl−1a

′
lcl has intersected a′i+1y. We know that xy cannot be intersected by any triangle in S and also

in (S \ {ci−1a′ici}) ∪ {ci−1xci} due to Property 6. So, no triangle in (S \ {ci−1a′ici}) ∪ {ci−1xci} can

intersect a′i+1y by intersecting xy, and therefore, a′l and cl lie to the left and right of
−−−→
a′i+1y respectively.

Moreover, ci−1xci cannot intersect a′i+1a
′
l because a′i+1 lies to the right of −→cix and a′l also lies to the right

of −→cix as cl−1a
′
lcl does not intersect xy. So, ci−1xci satisfies Property 8(b).

Suppose that ci−2a
′
ici satisfies the precondition of Property 8. Consider the second sub-case where it

may appear that ci−2a
′
ici in (S \ {ci−1a′ici}) ∪ {ci−1xci} violates Property 8(b) (see Figure 19(b)). We

know that xy cannot be intersected by any triangle in S and also in (S \ {ci−1a′ici}) ∪ {ci−1xci} due to
Property 6. So, ci−2a

′
i−1ci−1 satisfies Property 8(b).

Consider the third sub-case where it may appear that an inward triangle cl−1a
′
lcl, that satisfies the

precondition of Property 8 in (S \ {ci−1a′ici}) ∪ {ci−1xci}, violates Property 8(b) (see Figure 19(c)).
Since y lies to the right of −→cix and ci−1xci intersects al+1y, then ci and x must lie to the right and left of
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−−−→al+1y respectively. Moreover, cl−1a
′
lcl cannot intersect a′l+1x due to Property 8(a) of cl−1a

′
lcl. Therefore,

cl−1a
′
lcl satisfies 8(b).

After the triangle replacement, it may appear that ci−1xci or ci−2a
′
i−1ci−1 violate Property 8(c). By the

definition of Case 1, cixa
′
i+1 is empty and therefore Property 8(c) is not violated (see Figure 20(a)). On

the other hand, ci−2a
′
i−1ci−1 also cannot contain any free point as all free points lie to the right of −→cix

by construction, and x lies to the right of
−−→
cia
′
i by Property 3. If ci−1a

′
ix contains any inward vertex a′l,

it means that aix has been intersected by the inward triangle cl−1a
′
lcl. Let cl−1a

′
lcl be the first triangle

in the clockwise direction from ci−1xci on L((S \ {ci−1a′ici}) ∪ {ci−1xci}) such that a′i−1 6= a′i. Due to
Property 8(b), cl−1a

′
lcl cannot intersect a′i−1x and hence a′l cannot lie inside ci−1a

′
ix (see Figure 20(b)).

So, ci−2a
′
i−1ci also satisfies Property 8(c). �

(b)

a′i

cici−1
ci−2

R
x

(a)

cici−1

R
x

ci+1

a′i+1

a′i−1 a′i−1

Figure 20: (a) The triangle cixa
′
i+1 is empty. (b) The triangle a′ici−1x is empty.

(a)

a′i

cici−1

R

ci+1

a′i+1

x

cj−1
cj

a′j

(b)

a′i

cici−1

R

ci+1

a′i+1

x

cj−1
cj

a′j

a′l

cl
cl−1

(b)

a′i

cici−1

Rx

cj−1
cj

a′j

a′ly y

ch

a′h

ch−1

Figure 21: (a) The inward triangle ci−1a
′
ici has been replaced by ci−1a

′
jci in S. (b) The inward triangle

ci−1a
′
jci in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 7(b). (c) The inward triangle ch−1a

′
hch in

(S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 7(b).

Lemma 14 The set (S \ {ci−1a′ici}) ∪ {ci−1a′jci} is a good set after the shift operation in Case 2.

Proof: It can be seen that (S \{ci−1a′ici})∪{ci−1a′jci} satisfies Properties 1, 4 and 5 (see Figure 21(a)).
If a′j lies in the interior of CH(P ′), then ci−1a

′
jci satisfies Property 2. If a′j is a vertex of CH(P ′) then

a′j = a′i+1, where a′i+1 is the inward vertex of the counterclockwise next inward triangle of ci−1a
′
ici on
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(a)

a′i

cici−1

R

ci+1

a′i+1

x

cj−1
cj

a′j

(b)

a′i

cici−1

Rx

cj−1
cj

a′j

y

ci−2

a′i−1

y

Figure 22: (a) The inward triangle ci−1a
′
jci in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 8(a). (b)

The inward triangle ci−2a
′
i−1ci−1 in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 8(a).

(a)

a′i

cici−1

R

ci+1

a′i+1

x

cj−1
cj

a′j

a′l

cl
cl−1

(b)

a′i

cici−1

Rx

cj−1
cj

a′j

a′ly y

ci−2

a′i−1

(c)

a′i = a′l

cici−1

Rx

cj−1
cj

a′j

y

cl
cl−1

cl−1
cl

Figure 23: (a) The inward triangle ci−1a
′
jci in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 8(b). (b)

The inward triangle ci−2a
′
i−1ci−1 in (S \ {ci−1a′ici})∪{ci−1a′jci} satisfies Property 8(b). (c) The inward

triangle cl−1a
′
lcl in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 8(b).

L(S). Hence, ci−1a
′
jci does not intersect any edge of CH(P ′) satisfying Property 2.

After the triangle replacement, it may appear that the triangle ci−1a
′
jci violates Property 3 by intersect-

ing an inward triangle cl−1a
′
lcl in S. By Property 7(b) of ci−2a

′
i−1ci−1, cl and a′l must lie to the right

and left of −−−→ci−1x respectively (see Figure 21(a)). We know that, no inward triangle in S can intersect aix
due to Property 8(b) of cm−1a

′
i−1cm in S, where cm−1a

′
i−1cm is the first triangle in the clockwise order

from ci−1a
′
ici on L(S), with ai−1 as its inward vertex. So, no inward triangle can intersect ci−1x with-

out intersecting cix. If a triangle cl−1a
′
lcl intersects ci−1a

′
jci, then it must intersect cix. Since cl−1a

′
lcl

intersects both ci−1a
′
jci and cix, ci−1a

′
jci must intersect cia

′
j . However, due to our choice of the triangle

cj−1a
′
jcj , a

′
j cannot lie to the right of

−−→
cia
′
l. Since no inward triangle in (S \ {ci−1a′ici}) ∪ {ci−1a′jci}

intersects ci−1a
′
jci, (S \ {ci−1a′ici}) ∪ {ci−1a′jci} satisfies Property 3.

