COMPATIBLE CONNECTIVITY-AUGMENTATION OF PLANAR DISCONNECTED GRAPHS

Greg Aloupis, ${ }^{*}$ Luis Barba, ${ }^{\dagger}$ Paz Carmi, \ddagger Vida Dujmović, ${ }^{\S}$ Fabrizio Frati, ${ }^{\text {T }}$ and Pat Morin ${ }^{\|}$

June 15, 2021

Abstract

Motivated by applications to graph morphing, we consider the following compatible connectivity-augmentation problem: We are given a labelled n-vertex planar graph, \mathcal{G}, that has $r \geq 2$ connected components, and $k \geq 2$ isomorphic planar straight-line drawings, G_{1}, \ldots, G_{k}, of \mathcal{G}. We wish to augment \mathcal{G} by adding vertices and edges to make it connected in such a way that these vertices and edges can be added to G_{1}, \ldots, G_{k} as points and straight-line segments, respectively, to obtain k planar straight-line drawings isomorphic to the augmentation of \mathcal{G}. We show that adding $\Theta\left(n r^{1-1 / k}\right)$ edges and vertices to \mathcal{G} is always sufficient and sometimes necessary to achieve this goal. The upper bound holds for all $r \in\{2, \ldots, n\}$ and $k \geq 2$ and is achievable by an algorithm whose running time is $O\left(n r^{1-1 / k}\right)$ for $k=O(1)$ and whose running time is $O\left(k n^{2}\right)$ for general values of k. The lower bound holds for all $r \in\{2, \ldots, n / 4\}$ and $k \geq 2$.

[^0]
1 Introduction

Consider the following problem, which will be more carefully formalized below. We are given several different labelled planar straight-line drawings (or simply drawings) of the same disconnected labelled graph, \mathcal{G}. We wish to make \mathcal{G} connected by adding vertices and edges in such a way that these vertices and edges can also be added to the drawings of \mathcal{G} while preserving planarity. The objective is to do this while minimizing the number of edges and vertices added. As the example in Figure 1 shows, it is not always possible to just add edges to \mathcal{G}; sometimes additional vertices are necessary.

Figure 1: Two drawings, G_{1} and G_{2}, of the same graph, \mathcal{G}, where making \mathcal{G} connected requires the addition both of edges and vertices. In this case, \mathcal{G} is made connected by adding the hollow vertex and two dashed edges.

The motivation for this work comes from the problem of morphing planar graphs, which has many applications $[8,10,11,17,18]$ including computer animation. Imagine an animator who wishes to animate a scene in which a character's expression goes from neutral, to surprised, to happy (see Figure 2). The animator can draw these three faces, but does not want to hand-draw the 30-60 frames required to animate the change of expression. The strokes used to draw the character's features can be converted into paths and these can be merged into components corresponding to the character's eyes, nose, mouth and so on. A correspondence between the same elements in different pictures is also given. ${ }^{1}$ Thus, the input is three isomorphic drawings of the same planar graph.

In this setting, animating the face becomes a problem of morphing (i.e., continuously deforming) one drawing of a planar graph into another drawing of the same planar graph while maintaining planarity of the drawing throughout the deformation. This morphing problem has been studied since 1944, when Cairns [6] showed such a transformation always exists. Since then, a sequence of results has shown that morphs can be done

[^1]

Figure 2: Computer-assisted animation frequently involves morphing between a sequence of drawings of the same planar graph. Zooming in on a section of the image reveals that the artist's strokes are approximated by polygonal paths
efficiently, so that the motion can be described concisely $[2,3,12,19]$. The most recent such result [3] shows that any planar drawing of an n-vertex connected planar graph can be morphed into any isomorphic drawing using a sequence of $O(n)$ linear morphs, in which vertices move along linear trajectories at constant speed.

The morphing algorithms discussed above require that the input graph, \mathcal{G}, be connected. In many applications of morphing (for example in Figure 2) the input graph is not connected. Before these morphing algorithms can be used, \mathcal{G} must be augmented into a connected graph, \mathcal{H}, but this augmentation must be compatible with the drawings of \mathcal{G}. At the same time, the complexity of the morph produced by a morphing algorithm depends on the number of vertices of \mathcal{H}. Therefore, we want to find an augmentation with the fewest number of vertices. This motivates the theoretical question studied in the current paper.

1.1 Formal Problem Statement and Main Result

A drawing of a graph $\mathcal{G}=(V, E)$ is a one-to-one function $\psi: V \rightarrow \mathbb{R}^{2}$. A drawing is planar if (a) for every pair of edges $u w$ and $x y$ in E, the open line segment with endpoints $\psi(u)$ and $\psi(w)$ is disjoint from the open line segment with endpoints $\psi(x)$ and $\psi(y)$ and (b) for every edge $u w$ and every vertex $y, \psi(y)$ is not contained in the open line segment with endpoints $\psi(u)$ and $\psi(w)$. Two planar drawings, ψ_{1} and ψ_{2}, of \mathcal{G} are isomorphic if there exists a continuous family of planar drawings $\left\{\psi^{(t)}: 0 \leq t \leq 1\right\}$ of \mathcal{G} such that $\psi^{(0)}=\psi_{1}$ and $\psi^{(1)}=\psi_{2} .{ }^{2}$

We call a graph, $G=(V, E)$ a geometric planar graph if it is the image of some planar drawing of a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. That is, $V(G)=\{\psi(v): v \in V(\mathcal{G})\}, E(G)=\{(\psi(u), \psi(w))$: $(u, w) \in E(\mathcal{G})\}$, and ψ is a planar drawing of \mathcal{G}. When clear from context, we will sometimes

[^2]treat a geometric planar graph interchangeably with the set of points and line segments defined by its vertices and edges, respectively.

We will avoid repeatedly referencing drawing functions like ψ. Instead, we will talk about a graph \mathcal{G} and k isomorphic drawings G_{1}, \ldots, G_{k} of \mathcal{G}. This means that each G_{i} is the geometric graph given by the drawing of \mathcal{G} with some function ψ_{i} and that $\psi_{1}, \ldots, \psi_{k}$ are pairwise isomorphic. When necessary, we may talk about the vertex v in G_{i} where v is actually a vertex of \mathcal{G}; this should be taken to mean the vertex $\psi_{i}(v)$ in G_{i}.

We are now ready to state the main problem studied in this paper. Given $k>1$ planar isomorphic drawings G_{1}, \ldots, G_{k} of \mathcal{G}, a compatible augmentation, \mathcal{H}, of \mathcal{G} is a supergraph of \mathcal{G} such that (1) \mathcal{H} is connected, and (2) there exist planar isomorphic drawings, H_{1}, \ldots, H_{k}, of \mathcal{H} such that $H_{i} \supset G_{i}$ for every $i \in\{1, \ldots, k\}$. We prove the following result:

Main Result: If \mathcal{G} is a graph with n vertices and $r \in\{2, \ldots, n\}$ connected components and $G_{1}, \ldots, G_{k}, k \geq 2$, are isomorphic planar drawings of \mathcal{G}, then there always exists a compatible augmentation of \mathcal{G} whose size is $O\left(n r^{1-1 / k}\right)$.

Furthermore, this bound is tight; for every $r \in\{2, \ldots,\lfloor n / 4\rfloor\}$ and $k \geq 2$, there exists a graph \mathcal{G} with r components and k isomorphic planar drawings for which any compatible augmentation has size $\Omega\left(n r^{1-1 / k}\right)$.

These results show that the (worst-case) cost of an augmentation is very sensitive to the number, k, of drawings, but only up to a point. For a fixed value of r, our bounds range from $\Theta\left(n r^{1 / 2}\right.$) (when $k=2$) to $\Theta(n r)$ (for $\left.k \geq \log r\right)$. On the other hand, for the common case where $k=2$, our bounds vary from $\Theta(n)$ (when $r \in O(1)$) up to $\Theta\left(n^{3 / 2}\right)$ (when $r \in \Theta(n)$). Neither r nor k causes the complexity of the augmentation to blow up beyond $\Theta\left(n^{2}\right)$.

