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Abstract

A function f : R → R is called k-monotone if it is (k − 2)-times dif-
ferentiable and its (k − 2)nd derivative is convex. A point set P ⊂ R2

is k-monotone interpolable if it lies on a graph of a k-monotone function.
These notions have been studied in analysis, approximation theory etc.
since the 1940s.

We show that 3-monotone interpolability is very non-local: we exhibit
an arbitrarily large finite P for which every proper subset is 3-monotone
interpolable but P itself is not. On the other hand, we prove a Ramsey-
type result: for every n there exists N such that every N -point P with
distinct x-coordinates contains an n-point Q such that Q or its vertical
mirror reflection are 3-monotone interpolable. The analogs for k-monotone
interpolability with k = 1 and k = 2 are classical theorems of Erdős and
Szekeres, while the cases with k ≥ 4 remain open.

We also investigate the computational complexity of deciding 3-mono-
tone interpolability of a given point set. Using a known characterization,
this decision problem can be stated as an instance of polynomial optimiza-
tion and reformulated as a semidefinite program. We exhibit an example
for which this semidefinite program has only doubly exponentially large
feasible solutions, and thus known algorithms cannot solve it in polynomial
time. While such phenomena have been well known for semidefinite pro-
gramming in general, ours seems to be the first such example in polynomial
optimization, and it involves only univariate quadratic polynomials.

∗This research was started at the 3rd KAMÁK workshop held in Vranov nad Dyj́ı, Czech
Republic, September 15-20, 2013, which was supported by the grant SVV-2013-267313 (Dis-
crete Models and Algorithms). J.C. was also supported by this grant. J.M. was supported by
the ERC Advanced Grant No. 267165. P.P. was supported by the grant SVV-2014-260107
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1 Introduction

Generalizing two theorems of Erdős and Szekeres. This research was
inspired by two famous 1935 theorems of Erdős and Szekeres [ES35]. The first
one asserts that for every n there is N such that every sequence P of N points
in the plane with increasing x-coordinates contains an n-point nonincreasing or
nondecreasing subsequence (see, e.g., Steele [Ste95] for six nice proofs and some
applications), and the second theorem makes an analogous statement about the
existence of an n-point convex or concave subsequence (see, e.g., Morris and
Soltan [MS00] for proofs and a survey of developments around this result).

For our purposes, a nondecreasing sequence can be defined as one lying on
the graph of a nondecreasing function R → R, and similarly for nonincreas-
ing, convex, and concave sequences. Eliáš and Matoušek [EM13] suggested a
generalization where one looks for a subsequence lying on the graph of a func-
tion whose kth derivative is nonnegative or nonpositive. Here we consider this
question but in a slightly different and technically more convenient formula-
tion. (Let us remark that a number of other generalizations of the Erdős–
Szekeres theorems have recently been considered [FPSS12, CFP+13, BM14,
Suk13, EMRS14].)

k-monotone functions. The following five-point set

lies on the graph of a convex function but not on the graph of a convex twice
differentiable function. This illustrates that the requirement as above, with a
function whose kth derivative is nonnegative or nonpositive, is not technically
quite suitable.

In [EM13] this kind of issues was circumvented by assuming sufficiently gen-
eral position of P . However, there is a well-established notion of k-monotonicity
of a function, which seems perfectly suitable for our purposes and does not re-
quire any general position assumption.

Namely, for k ≥ 2, a function f is k-monotone on an open interval I if its
(k − 2)nd derivative f (k−2) (exists and) is convex on I. (With some fantasy,
this definition can also be applied for k = 1 and leads to the usual notion of a
nondecreasing function.)

Note that k-monotonicity is of the “nondecreasing” kind, while the corre-
sponding “nonincreasing” notion has f (k−2) concave. The term “k-monotone”
may thus be somewhat confusing in this respect, since “monotone function”
usually means nondecreasing or nonincreasing, but it seems well established in
the literature.

The notion of k-monotonicity goes back to Schoenberg’s 1941 abstract [Sch41],
preceded by a still older notion of a completely monotone function. It has
been studied from various angles in a number of papers in relation to integral
representations of functions, approximation theory, probability, etc. We refer
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to Williamson [Wil56] for an early study1 and to Pečarić et al. [PPT92] and
Roberts and Varberg [RV73] for various properties and applications; for our
investigations we mostly rely on Kopotun and Shadrin [KS03].

A Ramsey-type result for 3-monotone interpolability. Let us call
a set P ⊂ R2 k-monotone interpolable if it lies on a graph of a k-monotone
function. The question about generalizing the Erdős–Szekeres theorems to k-
monotonicity can be stated as follows:

Question 1.1. For which k ≥ 3 does the following hold? For every integer
n there exists N = Nk(n) such that every N -point P ⊂ R2 with distinct x-
coordinates contains an n-point subset Q such that Q or Ql is k-monotone
interpolable (where Ql denotes the mirror reflection of Q about the x-axis).

In Section 3 we provide a positive answer for k = 3.

Theorem 1.2. The statement in Question 1.1 holds for k = 3.

Unfortunately, our proof does not seem to generalize to any larger k, and
so Question 1.1 remains open for k ≥ 4.

A nonlocal behavior of 3-monotone interpolability. An obvious neces-
sary condition for a set Q to be k-monotone interpolable is that every (k + 1)-
tuple in Q be k-monotone interpolable, and for k ≤ 2 it is easy to check that
this is also sufficient.

In earlier versions of [EM13], it was conjectured that the condition should
be sufficient for all k ≥ 3. If this were the case, then Theorem 1.2 would follow
immediately from Ramsey’s theorem for fourtuples.

However, Rote found a counterexample for k = 3 (reproduced in [EM13]):
a six-point set P for which all fourtuples are 3-monotone interpolable, but P
itself is not. Later we learned that a similar example was known earlier [KS03,
Example 5.3].