Observe that all remaining free points of S lie to the right of −→cix and a′j lies to the left of −→cix. So, no line
segment joining any two free points of (S \ {ci−1a′ici}) ∪ {ci−1a′jci} can intersect ci−1a

′
jci. Therefore,

(S \ {ci−1a′ici}) ∪ {ci−1a′jci} still satisfies Property 6 even after the triangle replacement.

Clearly, all inward triangles, that satisfy the precondition of Property 7 in (S \ {ci−1a′ici})∪ {ci−1a′jci},
satisfy Property 7(a) by construction. Suppose that ci−1a

′
jci satisfies the precondition of Property 7.
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(a)

a′i

cici−1

R

ci+1

a′i+1

x

cj−1
cj

a′j

(b)

a′i

cici−1

Rx

cj−1
cj

a′j

ci−2

a′i−1

Figure 24: (a) The triangle cia
′
ja
′
i+1 is empty. (b) The triangle a′ici−1a

′
j is empty.

After the triangle replacement, it may appear that ci−1a
′
jci violates Property 7(b) (see Figure 21(b)). Let

y be a free point. Consider the first subcase where an inward triangle cl−1a
′
lcl of S intersects ciy. If cl−1

lies to the left of −→cix, then cl−1a
′
lcl must intersect ciy, contradicting Property 8(b) of cm−1a

′
i−1cm, where

cm−1a
′
i−1cm is the first triangle in the clockwise order from ci−1a

′
ici on L(S), with ai−1 as its inward

vertex. So, cl−1 and a′l must lie to the right and left of −→cix respectively. If y = x then by construction

a′l lies to the right of
−−→
cia
′
j . Consider the other case where y 6= x. The point g lies to the right of −→cix. If

a′l lies to the left of
−−→
cia
′
j then a′l must lie to the left of −→cix. But then since y lies to the right of −→cix, xy

must intersect cl−1a
′
lcl, which is not possible due to Property 6 of S. Hence, ci−1a

′
jci satisfies Property

7 (b).

Consider the second subcase where it may appear that some other triangle ch−1a
′
hch, that satisfies the

precondition of Property 7, violates Property 7(b) because ci−1a
′
jci intersects chy, where y is a free point

(see Figure 21(c)). As shown earlier, y lies to the right of
−−→
cia
′
j . If ci−1a

′
jci intersects chy, then ci must

lie to the right of −→chy. Assume a′l lies to the left of
−−→
cha
′
h. Since no triangle intersects a′ix, a′i or x lies to

the left of
−−→
cha
′
h. If a′i lies to the left of

−−→
cha
′
h, then ci−1a

′
ici intersects chy, contradicting Property 7 (b)

of ch−1a
′
hch in S. If x is to the left of

−−→
cha
′
h, then it contradicts Property 7(a) of ch−1a

′
hch. So, ch−1a

′
hch

satisfies Property 7(b).

Suppose that ci−1a
′
jci satisfies the precondition of Property 8. After the triangle replacement, it may

appear that ci−1a
′
jci in (S \{ci−1a′ici})∪{ci−1a′jci} violates Property 8(a) by intersecting a′i+1y (see Fig-

ure 22(a)). However, this is not possible since both cia
′
i+1 and y lie to the right of

−−→
cia
′
j by construction.

Therefore, ci−1a
′
jci satisfies Property 8(a). Let ci−2a

′
i−1ci−1 be the clockwise next triangle of ci−1a

′
jci

on L((S \ {ci−1a′ici}) ∪ {ci−1a′jci}) (see Figure 22(b)). The triangle ci−2a
′
i−1ci−1 does not intersect a′jy

due to Property 8(a) of ci−2a
′
i−1ci−1 in S. Therefore, ci−2a

′
i−1ci−1 also satisfies Property 8(a).

After the triangle replacement, it may appear that ci−1a
′
jci in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} violates

Property 8(b) (see Figure 23(a)). Let y be a free point. Consider the first sub-case where an inward

triangle cl−1a
′
lcl has intersected a′i+1y. The points cl and a′l lie on the right and left of

−−−→
a′i+1y respectively,

due to Property 8(b) of ci−1a
′
ici in S. If a′i+1a

′
l intersects ci−1a

′
jci, then a′l must lie to the left of

−−→
cia
′
j .

As cl−1a
′
lcl does not intersect ci−1a

′
jci, a

′
j and y must lie to the left and right of

−−→
cla
′
l respectively. Thus,

x must also lie to the right of
−−→
cla
′
l, and cl−1a

′
lcl must intersect ci−1xci, which is not possible due to

construction. Therefore, ci−1a
′
jci satisfies Property 8(b).

Suppose that ci−2a
′
i−1ci−1 satisfies the precondition of Property 8. Consider the second sub-case where

it may appear that ci−2a
′
i−1ci−1 in (S \{ci−1a′ici})∪{ci−1a′jci} violates Property 8(b) (see Figure 23(b)).

Wlog, let cj−2a
′
j−1cj−1 be the first clockwise inward triangle on L((S \{ci−1a′ici})∪{ci−1a′jci}) that has
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an inward vertex different from a′j . Note that cj−2a
′
j−1cj−1 and ci−2a

′
i−1ci−1 may be the same inward

triangle in some situations. If any inward triangle cl−1a
′
lcl of S intersects a′jy, then by Property 8(b) of

cj−2a
′
j−1cj−1 in S, cl and a′l lie to the right and left of

−→
a′jy respectively. If a′ja

′
l intersects ci−2a

′
i−1ci−1,

then a′j−1 and cj−1 lie to the left and right of
−−→
a′ja
′
l respectively, contradicting Lemma 11. Therefore,

ci−2a
′
i−1ci−1 satisfies Property 8(b).