1.2 Related Work

To the best of our knowledge, there is little work on compatible connectivity-augmentation of planar graphs, though there is work on isomorphic triangulations of polygons. Refer to Figure 3. In this setting, the graph \mathcal{G} is a cycle and one has two non-crossing drawings, P and Q, of \mathcal{G}. The goal is to augment \mathcal{G} (and the two drawings P and Q) so that \mathcal{G} becomes a near-triangulation, and P and Q become (geometric) triangulations of the interiors of the polygons whose boundaries are P and Q. Aronov et al. [4] showed that this can always be accomplished with the addition of $O\left(n^{2}\right)$ vertices and that $\Omega\left(n^{2}\right)$ vertices are sometimes necessary. Kranakis and Urrutia [13] showed that this result can be made sensitive to the number of reflex vertices of P and Q, so that the number of triangles required is $O(n+p q)$ where p and q are the number of reflex vertices of p and q, respectively.

Babikov et al. [5] showed that the result of Aronov et al. can be extended to polygons with holes. This work is the most closely related to ours because it encounters (the special case $k=2$ of) our problem as a subproblem. In their setting, the graph \mathcal{G} is a collection of

Figure 3: Compatible triangulations of two 4-gons P and Q.
r cycles, the drawings P and Q are such that one cycle, \mathcal{C}, of \mathcal{G} contains all the others in its interior and no other pair of cycles is nested in P or Q. In the first stage of their algorithm, they build a connected supergraph \mathcal{H}^{\prime} of \mathcal{G}, but their supergraph has size $\Theta\left(n^{2}\right)$ in the worst case. The main theorem in the current paper shows that this step of their algorithm could be done with a graph \mathcal{H}^{\prime} having only $O\left(n r^{1 / 2}\right)$ edges (but completing this graph to a triangulation may still requires $\Omega\left(n^{2}\right)$ edges in the worst case).

Finally, several papers have dealt with the problem of increasing the connectivity of a (single) geometric planar graph while adding few vertices and edges. Abellenas et al. [1] consider the problem of adding edges to a planar drawing in order to make it 2-edge connected and showed that $\lfloor(2 n-2) / 3\rfloor$ edge are sometimes necessary and $6 n / 7$ edges are always sufficient. Tóth [20] later obtained the tight upper-bound of $\lfloor(2 n-2) / 3\rfloor$ for the same problem. Rutter and Wolff [16] show that finding the minimum number of edges required to achieve 2-edge connectivity is NP-hard.

1.3 Outline

To guide the reader, we give a rough sketch of our upper bound proof, which is illustrated in Figure 4. We will assume, for the sake of simplicity, that every component has at least one vertex incident to the outer face.

For each component, \mathcal{C}_{i}, of \mathcal{G} we select a distinguished corner, a_{i}, of G_{1}. (A corner is the space between two consecutive edges incident to some vertex of the outer face). The corner a_{i} is called the attachment corner for component \mathcal{C}_{i}. Notice that, since G_{1}, \ldots, G_{k} are isomorphic, a_{i} appears as a corner in each of G_{1}, \ldots, G_{k}. The augmentation that we ultimately create will consist of a path that connects to each component \mathcal{C}_{i} at its attachment corner a_{i}.

Next, for each drawing, G_{j}, we add $r-1$ edges to make G_{j} into a connected graph, G_{j}^{*}; these edges are not, in general, edges that take part in the final augmentation of G_{1}, \ldots, G_{k} (in fact the edges of G_{j}^{*} not in G_{j} might be different from the edges of G_{h}^{*} not in G_{h}, if $j \neq h$). We then traverse the boundary of the outer face of G_{j}^{*} to obtain a polygonal path, φ_{j}, of length $O(n)$ that comes close to every corner of G_{j}. The path φ_{j} is then used

Hamiltonian Path Algorithm Gives Path a_{3}, a_{2}, a_{1}

Figure 4: The algorithm for making a compatible augmentation of \mathcal{G} works by defining corners a_{1}, \ldots, a_{r}, taking a spanning path on each augmented drawing G_{i}^{*} that visits all corners, and using this information to compute a permutation of a_{1}, \ldots, a_{r} that can be drawn efficiently in each G_{i}.
to define an integer distance $d_{j}\left(a_{\ell}, a_{m}\right)$ for any two attachment corners a_{ℓ} and a_{m}. This distance includes information about the number of edges of φ_{j} between a_{ℓ} and a_{m} as well the sizes of the some of the components visited while walking from a_{ℓ} to a_{m} along φ_{j}.

Next, we take a leap into k dimensions by using the distance functions d_{1}, \ldots, d_{k} to produce a k-dimensional point set $X=\left\{x_{1}, \ldots, x_{r}\right\}$ that lives in a hypercube of side-length $O(n)$. This mapping has the property that, by adding a path of length $O\left(\left\|x_{\ell}-x_{m}\right\|_{\infty}\right)$ to \mathcal{G}, the attachment corners a_{ℓ} and a_{m} can be joined in each of G_{1}, \ldots, G_{k} while preserving planarity.

Now, since the point set X is in \mathbb{R}^{k}, has r points, and lives in a hypercube of sidelength $O(n)$, a classic argument about the geometric Travelling Salesman Problem [9, 14] implies that it has a spanning path whose length, measured in the ℓ_{∞} norm, is $O\left(n r^{1-1 / k}\right) .{ }^{3}$ This implies that \mathcal{G} can be made connected with a collection of $r-1$ paths, whose endpoints are the corners a_{1}, \ldots, a_{r}, having total size $O\left(n r^{1-1 / k}\right)$, and that each of these paths can be drawn in a planar fashion in each of G_{1}, \ldots, G_{k}.

At this point, all that remains is to show that each of these $r-1$ paths be drawn in each of G_{1}, \ldots, G_{k} without crossing each other. This part of the proof involves carefully winding these paths around the components in G_{1}, \ldots, G_{k} using paths close to the paths $\varphi_{1}, \ldots, \varphi_{k}$ defined above. This part of the proof resembles the first part of the proof of Babikov et al. [5], but is complicated by the fact that we have to be quite careful that the number of edges in these paths remains in $O\left(n r^{1-1 / k}\right)$.

The remainder of the paper is organized as follows: In Section 2 we start by solving the special case in which the graph G has no edges. This special case is already non-trivial and introduces some of the main ideas used in solving the full problem, which is tackled in Section 3. Section 4 presents a lower bound construction that matches our upper bound.

2 Upper bounds for trivial components

As a warmup, we consider a (trivial) graph containing n vertices and no edges. Before constructing a compatible augmentation, we provide a subroutine that constructs a "short" planar spanning path of a given ordered set of points.

2.1 Spanning paths of point sets

Let S be a set of n points in the plane with distinct x-coordinates. Given a point $v \in S$, let $\operatorname{rank}(v)$ denote the number of points of S that lie to the left of (having smaller x-coordinate than) v.

Given an arbitrary order $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of the points of S, we want to construct a

[^3]

Figure 5: The halfplane π and the cones $\Delta_{1}, \ldots, \Delta_{n}$ with apexes at u_{1}, \ldots, u_{n}.
path R that connects them in this order and such that:

$$
|R|=O\left(\sum_{i=1}^{n-1}\left|\operatorname{rank}\left(v_{i}\right)-\operatorname{rank}\left(v_{i+1}\right)\right|\right) .
$$

This paper uses the $|\cdot|$ operator in several different ways, depending on the type of its argument. For a real number, $x,|x|$ is the absolute value of x. For a walk, $R=\left(r_{0}, \ldots, r_{k}\right)$, $|R|=k$ denotes the number of edges traversed by R. For a (weakly-)simple polygon, P whose vertices-as encountered during a counterclockwise traversal—are $\left(a_{1}, \ldots, a_{k}\right),|P|=$ k, denotes the number of edges of P.

Consider a horizontal line ℓ below S and let π be the closed halfspace supported by ℓ that contains S. We present an algorithm that constructs R iteratively; during the i th iteration of the algorithm, the path is extended with $O\left(\left|\operatorname{rank}\left(v_{i}\right)-\operatorname{rank}\left(v_{i-1}\right)\right|\right)$ vertices to include v_{i}. For each $i \in\{1, \ldots, n\}$, after the i th iteration of the algorithm, we maintain the invariant that ℓ does not intersect R, and we also maintain the escape invariant which is defined as follows: For each $j \in\{i, \ldots, n\}$, there is a closed cone Δ_{j} with apex u_{j} such that (1) u_{j} lies above v_{j} and has the same x-coordinate as $v_{j}\left(u_{j}=v_{j}\right.$ if $\left.j=i\right)$, (2) Δ_{j} contains v_{j} and no other point of S, (3) Δ_{j} contains the ray originating at v_{j} in the direction of the negative y-axis, (4) Δ_{j} does not intersect R, and (5) Δ_{h} and Δ_{j} are disjoint inside π, for every $h \in\{i, \ldots, n\}$ with $h \neq j$.