In Section 4.1 we provide a much stronger example showing that 3-monotone
interpolability is a completely global property.

Theorem 1.3. For every even n ≥ 4 there exists an n-point P ⊂ R2 that is
not 3-monotone interpolable, but for which every proper subset is 3-monotone
interpolable.

This, in our opinion, makes Theorem 1.2 somewhat surprising and Ques-
tion 1.1 for k ≥ 4 interesting.

It is straightforward to extend our proof of Theorem 1.3 to yield an anal-
ogous result for every odd k ≥ 3. The case of even k seems somewhat more
problematic, although we believe that the difficulties should not be unsurmount-
able.

The algorithmic question. We also investigate the computational complex-
ity of the question, Given a finite P in the plane, is it k-monotone interpolable?

1Let us remark that some of the literature, especially older one such as [Sch41, Wil56], the
definition of k-monotonicity is somewhat different, also involving requirements on lower-order
derivatives, but the essence of the notion remains the same. The term k-convex is also used
instead of k-monotone.
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This is a numerical problem, and so it is important to specify the model
of computation, and also to distinguish exact and approximate version of the
question.

We will use the bit model (or Turing machine model) of computation, where
one counts the number of bit operations; thus, for example, the addition of two
b-bit numbers takes time proportional to b. We assume that the coordinates
of the points of the input set P are rational numbers, and the size of P is
measured as the number of bits in its binary encoding (each of the rational
coordinates is encoded by the numerator and denominator written in binary).
See, e.g., Grötschel, Lovász, and Schrijver [GLS88] for more details on this
model of computation.

Let us remark that for geometric computations, the real RAM, or Blum–
Shub–Smale, model is also used in many papers, where arithmetic operations
with arbitrary real numbers are allowed at unit cost. However, for testing k-
monotone interpolability, we believe that this model is inadequate, since as
we will show, a natural algorithm for this testing needs to deal with numbers
having exponentially many digits.

Kopotun and Shadrin [KS03] provided a characterization of k-monotone in-
terpolability, which we will recall in Section 2 below. Using this characterization
and methods of polynomial optimization, as discussed e.g. in Lasserre’s book
[Las10], one can write down a semidefinite program that is feasible if and only
if the given point set P is not 3-interpolable. (We will provide a brief discussion
of semidefinite programming and basic references in Section 5.1.)

In our experience, many people in theoretical computer science regard semidef-
inite programs more or less automatically as polynomial-time solvable problems.
(Some of the authors certainly did belong among these people before working on
the present paper.) Indeed, many introductory texts and classes may make this
impression, although they usually point out that the known polynomial-time
algorithms solve semidefinite programs only approximately.

However, for the polynomiality claim to be true, one also needs to assume
that, if the semidefinite program in question is feasible at all, it has a feasi-
ble solution with norm bounded by an integer R with polynomially many bits
(polynomially in the size of the input). It is known that such a bound need
not hold in general and that the smallest feasible solution may need exponen-
tially many bits, but in many applications of semidefinite programming, e.g., in
combinatorial optimization, it is obvious that such a pathology cannot occur.

In contrast, for the semidefinite program mentioned above corresponding to
3-monotone interpolability, we found that there are simple input point sets that
do force the smallest feasible solution to have exponentially many digits. This
result, Corollary 5.2 below, is based on the following example.

Theorem 1.4. Let Pi = {z, p0, p1, . . . , p2m+1, q}, where z = (−1, 0), pj =
(j, j3) for j = 0, 1, . . . , 2m + 1, and q = (2m + 2, (2m + 2)3 − 6). Let P ′

m =
(Pm \ {q}) ∪ {q′}, where q′ is q shifted upwards by 2 · 2−2m . Then P ′

m is 3-
monotone interpolable, while Pm is not.

The best known algorithm for deciding feasibility of an arbitrary semidefi-
nite program we could find in the literature is due to Porkolab and Khachiyan
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[PK97], and it has exponential complexity (more precisely, the time complexity
is at most exp(O(s log s)), where s is the input size). This also yields the best
complexity of an exact algorithm for testing k-monotone interpolability we are
aware of (another algorithm of comparable complexity can be obtained from
algorithms for deciding sentences in the first-order theory of the reals, which
are discussed, e.g., in book Basu, Pollack, and Roy [BPR03], but here we will
not consider this alternative approach).

Future work. We consider the Ramsey-theoretic question, about the exis-
tence of a large k-monotone interpolable subset in any sufficiently large point
set, interesting and unusual in the context of geometric Ramsey theory, because
of the nonlocal nature of k-monotone interpolability. The open case k ≥ 4 seems
to need a new idea. Another question is estimating the order of magnitude of
the Ramsey function N3(n).

On the computational side, the problem of (exact) testing k-monotone in-
terpolability can be regarded as a simple concrete instance of polynomial opti-
mization in the spirit of [Las10]. Thus, it would be very interesting to obtain
stronger hardness results, or possibly an algorithm with provably subexponen-
tial complexity.

For semidefinite programming, there is a lower bound result of Tarasov and
Vyalyi [TV08]: the problem of deciding feasibility of a semidefinite program
(exactly) is at least as hard as the following problem: given an integer arithmetic
circuit without inputs, determine the sign of its output. This is a problem of
basic importance for many complexity questions of numerical mathematics (see,
e.g., Allender et al. [ABKPM09]), and its complexity status is unknown and
probably very challenging to determine. Can an analog of the Tarasov–Vyalyi
result be obtained for some simple case of polynomial optimization, such as the
non-positivity problem (stated later as Problem 5.1)? Or perhaps even for the
very specific case of testing 3-monotone interpolability?