Consider the third sub-case where it may appear that an inward triangle cl−1a
′
lcl satisfying the precon-

dition of Property 8 in (S \ {ci−1a′ici}) ∪ {ci−1a′jci} violates Property 8(b) (see Figure 23(c)). Since y

lies to the right of −→cix and x lies to the right of
−−→
cia
′
j , y lies to the right of

−−→
cia
′
j . As ci−1a

′
jci intersects

al+1y, ci and a′j must lie to the right and left of −−−→al+1y respectively. Moreover, as xy does not intersect
any triangle of S due to Property 6, a′l+1y must intersect cj−1a

′
jcj . Due to Property 8(b) of cl−1a

′
lcl in

S, a′l+1y cannot intersect cl−1a
′
lcl. Therefore, cl−1a

′
lcl satisfies Property 8(b).

After the triangle replacement, it may appear that ci−1a
′
jci or ci−2a

′
i−1ci−1 violate Property 8(c). By

the definition of Case 2, cia
′
ja
′
i+1 is empty and therefore Property 8(c) is not violated (see Figure 24(a)).

On the other hand, ci−2a
′
i−1ci−1 also cannot contain any point for the same reason as in Lemma 13 (see

Figure 24(b)). So, ci−2a
′
ici also satisfies Property 8(c). �

Now we consider Case 3 where cixa
′
i+1 is not empty. The inward triangle ci−1a

′
ici in S is replaced by

ci−1gci to obtain (S \ {ci−1a′ici}) ∪ {ci−1gci}, where (i) g lies inside cixa
′
i+1, (ii) ciga

′
i+1 is empty, and

(iii) if a point h of P ′ satisfies properties (i) and (ii), then h lies to the right of −→cig (see Figure 25(a)).
Note that g can be either a free point or an inward vertex. We have the following lemma.

(a)

a′i

cici−1

R

ci+1

a′i+1

x

g

(b)

a′i

cici−1 = cl

R

ci+1

a′i+1

x

ga′l

cl−1
cl−2

y

Figure 25: (a) The inward triangle ci−1a
′
ici has been replaced by ci−1gci in S. (b) The inward triangle

ci−1gci in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 7(b).
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(a)

a′i

cici−1

R

ci+1

a′i+1

x

g
y

ci−2

a′i−1

(a)

a′i

cici−1

R

ci+1

a′i+1

x

g
y

ci−2

a′i−1

Figure 26: (a) The inward triangle ci−2a
′
i−1ci−1 in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(a).

(b) The inward triangle ci−1gci in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(a).

(a)

a′i

cici−1

R

ci+1

a′i+1

x

g

(b)

a′i

cici−1

R
x

g

ci−2

a′i−1

(c)

a′i = a′l

cici−1

R

ci+1

a′i+1

x

g

y y

cl−1

cl

a′l

cl−1

cl

a′l
y

cl−1
cl
cl+1

a′l+1

Figure 27: (a) The inward triangle ci−1gci in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(b). (b)
The inward triangle ci−2a

′
i−1ci−1 in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(b). (c) The inward

triangle cl−1a
′
lcl in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(b).

Lemma 15 The set (S \ {ci−1a′ici}) ∪ {ci−1gci} is a good set after the shift operation in Case 3.

Proof: It can be seen that the set (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Properties 1, 4 and 5.

If some triangle cl−1a
′
lcl in S \ {ci−1a′ici} intersects ci−1gci, then a′l must lie to the left of

−−−→
a′i+1g. So, a′l

must lie to the left of −→cig. Since no triangle intersects ci−1xci, a
′
l must lie to the right of −→cix. Therefore,

there exists a point g′ to the left of −→cig such that g′ lies inside cixa
′
i+1, and cig

′a′i+1 is empty. This
contradicts our choice of g. Hence no inward triangle in S \ {ci−1a′ici} intersects ci−1gci, satisfying
Property 3.

Since g is an interior point of CH(P ′), the choice of g ensures that ci−1gci is not forbidden, and
therefore (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 2. Since ciga

′
i+1 is empty, all free points in

(S \ {ci−1a′ici}) ∪ {ci−1gci} lie to the right of −→cix, and no free point can lie to the left of
−−−→
a′i+1g

and right of −→cix respectively. So, no line segment joining two free points intersects ci−1gci. Hence
(S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 6.
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(a)

a′i

cici−1

R

ci+1

a′i+1

x

g

ci−2

a′i−1

(b)

a′i
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R
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a′i+1

x

g

ci−2

a′i−1

Figure 28: (a) The triangle ciga
′
i+1 is empty. (b) The triangle a′ici−1g is empty.

Observe that ci−1gci does not satisfy the precondition of Property 7 by construction. After the triangle
replacement, it may appear that the triangle ci−1gci violates Property 7(b) (see Figure 25(b)). Let
cl−2a

′
lcl−1 and ci−1a

′
lcl be two triangles in S \ {ci−1a′ici} with the same inward vertex a′l. Consider any

free point y. Assume that ci−1gci intersects ci−1y, and ci lies to the left of
−−−→
cl−1a

′
l. Since the proof for

Property 7(b) in Lemma 13 still holds here, cl−1y cannot intersect ci−1xci. Then, y must lie to the right
of −→cix and to the left of −→cig respectively, which is not possible as shown earlier. So, ci and g must lie to

the right and left of
−−−→
cl−1a

′
l respectively. If g is a free point for S, then by Property 7(a) of ci−1a

′
ici in S,

g must lie to the right of
−−−→
cl−1a

′
l. Otherwise, g must be assigned as an inward vertex to some triangle in

S. But the quadrilateral a′ici−1cia
′
i+1 does not contain any points because of Property 8(c) of ci−1a

′
ici in

S. So, if ci−1xci intersects cly, then either x = a′l or x lies to the right of
−−→
cla
′
l. If cly does not intersect

ci−1xci, since cig is to the right of −→cix, x must be to the right of −→cly and hence also of cla
′
l. Since g is

inside xcia
′
i+1, this implies a′i+1 is to the left of

−−→
cla
′
l. If cl−2a

′
lcl−1 intersects cl−1y, it contradicts Property

7 of cl−2a
′
lcl−1. If cl−2a

′
lcl−1 does not intersect cl−1y, then y must be to the left of

−−−→
cia
′
i+1 and to the

right of −→cig. But this implies g is inside the triangle gcia
′
i+1, contradicting the fact that it is empty (see

Figure 25(b)). Therefore, ci−1gci satisfies Property 7(b).