Initialize R as a path that consists of the single vertex v_{1}. In order to establish the escape invariant, we define $u_{1}=v_{1}$; also, for each $j \in\{2, \ldots, n\}$, we define u_{j} as an arbitrary translation up of v_{j}; further, for each $j \in\{1, \ldots, n\}$, we let Δ_{j} be a cone with apex on u_{j} sufficiently narrow so that these cones do not intersect inside π; see Figure 5.

Now assume that R is a path connecting v_{1} with v_{j}, for some $j \in\{1, \ldots, n-1\}$. We extend R by appending a path that connects v_{j} with v_{j+1}.

First, we translate Δ_{j+1} down until its apex u_{j+1} coincides with v_{j+1}. Let π_{j} be the closure of the set obtained from π by removing Δ_{h}, for every $h \in\{j, j+1, \ldots, n\}$; see Figure 6 (right). That is, π_{j} is a halfspace with dents made by the removal of $n-j+1$ cones. Observe

Figure 6: The boundary of π_{2} is in the path from v_{2} to v_{3}.
that, for every pair of apexes u_{i} and u_{h}, with $i, h \geq j$, the boundary of π_{j} contains a path from u_{i} to u_{h} with $O\left(\left|\operatorname{rank}\left(v_{i}\right)-\operatorname{rank}\left(v_{h}\right)\right|\right)$ edges. Because ℓ does not intersect R and by the escape invariant, the boundary of π_{j} intersects R only at v_{j}. Moreover, again by the escape invariant, for each v_{i} with $i>j, v_{i}$ lies outside of π_{j} except for v_{j+1} that lies on its boundary. Because both v_{j} and v_{j+1} lie on the boundary of π_{j}, which does not intersect R other than at v_{j}, we can connect v_{j} with v_{j+1} via a path contained in the boundary of π_{j} with length $O\left(\left|\operatorname{rank}\left(v_{j}\right)-\operatorname{rank}\left(v_{j+1}\right)\right|\right)$. In this way, we extend R to a planar path that contains v_{1}, \ldots, v_{j+1}.

After connecting v_{j} with v_{j+1}, for each $h \in\{j+2, \ldots, n\}$, either Δ_{h} is disjoint from R, or it shares some portion of its boundary with R. However, the interior of Δ_{h} does not intersect R. To preserve the escape invariant, for each $h \in\{j+2, \ldots, n\}$, we translate π and Δ_{h} downwards by a sufficiently small amount, ε, and we scale Δ_{j+1} horizontally down, while keeping its apex at v_{j+1}. To conclude, each translated or scaled cone is contained in the previous one, u_{h} lies above v_{h}, for each $h \in\{j+2, \ldots, n\}$, and u_{j+1} coincides with v_{j+1}. Therefore, by choosing ε sufficiently small, we maintain the escape invariant and obtain the following result.

Lemma 2.1. Given an order $\left(v_{1}, \ldots, v_{n}\right)$ of the vertices of S, there exists a planar path R that connects every point of S in the given order such that the number of vertices of R between v_{i} and v_{i+1} is $O\left(\left|\operatorname{rank}\left(v_{i}\right)-\operatorname{rank}\left(v_{i+1}\right)\right|\right)$, for each $i \in\{1, \ldots, n-1\}$.

Proof. Recall that in each iteration, the algorithm computes a path connecting v_{j} with v_{j+1} that does not cross the portion of the path already constructed. Because this invariant is maintained throughout, the resulting path is planar.

Since the path that connects v_{j} with v_{j+1} follows the boundary of π_{j} and since this boundary has length $O\left(\left|\operatorname{rank}\left(v_{j}\right)-\operatorname{rank}\left(v_{j+1}\right)\right|\right)$ between v_{j} and v_{j+1}, the path that connects v_{j} with v_{j+1} has length $O\left(\left|\operatorname{rank}\left(v_{j}\right)-\operatorname{rank}\left(v_{j+1}\right)\right|\right)$. Consequently, the total length of R is given by $O\left(\sum_{i=1}^{n-1}\left|\operatorname{rank}\left(v_{i}\right)-\operatorname{rank}\left(v_{i+1}\right)\right|\right)$.

2.2 Compatible drawings of point sets

Recall that in this section \mathcal{G} is a graph with n trivial components. Let G_{1}, \ldots, G_{k} be $k>1$ isomorphic drawings of \mathcal{G}, i.e., G_{i} is a sequence of n points in the plane. Assume without loss of generality that no two points of G_{i} share the same x-coordinate. Given a vertex v of \mathcal{G}, let $\operatorname{rank}_{G_{i}}(v)$ denote the number of points of G_{i} having smaller x-coordinate than v, and let $x_{v}=\left(\operatorname{rank}_{G_{1}}(v), \ldots, \operatorname{rank}_{G_{k}}(v)\right)$ be a point in the integer grid $[0 ; n-1]^{k}$ in \mathbb{R}^{k}. Let $X=\left\{x_{v}: v \in V(\mathcal{G})\right\}$ and let P be the shortest Hamiltonian path of X when distance is measured using the ℓ_{∞} norm, so that

$$
\left\|x_{v}-x_{u}\right\|_{\infty}=\max \left\{\left|\operatorname{rank}_{G_{i}}(v)-\operatorname{rank}_{G_{i}}(u)\right|: i \in\{1, \ldots, k\}\right\} .
$$

It is known that the length of P is $O\left(n^{2-1 / k}\right)$ (see Corollary A. 2 in Appendix A). Note that the order of the points of P induces an order on the vertices of \mathcal{G} and hence, an order on the vertices of each G_{i}.

Theorem 2.2. For each $i \in\{1, \ldots, n\}$, we can construct a path R_{i} of length $O\left(n^{2-1 / k}\right)$ that connects every point of G_{i} so that $G_{i} \cup R_{i}$ is planar. Moreover, for any distinct $i, j \in\{1, \ldots, n\}, G_{i} \cup R_{i}$ and $G_{j} \cup R_{j}$ are isomorphic.

Proof. By relabelling, let $\left(v_{1}, \ldots, v_{n}\right)$ denote the order of the vertices of \mathcal{G} induced by the Hamiltonian path, P, described above. The graph \mathcal{H}, which is an augmentation of \mathcal{G}, is a path that visits the vertices v_{1}, \ldots, v_{n} in this order. Letting d_{j} denote the ℓ_{∞} distance between $x_{v_{j}}$ and $x_{v_{j+1}}$, the path \mathcal{H} includes an additional $O\left(d_{j}\right)$ vertices between v_{j} and v_{j+1}. It follows that the number of vertices in \mathcal{H} is proportional to the length of P, which is $O\left(n^{2-1 / k}\right)$.

For each G_{i}, we use Lemma 2.1 to draw \mathcal{H} as a planar path, R_{i}, that connects the vertices v_{1}, \ldots, v_{n} in this order in the drawing G_{i}. Since $d_{j} \geq\left|\operatorname{rank}_{G_{i}}\left(v_{j}\right)-\operatorname{rank}_{G_{i}}\left(v_{j+1}\right)\right|$, the $O\left(d_{j}\right)$ vertices in \mathcal{H} between v_{j} and v_{j+1} are enough to draw the $O\left(\left|\operatorname{rank}_{G_{i}}\left(v_{j}\right)-\operatorname{rank}_{G_{i}}\left(v_{j+1}\right)\right|\right)$ vertices in R_{i} between v_{j} and v_{j+1}. Since the vertices of each G_{i} are connected in the same order, $G_{i} \cup R_{i}$ is isomorphic to $G_{j} \cup R_{j}$ for each $i, j \in\{1, \ldots, k\}$.

3 The general problem

In this section, we extend the result presented in Section 2 to graphs with non-trivial components. We follow the same general scheme used in Section 2 for the case of trivial (isolated vertex) components: We define k different orderings of the components of \mathcal{G} and use these orderings (and the sizes of these components) to define an r-point set, X, in \mathbb{R}^{k}. A short path that visits all points in X is then translated back into a short path, R, that visits all components of \mathcal{G}. The path R is then added, as a polygonal path, R_{i}, to each drawing, G_{i}, of \mathcal{G}.