According to Ramana [Ram97], given a semidefinite program Π, one can
construct another semidefinite program, the Ramana dual of Π, that is feasible
iff Π is infeasible, and whose input size is bounded by a polynomial in the input
size of Π. Thus, testing feasibility of a semidefinite program is, in this sense,
symmetric with respect to the YES and NO answers; for example, it either
belongs to both NP and co-NP, or it is outside of both NP and co-NP. Can a
similar result be obtained for polynomial optimization, and/or for 3-monotone
interpolability?

Our example in Theorem 1.4 indicates that at least the “obvious” certifi-
cates of 3-monotone noninterpolability are not of polynomial size. Is there a
polynomial-size certificate for 3-monotone interpolability, or some result indi-
cating that such a certificate is unlikely to be found?

One might also seek an “elementary” algorithm for deciding 3-monotone
interpolability, say one trying to combine an interpolant from suitable parabolic
arcs.

Finally, in spite of our negative examples, one may hope that the k-monotone
interpolability problem, at least for not too many points, is “usually” solvable
in practice by running a semidefinite solver on the semidefinite program set up
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in Section 5.1. For this to have at least some theoretical foundation, it would
be good to have an approximation result of the following kind: There is an
algorithm that, given k, a point set P , and a parameter ε > 0, returns YES
or NO, and runs in time polynomial in k, the input size of P , and log 1

ε
. If

the answer is NO, then P is not k-monotone interpolable, and if the answer is
YES, then there is a k-monotone interpolable set P ′ that can be obtained from
P by shifting every point up or down by at most ε.

Currently we do not have such a result. There are theoretical bounds, based
on the ellipsoid method, on the complexity of approximately solving semidef-
inite programs in the bit model; see, e.g., [GM12, Thm. 2.6.1] for a concrete
formulation based on general theorems of [GLS88]. However, the main diffi-
culty one faces when trying to apply such a bound to polynomial optimization
is that the ellipsoid algorithm, in order to be guaranteed to find a feasible so-
lution, needs that the set of feasible solutions be suitably bounded (which can
be arranged in our setting) and contains an ε-ball, for ε > 0 with polynomially
many bits. (The ball is not in the space of all positive semidefinite matrices,
but rather in the space of all such matrices satisfying all equality constraints
of the semidefinite program.) The latter condition, for semidefinite programs
coming from polynomial optimization problems, looks at least non-obvious, and
perhaps it might even fail in some cases.

We believe that this kind of theory is worth working out, preferably in the
general context of multivariate polynomial optimization as in [Las10]—at least
we could not find any study in this direction.

2 Preliminaries

Divided differences and k-monotonicity. The kth divided difference of a
real function f at points x0, x1, . . . , xk ∈ R is denoted by [x0, x1, . . . , xk]f and
defined recursively by

[x0]f := f(x0), [x0, . . . , xk]f :=
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
.

It is known that f is k-monotone on an open interval I iff [x0, x1, . . . , xk]f ≥ 0
for all choices of x0 < x1 < · · · < xk ∈ I (see [KS03, Lemma 3.1]).

Sometimes it will be notationally convenient to regard a set P of points in
the plane with distinct x-coordinates as the graph of a function f : X → R,
where X = X(P ) is the set of the x-coordinates of the points of P . Then,
instead of P being k-monotone interpolable, we can also say that (X, f) is
k-monotone interpolable.

Here is a useful criterion for determining the sign of the divided difference
[x0, x1, . . . , xk]f , where x0 < x1 < · · · < xk: Let i ∈ {0, 1, . . . , k}, and let p be
the unique polynomial of degree at most k−1 such that p(xj) = f(xj) for all j ∈
{0, 1, . . . , k} \ {i}. Then sgn[x0, x1, . . . , xk]f = (−1)k−i sgn(p(xi) − f(xi)) (see
[EM13]). So, for example, for k = 3, if we pass a parabola through the first three
values of f , then the fourth value is above the parabola for [x0, x1, x2, x3]f > 0,
and below it for [x0, x1, x2, x3]f < 0.
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A necessary condition for k-monotone interpolability of (X, f) is [x0, . . . , xk]f ≥
0 for every choice of x0 < x1 < · · · < xk ∈ X. While, as was discussed in the
introduction, this condition is very far from sufficient for arbitrary X, it is suf-
ficient for |X| = k + 1 (e.g., because [x0, . . . , xk]f is the leading coefficient of
the unique polynomial p of degree at most k that coincides with f on X, and
if this coefficient is nonnegative, then p is a k-monotone interpolant; see, e.g.,
[EM13]).

A representation theorem for k-monotone functions. The following
characterization of k-monotone function essentially goes back to Schoenberg
[Sch41]; see [KS03].

Theorem 2.1 (Representation theorem). A function f : R → R is k-monotone
if and only if for every closed interval [a, b] there is a polynomial p(x) of degree
at most k − 1 and a bounded nondecreasing function µ : [a, b] → R such that

f(x) = p(x) +
1

k!

∫ b

a

kmax(x− t, 0)k−1dµ(t), x ∈ [a, b].

This basically says that a k-monotone function must be a nonnegative linear
combination of translates of the function max(x, 0)k−1, plus a polynomial of
degree at most k − 1 (except that we do not have a finite linear combination
but an integral). In particular, a 3-monotone function can be made of a parabola
and “right half-parabolas”.

A characterization of k-monotone interpolability. LetX = {x1, . . . , xn+k} ⊂
R, x1 < x2 < · · · < xn+k, be a set of n+k real numbers, which are often referred
to as nodes in this context. The B-splines of degree k − 1 corresponding to X
are the functions M1(t),. . . , Mn(t) defined by the formula

Mi(t) := k[xi, . . . , xi+k]max(0, x − t)k−1,

where the divided differencing on the right-hand side is with respect to x (while
t is viewed as a fixed parameter). Here is an example with k = 3 (the nodes
are marked on the x-axis, and the peaks of M1, . . . ,M5 go in the left-to-right
order):

Each Mi is strictly positive on the interval (xi, xi+k) and zero outsize of it, and
on each interval [xj , xj+1], each Mi equals some polynomial pij of degree at
most k − 1.

