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Abstract. Up to isomorphism there are six fixed-point free crystallographic groups in
Euclidean Space generated by twists (screw motions). In each case, an orientable 3-
manifold is obtained as the quotient of E3 by such a group. The cubic tessellation of
E3 induces tessellations on each such manifold. These tessellations of the 3-torus and
the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’
in previous works. This paper concludes the classification of cubic tessellations on the
remaining four orientable manifolds.

1. Introduction

Among the seventeen crystallographic groups of the Euclidean plane, there are only two
that act with no fixed-points. Identifying points in the same orbit of the action of these
groups leads to the well-known flat, closed 2-manifolds which are commonly known as the
torus and the Klein bottle. The three regular tessellations of the Euclidean plane, in a
natural way, give rise to the equivelar tessellations of these surfaces. These tessellations
have been of interest to many (see for example [9, 16, 20]), and have a long history which
includes the classic work of Coxeter [6] (see also [7]), giving the classification of regular and
chiral maps on the torus. The topic has also drawn more recent attention, with the works
of Brehm, Kühnel [1], and of Wilson [21], classifying all equivelar maps on the torus and
Klein bottle, respectively.

There are precisely ten flat, closed 3-manifolds (see [11, 19]). Each manifold arises as
the quotient of E3 by a fixed-point free crystallographic group, and thus can be seen in
the broader setting of space-forms. In fact, the Euclidean space-forms are the complete
connected flat riemannian manifolds; for more details on this topic see [18] and [22].

Various properties of the flat, closed 3-manifolds have been studied recently (see for
example [5], [8], [15]). In [4] Conway and Rossetti coin the name platycosms for these
manifolds, and give them a set of individual names. Six of these manifolds are orientable
and they can be grouped into platycosms satisfying one of three properties. The 3-torus
is the most symmetric platycosm in the sense that it has an infinite group of isometries of
the manifold containing S1 × S1 × S1 as a subgroup. As a consequence of this, it is the
only platycosm admitting regular tessellations [12]. In contrast, the isometry group of the
didicosm (also known as the Hantzsche-Wendt manifold [22]) is finite and in this sense it
is the least symmetric of the platicosms.
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In this paper we focus on the remaining four orientable platycosm which, together with
the torus, are named the helicosms. Their isometry groups contain a finite index subgroup
isomorphic to S1, which induces a distinguished direction.

Our interest centers on the situation when the isometry group G inducing a helicosm as a
quotient, is taken to be a subgroup of the symmetry group [4, 3, 4] of the regular tessellation
U of E3 by cubes. The orbit-space U/G gives rise to what we call a cubic tessellation of
the corresponding helicosm. That is to say, for each i ∈ {0, 1, 2, 3}, the orbit of an i-
dimensional face of the tessellation of E3 yields an i-dimensional face of the tessellation
of the helicosm. In non-degenerate cases, one can think of the combinatorial structure of
this tessellation as an abstract polytope with Schläfli type {4, 3, 4} (see [18]). Given any
tessellation Λ of En, and a fixed-point free discrete group G of Euclidean isometries, if G
preserves the tessellation, then we call the orbit-space of Λ/G a twistoid on the manifold
En/G.

The particular instance of twistoids on the n-torus has been previously considered, where
they are called toroids. Regular tessellations of these manifolds were classified by McMullen
and Schulte [17]. Subsequently, McMullen proved there are no chiral tessellations of the
n-torus (for n ≥ 3) (see [18, Section 6H]). Recently the classification by symmetry type
of all cubic tessellations of the 3-torus and didicosm were completed by Hubard, Orbanić,
Pellicer, and Weiss [13] and Hubard, Mixer, Pellicer and Weiss [14], respectively.

This paper is the third in a sequence of four papers classifying cubic tessellations of the
platycosms, the first two being [13] and [14]. Sections 2, 3 and 4 of this paper provide
introductory concepts for the helicosms and their twistoids. In Section 4 we show that
there are no cubic tessellations on the hexacosm and in Sections 5, 6 and 7 we classify all
possible cubic tessellations of the dicosm, tricosm, and tetracosm, respectively, according
to the structure of their automorphism group. Finally, in Section 8 we relate the contents
of this paper with the first one of the series. In the final paper, we complete the clas-
sification by considering the four non-orientable manifolds. Our approach is to use the
geometry of three dimensional Euclidean space in order to understand how the fixed-point
free crystallographic groups interact with the symmetries of the cubic tessellation.