Unlike the case in which components are isolated vertices, there is no natural ordering of the components of G_{i}, so we must define one. Also, the drawing of path R_{i} is considerably more complicated. In Section $2, R_{i}$ is drawn incrementally, and always passes above components that are not yet included in R_{i} and below components that are already included in R_{i}. In this section, we redefine "above" and "below". The number of edges required to go above or below a component depends on its size and structure.

3.1 Preliminaries

Let C be a connected geometric planar graph. Let $v_{0}, v_{1}, \ldots, v_{k}, v_{0}$ be the sequence of vertices of C visited by a counterclockwise Eulerian tour along the boundary of the outer face of C. Note that v_{i} may be equal to v_{j} for some $i \neq j$. A vertex v_{i} in this sequence is called a corner of C. We consider the boundary of C, denoted by ∂C, to be the boundary of the weakly-simple polygon $\left(v_{0}, \ldots, v_{k}, v_{0}\right)$ whose vertex set is the set of corners of $C .{ }^{4}$

Let $\varepsilon>0$. For each corner v_{i} of ∂C, let ℓ_{i} be the half-line starting at v_{i} that bisects the angle between the edges $v_{i-1} v_{i}$ and $v_{i} v_{i+1}$ in the outer face of C. Let z_{i} be the point at distance ε from v_{i} along ℓ_{i}. We call z_{i} the ε-copy of v_{i}. Let $\partial_{\varepsilon} C$ be the piecewise-linear cycle defined by the sequence $\left(z_{0}, z_{1}, \ldots, z_{k}, z_{0}\right)$. We call $\partial_{\varepsilon} C$ the ε-fattening of C. An ε fattening $\partial_{\varepsilon} C$ is simple if $\partial_{\varepsilon} C$ is a simple polygon that contains C. Note that $\partial_{\varepsilon} C$ is simple, provided that ε is sufficiently small. In this paper, we consider only simple ε-fattenings; see Figure 7. Note that the number of edges between two corners of ∂C along the boundary of C is the same as the number of edges between their ε-copies along $\partial_{\varepsilon} C$.

3.2 Connected augmentations

Let G be a geometric planar graph with r connected components such that each component is adjacent to the outer face. Two vertices are visible if the open segment joining them does not intersect G. Let T_{G} be a smallest set of edges of the visibility graph of G that need to be added to G to make it connected. As there are always two components containing mutually visible vertices, we can connect them and repeat recursively. Thus, T_{G} has $r-1$ edges. (Loosely, we can think of T_{G} as a spanning tree of G^{\prime} s components.) Let $G^{*}=G \cup T_{G}$. We say that G^{*} is a connected augmentation of G; see Figure 7 .

Let C_{1}, \ldots, C_{r} be the components of G. For each $i \in\{1, \ldots, r\}$, let $a_{i} \in C_{i}$ be an arbitrary corner of ∂C_{i} (note that a_{i} is adjacent to the outer face). We call a_{i} the attachment corner of C_{i}.

Let φ be the path on the corners of ∂G^{*} (hence φ is also a walk on the vertices of ∂G^{*}) obtained by splitting ∂G^{*} at the corner a_{1}. That is, φ is a path that visits every corner

[^4]

Figure 7: The graph G (left); a connected augmentation, G^{*}, of G (middle); and the ε fattening, $\partial_{\varepsilon} G^{*}$ (right).
of ∂G^{*} exactly once except for a_{1}, which is visited twice. Given two corners u and v in ∂G^{*}, let $\varphi(u, v)$ denote the unique path in φ that connects u with v. Let $A(u, v)$ be the set of attachment corners of G visited by $\varphi(u, v)$. For two attachment corners $u=a_{i}$ and $v=a_{j}$, define

$$
\sigma_{G}(u, v)=|\varphi(u, v)|+2 \sum_{a_{t} \in A(u, v)}\left|\partial C_{t}\right|-\left|\partial C_{i}\right|-\left|\partial C_{j}\right|,
$$

which we call the cost of going from u to v. The definition of $\sigma_{G}(u, v)$ is designed to capture the fact that, if u and v occur consecutively on the path R we construct, then the portion of R between u and v will have length at least $|\varphi(u, v)|$ since it follows φ, and it may also take a detour around every attachment corner $a_{i} \in A(u, v)$. If it takes this detour at some $a_{i} \in A(u, v)$, then it does so by walking around ∂C_{i} which requires an additional $\left|\partial C_{i}\right|$ edges.

Lemma 3.1. If $u=a_{i}$ is an attachment corner of G, then $\sigma_{G}\left(a_{1}, u\right)<6 n$. Moreover, if $v=a_{j}$, with $j>i$, is another attachment corner of G, then $\sigma_{G}(u, v)=\sigma_{G}(v, u)=\sigma_{G}\left(a_{1}, v\right)-\sigma_{G}\left(a_{1}, u\right)$.

Proof. Recall that G^{*} is a graph with n vertices, so ∂G^{*} is a weakly-simple polygon with at most n distinct vertices, so $\left|\partial G^{*}\right| \leq 2 n-2<2 n$. Furthermore, $\varphi\left(a_{1}, u\right) \subset \partial G^{*}$, so $\left|\varphi\left(a_{1}, u\right)\right| \leq$ $\left|\partial G^{*}\right|<2 n$. Similarly, $2 \sum_{a_{i} \in A\left(a_{1}, u\right)}\left|\partial C_{i}\right| \leq 2 \sum_{i=1}^{r}\left|\partial C_{i}\right|<4 n$. Therefore, $\sigma_{G}\left(a_{1}, u\right)<6 n$, which proves the first part of the lemma.

To prove the second part of the lemma, first observe that $\sigma_{G}(u, v)=\sigma_{G}(v, u)$ by definition. To prove the second equality, denote the relevant attachment corners of G^{*} by $a_{1}, a_{2}, \ldots, a_{i}=u, a_{i+1}, \ldots, a_{j}=v$. Then $A\left(a_{1}, u\right)=\left\{a_{1}, \ldots, a_{i}\right\}, A\left(a_{1}, v\right)=\left\{a_{1}, \ldots, a_{j}\right\}$, and

Figure 8: The component C_{i} is to the right of the path $R=\left(\rho_{1}, \ldots, \rho_{t}\right)$.

$$
\begin{aligned}
& A(u, v)=\left\{a_{i}, \ldots, a_{j}\right\} \text {, so } \\
& \qquad \begin{aligned}
\sigma_{G}\left(a_{1}, v\right)-\sigma_{G}\left(a_{1}, u\right)= & \left|\varphi\left(a_{1}, v\right)\right|-\left|\varphi\left(a_{1}, u\right)\right|+2 \sum_{t=1}^{j}\left|\partial C_{t}\right|-2 \sum_{t=1}^{i}\left|\partial C_{t}\right| \\
& -\left|\partial C_{1}\right|+\left|\partial C_{1}\right|-\left|\partial C_{j}\right|+\left|\partial C_{i}\right| \\
= & |\varphi(u, v)|+2 \sum_{t=i+1}^{j}\left|\partial C_{t}\right|-\left|\partial C_{j}\right|+\left|\partial C_{i}\right| \\
= & |\varphi(u, v)|+2 \sum_{t=i}^{j}\left|\partial C_{t}\right|-\left|\partial C_{j}\right|-\left|\partial C_{i}\right| \\
= & |\varphi(u, v)|+2 \sum_{a_{t} \in A(u, v)}\left|\partial C_{t}\right|-\left|\partial C_{j}\right|-\left|\partial C_{i}\right| \\
= & \sigma_{G}(u, v) .
\end{aligned}
\end{aligned}
$$

3.3 Spanning paths for connected augmentations

Let a_{1}, \ldots, a_{r} be an arbitrary order of the attachment corners of G (we can get the incremental indexing by relabeling the components). Given a path $R=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{t}\right)$ that passes through all attachment corners of G, we say that C_{i} lies to the right of R if (1) a_{i} is the only vertex of C_{i} that belongs to $V(R)$, and (2) if $a_{i}=\rho_{j}$ for some $j \in\{1, \ldots, t\}$, then ρ_{j-1} and ρ_{j+1} appear as consecutive vertices when sorting-in the graph $G \cup R$-the neighbors of a_{i} in clockwise order around a_{i} (see Figure 8).

