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Abstract. Motivated by applications to graph morphing, we consider the following com-
patible connectivity-augmentation problem: We are given a labelled n-vertex planar graph,
G, that has r ≥ 2 connected components, and k ≥ 2 isomorphic planar straight-line draw-
ings, G1, . . . ,Gk , of G. We wish to augment G by adding vertices and edges to make it
connected in such a way that these vertices and edges can be added to G1, . . . ,Gk as points
and straight-line segments, respectively, to obtain k planar straight-line drawings isomor-
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is always sufficient and sometimes necessary to achieve this goal. The upper bound holds
for all r ∈ {2, . . . ,n} and k ≥ 2 and is achievable by an algorithm whose running time is
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lower bound holds for all r ∈ {2, . . . ,n/4} and k ≥ 2.
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1 Introduction

Consider the following problem, which will be more carefully formalized below. We are
given several different labelled planar straight-line drawings (or simply drawings) of the
same disconnected labelled graph, G. We wish to make G connected by adding vertices
and edges in such a way that these vertices and edges can also be added to the drawings
of G while preserving planarity. The objective is to do this while minimizing the number
of edges and vertices added. As the example in Figure 1 shows, it is not always possible to
just add edges to G; sometimes additional vertices are necessary.
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Figure 1: Two drawings, G1 and G2, of the same graph, G, where making G connected
requires the addition both of edges and vertices. In this case, G is made connected by
adding the hollow vertex and two dashed edges.

The motivation for this work comes from the problem of morphing planar graphs,
which has many applications [8, 10, 11, 17, 18] including computer animation. Imagine
an animator who wishes to animate a scene in which a character’s expression goes from
neutral, to surprised, to happy (see Figure 2). The animator can draw these three faces,
but does not want to hand-draw the 30–60 frames required to animate the change of ex-
pression. The strokes used to draw the character’s features can be converted into paths
and these can be merged into components corresponding to the character’s eyes, nose,
mouth and so on. A correspondence between the same elements in different pictures is
also given.1 Thus, the input is three isomorphic drawings of the same planar graph.

In this setting, animating the face becomes a problem of morphing (i.e., continu-
ously deforming) one drawing of a planar graph into another drawing of the same planar
graph while maintaining planarity of the drawing throughout the deformation. This mor-
phing problem has been studied since 1944, when Cairns [6] showed such a transforma-
tion always exists. Since then, a sequence of results has shown that morphs can be done

1In many cases, the correspondence is a byproduct of the creation process. For example, in Figure 2, the
second two faces were obtained by copying and then editing the first one.
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Figure 2: Computer-assisted animation frequently involves morphing between a sequence
of drawings of the same planar graph. Zooming in on a section of the image reveals that
the artist’s strokes are approximated by polygonal paths

efficiently, so that the motion can be described concisely [2, 3, 12, 19]. The most recent
such result [3] shows that any planar drawing of an n-vertex connected planar graph can
be morphed into any isomorphic drawing using a sequence ofO(n) linear morphs, in which
vertices move along linear trajectories at constant speed.

The morphing algorithms discussed above require that the input graph, G, be con-
nected. In many applications of morphing (for example in Figure 2) the input graph is not
connected. Before these morphing algorithms can be used, G must be augmented into a
connected graph,H, but this augmentation must be compatible with the drawings of G. At
the same time, the complexity of the morph produced by a morphing algorithm depends
on the number of vertices of H. Therefore, we want to find an augmentation with the
fewest number of vertices. This motivates the theoretical question studied in the current
paper.

1.1 Formal Problem Statement and Main Result

A drawing of a graph G = (V ,E) is a one-to-one function ψ : V → R2. A drawing is planar
if (a) for every pair of edges uw and xy in E, the open line segment with endpoints ψ(u)
and ψ(w) is disjoint from the open line segment with endpoints ψ(x) and ψ(y) and (b) for
every edge uw and every vertex y, ψ(y) is not contained in the open line segment with
endpoints ψ(u) and ψ(w). Two planar drawings, ψ1 and ψ2, of G are isomorphic if there
exists a continuous family of planar drawings {ψ(t) : 0 ≤ t ≤ 1} of G such that ψ(0) = ψ1 and
ψ(1) = ψ2.2

We call a graph, G = (V ,E) a geometric planar graph if it is the image of some planar
drawing of a graph G = (V ,E). That is, V (G) = {ψ(v) : v ∈ V (G)}, E(G) = {(ψ(u),ψ(w)) :
(u,w) ∈ E(G)}, and ψ is a planar drawing of G. When clear from context, we will sometimes

2By Cairn’s result, this is equivalent to saying that the two drawings of G have the same rotation schemes,
the same cycle-vertex containment relationship, and the same outer face.
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treat a geometric planar graph interchangeably with the set of points and line segments
defined by its vertices and edges, respectively.

We will avoid repeatedly referencing drawing functions like ψ. Instead, we will
talk about a graph G and k isomorphic drawings G1, . . . ,Gk of G. This means that each Gi
is the geometric graph given by the drawing of G with some function ψi and that ψ1, . . . ,ψk
are pairwise isomorphic. When necessary, we may talk about the vertex v in Gi where v is
actually a vertex of G; this should be taken to mean the vertex ψi(v) in Gi .

We are now ready to state the main problem studied in this paper. Given k > 1
planar isomorphic drawings G1, . . . ,Gk of G, a compatible augmentation, H, of G is a super-
graph of G such that (1) H is connected, and (2) there exist planar isomorphic drawings,
H1, . . . ,Hk , of H such that Hi ⊃ Gi for every i ∈ {1, . . . , k}. We prove the following result:

Main Result: If G is a graph with n vertices and r ∈ {2, . . . ,n} connected components and
G1, . . . ,Gk , k ≥ 2, are isomorphic planar drawings of G, then there always exists a compatible
augmentation of G whose size is O(nr1−1/k).

Furthermore, this bound is tight; for every r ∈ {2, . . . ,bn/4c} and k ≥ 2, there exists a
graph G with r components and k isomorphic planar drawings for which any compatible aug-
mentation has size Ω(nr1−1/k).