2. Flat 3-manifolds

According to the notation of [3, Chapter 24], the six orientable compact flat quotients
of E3 are the didicosm and the five helicosms called torocosm (3-torus), dicosm, tricosm,
tetracosm and hexacosm. The cubical tessellations of the didicosm and the torocosm were
respectively studied in [14] and [13], respectively. In this section, we analyze the structure
of the groups DI := 22221

2 + 1
2 + 1

2 + 1
2+, T R := 3331

3 + 1
3 + 1

3+, T E := 4421
4 + 1

4 + 1
2+,

and HE := 6321
6 + 1

3 + 1
2+, as well as the corresponding quotients of the Euclidean space

yielding the dicosm, tricosm, tetracosm and hexacosm, respectively.
For each group G ∈ {DI, T R, T E ,HE}, a natural set of generators for G consists of

isometries called twists, where a twist (or screw motion) is the commuting product of a
rotation (of order n ≥ 2) about a line with directional vector v and the translation by v.
We call v the translational component of the twist and say that it has rotational component
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Figure 1. Fundamental regions of the non-toroidal helicosms

of order n. If the rotational component is of order n, we say that the twist is an n-turn
twist. We shall also refer to the 2-turn twists by half-turn twists.

In all cases the groups are generated by twists with parallel axes. The group DI is
generated by four half-turn twists and the group T R is generated by three 3-turn twists.
The group T R is generated by two 4-turn twists and a half-turn twist. Finally, the group
HE is generated by a 6-turn twist, a 3-turn twist and a half-turn twist. The intersection
of the axes generating DI, T R, T E , or HE with a perpendicular plane form, respectively,
a parallelogram, an equilateral triangle, an isoceles triangle with a straight angle, or a
triangle with angles π/6, π/3 and π/2.

The translational component of all generating twists of DI and of T R coincide. The
translational component of the 4-turn twists is half of the translational component of the
half-turn twist generating T E . Finally, considering the generators of HE , the translational
component of the 6-turn twist is half the translational component of the 3-turn twist and
a third of the translational component of the half-turn twist. To conclude this section we
describe a fundamental region for each of the dicosm, tricosm, tetracosm and hexacosm.

Figure 1 (A), (B), (C) and (D) shows a fundamental region for the dicosm, tricosm,
tetracosm and hexacosm, respectively. In all cases the fundamental region is an upright
prism over a centrally symmetric polygon (parallelogram, regular hexagon, square and reg-
ular hexagon). This polygon is in a plane perpendicular to the direction of the translational
component of the generating twists, indicated by gray arrows. The hight of the prism is
the norm of the smallest translational component of the generating twists.

The axes intersecting the midpoint of edges of the prisms in Figure 1 (C) and (D)
correspond to the generating half-turn twists. The axis containing a vertex of the prism in
Figure 1 (D) corresponds to the generating 3-turn twist.

The identification of the fundamental regions to obtain the helicosms is as follows. Each
vertical wall of the prism is identified with the opposite wall by translation; note that in
all cases, a vertical wall is in a plane parallel to that of the opposite wall. The top and
bottom of the prism are identified by the twist with its axis lying in the middle; that is,
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the top and bottom of the prisms in Figure 1 (A), (B), (C) and (D) are identified by a
half-turn, 3-turn, 4-turn and 6-turn twist, respectively.

3. Twistoids and symmetries of the cubic tessellation

Up to similarity, there is a unique regular tessellation U of Euclidean 3-space E3 by
cubes. We assume that the vertices of this tessellation coincide with the integer lattice
Z3 determined by the standard basis {e1, e2, e3}. The group of symmetries Γ(U) of this
tessellation is the Coxeter group [4, 3, 4], and Γ(U) ∼= T o S where T is the group of all
translational symmetries, and S is the stabilizer of the origin. The group S is called the
point group of U .

Let G be a fixed point free discrete group of isometries of E3. When G is a subgroup of
the symmetry group Γ(U), the quotient U/G is called a (cubic) twistoid. Hence, a cubic
twistoid can be seen as a tessellation by cubes of the platycosm associated with G. The
twistoids U/G and U/G′ are said to be isomorphic if G and G′ are conjugates in Γ(U). The
definition of isomorphism allows us to relabel any integral point (x, y, z) as (0, 0, 0) while
not changing the isomorphism class of a twistoid. Similarly, permuting the x, y, and z
axes as well as switching the positive and negative direction of any coordinate axis, does
not change the isomorphism class of a twistoid. Later, we shall make use of this freedom
in the position and orientation of the integer lattice in order to define simple parameters
that classify the twistoids on the helicosms.