The characterization of k-monotone interpolability we will use was obtained
from Theorem 2.1 by a duality argument, and it can be stated as follows.
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Lemma 2.2 ([KS03], Corollary 6.5). Let X = {x1, . . . , xn+k}, x1 < · · · < xn+k,
be a node sequence, let f : X → R be a function, and let the vector v =
(v1, . . . , vn) be given by vi = [xi, . . . , xi+k]f . Then (X, f) is k-monotone inter-
polable if and only if the following implication holds for every a = (a1, . . . , an) ∈
Rn: If

∑n
i=1 aiMi(t) ≥ 0 for all t ∈ [x1, xn+k], then

∑n
i=1 aivi ≥ 0.

Geometrically, if we denote by M the compact set

M =
{

(M1(t), . . . ,Mn(t)) ∈ Rn : t ∈ [x1, xn+k]
}

,

then the characterization says that P is not k-monotone interpolable if and
only if the point v can be strictly separated from M by a hyperplane passing
through the origin.

3 Proof of Theorem 1.2 (Ramsey-type result)

The following alternative criterion for k-monotone interpolability can be derived
from the representation theorem (Theorem 2.1) or from Lemma 2.2.

Lemma 3.1. Let X = {x1, . . . , xn+k}, x1 < · · · < xn+k, be a node sequence,
let f : X → R be a function, and let the vector v = (v1, . . . , vn) be given by
vi = [xi, . . . , xi+k]f . Then (X, f) is k-monotone interpolable if and only if there
exist c1, . . . , cn ≥ 0 and t1, . . . , tn ∈ [x1, xn+k] satisfying vi =

∑n
j=1 cjMi(tj) for

all i = 1, . . . , n.

Proof. The “if” part is obvious from Lemma 2.2: the condition guarantees that
v lies in the convex cone generated by the set M defined after Lemma 2.2, and
hence it cannot be separated from M.

The “only if” part follows from a suitable hyperplane separation theorem
for convex cones; one needs to verify that the cone generated by M is closed.
We omit the details since we do not need the “only if” direction.

We are now ready to prove the Ramsey-type result.

Proof Theorem 1.2. Let P = {(x, f(x)) : x ∈ X} ⊂ R2 be an N -point set with
distinct x-coordinates.

A necessary condition for 3-monotone interpolability of P is that [x0, . . . , x3]f ≥
0 for every choice of x0 < · · · < x3 ∈ X. This condition can be easily enforced
using Ramsey’s theorem for fourtuples: we color a fourtuple {x0, . . . , x3} ⊆ X
red if [x0, . . . , x3]f ≥ 0 and blue otherwise, and if N is sufficiently large, we can
select a subset Y ⊆ X of prescribed size in which all fourtuples have the same
color. By possibly passing to P l, we may thus assume that [x0, . . . , x3]f ≥ 0
for all fourtuples in Y .

Next, by Ramsey’s theorem again, we will select an (n + 3)-point subset
Z = {z1, . . . , zn+3} ⊆ Y , which we will prove to be 3-monotone interpolable.
This time we will 2-color 5-tuples, in a way which looks mysterious at first sight,
but which will be explained by the proof below.

For a node sequence U = {u1 < . . . < um+3} of real numbers, let MU
i be

ith B-spline of degree 2, i.e., [ui, ui+1, ui+2, ui+3]max(0, x− t)2. For U ⊆ Y , we
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also write vUi for [ui, ui+1, ui+2, ui+3]f . Note that our choice of Y guarantees
vUi ≥ 0 for every U ⊆ Y and all i.

Now we define the 2-coloring of the 5-tuples: a 5-tuple U = {u1 < · · · <
u5} ⊆ Y is v-positive if

vU1
MU

1 (u3)
≤

vU2
MU

2 (u3)
,

and otherwise it is v-negative.
We recall that MU

i (uj) is strictly positive for j = i + 1 and j = i + 2 and
zero for all other j, and so the coloring is well defined.

By Ramsey’s theorem, if |Y | is sufficiently large, there exists Z = {z1 <
· · · < zn+3} ⊆ Y with all 5-tuples of the same type (i.e. either all v-positive
or all v-negative). We will use Lemma 3.1 with X = Z to show that Z is
3-monotone interpolable. From now until the end of the proof, to simplify the
notation, let us write Mi for M

Z
i and vi for v

Z
i .

The v-positive case. Here we choose tj := zj+2, j = 1, . . . , n, in Lemma 3.1.
With the tj fixed, the conditions vi =

∑n
j=1 cjMi(tj) provide a system of n linear

equations for the unknowns c1, . . . , cn.
The idea is to calculate c1, then c2, then c3, etc. from these linear equations.

In the i step, i ≥ 2, v-positivity is exactly the right condition for ensuring that
ci ≥ 0.

Since Mi(zj+2) is zero unless j ∈ {i − 1, i}, the first equation reads v1 =
c1M1(z3) and determines c1 = v1/M1(z3) uniquely. We also have c1 ≥ 0 since
vi ≥ 0, by the choice of Y .

Now we suppose inductively that nonnegative c1, . . . , ci have been deter-
mined, in such a way that they satisfy the first i equations. Moreover, to
support the induction, we also assume ci ≤ vi/Mi(zi+2).

Then expressing ci+1 from the (i+ 1)st equation gives

ci+1 :=
vi+1 − ciMi+1(zi+2)

Mi+1(zi+3)
.

Since ci ≥ 0 andMi+1 ≥ 0, this formula implies the inequality ci+1 ≤ vi+1/Mi+1(zi+3)
needed for our induction.