These results show that the (worst-case) cost of an augmentation is very sensitive to
the number, k, of drawings, but only up to a point. For a fixed value of r, our bounds range
from Θ(nr1/2) (when k = 2) to Θ(nr) (for k ≥ logr). On the other hand, for the common case
where k = 2, our bounds vary from Θ(n) (when r ∈ O(1)) up to Θ(n3/2) (when r ∈ Θ(n)).
Neither r nor k causes the complexity of the augmentation to blow up beyond Θ(n2).

1.2 Related Work

To the best of our knowledge, there is little work on compatible connectivity-augmentation
of planar graphs, though there is work on isomorphic triangulations of polygons. Refer to
Figure 3. In this setting, the graph G is a cycle and one has two non-crossing drawings, P
and Q, of G. The goal is to augment G (and the two drawings P and Q) so that G becomes a
near-triangulation, and P and Q become (geometric) triangulations of the interiors of the
polygons whose boundaries are P and Q. Aronov et al. [4] showed that this can always be
accomplished with the addition of O(n2) vertices and that Ω(n2) vertices are sometimes
necessary. Kranakis and Urrutia [13] showed that this result can be made sensitive to the
number of reflex vertices of P and Q, so that the number of triangles required is O(n+ pq)
where p and q are the number of reflex vertices of p and q, respectively.

Babikov et al. [5] showed that the result of Aronov et al. can be extended to polygons
with holes. This work is the most closely related to ours because it encounters (the special
case k = 2 of) our problem as a subproblem. In their setting, the graph G is a collection of
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Figure 3: Compatible triangulations of two 4-gons P and Q.

r cycles, the drawings P and Q are such that one cycle, C, of G contains all the others in its
interior and no other pair of cycles is nested in P or Q. In the first stage of their algorithm,
they build a connected supergraph H′ of G, but their supergraph has size Θ(n2) in the
worst case. The main theorem in the current paper shows that this step of their algorithm
could be done with a graph H′ having only O(nr1/2) edges (but completing this graph to a
triangulation may still requires Ω(n2) edges in the worst case).

Finally, several papers have dealt with the problem of increasing the connectivity
of a (single) geometric planar graph while adding few vertices and edges. Abellenas et
al. [1] consider the problem of adding edges to a planar drawing in order to make it 2-edge
connected and showed that b(2n− 2)/3c edge are sometimes necessary and 6n/7 edges are
always sufficient. Tóth [20] later obtained the tight upper-bound of b(2n − 2)/3c for the
same problem. Rutter and Wolff [16] show that finding the minimum number of edges
required to achieve 2-edge connectivity is NP-hard.

1.3 Outline

To guide the reader, we give a rough sketch of our upper bound proof, which is illustrated
in Figure 4. We will assume, for the sake of simplicity, that every component has at least
one vertex incident to the outer face.

For each component, Ci , of G we select a distinguished corner, ai , of G1. (A corner
is the space between two consecutive edges incident to some vertex of the outer face). The
corner ai is called the attachment corner for component Ci . Notice that, since G1, . . . ,Gk
are isomorphic, ai appears as a corner in each of G1, . . . ,Gk . The augmentation that we
ultimately create will consist of a path that connects to each component Ci at its attachment
corner ai .

Next, for each drawing, Gj , we add r − 1 edges to make Gj into a connected graph,
G∗j ; these edges are not, in general, edges that take part in the final augmentation of
G1, . . . ,Gk (in fact the edges of G∗j not in Gj might be different from the edges of G∗h not
in Gh, if j , h). We then traverse the boundary of the outer face of G∗j to obtain a polygonal
path, ϕj , of length O(n) that comes close to every corner of Gj . The path ϕj is then used
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Figure 4: The algorithm for making a compatible augmentation of G works by defining
corners a1, . . . , ar , taking a spanning path on each augmented drawing G∗i that visits all cor-
ners, and using this information to compute a permutation of a1, . . . , ar that can be drawn
efficiently in each Gi .

5



to define an integer distance dj(a`, am) for any two attachment corners a` and am. This
distance includes information about the number of edges of ϕj between a` and am as well
the sizes of the some of the components visited while walking from a` to am along ϕj .

Next, we take a leap into k dimensions by using the distance functions d1, . . . ,dk to
produce a k-dimensional point set X = {x1, . . . ,xr} that lives in a hypercube of side-length
O(n). This mapping has the property that, by adding a path of length O(‖x` − xm‖∞) to
G, the attachment corners a` and am can be joined in each of G1, . . . ,Gk while preserving
planarity.

Now, since the point set X is in Rk , has r points, and lives in a hypercube of side-
length O(n), a classic argument about the geometric Travelling Salesman Problem [9, 14]
implies that it has a spanning path whose length, measured in the `∞ norm, isO(nr1−1/k).3

This implies that G can be made connected with a collection of r−1 paths, whose endpoints
are the corners a1, . . . , ar , having total size O(nr1−1/k), and that each of these paths can be
drawn in a planar fashion in each of G1, . . . ,Gk .

At this point, all that remains is to show that each of these r − 1 paths be drawn
in each of G1, . . . ,Gk without crossing each other. This part of the proof involves carefully
winding these paths around the components in G1, . . . ,Gk using paths close to the paths
ϕ1, . . . ,ϕk defined above. This part of the proof resembles the first part of the proof of
Babikov et al. [5], but is complicated by the fact that we have to be quite careful that the
number of edges in these paths remains in O(nr1−1/k).

The remainder of the paper is organized as follows: In Section 2 we start by solving
the special case in which the graph G has no edges. This special case is already non-trivial
and introduces some of the main ideas used in solving the full problem, which is tackled
in Section 3. Section 4 presents a lower bound construction that matches our upper bound.

2 Upper bounds for trivial components

As a warmup, we consider a (trivial) graph containing n vertices and no edges. Before
constructing a compatible augmentation, we provide a subroutine that constructs a “short”
planar spanning path of a given ordered set of points.

2.1 Spanning paths of point sets

Let S be a set of n points in the plane with distinct x-coordinates. Given a point v ∈ S, let
rank(v) denote the number of points of S that lie to the left of (having smaller x-coordinate
than) v.