Consider the translation τ of E3 by the vector (1/2, 1/2, 1/2). The dual of a twistoid
T = U/G is the twistoid T ∗ = U/Gτ (where Gτ denotes the conjugated of G by τ).
Equivalently, one can obtain T ∗ as the twistoid U∗/G, where U∗ denotes the geometrically
dual tessellation of U in the usual sense. Hence, given a cubic twistoid T , its dual T ∗ is
the cubic tessellation of the platycosm whose vertices, midpoints of edges and squares are
the midpoints of the cubes, squares and edges, respectively, of the twistoid T . Thus, the
midpoints of the cubes of T ∗ correspond to the vertices of T .

In [14, Section 2] we described all twists occurring as symmetries of the cubic tessellation
U . The order of the rotational component of any such twists is either 2, 3 or 4. Figure 2
and Table 1 illustrate the eleven kinds of twists that are symmetries of U . In Table 1, for
each type, an × in the columns labeled ‘V’,‘E’,‘S’,‘C’ indicates whether the axis of a twist
intersects the centroid of a vertex, edge, square, or cube, respectively. Additionally, the
column labeled ‘Direction’ gives one possible vector for the direction of the twist, with all
other possible vectors being an image of this vector under the point group S. The column
labeled ‘Norm’ indicates the numbers that occur as norms of the translational component
of the twist.
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Figure 2. Twist Symmetries of the cubic tessellation

Type Period V E S C Direction Norm
I 2 × × e1 Z
II 2 × × e1 Z
III 2 × × e1 Z
IV 2 × × e1 + e2

√
2Z

V 2 × e1 + e2

√
2

2 Z \
√

2Z
VI 2 × × e1 + e2

√
2Z

VII 2 × e1 + e2

√
2

2 Z \
√

2Z
VIII 3 × × e1 + e2 + e3

√
3Z

IX 3 e1 + e2 + e3

√
3

3 Z \
√

3Z
X 4 × × e1 Z
XI 4 × × e1 Z

Table 1. The conjugacy classes of twists in the group [4,3,4]

A Petrie polygon of U is an infinite path where three, but not four, consecutive edges
belong to a cube of U . They are helices over triangles, living around axes of type IX (see
Figure 2). The images of the Petrie polygon with vertices

{(k, k, k), (k, k + 1, k), (k + 1, k + 1, k) | k ∈ Z}

under the rotations preserving U are called right Petrie paths. The remaining Petrie poly-
gons are called left Petrie paths, for example the one with vertex set

{(k, k, k), (k + 1, k, k), (k + 1, k + 1, k) | k ∈ Z}.
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4. Symmetries of the helicosms

In this section we give definitions of symmetries and automorphisms of the platycosms.
As we are interested in manifolds endowed with the metric inherited from the cubic tessel-
lation, our definitions differ slightly from some found in other sources which emphasize a
topological point of view.

Let M be the helicosm defined by the group G, and let T be a twistoid on M. The
largest group of symmetries of G in E3 is its affine normalizer, that is the group Aff(G)
of affine transformations of E3 that fix G by conjugation. However, some of the elements
of the affine normalizer of G do not preserve the structure of M. Therefore, the largest
group of symmetries of G that we consider in this paper is the subgroup of Aff(G) defined
by (rigid) isometries of E3 which preserve the cubic tessellation. Hence, as we did in [13]
and [14], we define the symmetry group of the twistoid Sym(T ) precisely as the subgroup
of Aff(G) consisting of (rigid) isometries of E3 which preserve G by conjugation.

Following the ideas in [4], we break Aff(G) - and thus Sym(T ) - into ‘parts’. The
first part (in both groups) will be called the component of identity. In Aff(G) these
are the affinities of E3 that fix the group pointwise; while the component of identity of
Sym(T ) consists of the isometries of E3 that fix the group pointwise and preserve the
cubic tessellation. We note that for the helicosms, the component of identity (of both
Aff(G) and Sym(T )) consists only of translations.