We now show how to construct a path R that connects the attachment corners of G in the given order, i.e., if $i<j$, then a_{i} is visited before a_{j} by R. We want to construct R so that each component C_{i} of G lies to the right of R and so that $G \cup R$ is a planar geometric graph. Moreover, we want the subpath of R between a_{j} and a_{j+1} to have $O\left(\sigma_{G}\left(a_{j}, a_{j+1}\right)\right)$ vertices. We initialize R with the trivial path that contains only a_{1}, and then extend R iteratively, so that each new corner a_{i} is included in R. Recall that for any given $\varepsilon>0, \partial_{\varepsilon} G^{*}$ denotes the ε-fattening of G^{*} (see Section 3.1). Let $\mu>0$ be a small constant to be specified

Figure 9: The ϵ-fattening of G^{*} and the "cones" $\Delta_{1}, \ldots, \Delta_{r}$.
later. Initially, let $\varepsilon=2 \mu$ and let $\delta=\mu / 2$. Let $\lambda<\mu / 2^{r+1}$ be a constant sufficiently small so that $\partial_{\lambda} C_{i} \cap \partial_{\lambda} C_{j}=\emptyset$ for any distinct $i, j \in\{1, \ldots, r\}$. Throughout, λ remains constant while ε and δ are redefined at each iteration. However, as an invariant we maintain $\lambda<\delta<\varepsilon$.

For each $i \in\{1, \ldots, r\}$, let w_{i} be the ε-copy of a_{i}. Split $\partial_{\varepsilon} G^{*}$ at w_{1}, i.e., $\partial_{\varepsilon} G^{*}$ is a path with both endpoints equal to w_{1}. By choosing ε sufficiently small, we guarantee that $\partial_{\varepsilon} G^{*}$ is simple, i.e., $\partial_{\varepsilon} G^{*}$ is isomorphic to φ. We say that two points in the plane are R-visible if the open segment joining them does not intersect R. Let $\tau>0$. For each $i \in\{1, \ldots, r\}$ such that a_{i} is not an interior point of R, consider the set of points $N_{i} \subset \partial_{\varepsilon} G^{*}$ that are at distance at most τ from w_{i}. Let Δ_{i} be the convex hull of $N_{i} \cup\left\{a_{i}\right\}$, i.e., Δ_{i} is a "cone" with apex at a_{i}; see Figure 9. (We deliberately misuse the word "cone" here because the "cones" $\Delta_{1}, \ldots, \Delta_{r}$ in this section play the same roles as the cones $\Delta_{1}, \ldots, \Delta_{n}$ in Section 2.)

While constructing R, we also maintain the escape invariant which is defined as follows. Assume that R so far connects a_{1}, \ldots, a_{i}, for some $i \in\{1, \ldots, r-1\}$. Then: (1) R intersects neither $\partial_{\varepsilon} G^{*}$ nor its unbounded face; (2) for each $j \in\{i+1, \ldots, r\}, R$ intersects neither the simple polygon bounded by $\partial_{\delta} C_{j}$ nor the cone Δ_{j}; (3) $\Delta_{h} \cap \Delta_{j}=\emptyset$, for any distinct $h, j \in\{1, \ldots, r\}$; and (4) w_{i} is R-visible from a_{i}.

In particular, Conditions (2) and (4) of the escape invariant imply that, for each $j \in\{i, \ldots, r\}$, every point in N_{j} (including w_{j}) is R-visible from a_{j}. The escape invariant holds when $R=\left\{a_{1}\right\}$, provided that τ is sufficiently small.

Assume that we have constructed a path R that connects a_{1} with a_{j}, for some $j \in$ $\{1, \ldots, r-1\}$, and that the escape invariant holds. To extend R, we create a new path that connects a_{j} with a_{j+1} without crossing R while maintaining the escape invariant. Recall that we consider $\partial_{\varepsilon} G^{*}$ to be a path with both endpoints on w_{1}.

Figure 10: When extending R from a_{j} to a_{j+1} we have to take care to keep C_{j} to the right of R.

The first part of the path connecting a_{j} with a_{j+1} consists of a path connecting a_{j} with w_{j}. If $j=1$, or if $j>1$ and R together with the edge $a_{j} w_{j}$ leaves C_{j} to its right, then connect a_{j} with w_{j} via a straight-line segment; since w_{j} is R-visible from a_{j}, this segment does not cross R. Otherwise, connect a_{j} with $\partial_{\lambda} C_{j}$ via a straight-line segment and traverse $\partial_{\lambda} C_{j}$ clockwise before moving to w_{j} on $\partial_{\varepsilon} G^{*}$. By the escape invariant, no crossing occur in this drawing. In this way, we guarantee that C_{j} lies to the right of the constructed path; see Figure 10 for an illustration. Because $\lambda<\delta<\varepsilon$ and since $a_{i} \in V(R)$, the escape invariant is preserved.

The path from a_{j} to a_{j+1} continues with a path from w_{j} to w_{j+1}, which follows the unique path in $\partial_{\varepsilon} G^{*}$ from w_{j} to w_{j+1}. However, whenever we reach an endpoint of N_{i} for some $i \in\{j+2, \ldots, r\}$, we take a detour to the other endpoint of N_{i} while avoiding its interior so that the points in the interior of N_{i} remain R-visible from a_{i}; see Figure 11. Formally, we walk from the reached endpoint of N_{i} to $\partial_{\delta} C_{i} \backslash \Delta_{i}$ along the boundary of Δ_{i}. Then, we traverse the path $\partial_{\delta} C_{i} \backslash \Delta_{i}$ before moving to the other endpoint of N_{i} from the endpoint of $\partial_{\delta} C_{i} \backslash \Delta_{i}$. Note that R does not intersect the interior of the simple polygon bounded by $\partial_{\delta} C_{i}$ nor the interior of Δ_{i}. Moreover, R remains inside the simple polygon bounded by $\partial_{\varepsilon} G^{*}$.

Once we go around C_{i}, we are back on $\partial_{\varepsilon} G^{*}$ on the other endpoint of N_{i}. In this way, we continue going towards w_{j+1} along $\partial_{\varepsilon} G^{*}$ until reaching an endpoint of N_{j+1}. Once we reach an endpoint of N_{j+1}, we move directly from this endpoint to a_{j+1}.

Because $\partial_{\varepsilon} G^{*}$ is isomorphic to φ, the constructed path between a_{j} and a_{j+1} has length at most $\left|\varphi\left(a_{j}, a_{j+1}\right)\right|$ plus the length of the boundaries of the components for which the path detoured. Because each component we walked around has its attachment corner

Figure 11: The "detour" taken to avoid crossing the cone Δ_{i} (left, middle); and the narrowing of the cone Δ_{i} as well as the redefinition of the ε - and δ-fattenings of G^{*} and C_{i}, respectively.
on the path $\varphi\left(a_{j}, a_{j+1}\right)$, and thus in $A\left(a_{j}, a_{j+1}\right)$, the length of the constructed path between a_{j} and a_{j+1} is

$$
O\left(\left|\varphi\left(a_{j}, a_{j+1}\right)\right|+\sum_{a_{i} \in A\left(a_{j}, a_{j+1}\right)}\left|\partial C_{i}\right|\right)=O\left(\sigma_{G}\left(a_{j}, a_{j+1}\right)\right) .
$$

After reaching a_{j+1}, we increase ε by a factor of two. Similarly, we decrease the value of δ by a factor of two. That is, after reaching $a_{j+1}, \varepsilon=\mu 2^{j+1}$ while $\delta=\mu / 2^{j+1}$ and hence, we guarantee that $\lambda<\delta<\varepsilon$. Also, $\partial_{\varepsilon} G^{*}$ is still simple, provided that μ is initially chosen to be sufficiently small. Finally, we reduce τ by a factor of two and update N_{i} and Δ_{i} accordingly, for each $i \in\{1, \ldots, n\}$; see Figure 11 (c).

Recall that for each $a_{i} \notin R, R$ intersected neither the interior of Δ_{i} nor the interior of the polygon bounded by $\partial_{\delta} C_{i}$. Moreover, R remained within $\partial_{\varepsilon} G^{*}$. Therefore, after increasing (resp. reducing) ε (resp. δ), we preserve the escape invariant for the next iteration of the algorithm. We iterate until all attachment corners of G are visited by R.

Lemma 3.2. Given an arbitrary order a_{1}, \ldots, a_{r} of the attachment corners of G, there is a path R connecting all attachment corners of G in the given order such that $R \cup G$ is planar, every component C_{i} of G lies to the right of R when oriented from a_{1} to a_{r}, and the subpath of R between a_{j} and a_{j+1} has $O\left(\sigma_{G}\left(a_{j}, a_{j+1}\right)\right)$ vertices, for each $j \in\{1, \ldots, r-1\}$.