Given an arbitrary order (v1,v2, . . . , vn) of the points of S, we want to construct a

3The original argument was for the standard `2 norm and has an extra
√
k factor. This factor disappears in

the `∞ norm. See Appendix A for details.
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Figure 5: The halfplane π and the cones ∆1, . . . ,∆n with apexes at u1, . . . ,un.

path R that connects them in this order and such that:

|R| =O

n−1∑
i=1

|rank(vi)− rank(vi+1)|

 .
This paper uses the | · | operator in several different ways, depending on the type of its
argument. For a real number, x, |x| is the absolute value of x. For a walk, R = (r0, . . . , rk),
|R| = k denotes the number of edges traversed by R. For a (weakly-)simple polygon, P
whose vertices—as encountered during a counterclockwise traversal—are (a1, . . . , ak), |P | =
k, denotes the number of edges of P .

Consider a horizontal line ` below S and let π be the closed halfspace supported
by ` that contains S. We present an algorithm that constructs R iteratively; during the ith
iteration of the algorithm, the path is extended with O(|rank(vi) − rank(vi−1)|) vertices to
include vi . For each i ∈ {1, . . . ,n}, after the ith iteration of the algorithm, we maintain the
invariant that ` does not intersect R, and we also maintain the escape invariant which is
defined as follows: For each j ∈ {i, . . . ,n}, there is a closed cone ∆j with apex uj such that
(1) uj lies above vj and has the same x-coordinate as vj (uj = vj if j = i), (2) ∆j contains
vj and no other point of S, (3) ∆j contains the ray originating at vj in the direction of the
negative y-axis, (4) ∆j does not intersect R, and (5) ∆h and ∆j are disjoint inside π, for
every h ∈ {i, . . . ,n} with h , j.

Initialize R as a path that consists of the single vertex v1. In order to establish the
escape invariant, we define u1 = v1; also, for each j ∈ {2, . . . ,n}, we define uj as an arbitrary
translation up of vj ; further, for each j ∈ {1, . . . ,n}, we let ∆j be a cone with apex on uj
sufficiently narrow so that these cones do not intersect inside π; see Figure 5.

Now assume that R is a path connecting v1 with vj , for some j ∈ {1, . . . ,n − 1}. We
extend R by appending a path that connects vj with vj+1.

First, we translate ∆j+1 down until its apex uj+1 coincides with vj+1. Let πj be the
closure of the set obtained from π by removing ∆h, for every h ∈ {j, j+1, . . . ,n}; see Figure 6
(right). That is, πj is a halfspace with dents made by the removal of n−j+1 cones. Observe
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Figure 6: The boundary of π2 is in the path from v2 to v3.

that, for every pair of apexes ui and uh, with i,h ≥ j, the boundary of πj contains a path
from ui to uh with O(|rank(vi)− rank(vh)|) edges. Because ` does not intersect R and by the
escape invariant, the boundary of πj intersects R only at vj . Moreover, again by the escape
invariant, for each vi with i > j, vi lies outside of πj except for vj+1 that lies on its boundary.
Because both vj and vj+1 lie on the boundary of πj , which does not intersect R other than
at vj , we can connect vj with vj+1 via a path contained in the boundary of πj with length
O(|rank(vj )−rank(vj+1)|). In this way, we extendR to a planar path that contains v1, . . . , vj+1.

After connecting vj with vj+1, for each h ∈ {j+2, . . . ,n}, either ∆h is disjoint from R,
or it shares some portion of its boundary with R. However, the interior of ∆h does not
intersect R. To preserve the escape invariant, for each h ∈ {j+2, . . . ,n}, we translate π and
∆h downwards by a sufficiently small amount, ε, and we scale ∆j+1 horizontally down,
while keeping its apex at vj+1. To conclude, each translated or scaled cone is contained in
the previous one, uh lies above vh, for each h ∈ {j + 2, . . . ,n}, and uj+1 coincides with vj+1.
Therefore, by choosing ε sufficiently small, we maintain the escape invariant and obtain
the following result.

Lemma 2.1. Given an order (v1, . . . , vn) of the vertices of S, there exists a planar path R that
connects every point of S in the given order such that the number of vertices of R between vi and
vi+1 is O(|rank(vi)− rank(vi+1)|), for each i ∈ {1, . . . ,n− 1}.

Proof. Recall that in each iteration, the algorithm computes a path connecting vj with vj+1

that does not cross the portion of the path already constructed. Because this invariant is
maintained throughout, the resulting path is planar.

Since the path that connects vj with vj+1 follows the boundary of πj and since this
boundary has length O(|rank(vj )− rank(vj+1)|) between vj and vj+1, the path that connects
vj with vj+1 has length O(|rank(vj ) − rank(vj+1)|). Consequently, the total length of R is
given by O

(∑n−1
i=1 |rank(vi)− rank(vi+1)|

)
.

8



2.2 Compatible drawings of point sets

Recall that in this section G is a graph with n trivial components. Let G1, . . . ,Gk be k > 1
isomorphic drawings of G, i.e., Gi is a sequence of n points in the plane. Assume without
loss of generality that no two points of Gi share the same x-coordinate. Given a vertex
v of G, let rankGi (v) denote the number of points of Gi having smaller x-coordinate than
v, and let xv = (rankG1

(v), . . . ,rankGk (v)) be a point in the integer grid [0;n − 1]k in Rk .
Let X = {xv : v ∈ V (G)} and let P be the shortest Hamiltonian path of X when distance is
measured using the `∞ norm, so that

‖xv − xu‖∞ = max{|rankGi (v)− rankGi (u)| : i ∈ {1, . . . , k}} .

It is known that the length of P is O(n2−1/k) (see Corollary A.2 in Appendix A). Note that
the order of the points of P induces an order on the vertices of G and hence, an order on
the vertices of each Gi .

Theorem 2.2. For each i ∈ {1, . . . ,n}, we can construct a path Ri of length O(n2−1/k) that con-
nects every point of Gi so that Gi∪Ri is planar. Moreover, for any distinct i, j ∈ {1, . . . ,n}, Gi∪Ri
and Gj ∪Rj are isomorphic.