It remains to verify that ci+1 ≥ 0, and here we use the v-positivity of the
5-tuple {zi, zi+1, zi+2, zi+3, zi+4}, from which we obtain

ci ≤
vi

Mi(zi+2)
≤

vi+1

Mi+1(zi+2)
.

Hence the numerator in the formula for ci+1 is nonnegative. This finishes the
inductive step; we have shown that the condition in Lemma 3.1 is fulfilled and
so the restriction of f to Z is 3-monotone interpolable.

The v-negative case. This case is similar to the previous one, but this
time we set tj := zj+1 (as opposed to tj = zj+2 in the previous case), and we
work backwards, computing first cn, then cn−1, etc.
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Figure 1: Proof of Lemma 4.1.

From the nth equation we obtain cn = vn/Mn(zn+1). In the inductive
step, we assume that nonnegative cn, . . . , ci+1 have been determined satisfying
the last n − i equations and such that ci+1 ≤ vi+1/Mi+1(zi+2). Then the ith
equation dictates that

ci :=
vi − ci+1Mi(zi+2)

Mi(zi+1)
.

As before, ci ≤ vi/Mi(zi+1) follows immediately. The v-negativity of {zi, . . . , zi+4}
then yields

ci+1 ≤
vi+1

Mi+1(zi+2)
<

vi
Mi(zi+2)

,

again showing the numerator in the formula for ci nonnegative. This concludes
the proof.

4 Constructions of point sets

We are going to prove Theorems 1.3 and 1.4. The idea of both constructions
is similar, and first we prepare a result common for both of them. But while it
is possible to arrange the construction for Theorem 1.4 so that it also verifies
Theorem 1.3, the technical details come out complicated, and so we prefer to
keep the two constructions separate.

For a point p ∈ R, we write x(p) and y(p) for the x and y coordinates of p.

Lemma 4.1. Let P = {p1, . . . , pn} be a 3-monotone interpolable point set where
x(p1) < · · · < x(pn). Assume that for some parabola π, there is a 3-monotone
interpolant f of P equal to π to the right of pn. Also assume that for a point
q to the right of pn, P ∪ {q} is 3-monotone interpolable if and only if q lies on
or above π. Further, let Q = {q1, q2} be a pair of points above π that satisfy
x(pn) < x(q1) < x(q2) and such that there is a parabola ρ passing through q1
and q2 tangent to π with the point of tangency to the right of pn and to the left
of q1 (see Fig. 1 left).

Then for a point r to the right of q2, P ∪Q∪{r} is 3-monotone interpolable
if and only if r lies on ρ or above it.

Proof. Let t be the point of tangency of π and ρ. Notice that the curve g equal
to f to the left of t and equal to ρ to the right of t is a 3-monotone interpolant of

10



P ∪Q; see Fig. 1. Consequently, if r lies on ρ to the right of q2, then P ∪Q∪{r}
is 3-monotone interpolable.

Now assume that r lies to the right of q2 and above ρ. For every point u
on ρ with x(u) 6= x(r), there is a (unique) parabola passing through r that
is tangent to ρ with u as the point of tangency. We fix a point u on ρ with
x(q2) < x(u) < x(r) and a parabola σ passing through r and tangent to ρ in
u. The curve equal to g to the left of u and equal to σ to the right of u is a
3-monotone interpolant of P ∪Q ∪ {r}.

Now we consider r′ to the right of q2 and below ρ. We assume, for con-
tradiction, that P ∪ Q ∪ {r′} has a 3-monotone interpolant h. Let σ′ be the
parabola containing q1, q2 and r′:

ρ

q1
q2

r′t σ′

pn

h

z

Then σ′ and ρ have exactly two points in common: q1 and q2. Therefore σ′

is strictly below ρ everywhere to the left of q1. We consider the point z =
(x(t), h(x(t))). For the quadruple {z, q1, q2, r

′} to be positive, z has to lie on
σ′ or below it. On the other hand, since h is a 3-monotone interpolant of
P ∪{z}, z lies on or above π. This is a contradiction, since π(x(t)) = ρ(x(t)) >
σ′(x(t)).

Let f, g : R → R be two functions. A convex combination of f and g is the
function αf + (1− α)g for some α ∈ [0, 1].

Observation 4.2. Let k ≥ 1. Let f and g be two k-monotone interpolants of a
set P . Then every convex combination of f and g is a k-monotone interpolant
of P .

4.1 Proof of Theorem 1.3 (non-locality)

We will prove the following by induction on i:

Claim 4.3. For every i ≥ 1 there exists a set Pi of 2i + 1 points in the plane
and an integer ui that satisfy the following. There are quadratic functions πi
and πi,p, p ∈ Pi, where each πi,p(x) ≤ πi(x) − 1 on [ui,∞) for every p ∈ Pi,
such that:

(i) There exists a 3-monotone interpolant f for Pi that equals πi on [ui,∞),
but if q is a point with x(q) ≥ ui and strictly below πi, then Pi ∪ {q} is
not 3-monotone interpolable.

(ii) For every p ∈ Pi, the set Pi \ {p} is 3-monotone interpolable, and among
the 3-monotone interpolants, there is a function fi,p that equals πi,p on
[ui,∞).

Moreover, the coordinates of all the points in Pi are integers from the range
0, . . . , 25i3 and πi(ui) is an integer.

11



Proof. Define ui = 5i.
When i = 1, the requirements are satisfied by the triple of points (0, 0),

(1, 0), (2, 0).
For i ≥ 2, we proceed by induction. We have a set Pi−1 of 2i− 1 points and

quadratic functions πi−1 and πi−1,p for every p ∈ Pi−1.
We define

πi(x) = πi−1(x) + (x− ui−1 − 1)2.