Suppose that ci−2a
′
i−1ci−1 or ci−1gci satisfy the precondition of Property 8. After the triangle replace-

ment, it may appear that the triangles ci−2a
′
i−1ci−1 or ci−1gci violate Property 8(a). Let y be a free

point. Consider the first subcase assuming that gy intersects ci−2a
′
i−1ci (see Figure 26(a)). If a′i−1 6= a′i,

then a′i−1 is to the left of
−−−→
ci−1a

′
i. Since all free points that are not x are to the right of −→cix, and g is also

to the right of −→cix, any line-segment gy must lie completely to the right of −→cix and hence cannot intersect
ci−2a

′
i−1ci−1. Consider the second subcase assuming that a′i+1y intersects ci−1gci (see Figure 26(b)).

Due to Lemma 14, the line-segment a′i+1y does not intersect the triangle ci−1xci for all free points y 6= x.
The line-segment a′i+1x does not intersect ci−1gci. If a line-segment a′i+1y intersects ci−1gci, then y must
be contained inside ci−1gci, which is not possible. So, (S \{ci−1a′ici})∪{ci−1gci} satisfies Property 8(a).

After the triangle replacement, it may appear that the triangle ci−1gci violates Property 8(b). Let y be
a free point. Consider the first subcase where a triangle cl−1a

′
lcl intersects a′i+1y. In that case, a′i+1y

must intersect ci−1xci or a′l is contained in ci−1gci (see Figure 27(a)). In the former case, there can be

no point lying to the left of
−−−→
a′i+1g and to the right of −→cix. The latter case is not possible because ci−1gci

is empty. Therefore, ci−1gci satisfies Property 8(b).

Consider the second subcase where an inward triangle cl−1a
′
lcl intersects gy (see Figure 27(b)). If g is

a free point, then no inward triangle intersects gy due to Property 6 of S. Consider the other situation
where g is the inward vertex of some triangle ch−1gch. Lemma 11 implies that if cl−1a

′
lcl intersects
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gy, then cl and a′l lie to the right and left of −→gy respectively. On the other hand, if ga′l intersects

ci−2a
′
i−1ci−1, then ci−1 is to the left of

−→
ga′l and a′i−1 is to the right of

−→
ga′l, contradicting Lemma 11.

Therefore, ci−2a
′
i−1ci−1 satisfies Property 8(b).

Consider the third subcase where cl−1a
′
lcl and cla

′
l+1cl+1 are inward triangles in S \ {ci−1a′ici} such that

a′l 6= a′l+1, y is a free point, and ci−1gci intersects a′ly. Assume that cl+1y intersects ci−1gci where ci and
g lie to the left and right of −−−→cl+1y respectively. By Property 8(b) of cl−1a

′
lcl in S, cl+1y cannot intersect

ci−1xci. Since cia
′
i+1 lies to the right of −→cig, a′i+1 must be to the left of

−−−→
c′l+1y. Since g is contained inside

the triangle xcia
′
i+1, x must be to the right of

−−−→
a′l+1y and y must be to the right of −→cix but to the left of

−→cig. However, this implies that either
−−−−→
ycia

′
i+1 is empty, or there is a point p inside ycia

′
i+1, where pcia

′
i+1

is empty and p lies to the left of −→cig. However, both situations contradict the choice of g.

Consider the other situation where cl+1y intersects ci−1gci such that ci and g lie to the right and left of−−−→
a′l+1y respectively. Suppose a′l+1g intersects cl−1a

′
lcl (see Figure 27(c)). Then g must lie to the left of

−−−−→
a′l+1a

′
l and a′l must lie to the left of

−−−→
a′l+1y. Since ci−1gci does not intersect cl−1a

′
lcl, a

′
l must lie to the

left of −→cig. If cia
′
i+1ci+1 intersects a′l+1y, then by Property 8(a) of cl−1a

′
lcl, a

′
l+1a

′
i+1 does not intersect

cl−1a
′
lcl, and hence a′i+1 is to the left of

−−−→
a′l+1y, but to the right of

−−−−→
a′l+1a

′
l. Since g is contained in xcia

′
i+1,

x must lie to the left of −−−→clcl+1. Therefore a′l+1y intersects ci−1xci and a′l+1x intersects cl−1a
′
lcl, contra-

dicting Property 8(a) of cl−1a
′
lcl in S. If ci−1xci intersects a′l+1y, then by Property 8(b) of cl−1a

′
lcl in

(S \{ci−1a′ici})∪{ci−1xci}, x lies to the left of
−−−→
a′l+1y, and a′l+1x does not intersect cl−1a

′
lcl. This implies

x lies to the right of
−−−−→
a′l+1a

′
l. Since g is contained inside xcia

′
i+1, a′i+1 lies to the left of

−−−−→
a′l+1a

′
l, cia

′
i+1ci+1

intersects a′l+1y, and a′l+1a
′
i+1 intersects cl−1a

′
lcl, contradicting Property 8(b) of cl−1a

′
lcl. If a′l+1y does

not intersect either ci−1xci or cia
′
i+1ci+1, then y must be inside ci−1gci. However, this implies that there

is a point p to the left of −→cig and to the right of −→cix such that pcia
′
i+1 is empty, contradicting the choice

of g. Therefore, cl−1a
′
lcl satisfies Property 8(b) (see Figure 27(c)).