Proof. By relabelling, let (v1, . . . , vn) denote the order of the vertices of G induced by the
Hamiltonian path, P , described above. The graph H, which is an augmentation of G, is
a path that visits the vertices v1, . . . , vn in this order. Letting dj denote the `∞ distance
between xvj and xvj+1

, the path H includes an additional O(dj ) vertices between vj and
vj+1. It follows that the number of vertices in H is proportional to the length of P , which
is O(n2−1/k).

For each Gi , we use Lemma 2.1 to draw H as a planar path, Ri , that connects the
vertices v1, . . . , vn in this order in the drawing Gi . Since dj ≥ |rankGi (vj )− rankGi (vj+1)|, the
O(dj ) vertices inH between vj and vj+1 are enough to draw theO(|rankGi (vj )−rankGi (vj+1)|)
vertices in Ri between vj and vj+1. Since the vertices of each Gi are connected in the same
order, Gi ∪Ri is isomorphic to Gj ∪Rj for each i, j ∈ {1, . . . , k}.

3 The general problem

In this section, we extend the result presented in Section 2 to graphs with non-trivial
components. We follow the same general scheme used in Section 2 for the case of trivial
(isolated vertex) components: We define k different orderings of the components of G and
use these orderings (and the sizes of these components) to define an r-point set, X, in Rk . A
short path that visits all points in X is then translated back into a short path, R, that visits
all components of G. The path R is then added, as a polygonal path, Ri , to each drawing,
Gi , of G.

9



Unlike the case in which components are isolated vertices, there is no natural or-
dering of the components of Gi , so we must define one. Also, the drawing of path Ri is
considerably more complicated. In Section 2, Ri is drawn incrementally, and always passes
above components that are not yet included in Ri and below components that are already
included in Ri . In this section, we redefine “above” and “below”. The number of edges
required to go above or below a component depends on its size and structure.

3.1 Preliminaries

Let C be a connected geometric planar graph. Let v0,v1, . . . , vk ,v0 be the sequence of ver-
tices of C visited by a counterclockwise Eulerian tour along the boundary of the outer face
of C. Note that vi may be equal to vj for some i , j. A vertex vi in this sequence is called
a corner of C. We consider the boundary of C, denoted by ∂C, to be the boundary of the
weakly-simple polygon (v0, . . . , vk ,v0) whose vertex set is the set of corners of C.4

Let ε > 0. For each corner vi of ∂C, let `i be the half-line starting at vi that bisects
the angle between the edges vi−1vi and vivi+1 in the outer face of C. Let zi be the point
at distance ε from vi along `i . We call zi the ε-copy of vi . Let ∂εC be the piecewise-linear
cycle defined by the sequence (z0, z1, . . . , zk , z0). We call ∂εC the ε-fattening of C. An ε-
fattening ∂εC is simple if ∂εC is a simple polygon that contains C. Note that ∂εC is simple,
provided that ε is sufficiently small. In this paper, we consider only simple ε-fattenings;
see Figure 7. Note that the number of edges between two corners of ∂C along the boundary
of C is the same as the number of edges between their ε-copies along ∂εC.

3.2 Connected augmentations

LetG be a geometric planar graph with r connected components such that each component
is adjacent to the outer face. Two vertices are visible if the open segment joining them does
not intersect G. Let TG be a smallest set of edges of the visibility graph of G that need
to be added to G to make it connected. As there are always two components containing
mutually visible vertices, we can connect them and repeat recursively. Thus, TG has r − 1
edges. (Loosely, we can think of TG as a spanning tree of G’s components.) Let G∗ = G∪TG.
We say that G∗ is a connected augmentation of G; see Figure 7.

Let C1, . . . ,Cr be the components of G. For each i ∈ {1, . . . , r}, let ai ∈ Ci be an arbi-
trary corner of ∂Ci (note that ai is adjacent to the outer face). We call ai the attachment
corner of Ci .

Let ϕ be the path on the corners of ∂G∗ (hence ϕ is also a walk on the vertices of
∂G∗) obtained by splitting ∂G∗ at the corner a1. That is, ϕ is a path that visits every corner

4More formally, ∂C is the boundary of the unbounded component of R2 \C, when we treat C as the union
of all its edges (line segments) and vertices (points).
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Figure 7: The graph G (left); a connected augmentation, G∗, of G (middle); and the ε-
fattening, ∂εG∗ (right).

of ∂G∗ exactly once except for a1, which is visited twice. Given two corners u and v in ∂G∗,
let ϕ(u,v) denote the unique path in ϕ that connects u with v. Let A(u,v) be the set of
attachment corners of G visited by ϕ(u,v). For two attachment corners u = ai and v = aj ,
define

σG(u,v) = |ϕ(u,v)|+ 2
∑

at∈A(u,v)

|∂Ct | − |∂Ci | − |∂Cj |,

which we call the cost of going from u to v. The definition of σG(u,v) is designed to capture
the fact that, if u and v occur consecutively on the path R we construct, then the portion
of R between u and v will have length at least |ϕ(u,v)| since it follows ϕ, and it may also
take a detour around every attachment corner ai ∈ A(u,v). If it takes this detour at some
ai ∈ A(u,v), then it does so by walking around ∂Ci which requires an additional |∂Ci | edges.

Lemma 3.1. If u = ai is an attachment corner of G, then σG(a1,u) < 6n. Moreover, if v = aj ,
with j > i, is another attachment corner of G, then σG(u,v) = σG(v,u) = σG(a1,v)− σG(a1,u).

Proof. Recall that G∗ is a graph with n vertices, so ∂G∗ is a weakly-simple polygon with at
most n distinct vertices, so |∂G∗| ≤ 2n− 2 < 2n. Furthermore, ϕ(a1,u) ⊂ ∂G∗, so |ϕ(a1,u)| ≤
|∂G∗| < 2n. Similarly, 2

∑
ai∈A(a1,u) |∂Ci | ≤ 2

∑r
i=1 |∂Ci | < 4n. Therefore, σG(a1,u) < 6n, which

proves the first part of the lemma.

To prove the second part of the lemma, first observe that σG(u,v) = σG(v,u) by
definition. To prove the second equality, denote the relevant attachment corners of G∗

by a1, a2, . . . , ai = u,ai+1, . . . , aj = v. Then A(a1,u) = {a1, . . . , ai}, A(a1,v) = {a1, . . . , aj}, and
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ρj−1

ρj = ai

ρj+1 Ci

Figure 8: The component Ci is to the right of the path R = (ρ1, . . . ,ρt).