Thus, πi is a parabola tangent to πi−1 at a point with x-coordinate ui−1 + 1.
We also have πi(x) > πi−1(x) for every x ∈ R \ {ui−1 + 1}. We now define the
set Pi as Pi = Pi−1 ∪ {p2i, p2i+1}, where p2i and p2i+1 are points on πi with
x-coordinates ui−1 + 2 and ui−1 + 3.

Claim (i) follows from Lemma 4.1.
Now we verify claim (ii).
If p ∈ Pi−1, we consider the 3-monotone interpolant fi−1,p of P \ {p} that

equals πi−1,p on [ui−1,∞). We define the parabola πi,p as the parabola that
passes through (ui−1, πi−1(ui−1)), p2i and p2i+1. That is, πi(x) − πi,p(x) is a
quadratic function that attains its minimum at ui−1 + 5/2 and is equal to 1 at
ui−1. Then we have πi,p(x) ≤ πi(x)− 1 on [ui,∞). We also deduce

πi,p(x) = πi−1(x) +
5

6
(x− ui−1)

2 −
7

6
(x− ui−1).

So we have πi,p(x) > πi−1(x)− 1 ≥ πi−1,p(x) for every x ∈ [ui−1,∞).
Since πi,p has two intersections with fi−1 and no intersection with fi−1,p

on [ui,∞), fi−1 and fi−1,p have a convex combination g whose restriction on
[ui−1,∞) is a parabola tangent to πi,p. By Observation 4.2, g is a 3-monotone
interpolant of P \ {p}.

Let t′ be the point of tangency. The function fi,p equal to g on (−∞, x(t′)]
and equal to πi,p on [x(t′),∞) is a 3-monotone interpolant for Pi \ {p} that
equals πi,p on [ui,∞).

If p = p2i or p = p2i+1, we let q be the point from {p2i, p2i+1} different from
p. We take the parabola πi,p that passes through q and is tangent to πi−1 at a
point t′ with x(t′) = ui−1. We have

πi,p(x) = πi−1(x) +
4

9
(x− ui−1)

2 when p = p2i and

πi,p(x) = πi−1(x) +
1

4
(x− ui−1)

2 when p = p2i+1.

In both cases, πi,p(x) ≤ πi(x) − 1 on [ui,∞). The function fi,p equal to fi−1

on (−∞, ui−1] and equal to πi,p on [ui−1,∞) is a 3-monotone interpolant for
Pi \ {p} that satisfies claim (ii).

The x-coordinates of all the points of Pi are integers from {0, . . . , 5i} and lie
on the parabolas πi. All coefficients of the quadratic functions πi are integers
and so all the points in Pi have integer coordinates. We have π1 ≡ 0 and for
every integer i and every real x ∈ [0, 5i], we have πi(x) ≤ πi−1(x) + (5i)2 and
so πi(x) ≤ 25i3.

We are now ready to prove Theorem 1.3. We have n = 2i+2 for some i ≥ 1.
The set P is formed by all the points of Pi and a point q = (ui, πi(ui)− 1).

12



4.2 Proof of Theorem 1.4 (doubly exponentially small example)

Lemma 4.4. Let ε > 0. For every j, let pj be the point (j, j3) and let qj be
the point (j, j3 + ε). Given an arbitrary integer i, let κ be the parabola passing
through qi−2, pi−1 and pi. Then (i+1)3−κ(i+1) = 6−ε and (i+2)3−κ(i+2) =
24− 3ε.

Proof. We first consider the parabola τi passing through pi, pi+1 and pi+2 and
a parabola τi−2 passing through pi−2, pi−1 and pi. By a straightforward calcu-
lation, for every x ∈ R,

τi(x) = (3i + 3)x2 − (3i2 + 6i+ 2)x+ i3 + 3i2 + 2i

and
τi(x)− τi−2(x) = 6(x− i)2.

Let δ be the quadratic function κ − τi−2. We have δ(i − 2) = ε, δ(i − 1) = 0
and δ(i) = 0. Thus, for every x ∈ R:

κ(x)− τi−2(x) = δ(x) =
ε

2
· (x− i+ 1/2)2 − ε/8.

It is now easy to calculate the values τi(x)−κ(x) for x = i+1 and x = i+2
and verify the claim.

Lemma 4.5. For every j, let pj be the point (j, j3). For an integer i > 2 and
an arbitrary ε ∈ (0, 1], let qi+1 be the point (i+1, (i+1)3 − 6+ ε). Let τ be the
parabola passing through pi−1, pi and qi+1. Then there is a parabola π passing
through pi+1 and pi+2 that is tangent to τ such that the x-coordinate of the point
of tangency is in the interval (i, i + 1). Moreover, π(i + 3) = (i + 3)3 − 6 + δ,
where δ ∈ (0, ε2/5).

Proof. Let p′i+1 = (1, (i + 1)3 − τ(i + 1)) and p′i+2 = (2, (i + 2)3 − τ(i + 2)).
From Lemma 4.4, we have p′i+1 = (1, 6 − ε) and p′i+2 = (1, 24 − 3ε). The main
part of the proof is finding a parabola π′ passing through p′i+1 and p′i+2 that
is tangent to the x-axis in a point with x-coordinate in (0, 1). Then we show
that the parabola π defined by π(x) = π′(x− i) + τ(x) for every x ∈ R has the
claimed properties.

Since p′i+2 is higher than p′i+1 and both are above the x-axis, there are
exactly two parabolas passing through p′i+1 and p′i+2 that are tangent to the
x-axis. The point of tangency of one of the two parabolas is between p′i+1 and
p′i+2, while the point of tangency of the other is to the left of p′i+1. The parabola
with tangency to the left of p′i+1 goes below the other parabola everywhere to
the left of p′i+1 and thus has a smaller coefficient of the quadratic term.