After the triangle replacement, it may appear that ci−2a
′
i−1ci−1 or ci−1gci in (S \{ci−1a′ici})∪{ci−1gci}

violate Property 8(c). But ciga
′
i+1 is empty by construction (see Figure 28(a)). Assume that a point

p lies inside a′i−1ci−1g. Suppose a′i−1 = a′i. The quadrilateral a′ici−1cia
′
i+1 does not contain any point

due to Property 8(c) of ci−1a
′
ici in S. So, p lies to the left of

−−−−→
a′ia
′
i+1, to the left of −→cig and to the right

of −→cix. Moreover, there is such a point p to the left of cig such that pcia
′
i+1 is empty. This contra-

dicts the choice of g. Consider the other situation where a′i−1 6= a′i. By the previous arguments, the
quadrilateral a′ici−1cix is empty. Also, a′i−1ci−1x is empty by Property 8(c) of ci−2a

′
i−1ci−1 in S. But

g must be to the right of
−−−−→
a′i−1a

′
i, and hence, the quadrilateral a′i−1ci−1cix must be empty. Therefore,

(S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(c) (see Figure 28(b)). �

Now we consider Case 4 where the triangle cia
′
ja
′
i+1 is not empty (see Figure 29(a)). The inward triangle

ci−1a
′
ici in S is replaced by ci−1gci to obtain (S \{ci−1a′ici})∪{ci−1gci}, where (i) g lies inside cia

′
ja
′
i+1,

(ii) ciga
′
i+1 is empty, and (iii) if a point h of P ′ satisfies properties (i) and (ii), then h lies to the right of−→cig (see Figure 25(a)). Note that g can be either a free point or an inward vertex. We have the following

lemma.

Lemma 16 The set (S \ {ci−1a′ici}) ∪ {ci−1gci} is a good set after the shift operation in Case 4.

Proof: It can be seen that the set (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Properties 1, 4 and 5.

The inward triangle ci−1gci is not forbidden and does not intersect the interior of any other triangle
of (S \ {ci−1a′ici}) ∪ {ci−1gci} as shown in the proof of Properties 2 and 3 in Lemma 15. Therefore,
(S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Properties 2 and 3. Moreover, no line segment joining two free
points in (S \ {ci−1a′ici}) ∪ {ci−1gci} intersects ci−1gci as shown in the proof of Property 6 in Lemma
15. Therefore, (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 6 (see Figure 29(a)).

After the triangle replacement, if ci−2a
′
i−1ci−1 satisfies the precondition of Property 7, then ci−2a

′
i−1ci−1

satisfies Property 7 as shown in the proof of Property 7 in Lemma 15, where ci−2a
′
i−1ci−1 is the clockwise

next triangle of ci−1gci on L((S \ {ci−1a′ici})∪{ci−1gci}) (see Figure 29(b)). The other inward triangles
in (S \ {ci−1a′ici}) ∪ {ci−1gci}, that satisfy the precondition of Property 7, also satisfy Property 7 as
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Figure 29: (a) The inward triangle ci−1a
′
ici has been replaced by ci−1gci in S. (b) The inward triangle

cl−2a
′
lcl−1 in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 7(b).

(b)

a′i

ci
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Figure 30: (a) The inward triangle ci−2a
′
i−1ci−1 in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(a).

(b) The inward triangle ci−1gci in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(a).

shown in the proof of Property 7 in Lemma 15. Therefore, (S \ {ci−1a′ici})∪{ci−1gci} satisfies Property
7.

After the triangle replacement, the inward triangles ci−2a
′
i−1ci−1 or ci−1gci, that satisfy the precondition

of Property 8, also satisfy Property 8(a) as shown in the proof of Property 8(a) in Lemma 15 (see Figures
30(a) and 30(b)). After the triangle replacement, the inward triangles ci−2a

′
i−1ci−1, ci−1gci and any

other inward triangle cl−1a
′
lcl, that satisfy the precondition of Property 8 in (S \ {ci−1a′ici})∪{ci−1gci},

satisfy Property 8(b) as shown in the proof of Property 8(b) in Lemma 15 (see Figures 31(a), 31(b) and
31(c)). After the triangle replacement, the inward triangles ci−1gci and ci−2a

′
i−1ci−1 satisfy Property

8(c) as shown in the proof of Property 8(c) in Lemma 15 (see Figures 32(a) and 32(b)). Therefore,
(S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8. �
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Figure 31: (a) The inward triangle ci−1gci in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(b). (b)
The inward triangle ci−2a

′
i−1ci−1 in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(b). (c) The inward

triangle cl−1a
′
lcl in (S \ {ci−1a′ici}) ∪ {ci−1gci} satisfies Property 8(b).
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Figure 32: (a) The triangle ciga
′
i+1 is empty. (b) The triangle a′ici−1a

′
j is empty.
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transforming good set(P)
compute CH(P ) and CH(P ′);
let the points of CH(P ) be {c1, c2, . . . , ck} in counterclockwise order;
S := constructing good set(P);
// S is a good set

compute L(S);
compute all zones and regions of all inward vertices in S and store in a set Z;
while S has multiple copies of inward triangles or has inward triangles having the same inward
vertex do

locate an inward vertex a′i assigned to multiple inward triangles of S;
locate the region R of a′i containing all free points;

locate the right edges cja
′
i and cka

′
i of zones bounding R with ck lying to the right of

−−→
cja
′
i;

if R is convex then
assign cj−1a

′
icj to ci−1a

′
ici;

else
assign ck−1a

′
ick to ci−1a

′
ici;

end
// ci−1a

′
ici is the triangle to be shifted

identify the set F of free points;
scan F and locate a vertex x of CH(F ) with −→cix being the left tangent to CH(F );
if no inward triangle in S intersects ci−1a

′
ici then

if cixa
′
i+1 is empty then

S = (S \ {ci−1a′ici}) ∪ {ci−1xci};
// case 1

else
compute the set Q′ of every point q of P ′ lying inside cixa

′
i+1 with ciqa

′
i+1 being empty;

scan Q′ till a vertex g of CH(Q′) is located with −→cig being the left tangent to CH(Q′);
S = (S \ {ci−1a′ici}) ∪ {ci−1gci};
// case 3

end

else
compute the set Q of inward vertices of all inward triangles intersecting ci−1a

′
ici;

scan Q till a vertex a′j of CH(Q) is located with
−−→
cia
′
j being the left tangent to CH(Q);

if cia
′
ja
′
i+1 is empty then

S = (S \ {ci−1a′ici}) ∪ {ci−1a′jci};
// case 2

else
compute the set Q′ of every point q of P ′ lying inside cia

′
ja
′
i+1 with ciqa

′
i+1 being

empty;
scan Q′ till a vertex g of CH(Q′) is located with −→cig being the left tangent to CH(Q′);
S = (S \ {ci−1a′ici}) ∪ {ci−1gci};
// case 4

end

end
update L(S);
update Z;

end
// S is a good set with all points of P ′ assigned as inward vertices of distinct

inward triangles

report S;

Lemma 17 Given a good set S, the procedure transforming good set(P) transforms S such that
every inward triangle in S has a distinct inward vertex and the transformation can be carried out in
O(n3) time.