A(u,v) = {ai , . . . , aj}, so

σG(a1,v)− σG(a1,u) = |ϕ(a1,v)| − |ϕ(a1,u)|+ 2
j∑
t=1

|∂Ct | − 2
i∑
t=1

|∂Ct |

− |∂C1|+ |∂C1| − |∂Cj |+ |∂Ci |

= |ϕ(u,v)|+ 2
j∑

t=i+1

|∂Ct | − |∂Cj |+ |∂Ci |

= |ϕ(u,v)|+ 2
j∑
t=i

|∂Ct | − |∂Cj | − |∂Ci |

= |ϕ(u,v)|+ 2
∑

at∈A(u,v)

|∂Ct | − |∂Cj | − |∂Ci |

= σG(u,v) .

3.3 Spanning paths for connected augmentations

Let a1, . . . , ar be an arbitrary order of the attachment corners of G (we can get the incre-
mental indexing by relabeling the components). Given a path R = (ρ1,ρ2, . . . ,ρt) that passes
through all attachment corners of G, we say that Ci lies to the right of R if (1) ai is the only
vertex of Ci that belongs to V (R), and (2) if ai = ρj for some j ∈ {1, . . . , t}, then ρj−1 and ρj+1

appear as consecutive vertices when sorting—in the graph G ∪R—the neighbors of ai in
clockwise order around ai (see Figure 8).

We now show how to construct a path R that connects the attachment corners of G
in the given order, i.e., if i < j, then ai is visited before aj by R. We want to construct R so
that each component Ci of G lies to the right of R and so that G∪R is a planar geometric
graph. Moreover, we want the subpath of R between aj and aj+1 to have O(σG(aj , aj+1))
vertices. We initialize R with the trivial path that contains only a1, and then extend R

iteratively, so that each new corner ai is included in R. Recall that for any given ε > 0, ∂εG∗

denotes the ε-fattening of G∗ (see Section 3.1). Let µ > 0 be a small constant to be specified
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∂εG∗

C2

C1
C3

C4

a1
w1

C1

N1

∆1 a1

w1

a3

a2

a4
w3

w2
w4

∂εG∗

τ

Figure 9: The ε-fattening of G∗ and the “cones” ∆1, . . . ,∆r .

later. Initially, let ε = 2µ and let δ = µ/2. Let λ < µ/2r+1 be a constant sufficiently small so
that ∂λCi ∩∂λCj = ∅ for any distinct i, j ∈ {1, . . . , r}. Throughout, λ remains constant while
ε and δ are redefined at each iteration. However, as an invariant we maintain λ < δ < ε.

For each i ∈ {1, . . . , r}, let wi be the ε-copy of ai . Split ∂εG∗ at w1, i.e., ∂εG∗ is a path
with both endpoints equal to w1. By choosing ε sufficiently small, we guarantee that ∂εG∗

is simple, i.e., ∂εG∗ is isomorphic to ϕ. We say that two points in the plane are R-visible if
the open segment joining them does not intersect R. Let τ > 0. For each i ∈ {1, . . . , r} such
that ai is not an interior point of R, consider the set of points Ni ⊂ ∂εG∗ that are at distance
at most τ from wi . Let ∆i be the convex hull of Ni ∪{ai}, i.e., ∆i is a “cone” with apex at ai ;
see Figure 9. (We deliberately misuse the word “cone” here because the “cones” ∆1, . . . ,∆r
in this section play the same roles as the cones ∆1, . . . ,∆n in Section 2.)

While constructing R, we also maintain the escape invariant which is defined as
follows. Assume that R so far connects a1, . . . , ai , for some i ∈ {1, . . . , r − 1}. Then: (1) R
intersects neither ∂εG∗ nor its unbounded face; (2) for each j ∈ {i + 1, . . . , r}, R intersects
neither the simple polygon bounded by ∂δCj nor the cone ∆j ; (3) ∆h ∩ ∆j = ∅, for any
distinct h, j ∈ {1, . . . , r}; and (4) wi is R-visible from ai .

In particular, Conditions (2) and (4) of the escape invariant imply that, for each
j ∈ {i, . . . , r}, every point in Nj (including wj ) is R-visible from aj . The escape invariant
holds when R = {a1}, provided that τ is sufficiently small.

Assume that we have constructed a path R that connects a1 with aj , for some j ∈
{1, . . . , r − 1}, and that the escape invariant holds. To extend R, we create a new path that
connects aj with aj+1 without crossing R while maintaining the escape invariant. Recall
that we consider ∂εG∗ to be a path with both endpoints on w1.
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Cj
aj

∂λCj

∂εG
∗

∆j

R

wj

Cj
aj

∂λCj

∂εG
∗

∆j

R

wj

Figure 10: When extending R from aj to aj+1 we have to take care to keep Cj to the right
of R.

The first part of the path connecting aj with aj+1 consists of a path connecting aj
with wj . If j = 1, or if j > 1 and R together with the edge ajwj leaves Cj to its right, then
connect aj with wj via a straight-line segment; since wj is R-visible from aj , this segment
does not cross R. Otherwise, connect aj with ∂λCj via a straight-line segment and traverse
∂λCj clockwise before moving to wj on ∂εG∗. By the escape invariant, no crossing occur in
this drawing. In this way, we guarantee that Cj lies to the right of the constructed path; see
Figure 10 for an illustration. Because λ < δ < ε and since ai ∈ V (R), the escape invariant is
preserved.

The path from aj to aj+1 continues with a path from wj to wj+1, which follows the
unique path in ∂εG∗ from wj to wj+1. However, whenever we reach an endpoint of Ni for
some i ∈ {j+2, . . . , r}, we take a detour to the other endpoint ofNi while avoiding its interior
so that the points in the interior of Ni remain R-visible from ai ; see Figure 11. Formally,
we walk from the reached endpoint of Ni to ∂δCi \∆i along the boundary of ∆i . Then, we
traverse the path ∂δCi \∆i before moving to the other endpoint of Ni from the endpoint
of ∂δCi \∆i . Note that R does not intersect the interior of the simple polygon bounded by
∂δCi nor the interior of ∆i . Moreover, R remains inside the simple polygon bounded by
∂εG

∗.