Proof. By construction, the attachment corners are visited by R in the given order; also, the subpath, γ_{j}, of R between a_{j} and a_{j+1} has $O\left(\sigma_{G}\left(a_{j}, a_{j+1}\right)\right)$ vertices. For each component C_{i}, a_{i} is the only vertex of C_{i} visited by R. Moreover, the construction guarantees that C_{i} lies to the right of R when oriented from a_{1} to a_{r}.

To prove that R is planar, recall that in each round we extend R by constructing a path γ_{j} that connects a_{j} with a_{j+1}. We claim that at this point, no edge of γ_{j} crosses the

Figure 12: An example of the algorithm for generating a spanning path that connects a_{1}, \ldots, a_{4}.
portion of R constructed so far. Indeed, because the value of ε (resp. δ) increases (resp. decreases) in each round, the edges of γ_{j} that lie on the boundaries of some $\partial_{\delta} C_{i}$ or on $\partial_{\varepsilon} G^{*}$ cannot cross R by the escape invariant. Moreover, this invariant states that for each $a_{i} \notin R, R$ does not intersect Δ_{i}. Because each cone Δ_{i} is narrowed in each round, the edges of γ_{j} that lie on the boundary of this cone cannot cross R. Finally, because $\lambda<\delta$, the edges of γ_{j} that lie on $\partial_{\lambda} C_{j}$ do not cross R. Therefore, we conclude that by concatenating γ_{j} and R, we obtain a planar path.

Figure 12 illustrates the algorithm of Lemma 3.2 on a small example. In this example, the path from a_{1} to a_{2} passes by a_{4}, so R detours around C_{4} in order to preserve the escape invariant at a_{4}. After R attaches to a_{2} and a_{3}, it winds around components C_{2} and C_{3}, respectively, in order to ensure that these components attach to the right of R.

3.4 Compatible drawings of planar graphs

Let \mathcal{G} be a planar graph with n vertices and r connected components. Let G_{1}, \ldots, G_{k} be k planar isomorphic drawings of \mathcal{G}. For now, we will assume that, in these drawings, every component of \mathcal{G} has at least one vertex incident to the outer face. We show how to construct a compatible augmentation of \mathcal{G} of size $O\left(n r^{1-1 / k}\right)$.

Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ be the connected components of \mathcal{G}. Because G_{1}, \ldots, G_{k} are isomorphic, we can select one attachment corner from each component in the drawing G_{1}, and this attachment corner also appears in each of G_{2}, \ldots, G_{k}. Thus, for each $j \in\{1, \ldots, r\}$, we choose an attachment corner a_{j} of ∂C_{j} such that a_{j} is incident to the outer face of C_{j}.

For each $i \in\{1, \ldots, k\}$, let G_{i}^{*} be a connected augmentation of G_{i}, as defined in Section 3.2. For each $i \in\{1, \ldots, k\}$ and $j \in\{1, \ldots, r\}$, let $\operatorname{rank}_{i}(j)=\sigma_{G_{i}^{*}}\left(a_{1}, a_{j}\right)$. For each
$j \in\{1, \ldots, r\}$, let $x_{j} \in \mathbb{R}^{k}$ be a point corresponding to the component C_{j} such that $x_{j}=$ $\left(\operatorname{rank}_{1}\left(a_{j}\right), \operatorname{rank}_{2}\left(a_{j}\right), \ldots, \operatorname{rank}_{k}\left(a_{j}\right)\right)$. Let $X=\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathbb{R}^{k}$ denote the resulting set of points. Lemma 3.1 implies that X is contained in an integer grid of side length $4 n$.

Let P be the shortest Hamiltonian path of X under the ℓ_{∞} norm. As before, because X is contained in the k-dimensional integer grid of side-length $4 n$ and $|X|=r$, the maximum $\left(\ell_{\infty}\right)$ length of P is $O\left(n r^{1-1 / k}\right)$. Note that the order of the points in P induces an order of the components of \mathcal{G} and hence an order of the attachment corners of each G_{i}.

Theorem 3.3. For each $1 \leq i \leq k$, we can construct a path R_{i} of length $O\left(n r^{1-1 / k}\right)$ that connects every component of G_{i} such that $G_{i} \cup R_{i}$ is planar. Moreover, for each $1 \leq i<j \leq k, G_{i} \cup R_{i}$ is isomorphic to $G_{j} \cup R_{j}$.

Proof. By relabelling, let $\left(a_{1}, \ldots, a_{r}\right)$ denote the order of the attachment corners of G_{i} induced by P. Letting d_{j} denote the ℓ_{∞} distance between x_{j} and x_{j+1}, we denote by \mathcal{H} a path that passes through (the vertices corresponding to corners) a_{1}, \ldots, a_{r} in this order, and that includes an additional $O\left(d_{j}\right)$ vertices between a_{j} and a_{j+1}. Thus, the number of vertices in \mathcal{H} is proportional to the length of P, which is $O\left(n r^{1-1 / k}\right)$.

For each G_{i}, we use Lemma 3.2 to draw \mathcal{H} as a planar path, R_{i}, that connects a_{1}, \ldots, a_{r} in this order. By construction,

$$
\begin{aligned}
d_{j} & =\max \left\{\left|\operatorname{rank}_{i}(j+1)-\operatorname{rank}_{i}(j)\right|: i \in\{1, \ldots, k\}\right\} \\
& \geq\left|\operatorname{rank}_{i}(j+1)-\operatorname{rank}_{i}(j)\right|,
\end{aligned}
$$

so the $O\left(d_{j}\right)$ vertices in \mathcal{H} between a_{j} and a_{j+1} are enough to draw the $O\left(\sigma_{G_{i}}\left(a_{j}, a_{j+1}\right)\right)$ vertices in R_{i} between a_{j} and a_{j+1}, since $\sigma_{G_{i}}\left(a_{j}, a_{j+1}\right)=\sigma_{G_{i}}\left(a_{1}, a_{j+1}\right)-\sigma_{G_{i}}\left(a_{1}, a_{j}\right)=\mid \operatorname{rank}_{i}(j+$ $1)-\operatorname{rank}_{i}(j) \mid$.

To conclude, each R_{i} visits each component only at its attachment corner, the attachment corners of each G_{i} are connected in the same order, and R_{i} leaves every component to the right when oriented from a_{1} to a_{r}. Therefore, $G_{i} \cup R_{i}$ is isomorphic to $G_{j} \cup R_{j}$ for each $1 \leq i<j \leq k$.

3.5 Handling interior components

In the preceding section, we assumed that the drawings G_{1}, \ldots, G_{k} of G were such that every component was incident to the outer face. To see that the assumption is not necessary, observe that we can first use the preceding algorithm to connect all the components that do appear on the outer face using a polygonal path that is contained on the outer face. The number of vertices used in this path is $O\left(n^{\prime} r^{1-1 / k}\right)$, where n^{\prime} is the number of vertices on the outer face.

Next, for each interior face, f, that has multiple components C_{1}, \ldots, C_{t} on its boundary, we can use (a small modification of) the preceding algorithm to connect C_{1}, \ldots, C_{t} and the outer boundary of f using a path that is contained in f. This path has length $O\left(n_{f} r^{1-1 / k}\right)$. We then repeat this step on each face. The result is a connected augmentation of \mathcal{G} whose total size is $O\left(N r^{1-1 / k}\right)$ where $N=O(n)$ is the total size of all faces.

3.6 An algorithm

We remark that Theorem 3.3 yields an efficient algorithm for constructing the augmentation \mathcal{H}, and even the drawings H_{1}, \ldots, H_{k}. The main steps involved are:

1. Finding connected planar supergraphs $G_{1}^{*}, \ldots, G_{k}^{*}$ of the drawings G_{1}, \ldots, G_{k}. For each planar graph G_{i}, this can easily be done in $O(n \log n)$ time using, for example, a plane sweep algorithm that maintains the invariant that all components with a vertex to the left of the sweep-line are already joined by edges. Thus, this step takes $O(k n \log n)$ time.
2. Constructing the point set X and finding the path P. Constructing X takes $O(k n)$ time, while a path P of length $O\left(n^{2-1 / k}\right)$ can be obtained from an (approximate) minimum spanning tree of X. For constant values of k, an approximate MST can be computed in $O(n \log n)$ time using the algorithm of Calahan and Kosaraju [7]. For larger values of k, the actual minimum spanning tree can be computed in $O\left(k n^{2}\right)$ time.
3. Constructing each of the paths R_{1}, \ldots, R_{k}. Each of these paths is easily constructed in $O\left(n^{2-1 / k}\right)$ time once we have determined values of ϵ, δ, τ, and λ that are sufficiently small. A more careful examination of our algorithm reveals that all that is really needed is a value of ε such that $\partial_{\epsilon} G_{i}^{*}$ is simple, for each $i \in\{1, \ldots, k\}$. Once we have this value of ε, the values of the remaining variables can taken from the set $\{i \varepsilon / 3 r$: $i \in\{1, \ldots, 3 r\}\}$.