Proof: The correctness of the procedure follows from Lemmas 13, 14, 15 and 16. Computation of L(S)
takes O(n2) time. Computation of Z takes O(n3) time. Since there are less n2 non-forbidden triangles,
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there are at most n2 modifications of S. Since each modification can take O(n) time, for computing Q
or Q′, the overall time complexity of the procedure is O(n3).

7 A 4-connected triangulation

In this section, we show that S constructed in the previous section can be transformed into a 4-connected
triangulation of P . An inner cycle C is constructed by connecting a′i and a′i+1 for all i, where a′i and a′i+1

are the inward vertices of two consecutive inward triangles ci−1a
′
ici and cia

′
i+1ci+1 in L(S) (see Figure

33(a)). Let R be the annular region enclosed by C and CH(P ). Observe that by Property 8(c) of good
sets, C is non self-intersecting, and no inward triangle of S intersects C. Note that C contains all points
of P ′. Starting from C, a 4-connected triangulation of P is constructed as follows.

Let T be the triangulation of R formed by the inward triangles in S. Let D be a maximal set of pairwise
non-intersecting diagonals of C such that there is no complex triangle in T ∪C ∪D. We show that there
exists a triangulation T of R and a collection D of pairwise non-intersecting diagonals of C satisfying
the following properties:

1. T does not contain a chord of CH(P ).

2. No two inward triangles in T have the same inward vertex.

3. There is no complex triangle in T ∪ C ∪D.

4. Let R1, R2, . . . , Rm be the interior regions of C partitioned by D (see Figure 33(b)). If |Ri| = 3
for all i then it is a 4-connected triangulation. So we assume that |Ri| ≥ 4. Then the points on
the boundary of Ri can be labeled in clockwise or counterclockwise order as a0, a1, a2, . . . , al such
that (i) a1, a2, . . . , al are consecutive points of C, (ii) a1, a2, . . . , al are adjacent in T to a point cj
in CH(P ), (iii) a1al is a diagonal of Ri, (iv) for all 1 < m < l, am is contained in the interior of
the triangle a1alcj , and (v) a0am is not a diagonal of Ri.

We call a triple (T,C,D) satisfying the above properties as a consistent triple. We have the following
lemmas.

Lemma 18 If P has a good set S with all inward triangles of S having distinct inward vertices, then P
has a consistent triple (T,C,D).

ci−1

ci

a′i+1

a′i

(a) (b)

cj

a′x

a′j

a′k = a1

Ri

cj−1

R

C

a2

a3

Figure 33: (a) The inward vertex a′i of ci−1a
′
ici is reflex in C. The inward triangle ci−1a

′
ici and the

degenerate triangle cia
′
i+1 are replaced in S by the degenerate inward triangle ci−1a

′
i and the inward

triangle ci−1a
′
i+1ci, such that the degree of ci becomes four. (b) The region Ri = a′xa

′
ka2a3a

′
k is a bad

region and a′ja
′
k is a diagonal of Ri.

Proof: Observe that (T,C,D) satisfies Properties 1 and 2 since S is a good set. Also, (T,C,D) satisfies
Property 3 by the construction of D.
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Consider any region Ri such that |Ri| ≥ 4. We call such a region a bad region (see Figure 33(b)). Let
a′ja
′
k be a diagonal of Ri. By the maximality of D, adding a′ja

′
k to D must create a complex triangle.

In that case, there exists a vertex cj of CH(P ) adjacent to both a′j and a′k in T . Since every vertex in
C is adjacent in T to some vertex of CH(P ), the vertices of Ri that are contained in the interior of the
triangle a′jcja

′
k must all be adjacent to cj . Choose a diagonal of Ri (say, a′ja

′
k) such that the number of

vertices in the interior of a′jcja
′
k is maximum.

Consider an arbitrary triangulation T ′i of Ri which includes the diagonal a′ja
′
k. Let a′x be the vertex of

Ri outside the triangle a′jcja
′
k such that a′ja

′
ka
′
x is a triangle in T ′i (see Figure 33(b)). If a′x is adjacent to

cj in T , then either a′k is contained in the interior of a′jcja
′
x or a′j is contained in the interior of a′kcja

′
x. If

the former condition holds, then a′ja
′
x is a diagonal of Ri for which the number of vertices in the interior

of a′jcja
′
x is greater than the number of vertices in the interior of a′jcja

′
k. This contradicts the choice of

the diagonal a′ja
′
k. Similar arguments hold for the latter case also. Thus we assume a′x is not adjacent

to cj in T .

Before we consider the cases depending on edges of Ri connecting a′x, we present a procedure to ensure
that if the inward vertex a′i of some inward triangle ci−1a

′
ici is reflex in C, then ci has degree four in T . If

the degree of ci is five or more, and there is a degenerate inward triangle cia
′
i+1 in S, replace the inward

triangles ci−1a
′
ici and cia

′
i+1 in S by the inward triangles ci−1a

′
i and ci−1a

′
i+1ci respectively, to get a new

triangulation of R (see Figure 33(a)). Note that the new (T,C,D) satisfies the first three properties.
Since this operation shifts the inward vertex on some edge ci−1ci to the next counterclockwise vertex of
C, the degree of all such ci becomes four by repeating this operation at most n times.

Consider the first case where both a′ja
′
x and a′ka

′
x are edges of Ri. Therefore, cj is adjacent to all vertices

of Ri except a′x. Thus, Ri satisfies Property 4(ii). The edges of Ri that are contained inside the triangle
a′jcja

′
k must be edges of C, otherwise we have a complex triangle in T ∪C∪D. Thus we can label a′x as a0

and the vertices of C from a′j to a′k that are contained in the triangle a′jcja
′
k as a′j = a1, a2, . . . , al = a′k,

satisfying Properties 4(i) and 4(iii). The maximality of D implies that there is no diagonal of Ri incident
with a′x. Thus, Ri satisfies Property 4(iv).