Once we go around Ci , we are back on ∂εG∗ on the other endpoint of Ni . In this
way, we continue going towards wj+1 along ∂εG∗ until reaching an endpoint of Nj+1. Once
we reach an endpoint of Nj+1, we move directly from this endpoint to aj+1.

Because ∂εG∗ is isomorphic to ϕ, the constructed path between aj and aj+1 has
length at most |ϕ(aj , aj+1)| plus the length of the boundaries of the components for which
the path detoured. Because each component we walked around has its attachment corner
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Ci
ai

∂εG
∗

∆i

R

wi

Ci
ai

∂εG
∗

∆i

R

wi

Ci
ai

∂δCi

∂εG
∗

∆i

R

wi

∂δCi ∂δCi

Figure 11: The “detour” taken to avoid crossing the cone ∆i (left, middle); and the nar-
rowing of the cone ∆i as well as the redefinition of the ε- and δ-fattenings of G∗ and Ci ,
respectively.

on the path ϕ(aj , aj+1), and thus in A(aj , aj+1), the length of the constructed path between
aj and aj+1 is

O

|ϕ(aj , aj+1)|+
∑

ai∈A(aj ,aj+1)

|∂Ci |

 =O(σG(aj , aj+1)) .

After reaching aj+1, we increase ε by a factor of two. Similarly, we decrease the
value of δ by a factor of two. That is, after reaching aj+1, ε = µ2j+1 while δ = µ/2j+1 and
hence, we guarantee that λ < δ < ε. Also, ∂εG∗ is still simple, provided that µ is initially
chosen to be sufficiently small. Finally, we reduce τ by a factor of two and update Ni and
∆i accordingly, for each i ∈ {1, . . . ,n}; see Figure 11 (c).

Recall that for each ai < R, R intersected neither the interior of ∆i nor the interior
of the polygon bounded by ∂δCi . Moreover, R remained within ∂εG∗. Therefore, after in-
creasing (resp. reducing) ε (resp. δ), we preserve the escape invariant for the next iteration
of the algorithm. We iterate until all attachment corners of G are visited by R.

Lemma 3.2. Given an arbitrary order a1, . . . , ar of the attachment corners of G, there is a path
R connecting all attachment corners of G in the given order such that R ∪G is planar, every
component Ci of G lies to the right of R when oriented from a1 to ar , and the subpath of R
between aj and aj+1 has O(σG(aj , aj+1)) vertices, for each j ∈ {1, . . . , r − 1}.

Proof. By construction, the attachment corners are visited by R in the given order; also,
the subpath, γj , of R between aj and aj+1 has O(σG(aj , aj+1)) vertices. For each component
Ci , ai is the only vertex of Ci visited by R. Moreover, the construction guarantees that Ci
lies to the right of R when oriented from a1 to ar .

To prove that R is planar, recall that in each round we extend R by constructing a
path γj that connects aj with aj+1. We claim that at this point, no edge of γj crosses the
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a1

a2

a3

a4

C1

C4

C2

C3

Figure 12: An example of the algorithm for generating a spanning path that connects
a1, . . . , a4.

portion of R constructed so far. Indeed, because the value of ε (resp. δ) increases (resp.
decreases) in each round, the edges of γj that lie on the boundaries of some ∂δCi or on
∂εG

∗ cannot cross R by the escape invariant. Moreover, this invariant states that for each
ai < R, R does not intersect ∆i . Because each cone ∆i is narrowed in each round, the edges
of γj that lie on the boundary of this cone cannot cross R. Finally, because λ < δ, the edges
of γj that lie on ∂λCj do not cross R. Therefore, we conclude that by concatenating γj and
R, we obtain a planar path.

Figure 12 illustrates the algorithm of Lemma 3.2 on a small example. In this exam-
ple, the path from a1 to a2 passes by a4, so R detours around C4 in order to preserve the
escape invariant at a4. After R attaches to a2 and a3, it winds around components C2 and
C3, respectively, in order to ensure that these components attach to the right of R.

3.4 Compatible drawings of planar graphs

Let G be a planar graph with n vertices and r connected components. Let G1, . . . ,Gk be k
planar isomorphic drawings of G. For now, we will assume that, in these drawings, every
component of G has at least one vertex incident to the outer face. We show how to construct
a compatible augmentation of G of size O(nr1−1/k).

Let C1, . . . ,Cr be the connected components of G. Because G1, . . . ,Gk are isomorphic,
we can select one attachment corner from each component in the drawing G1, and this
attachment corner also appears in each of G2, . . . ,Gk . Thus, for each j ∈ {1, . . . , r}, we choose
an attachment corner aj of ∂Cj such that aj is incident to the outer face of Cj .

For each i ∈ {1, . . . , k}, let G∗i be a connected augmentation of Gi , as defined in
Section 3.2. For each i ∈ {1, . . . , k} and j ∈ {1, . . . , r}, let ranki(j) = σG∗i (a1, aj ). For each
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j ∈ {1, . . . , r}, let xj ∈ Rk be a point corresponding to the component Cj such that xj =
(rank1(aj ),rank2(aj ), . . . ,rankk(aj )). Let X = {x1, . . . ,xr} ⊂ Rk denote the resulting set of
points. Lemma 3.1 implies that X is contained in an integer grid of side length 4n.

Let P be the shortest Hamiltonian path of X under the `∞ norm. As before, because
X is contained in the k-dimensional integer grid of side-length 4n and |X | = r, the maxi-
mum (`∞) length of P is O(nr1−1/k). Note that the order of the points in P induces an order
of the components of G and hence an order of the attachment corners of each Gi .

Theorem 3.3. For each 1 ≤ i ≤ k, we can construct a path Ri of length O(nr1−1/k) that connects
every component of Gi such that Gi ∪Ri is planar. Moreover, for each 1 ≤ i < j ≤ k, Gi ∪Ri is
isomorphic to Gj ∪Rj .