It turns out that a value $\varepsilon \leq \mathrm{cm} / n$, where m is the minimum non-zero difference between x coordinates or y coordinates in G_{1}, \ldots, G_{k}, and c is a constant, is sufficiently small. Thus, a suitable ε can be computed in $O(k n \log n)$ time by sorting.

This yields the following algorithmic result about connected augmentations:
Theorem 3.4. An augmentation satisfying the conditions of Theorem 3.3 can be computed in $O\left(k n^{2}\right)$ time for any value of k. If k is constant, then the augmentation can be computed in $O\left(n r^{1-1 / k}\right)$ time.

The latter result is worst-case optimal since, in the next section we will show that there exists inputs where every augmentation has size $\Omega\left(n r^{1-1 / k}\right)$.

4 Lower Bounds

Our lower bounds are based on the following lemma. It says that we can find k permutations of $\{1, \ldots, r\}$ such that for half the indices $i \in\{1, \ldots, r\}$, and every $j \in\{1, \ldots, r\} \backslash\{i\}$, there is a permutation in which i and j are at distance $\Omega\left(r^{1-1 / k}\right)$.

Lemma 4.1. Let $t=(1 / 2)^{1+1 / k} \cdot(r-1)^{1-1 / k}$. There exists permutations $\pi^{(1)}, \ldots, \pi^{(k)}$ of $\{1, \ldots, r\}$ such that for at least half the values of $i \in\{1, \ldots, r\}$ and for every $j \in\{1, \ldots, r\} \backslash\{i\}$,

$$
\begin{equation*}
\max \left\{\left|\pi_{i}^{(s)}-\pi_{j}^{(s)}\right|: s \in\{1, \ldots, k\}\right\} \geq t \tag{1}
\end{equation*}
$$

Proof. This proof is an application of the probabilistic method. Select each of $\pi^{(1)}, \ldots, \pi^{(k)}$ independently and uniformly from among all r ! permutations of $\{1, \ldots, r\}$. Fix a particular index i and a particular index j. For a particular $s \in\{1, \ldots, k\}$, the probability that $\mid \pi_{i}^{(s)}$ $\pi_{j}^{(s)} \mid \leq t$ is at most $2 t /(r-1)$ since the set $\left\{\hat{\jmath} \in\{1, \ldots, r\}:\left|\pi_{i}^{(s)}-\pi_{\hat{j}}^{(s)}\right| \leq t\right\}$ is a random subset of at most $2 t$ elements drawn without replacement from $\{1, \ldots, r\} \backslash\{i\}$.

Therefore, since $\pi^{(1)}, \ldots, \pi^{(k)}$ are chosen independently,

$$
\operatorname{Pr}\left\{\max \left\{\left|\pi_{i}^{(s)}-\pi_{j}^{(s)}\right|: s \in\{1, \ldots, k\}\right\} \leq t\right\} \leq(2 t /(r-1))^{k}=\frac{1}{2(r-1)} .
$$

In particular, the expected number of such $j \in\{1, \ldots, r\} \backslash\{i\}$ is at most $1 / 2$ so, by Markov's Inequality, the probability that there exists at least one such j is at most $1 / 2$. Thus, with probability at least $1 / 2$, the index i satisfies (1) and therefore the expected number of indices $i \in\{1, \ldots, r\}$ that satisfy (1) is $r / 2$. We conclude that there must exist some permutations $\pi^{(1)}, \ldots, \pi^{(k)}$ that satisfy (1) for at least half the indices $i \in\{1, \ldots, r\}$.

Using Lemma 4.1, we can prove a lower bound that matches the upper bound obtained in our general construction.

Theorem 4.2. For every positive integer n and every $r \in\{2, \ldots,\lfloor n / 4\rfloor\}$, there exists a graph \mathcal{G} having n vertices, r connected components, and k isomorphic drawings G_{1}, \ldots, G_{k} such that any compatible augmentation of \mathcal{G} has size $\Omega\left(n r^{1-1 / k}\right)$.

Proof. Since the lemma only claims an asymptotic result, we may assume without loss of generality that r is even and that $2 r$ divides n.

The graph \mathcal{G} consists of r disjoint paths, $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$, each of length n / r. Each of the drawings G_{1}, \ldots, G_{k} has the vertices of \mathcal{G} on the same point and edge set. The point set consists of the vertices of r nested regular n / r-gons, P_{1}, \ldots, P_{r}, each centered at the origin and having nearly the same size. Refer to Figure 13 (left). More precisely, $P_{1} \subset P_{2} \subset \cdots \subset P_{r}$ and the sizes are chosen so that any segment joining two non-consecutive vertices of P_{i}

Figure 13: In the construction in Theorem 4.2, all drawings use the same set of vertices and line segments and the drawing of a path that joins \mathcal{C}_{i} to \mathcal{C}_{j} must travel around all paths drawn between the drawing of \mathcal{C}_{i} and \mathcal{C}_{j}.
intersects the interior of P_{i-1}. The drawings G_{1}, \ldots, G_{k} are obtained from the permutations $\pi^{(1)}, \ldots, \pi^{(k)}$ given by Lemma 4.1. In the drawing G_{x}, the path \mathcal{C}_{i} is drawn on the vertices of $P_{\pi_{i}^{(x)}}$. If $y=\pi_{i}^{(x)}$ is even, the drawing uses all the edges of P_{y} except the left-most edge. If y is odd, the drawing uses all the edges of P_{y} except the right-most edge.

Now, without loss of generality, consider some edge-minimal compatible augmentation \mathcal{H} of \mathcal{G}. For each component \mathcal{C}_{i} of G, let T_{i} be any path in \mathcal{H} that has one endpoint on \mathcal{C}_{i}, one endpoint on some other component $\mathcal{C}_{j}, j \neq i$, and no vertices of \mathcal{G} in its interior. Now, for each of the $r / 2$ indices $i \in\{1, \ldots, r\}$ that satisfy (1), the path T_{i} joins a vertex of $P_{\pi_{i}^{(s)}}$ to a vertex of $P_{\pi_{j}^{(s)}}, j \neq i$, and $\left|\pi_{i}^{(s)}-\pi_{i}^{(s)}\right| \geq t$. This path must have length $\Omega(t n / r)$ since it has to "go around" the paths between $P_{\pi_{i}^{(s)}}$ and $P_{\pi_{j}^{(s)}}$; see Figure 13 (right).

Thus far, we have shown that for at least $r / 2$ values of $i \in\{1, \ldots, r\}$, the component C_{i} is the endpoint of a path, T_{i}, of length at least $\Omega(t n / r)=\Omega\left(n r^{-1 / k}\right)$. It is tempting to claim the result at this point, since $(r / 2) \cdot \Omega\left(n r^{-1 / k}\right)=\Omega\left(n r^{1-1 / k}\right)$. Unfortunately, there is a little more work that needs to be done, since two such paths T_{i} and T_{j} may not be disjoint, so summing their lengths double-counts the contribution of the shared portion.

To finish up we note that, since the augmentation \mathcal{H} is minimal, it is a tree; \mathcal{G} contains no cycles, so any cycle in \mathcal{H} contains an edge not in \mathcal{G} that could be removed. Now, observe that if we traverse the outer face of (any planar drawing of) \mathcal{H} then we obtain a non-simple path, P, that traverses each edge of \mathcal{H} exactly twice. If we consider the set
of maximal subpaths of P with no vertex of \mathcal{G} in their interior, we obtain a set of r edgedisjoint paths, Q_{1}, \ldots, Q_{r} and, for every component \mathcal{C}_{i} of \mathcal{G}, there is a vertex of \mathcal{C}_{i} that is an endpoint of at least one such path. Therefore, from the preceding discussion, the total length of $Q_{1} \ldots, Q_{r}$ is $\Omega\left(n r^{1-1 / k}\right)$. But since each edge of \mathcal{H} appears at most twice in these subpaths, we conclude that \mathcal{H} has $\Omega\left(n r^{1-1 / k}\right)$ edges. Since \mathcal{H} is a tree, it has $\Omega\left(n r^{1-1 / k}\right)$ vertices.