Consider the other case where a′x is not adjacent to cj , and at least one of a′ja
′
x and a′ka

′
x, (say, a′ja

′
x)

is a diagonal of Ri. There must be a vertex cj−1 6= cj of CH(P ) such that both aj and ax are adjacent
to cj−1 in T . This implies a′j is the inward vertex of cj−1a

′
jcj in T . Observe that both cj and cj−1

must have degree at least five in T because they must be adjacent to some vertex of Ri in the interiors
of triangles a′jcja

′
k and a′jcj−1a

′
x respectively. Since the degrees of cj−1 and cj are more than four, a′j

cannot be reflex in C as shown earlier. So, a′j is a convex vertex of C and hence of Ri.

We show that another diagonal can be added to D, contradicting its maximality. Since both a′ja
′
k and

a′ja
′
x are diagonals of Ri, there must be two triangles a′ja

′
ka
′
q and a′ja

′
xa
′
r in the triangulation of Ri, where

a′ja
′
ka
′
q, a′ja

′
xa
′
r and a′ja

′
ka
′
x are all distinct. So, a′q is contained in the interior of triangle a′jcja

′
k and it

must be adjacent to only cj among all vertices of CH(P ). Similarly, a′r is contained in the interior of
triangle a′jcj−1a

′
x, and is adjacent to only cj−1 among all vertices of CH(P ). If quadrilaterals a′ja

′
qa
′
ka
′
x

or a′ja
′
ka
′
xa
′
r is convex, then either a′qa

′
x or a′ka

′
r can be added as a diagonal to D without creating a

complex triangle, contradicting the maximality of D.

Recall that a′j is a convex vertex of Ri, and a′ja
′
k and a′ja

′
x are diagonals of Ri, So, a′k must be a reflex

vertex of a′ja
′
qa
′
ka
′
x and a′x must be a reflex vertex of a′ja

′
ka
′
xa
′
r. Thus a′k is contained in the interior of

triangle a′ja
′
qa
′
x and a′x is contained in the interior of triangle a′ja

′
ka
′
r. However, a′q is contained in the

interior of triangle a′jcja
′
k and a′r is contained in the interior of triangle a′jcj−1a

′
x. Therefore, the triangle

cj−1a
′
jcj contains the points a′q, a

′
k, a
′
x, a
′
r in its interior, contradicting the fact that it is an inward triangle

of T . Therefore, all bad regions Ri must satisfy property 4 and hence (T,C,D) is a consistent triple. �

Lemma 19 If P has a consistent triple (T,C,D), then P admits a 4-connected triangulation.

Proof: Consider a consistent triple (T,C,D) such that |D| is maximum. If D triangulates C, then the
first three properties of a consistent triple ensure that T ∪C ∪D is a 4-connected triangulation of P . If
D does not triangulate C, we show that another consistent triple (T ′, C,D′) can be located such that
|D′| > |D| as follows.
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Figure 34: (a) The regions a′p+2a6a5a4a
′
p+2 and a′p+2a4a3a2a1a0a

′
p+2 are bad regions in the neighbour-

hood of cp. (b) C and R are re-triangulated by replacing a4cp, a0cp and a0cp+1 with a5a3, a1cp+1 and
a1a
′
p+2 respectively.

Let Ri be a bad region of C due to (T,C,D). So, by Property 4 of a consistent triple, there exists a
unique vertex cp in CH(P ) that is adjacent to all but one vertex of Ri (see Figure 34(a)). Moreover, the
vertices of Ri that are adjacent to cp are consecutive vertices of C. We say that the region Ri is in the
neighbourhood of cp. If the vertices of another bad region Rj due to (T,C,D) are also neighbours of cp,
then Rj is also in the neighbourhood of cp. So the neighbourhood of cp may contain several such bad
regions. By Property 4 of (T,C,D), the vertices of Ri can be labelled as a0, a1, a2, . . . , al such that a1al
is a diagonal of Ri, a0aj is not a diagonal for all 1 < j < l, and the vertices a2, . . . , al−1 are contained
in the interior of a1cpal. This implies that either a1 or al is a reflex vertex of Ri, and hence also of C.

Consider a vertex in CH(P ) (say, cp) such that the neighbourhood of cp contains at least one bad region
B. Let the neighbours of cp in C be a0, a1, a2, . . . , ar in clockwise order (see Figure 34(a)). Let cp+1

denote the vertex of CH(P ) such that cp+1cpa0 is an inward triangle in T . Similarly, let cp−1 be the
vertex of CH(P ) such that cpcp−1ar is an inward triangle in T . So, B must contain a consecutive
subsequence of these vertices, say, ai, ai+1, . . . , aj , 0 ≤ i < i + 2 ≤ j ≤ r, such that either ai or aj is
a reflex vertex in B. We call B as a left bad region (or, right bad region) if ai (respectively, aj) is the
reflex vertex in B.

Let i be the smallest index such that there exists a left bad regionR′ of cp containing points ai, ai+1, . . . , aj
and having ai as the reflex vertex (see Figure 34(a)). If ai belongs to any other bad region R′′, then
it must be the rightmost vertex in R′′, and it cannot be a reflex vertex in R′′ and R′. Therefore, ai
belongs to R′ only due to the choice of i. However, if ai = a0, a0 may belong to another bad region in
the neighbourhood of some other vertex of CH(P ).

Now T and D can be modified as follows. Consider the first case where ai = a0 and a0 is reflex. The
next counterclockwise vertex of a0 on C must be a′p+2, where a′p+2 is the inward vertex of the inward
triangle cp+1a

′
p+2cp+2 in S. Observe that the pentagon cpcp+1a

′
p+2a0a1 must be convex. Replace the

diagonals cpa0 and cp+1a0 by cp+1a1 and a′p+2a1. Consider the other case where ai 6= a0. Since ai is
a reflex vertex in C, the quadrilateral ai−1aiai+1cp is a convex quadrilateral. Replace aicp by ai−1ai+1

in T . These replacements do not create a complex triangle. For both cases, all possible diagonals of R′

that are incident with ai are added to D. In particular, aiaj can always be added.