We write π′(x) = ax2 + bx+ c. Since π′ passes through p′i+1 and p′i+2 and
is tangent to the x-axis, we have

a+ b+ c = 6− ε

4a+ 2b+ c = 24 − 3ε

b2 = 4ac.
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To simplify the equations, we define ā = a−6. Using the first two equations,
we express b and c in terms of ā and ε as b = −3ā − 2ε and c = 2ā + ε. The
third equation then becomes

ā2 + 8āε− 48ā+ 4ε2 − 24ε = 0.

Let f(ā) be the left-hand side of the equation. Using ε ∈ (0, 1], it is easy
to verify that f(−ε/2) > 0, f(0) < 0 and that f goes to infinity as ā goes to
infinity. Let ā1 and ā2 be the two roots of f(ā) with ā1 < ā2. Since the value
of ā corresponding to the parabola π′ is the smaller of the two roots of f(ā), its
value is ā1 ∈ (−ε/2, 0). We then have a ∈ (5, 6) and b ∈ (−2ε,−ε/2).

The x-coordinate of the point of tangency of π′ with the x-axis is

−b

2a
∈
(

0,
ε

5

)

⊂ (0, 1).

From b2 = 4ac, we obtain

c =
b2

4a
∈

(

0,
ε2

5

)

.

We define δ = c. Notice that π′ passes through the point (0, δ).
Consequently, the parabola π passes through pi+1 and pi+2 and is tangent

to τ in a point with x-coordinate in the interval (i, i + 1) and passes through
the point (i, i3 + δ). By Lemma 4.4, π(i+ 3) = (i+ 3)3 − 6 + δ.

The next lemma is a slight strengthening of Theorem 1.4.

Lemma 4.6. Let pj be the point (j, j3) and let z = (−1, 0). Let Pm =
{z, p0, p1, . . . , p2m+1}. For every integer m ≥ 0, we consider the point q2m+2

with x-coordinate 2m+ 2 and with the smallest possible y-coordinate such that
the set Pm ∪ {q2m+2} is 3-monotone interpolable. Then the y-coordinate of
q2m+2 equals (2m+ 2)3 − 6 + εm for some positive εm ≤ 2 · 2−2m .

Proof. Let π0 be the parabola passing through z, p0 and p1. Observe that
π0(2) = 3 and thus the claim holds for m = 0 with ε0 = 1.

We now consider the inductive step for m ≥ 1.
Let πm−1 be the parabola passing through p2m−2, p2m−1 and q2m. As a

consequence of the induction hypothesis, for every point s to the right of p2m−1,
Pm−1 ∪ {s} is 3-monotone interpolable if and only if s lies on or above πm−1.

By Lemma 4.5, there is a parabola πm passing through p2m and p2m+1 that
is tangent to πm−1 in a point to the left of p2m and to the right of p2m−1.

By Lemma 4.1, for every point s to the right of p2m+1, Pm ∪ {s} is 3-
monotone interpolable if and only if s lies above πm. By Lemma 4.5, πm(2m+
2) = (2m+ 2)3 − 6 + εm for some εm ∈ (0, ε2m−1/5). That is,

εm ≤
ε2m−1

5
≤

(2 · 2−2m−1

)2

5
≤

4

5
· 22·(−2m−1) ≤ 2 · 2−2m .
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5 Proof of Theorem 1.4 (exponentially many digits)

5.1 The semidefinite formulation

By the characterization in Lemma 2.2, if we think of a point set P ⊂ R2 as a
function f : X → R, with X = {x1, . . . , xn+k}, then (X, f) is not k-monotone
interpolable exactly if there is a ∈ Rn such that

∑n
i=1 aiMi(t) ≥ 0 for all

t ∈ [x1, xn+k] and
∑n

i=1 aivi = −1, where the vi = [xi, . . . , xi+k]f are the kth
divided differences. Further we recall that Mi(t) equals a polynomial pij(t) of
degree at most k − 1 on each interval [xj , xj+1].

By re-scaling the interval [xj , xj+1] to [−1, 1] for notational convenience,
each pij is transformed into another polynomial p̃ij. The coefficients of p̃ij can
obviously be computed from the xi in polynomial time. Thus, the impossibility
of k-monotone interpolation is a special case of the following computational
problem.

Problem 5.1 (The non-positivity2 problem).
Input: Polynomials p̃ij(t), i = 1, 2, . . . , n, j = 1, 2, . . . ,m with rational coeffi-
cients and a vector v ∈ Qn.
Question: Does there exist a ∈ Rn such that

∑n
i=1 aip̃ij(t) ≥ 0 for all t ∈ [−1, 1]

and all j = 1, . . . ,m, and
∑n

i=1 aivi = −1?

There is a large body of work showing that problems involving nonnega-
tivity of polynomials over semialgebraic sets (i.e., sets defined by polynomial
inequalities) can be converted, under fairly general conditions, to semidefinite
programs.

Semidefinite programs. We recall that a semidefinite program is the com-
putational problem of finding a positive semidefinite n×n matrix X that max-
imizes a linear function C • X subject to linear constraints A1 • X = b1,. . . ,
A2 •X = bm, for given n× n matrices C and A1, . . . , Am and reals b1, . . . , bm.
Here the matrix scalar product • is defined as C •X =

∑n
i,j=1 cijxij . We refer,

e.g., to the books [BTN01, BV04, GM12] or handbooks [WSV00, AL12] for
background.

For the semidefinite formulation of our non-positivity problem, the max-
imized function C • X is irrelevant; we need only the semidefinite feasibility
problem, where we ask for the existence of a positive semidefinite X satisfying
given linear constraints.

Semidefinite formulation of the non-positivity problem. By a classical
result, see [Las10, Theorem 2.6], a univariate polynomial p(t) of degree d is
nonnegative on [−1, 1] if and only if it can be written as

p(t) = f(t) + (1− t)(1 + t)h(t),

where f(t) and h(t) are polynomials that can be expressed as sums of squares
of suitable polynomials, i.e., in the form

∑m
i=1 si(t)

2 for some m and some
polynomials s1(t), . . . , sm(t), with deg f ≤ 2d and degh ≤ 2d− 2.