Acknowledgement

This work was initiated at the Second Workshop on Geometry and Graphs, held at the Bellairs Research Institute, March 9-14, 2014. We are grateful to the other workshop participants for providing a stimulating research environment.

References

[1] M. Abellanas, A. García Olaverri, F. Hurtado, J. Tejel, and J. Urrutia. Augmenting the connectivity of geometric graphs. Computational Geometry Theory and Applications, 40(3):220-230, 2008.
[2] S. Alamdari, P. Angelini, T. M. Chan, G. Di Battista, F. Frati, A. Lubiw, M. Patrignani, V. Roselli, S. Singla, and B. T. Wilkinson. Morphing planar graph drawings with a polynomial number of steps. In S. Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1656-1667. SIAM, 2013.
[3] P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, and V. Roselli. Morphing planar graph drawings optimally. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Proceedings of the 41st International Colloquium on Automata, Languages, and Programming, volume 8572 of Lecture Notes in Computer Science, pages 126-137. Springer, 2014.
[4] B. Aronov, R. Seidel, and D. L. Souvaine. On compatible triangulations of simple polygons. Computational Geometry Theory and Applications, 3:27-35, 1993.
[5] M. Babikov, D. L. Souvaine, and R. Wenger. Constructing piecewise linear homeomorphisms of polygons with holes. In Proceedings of the 9th Canadian Conference on Computational Geometry, 1997.
[6] S. S. Cairns. Deformations of plane rectilinear complexes. American Mathematics Monthly, 51:247-252, 1944.
[7] P. B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph problems in higher dimensions. In V. Ramachandran, editor, Proceedings of the

Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pages 291-300. ACM/SIAM, 1993.
[8] C. Erten, S. G. Kobourov, and C. Pitta. Intersection-free morphing of planar graphs. In G. Liotta, editor, Proceedings of the 11th International Symposium on Graph Drawing, volume 2912 of Lecture Notes in Computer Science, pages 320-331. Springer, 2003.
[9] L. Few. The shortest path and the shortest road through n points. Mathematika, 2:141-144, 1955.
[10] C. Friedrich and P. Eades. Graph drawing in motion. Journal of Graph Algorithms and Applications, 6(3):353-370, 2002.
[11] C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing. Computers \& Graphics, 25(1):67-75, 2001.
[12] B. Grunbaum and G.C. Shephard. The geometry of planar graphs. Cambridge University Press, 1981.
[13] E. Kranakis and J. Urrutia. Isomorphic triangulations with small number of Steiner points. International Journal of Computational Geometry and Applications, 9(2):171180, 1999.
[14] S. Moran. On the length of the optimal TSP circuits in sets of bounded diameter. Journal of Combinatorial Theory, Series B, 37:113-141, 1984.
[15] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing, 6(3):563-581, 1977.
[16] I. Rutter and A. Wolff. Augmenting the connectivity of planar and geometric graphs. Journal of Graph Algorithms Applications, 16(2):599-628, 2012.
[17] V. Surazhsky and C. Gotsman. Controllable morphing of compatible planar triangulations. ACM Transactions on Graphics, 20(4):203-231, 2001.
[18] V. Surazhsky and C. Gotsman. Intrinsic morphing of compatible triangulations. International Journal of Shape Modeling, 9(2):191-202, 2003.
[19] C. Thomassen. Deformations of plane graphs. Journal of Combinatorial Theory, Series B, 34(3):244-257, 1983.
[20] C. D. Tóth. Connectivity augmentation in planar straight line graphs. European Journal of Combinatorics, 33(3):408-425, 2012.

A Shortest Tour in the Uniform Norm

Under the ℓ_{∞} metric, the distance between two points $x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ is $\|x-y\|_{\infty}=\max \left\{\left|x_{i}-y_{i}\right|: i \in\{1, \ldots, k\}\right\}$.

Lemma A.1. Let P be a set of $r \geq 2$ points contained in the k-dimensional cube $[0,1]^{k}$, for $k \geq 2$. Then there exists a spanning path of P whose length under the ℓ_{∞} metric is at most $c r^{1-1 / k}$, where c is a universal constant. In particular, c does not depend on k or r.

Proof. The following proof is a rehashing of an argument used by Moran [14]. An argument of Few [9], which begins by stabbing [0,1$]^{k}$ with a grid of $\Theta\left(r^{1-1 / k}\right)$ lines, could also be used to establish the same asymptotic result.

First, we note that it is sufficient to upper-bound the ℓ_{∞}-length of the minimum spanning-tree of P, since this can be transformed into a path of at most twice its length [15].

For any point $p \in \mathbb{R}^{k}$, the uniform ball of radius d centered at p, defined as

$$
B_{\infty}(p, d)=\left\{q \in \mathbb{R}^{k}:\|p-q\|_{\infty} \leq d\right\}
$$

is a cube of side-length $2 d$ and has volume $(2 d)^{k}$. If $d<1$ and $p \in[0,1]^{k}$, then $B_{\infty}(p, d) \cap$ $[0,1]^{k}$ contains a cube of side-length d, so $B_{\infty}(p, d) \cap[0,1]^{k}$ has volume at least d^{k}.

The preceding implies that the set P contains two points p and q, such that $\| p-$ $q \|_{\infty} \leq 2 r^{-1 / k}$; otherwise, one could pack r disjoint cubes, each of volume greater than $1 / r$ into $[0,1]^{k}$.

Now, we can construct a spanning tree of P by repeatedly taking the pair of points $p, q \in P$ that minimize $\|p-q\|_{\infty}$, adding the edge $p q$ to our spanning tree and then removing q from P. Since, at the i th step of this algorithm, the set P contains $r-i+1$ points, the total ℓ_{∞}-length of all the edges added to this tree is

$$
\begin{aligned}
\sum_{i=2}^{r} 2 i^{-1 / k} & \leq 2^{1-1 / k}+\int_{2}^{r} 2 x^{-1 / k} \mathrm{~d} x \\
& =2^{1-1 / k}+(2 /(1-1 / k))\left(r^{1-1 / k}-2^{1-1 / k}\right) \\
& \leq 4 r^{1-1 / k}+O(1) \\
& \leq C r^{1-1 / k},
\end{aligned}
$$

for a sufficiently large constant C and any $r, k \geq 2$. Thus, the result holds for $c=2 C$.
By uniformly scaling the point set P by a factor of n, we obtain the following corollary of Lemma A.1, which is used in our algorithm:

Corollary A.2. Let P be a set of $r \geq 2$ points contained in the cube $[0, n]^{k}$, for $k \geq 2$. Then there exists a spanning path of P whose length under ℓ_{∞} metric is at most cnr ${ }^{1-1 / k}$, where c is a universal constant. In particular, c does not depend on k, r, or n.

[^0]: *Department of Computer Science, Tufts University, aloupis.greg@gmail.com
 ${ }^{\dagger}$ School of Computer Science, Carleton University and Département d’Informatique, Université Libre de Bruxelles, lbarbaf1@ulb.ac.be
 \ddagger Department of Computer Science, Ben-Gurion University of the Negev, carmip@cs.bgu.ac.il
 §School of Computer Science and Electrical Engineering, University of Ottawa, vida.dujmovic@uottawa.ca
 ${ }^{\mathbb{I}}$ School of Information Technologies, The University of Sydney, fabrizio.frati@sydney.edu.au
 ${ }^{\|}$School of Computer Science, Carleton University, morin@scs.carleton.ca

[^1]: ${ }^{1}$ In many cases, the correspondence is a byproduct of the creation process. For example, in Figure 2, the second two faces were obtained by copying and then editing the first one.

[^2]: ${ }^{2}$ By Cairn's result, this is equivalent to saying that the two drawings of G have the same rotation schemes, the same cycle-vertex containment relationship, and the same outer face.

[^3]: ${ }^{3}$ The original argument was for the standard ℓ_{2} norm and has an extra \sqrt{k} factor. This factor disappears in the ℓ_{∞} norm. See Appendix A for details.

[^4]: ${ }^{4}$ More formally, ∂C is the boundary of the unbounded component of $\mathbb{R}^{2} \backslash C$, when we treat C as the union of all its edges (line segments) and vertices (points).