We show that the new triple (T ′, C,D′) is a consistent triple with |D′| > |D|. We know that all bad
regions other than R′ satisfy all four properties of consistent triples. On the other hand, R′ is broken into
smaller bad regions, and we show that each region satisfies the same properties. Suppose, ai1 , ai2 , . . . , ais ,
i+2 ≤ i1 < i2 < · · · < is = j are the vertices of R′ such that the diagonals aiait are added, for 1 ≤ t ≤ s.
If it+1 > it + 1, new bad region is obtained with the labelling ai, ait , ait+1, . . . , ait+1

, for 1 ≤ t < s.
Similarly, if i1 > 2, then the region ai, a1, a2, . . . , ai1 is a bad region. All these bad regions continue
to satisfy property 4 of consistent triples (see Figure 34(b)). Analogous arguments hold for right bad
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regions in the neighbourhood of cp. Thus the size of D can be increased in a consistent triple (T,C,D)
if D does not triangulate C. �

four connected triangulation(P)
compute CH(P ) and CH(P ′);
let {c1, c2, . . . , ck} be the vertices of CH(P ) in the counterclockwise order;
S := transforming good set(P);
// S is a good set with all points of P ′ assigned as distinct inward vertices

compute L(S);
C := φ, i := 1;
while i ≤ |CH(P )| do

locate ci−1a
′
ici and cia

′
i+1ci+1 in S;

// ci−1a
′
ici or cia

′
i+1ci+1 can be degenerate inward triangles

C = C ∪ {a′ia′i+1};
i = i+ 1;

end
// C is the inner cycle of P corresponding to S (see Figure 33(a))

i := 1;
while i ≤ |P ′| do

if a′i is reflex in C and a′i is the inward vertex of non-degenerate inward triangle ci−1a
′
iCi and

ci has degree at least five then
S = (S \ {ci−1a′ici, cia′i+1}) ∪ {ci−1a′i, ci−1a′i+1ci};

end
i = i+ 1;

end
// if the inward vertex a′i of some inward triangle ci−1a

′
ici is reflex in C, S is

transformed to ensure that ci has degree four (see Figure 33(b))

D := φ, i := 1;
while i ≤ |P ′| do

j := i+ 1;
while j ≤ |P ′| do

if a′ia
′
j does not intersect C and a′ia

′
j does not intersect any edge in D then

if D ∪ {a′ia′j} does not create any complex triangle then
D = D ∪ {a′ia′j};

end

end
j = j + 1;

end
i = i+ 1;

end
// D is a maximal set of diagonals of C
compute annular region R from C;
compute triangulation T of R from S;
// (T,C,D) is a consistent triple due to Lemma 19
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i := 1;
while i ≤ |CH(P )| do

while the neighbourhood of ci contains a bad region do
assign the neighbours of ci in the clockwise order on C to {a0, a1, . . . , adeg(ci)−3};
if the neighbourhood of ci contains a left bad region then

scan {a0, a1, . . . , adeg(ci)−3} from a0 and locate the first reflex vertex aj of a bad region
Rx contained in the neighbourhood of ci;
if aj = a0 then

locate the inward vertex a′i+2 of ci+1a
′
i+1ci+2 in S;

T = (T \ {cia0, ci+1a0}) ∪ {ci+1a1, a
′
i+1a1};

add all possible diagonals of Rx incident on aj to D;

else
T = (T \ {ciaj}) ∪ {aj−1aj+1};
add all possible diagonals of Rx incident on aj to D;

end
update S;

else
scan {a0, a1, . . . , adeg(ci)−3} from a0 and locate the last reflex vertex aj of a bad region
Rx contained in the neighbourhood of ci;
T = (T \ {ciaj}) ∪ {aj−1aj+1};
add all possible diagonals of Rx incident on aj to D;
update S;

end

end
// modified S may not remain a good set but modified (T,C,D) is a consistent

triple due to Lemma 20

i = i+ 1;

end
// all bad regions in the neighbourhood of every vertex of CH(P ) are eliminated

T = T ∪ C ∪D;
// the resulting triangulation is a 4-connected triangulation of P
report T ;

Lemma 20 The procedure four connected triangulation( P) computes a 4-connected triangulation of P
in O(n3) time.

Proof: The correctness of the procedure follows from Lemmas 19 and 20. Let us analyse the time
complexity of the procedure. Computing S takes O(n3) time due to Lemma 17. Constructing a consistent
triple T,C,D) takes O(n3) time. Since the diagonals in D are non-intersecting, the total number of bad
regions is O(n). So, D of maximum size can be constructed in O(n2) time. Thus, the overall time
complexity of the procedure is O(n3). �

We have the following theorems.

Theorem 6 A given set of points P admits a 4-connected triangulation if and only if P satisfies Neces-
sary Condition 3.

Theorem 7 A 4-connected triangulation of a point set P (if it exists) can be constructed in O(n3) time.

8 Concluding remarks

In this paper, we have characterized point sets P that admit 4-connected triangulation. Furthermore,
we have presented an O(n3) time algorithm for constructing a 4-connected triangulation of P . Observe
that the third necessary condition is sufficient for characterizing P only under the assumption that no
three points of P are collinear. If P contains collinear points, then the third necessary condition is no
longer sufficient as shown in Figure 35(a).

Consider a triangulation T of P such that at least four edges of T are incident on every point of P . We
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Figure 35: (a) The point set P satisfies the third necessary condition but it does not admit a 4-connected
triangulation. (b) The point set P admits a 4-degree triangulation but not a 4-connected triangulation
as |P ′| = 6 and |CH(P )| = 14.

call such a triangulation as a 4-degree triangulation of P . Observe that a 4-connected triangulation of
P is always a 4-degree triangulation of P but a 4-degree triangulation of P may not be a 4-connected
triangulation of P (see Figure 35(b)). Thus, the problem of characterizing point sets that admit 4-degree
triangulation remains open.

Consider the problem of characterizing point sets that admit 5-connected triangulation. Our method for
constructing 4-connected triangulation does not generalize to the problem of 5-connected triangulation.
It will be interesting to see if a new method can be developed for constructing a 5-connected triangulation
of P . Also, the problem of characterizing point sets that admit 5-degree triangulation remains open.
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