Proof. By relabelling, let (a1, . . . , ar ) denote the order of the attachment corners of Gi in-
duced by P . Letting dj denote the `∞ distance between xj and xj+1, we denote byH a path
that passes through (the vertices corresponding to corners) a1, . . . , ar in this order, and that
includes an additional O(dj ) vertices between aj and aj+1. Thus, the number of vertices in
H is proportional to the length of P , which is O(nr1−1/k).

For each Gi , we use Lemma 3.2 to draw H as a planar path, Ri , that connects
a1, . . . , ar in this order. By construction,

dj = max{|ranki(j + 1)− ranki(j)| : i ∈ {1, . . . , k}}

≥ |ranki(j + 1)− ranki(j)| ,

so the O(dj ) vertices in H between aj and aj+1 are enough to draw the O(σGi (aj , aj+1))
vertices in Ri between aj and aj+1, since σGi (aj , aj+1) = σGi (a1, aj+1)− σGi (a1, aj ) = |ranki(j +
1)− ranki(j)|.

To conclude, each Ri visits each component only at its attachment corner, the at-
tachment corners of each Gi are connected in the same order, and Ri leaves every compo-
nent to the right when oriented from a1 to ar . Therefore, Gi ∪Ri is isomorphic to Gj ∪Rj
for each 1 ≤ i < j ≤ k.

3.5 Handling interior components

In the preceding section, we assumed that the drawingsG1, . . . ,Gk ofGwere such that every
component was incident to the outer face. To see that the assumption is not necessary,
observe that we can first use the preceding algorithm to connect all the components that
do appear on the outer face using a polygonal path that is contained on the outer face. The
number of vertices used in this path is O(n′r1−1/k), where n′ is the number of vertices on
the outer face.
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Next, for each interior face, f , that has multiple componentsC1, . . . ,Ct on its bound-
ary, we can use (a small modification of) the preceding algorithm to connect C1, . . . ,Ct
and the outer boundary of f using a path that is contained in f . This path has length
O(nf r1−1/k). We then repeat this step on each face. The result is a connected augmentation
of G whose total size is O(Nr1−1/k) where N =O(n) is the total size of all faces.

3.6 An algorithm

We remark that Theorem 3.3 yields an efficient algorithm for constructing the augmenta-
tion H, and even the drawings H1, . . . ,Hk . The main steps involved are:

1. Finding connected planar supergraphs G∗1, . . . ,G
∗
k of the drawings G1, . . . ,Gk . For each

planar graph Gi , this can easily be done inO(n logn) time using, for example, a plane
sweep algorithm that maintains the invariant that all components with a vertex to
the left of the sweep-line are already joined by edges. Thus, this step takesO(kn logn)
time.

2. Constructing the point set X and finding the path P . Constructing X takes O(kn)
time, while a path P of lengthO(n2−1/k) can be obtained from an (approximate) min-
imum spanning tree of X. For constant values of k, an approximate MST can be
computed in O(n logn) time using the algorithm of Calahan and Kosaraju [7]. For
larger values of k, the actual minimum spanning tree can be computed in O(kn2)
time.

3. Constructing each of the paths R1, . . . ,Rk . Each of these paths is easily constructed in
O(n2−1/k) time once we have determined values of ε, δ, τ , and λ that are sufficiently
small. A more careful examination of our algorithm reveals that all that is really
needed is a value of ε such that ∂εG∗i is simple, for each i ∈ {1, . . . , k}. Once we have
this value of ε, the values of the remaining variables can taken from the set {iε/3r :
i ∈ {1, . . . ,3r}}.

It turns out that a value ε ≤ cm/n, where m is the minimum non-zero difference
between x coordinates or y coordinates inG1, . . . ,Gk , and c is a constant, is sufficiently
small. Thus, a suitable ε can be computed in O(kn logn) time by sorting.

This yields the following algorithmic result about connected augmentations:

Theorem 3.4. An augmentation satisfying the conditions of Theorem 3.3 can be computed in
O(kn2) time for any value of k. If k is constant, then the augmentation can be computed in
O(nr1−1/k) time.

The latter result is worst-case optimal since, in the next section we will show that
there exists inputs where every augmentation has size Ω(nr1−1/k).
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4 Lower Bounds

Our lower bounds are based on the following lemma. It says that we can find k permuta-
tions of {1, . . . , r} such that for half the indices i ∈ {1, . . . , r}, and every j ∈ {1, . . . , r} \ {i}, there
is a permutation in which i and j are at distance Ω(r1−1/k).

Lemma 4.1. Let t = (1/2)1+1/k · (r − 1)1−1/k . There exists permutations π(1), . . . ,π(k) of {1, . . . , r}
such that for at least half the values of i ∈ {1, . . . , r} and for every j ∈ {1, . . . , r} \ {i},

max
{∣∣∣∣π(s)

i −π
(s)
j

∣∣∣∣ : s ∈ {1, . . . , k}
}
≥ t . (1)

Proof. This proof is an application of the probabilistic method. Select each of π(1), . . . ,π(k)

independently and uniformly from among all r! permutations of {1, . . . , r}. Fix a particular
index i and a particular index j. For a particular s ∈ {1, . . . , k}, the probability that |π(s)

i −
π

(s)
j | ≤ t is at most 2t/(r − 1) since the set {̂ ∈ {1, . . . , r} : |π(s)

i −π
(s)
̂ | ≤ t} is a random subset of

at most 2t elements drawn without replacement from {1, . . . , r} \ {i}.

Therefore, since π(1), . . . ,π(k) are chosen independently,

Pr
{
max

{∣∣∣∣π(s)
i −π

(s)
j

∣∣∣∣ : s ∈ {1, . . . , k}
}
≤ t

}
≤ (2t/(r − 1))k =

1
2(r − 1)

.

In particular, the expected number of such j ∈ {1, . . . , r} \ {i} is at most 1/2 so, by Markov’s
Inequality, the probability that there exists at least one such j is at most 1/2. Thus, with
probability at least 1/2, the index i satisfies (1) and therefore the expected number of
indices i ∈ {1, . . . , r} that satisfy (1) is r/2. We conclude that there must exist some permu-
tations π(1), . . . ,π(k) that satisfy (1) for at least half the indices i ∈ {1, . . . , r}.