2The word positivity refers to a customary terminology: a vector v is called positive w.r.t.
a system u1, . . . , un of real functions on an interval I if

∑
n

i=1
aiui(t) ≥ 0 for all t ∈ I implies∑

n

i=1
aivi ≥ 0.
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Moreover, a polynomial f(t) is a sum of squares of degree at most 2d iff it
has the form tTQt, where Q is a (d+ 1)× (d+ 1) positive semidefinite matrix
and t = (1, t, t2, . . . , td); see [Las10, Prop. 2.1].

Thus, a polynomial p(t) of degree at most d is nonnegative on [−1, 1] if and
only if there are a (d+1)× (d+1) matrix Q and d× d matrix Q̃, both positive
semidefinite, such that

p(t) = tTQt+ (1− t)(1 + t)t̃T Q̃t̃

holds as equality of polynomials in t, where t̃ = (1, t, . . . , td−1). Expanding each
side according to powers of t, we obtain 2d + 1 linear equations involving the
entries of Q and Q̃ and the coefficients of p(t).

Therefore, the non-positivity problem above can be re-stated as the exis-
tence of reals a1, . . . , an and positive semidefinite matrices Q1, . . . , Qm (of size
k × k) and Q̃1, . . . Q̃m (of size (k − 1)× (k − 1)) such that

∑n
i=1 aivi = −1 and

for each j = 1, 2, . . . ,m, the matrices Qj and Q̃j witness the nonnegativity of
the polynomial

∑n
i=1 aip̃ij(t) in the above sense, using suitable linear equations

involving the entries of Qj and Q̃j and the ai.
This is not yet quite a semidefinite feasibility problem as defined above, but

it can be transformed into one by standard tricks. Namely, we first replace
each of the scalar variables ai by the difference a′i−a′′i , where a

′
i and a′′i are new

nonnegative scalar variables. Then we set up a large block-diagonal matrix X
that has the matrices Q1, . . . , Qm and Q̃1, . . . Q̃m on the diagonal, as well as the
1 × 1 blocks containing a′1, a

′′
1 , . . . , a

′
m, a′′m, and zeros elsewhere. The zeros are

forced as linear equalities, of the form Aj•X = 0, for the entries of X. As is well
known, positive semidefiniteness of X is equivalent to positive semidefiniteness
of all the Qj and Q̃j plus the nonnegativity of the a′i and a′′i . In this way, we get
a semidefinite feasibility problem, whose input size is bounded by a polynomial
in k and in the input size of the non-positivity problem.

We will refer to the resulting semidefinite feasibility problem as the standard
semidefinite formulation of the non-positivity problem (or of the k-monotone
interpolability problem).

Feasible solutions requiring exponentially many digits. Theorem 1.4,
the example of a non-interpolable set for which a set lying extremely close is
interpolable, yields the following consequence.

Corollary 5.2. For the 3-monotone noninterpolable point set Pm, m ≥ 2, as
in Theorem 1.4 (with O(m) points with integer coordinates bounded by O(m3)),
every vector a as in the corresponding non-positivity problem (Problem 5.1) has
entries exceeding 22

m

/100m in absolute value. Consequently, every feasible solu-
tion of the standard semidefinite formulation has components with exponentially
many digits.

Proof. Let a be a vector as in Problem 5.1, witnessing the 3-monotone non-
interpolability of Pm, and let A = ‖a‖∞ = maxi |ai|.

Let P ′
m be the 3-monotone interpolable set as in Theorem 1.4. Let v be

the vector of the kth divided differences for Pm and v′ the one for P ′
m. Since

the y-coordinates of Pm and of P ′
m differ by at most ε := 2 · 2−2m and the
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x-coordinates are integers, from the definition of divided differences it is easy
to check that ‖v − v′‖∞ ≤ 8ε.

Hence, with n = |Pm| = 2m + 3, we have
∑n

i=1 aiv
′
i ≤

∑n
i=1 aivi + nA · 8ε.

If we had A ≤ (8nε)−1, then
∑n

i=1 aiv
′
i < 0, and so a would also witness non-

interpolability of P ′
m. The corollary follows.

A simpler example for a variant of the non-positivity problem. If
we take the non-positivity problem for general quadratic polynomials p̃ij, not
necessarily coming from 3-monotone interpolability, there is a simpler example
forcing exponentially many digits.

For simplicity, we replace the condition t ∈ [−1, 1] with t ∈ R. A quadratic
polynomial At2+Bt+C is nonnegative on R if and only if A ≥ 0 and B2 ≤ 4AC.

Let us set v = (−1, 0, . . . , 0); then
∑n

i=1 aivi forces a1 = 1. Clearly, the
polynomials p̃ij(t) can be set so that the polynomials qj(t) :=

∑n
i=1 aip̃ij(t) are

as follows: q1(t) = a2 − 2a1, and qi(t) = ai+1t
2 + 2ait+ a1 for i = 2, 3, . . . ,m.

The nonnegativity of q1 makes sure that a2 ≥ 2, and nonnegativity of qi yields
4a2i ≤ 4ai+1a1. Then we have ai ≥ 22

i−2

.
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theorem for monotone paths and convex bodies. Proceedings of
the London Mathematical Society, 105(5):953–982, 2012.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms
and Combinatorial Optimization, volume 2 of Algorithms and
Combinatorics. Springer-Verlag, Berlin etc., 1988. 2nd edition
1993.
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in convex position—a survey. Bull. Amer. Math. Soc., New Ser.,
37(4):437–458, 2000.

[PK97] L. Porkolab and L. Khachiyan. On the complexity of semidefinite
programs. J. Global Optim., 10:351–365, 1997.
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