Using Lemma 4.1, we can prove a lower bound that matches the upper bound
obtained in our general construction.

Theorem 4.2. For every positive integer n and every r ∈ {2, . . . ,bn/4c}, there exists a graph G
having n vertices, r connected components, and k isomorphic drawings G1, . . . ,Gk such that any
compatible augmentation of G has size Ω(nr1−1/k).

Proof. Since the lemma only claims an asymptotic result, we may assume without loss of
generality that r is even and that 2r divides n.

The graph G consists of r disjoint paths, C1, . . . ,Cr , each of length n/r. Each of the
drawings G1,. . . ,Gk has the vertices of G on the same point and edge set. The point set
consists of the vertices of r nested regular n/r-gons, P1, . . . , Pr , each centered at the origin
and having nearly the same size. Refer to Figure 13 (left). More precisely, P1 ⊂ P2 ⊂ · · · ⊂ Pr
and the sizes are chosen so that any segment joining two non-consecutive vertices of Pi
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Ci Cj

Figure 13: In the construction in Theorem 4.2, all drawings use the same set of vertices
and line segments and the drawing of a path that joins Ci to Cj must travel around all paths
drawn between the drawing of Ci and Cj .

intersects the interior of Pi−1. The drawings G1, . . . ,Gk are obtained from the permutations
π(1), . . . ,π(k) given by Lemma 4.1. In the drawing Gx, the path Ci is drawn on the vertices
of P

π
(x)
i

. If y = π(x)
i is even, the drawing uses all the edges of Py except the left-most edge. If

y is odd, the drawing uses all the edges of Py except the right-most edge.

Now, without loss of generality, consider some edge-minimal compatible augmen-
tation H of G. For each component Ci of G, let Ti be any path in H that has one endpoint
on Ci , one endpoint on some other component Cj , j , i, and no vertices of G in its interior.
Now, for each of the r/2 indices i ∈ {1, . . . , r} that satisfy (1), the path Ti joins a vertex of P

π
(s)
i

to a vertex of P
π

(s)
j

, j , i, and |π(s)
i −π

(s)
i | ≥ t. This path must have length Ω(tn/r) since it has

to “go around” the paths between P
π

(s)
i

and P
π

(s)
j

; see Figure 13 (right).

Thus far, we have shown that for at least r/2 values of i ∈ {1, . . . , r}, the component
Ci is the endpoint of a path, Ti , of length at least Ω(tn/r) = Ω(nr−1/k). It is tempting to
claim the result at this point, since (r/2) ·Ω(nr−1/k) = Ω(nr1−1/k). Unfortunately, there is a
little more work that needs to be done, since two such paths Ti and Tj may not be disjoint,
so summing their lengths double-counts the contribution of the shared portion.

To finish up we note that, since the augmentation H is minimal, it is a tree; G
contains no cycles, so any cycle in H contains an edge not in G that could be removed.
Now, observe that if we traverse the outer face of (any planar drawing of)H then we obtain
a non-simple path, P , that traverses each edge of H exactly twice. If we consider the set
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of maximal subpaths of P with no vertex of G in their interior, we obtain a set of r edge-
disjoint paths, Q1, . . . ,Qr and, for every component Ci of G, there is a vertex of Ci that is
an endpoint of at least one such path. Therefore, from the preceding discussion, the total
length of Q1 . . . ,Qr is Ω(nr1−1/k). But since each edge of H appears at most twice in these
subpaths, we conclude that H has Ω(nr1−1/k) edges. Since H is a tree, it has Ω(nr1−1/k)
vertices.
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A Shortest Tour in the Uniform Norm

Under the `∞ metric, the distance between two points x = (x1, . . . ,xk) and y = (y1, . . . , yk) is
‖x − y‖∞ = max{|xi − yi | : i ∈ {1, . . . , k}}.

Lemma A.1. Let P be a set of r ≥ 2 points contained in the k-dimensional cube [0,1]k , for
k ≥ 2. Then there exists a spanning path of P whose length under the `∞ metric is at most
cr1−1/k , where c is a universal constant. In particular, c does not depend on k or r.

Proof. The following proof is a rehashing of an argument used by Moran [14]. An argu-
ment of Few [9], which begins by stabbing [0,1]k with a grid of Θ(r1−1/k) lines, could also
be used to establish the same asymptotic result.

First, we note that it is sufficient to upper-bound the `∞-length of the minimum
spanning-tree of P , since this can be transformed into a path of at most twice its length
[15].

For any point p ∈ Rk , the uniform ball of radius d centered at p, defined as

B∞(p,d) = {q ∈ Rk : ‖p − q‖∞ ≤ d}

is a cube of side-length 2d and has volume (2d)k . If d < 1 and p ∈ [0,1]k , then B∞(p,d)∩
[0,1]k contains a cube of side-length d, so B∞(p,d)∩ [0,1]k has volume at least dk .

The preceding implies that the set P contains two points p and q, such that ‖p −
q‖∞ ≤ 2r−1/k ; otherwise, one could pack r disjoint cubes, each of volume greater than 1/r
into [0,1]k .

Now, we can construct a spanning tree of P by repeatedly taking the pair of points
p,q ∈ P that minimize ‖p−q‖∞, adding the edge pq to our spanning tree and then removing
q from P . Since, at the ith step of this algorithm, the set P contains r− i+1 points, the total
`∞-length of all the edges added to this tree is

r∑
i=2

2i−1/k ≤ 21−1/k +
∫ r

2
2x−1/k dx

= 21−1/k + (2/(1− 1/k))
(
r1−1/k − 21−1/k

)
≤ 4r1−1/k +O(1)

≤ Cr1−1/k ,

for a sufficiently large constant C and any r,k ≥ 2. Thus, the result holds for c = 2C.

By uniformly scaling the point set P by a factor of n, we obtain the following corol-
lary of Lemma A.1, which is used in our algorithm:
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Corollary A.2. Let P be a set of r ≥ 2 points contained in the cube [0,n]k , for k ≥ 2. Then
there exists a spanning path of P whose length under `∞ metric is at most cnr1−1/k , where c is a
universal constant. In particular, c does not depend on k, r, or n.
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