It is known (see for example [2]) that factoring Aff(G) by its component of identity
yields the group Aut(G) of abstract automorphisms of G. Since G has a trivial center, we
know that G is isomorphic to the group Inn(G) of inner automorphisms, and therefore, in
order to understand the symmetries of a twistoid on the corresponding helicosm, we need
to analyze the isometries of E3 which act like outer automorphisms of G and preserve the
cubic lattice. We call the collection of such isometries the outer part of Sym(T ). This
collection clearly does not form a group; however, when taking the quotient of Sym(T ) by
the component of identity and then by G we obtain a quotient of Aut(G). We will call this
by the group of outer symmetries of T , and denoted by Out(T ).

In [4], the outer automorphism group - and thus our group of outer symmetries of a
twistoid - is broken down further. We use this idea to break the outer part of Aff(G)
and Sym(T ) further as well. The rigidly isometric part comes from symmetries which are
isometries for all parameters defining the fundamental region, whereas the deformable part
comes from affinities that might be isometries for specific parameters. As above, these
collections are not groups. However, the rigidly isometric part is a normal subgroup of the
group of outer symmetries of T . When taking quotient by this normal subgroup we get a
group which we will call the group of deformable symmetries of T . The structure of the
outer automorphism groups of DI, T R, T E , and HE are considered in both [4] and [10].
We summarize their results below.

• Out(DI) ∼= (Z2
2 o PGL(2,Z))× Z2

• Out(T R) ∼= S3 × Z2

• Out(T E) ∼= Z2
2

• Out(HE) ∼= Z2
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As in [13] and [14], we define the automorphism group Aut(T ) for a twistoid T as
Sym(T )/G. Furthermore, we denote the group homomorphism that sends Sym(T ) to
Aut(T ) by φ, and say that a symmetry α induces an automorphism α when φ(α) =
α. Using the language above, we will also use the notions of the component of identity
of Aut(T ), as well as the group of rigidly isometric automorphisms, and the group of
deformable automorphisms. Based on the discussion above, in order to classify twistoids
on the helicosms by symmetry type we will show how both the component of identity and
the outer part of Sym(T ) can be determined by the parameters defining a twistoid T .

We start by ruling out the possibility of cubic twistoids on the hexacosm.

Proposition 4.1. There are no cubic twistoids on the hexacosm.

Proof. If there were a cubic twistoid on that manifold, then HE could be realized as a
subgroup of the group [4, 3, 4] of isometries of E3 that preserve a cubic tessellation. How-
ever, as noted in Table 1, the group [4, 3, 4] does not contain any 6-fold twists, whereas HE
does. �

The following sections give the classification, by symmetry type, of the cubic twistoids
on the dicosm, tricosm and tetracosm.

5. Dicosm

In this section we will show that the twistoids on dicosm can be classified into twenty-two
distinct families (we brake the analysis in two cases resulting with eighteen families in one
and four in the other).

It follows from the notation of [3] that the group DI is generated by four twists whose
axes are parallel and project orthogonally to the vertices of a parallelogram. Furthermore,
the translation component of each twist coincides. It can be easily seen that one of the
twists can be obtained as a composition the other three. Hence, the group DI is generated
by three twists whose axes are parallel - but not coplanar - and whose translation component
is equal.

The analysis naturally splits in two cases. One of them is when the axes of the twists
are parallel to a coordinate axis (that is, they are of type I, II or III); without loss of
generality, we take the axes to be in the direction of (0, 0, 1). In the other case the axes
are parallel to a diagonal of a square of the cubic tessellation (that is, they are of types
IV , V , V I or V II); without loss of generality, we take the axis to be in the direction of
(1,−1, 0). In both cases, the component of identity of any twistoid on the dicosm consists
of all translations preserving the cubic tessellation U , in the direction of the axes of the
generating twists. The following lemma will be useful in finding a set of simple parameters
to classify twistoids on the dicosm.

Lemma 5.1. Let Σ be a group generated by two linearly independent translations in E2.

(1) The group Σ is generated by translations (a, b) and (c, 0) for some a, b, and c.
(2) The parameters a, b, and c can be chosen so that 0 ≤ a < c.
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Proof. The first item is a direct consequence of Lemma 4 of [13]. The second item follows
from the fact that the translation by the vector n(c, 0) is in Σ for any integer n. �

Case 1: The axes of the generators have direction vector (0, 0, 1).

Let c ∈ Z be the norm of the translational component of the generating twists. If
the axis of one the generators contains a vertex of U , then we denote that generator
by σ1. Furthermore, as we are considering twistoids up to duality, if none of the axes
contains a vertex of U , but one of them contains a centroid of a cube, we may consider the
corresponding twist as σ1 and work with the dual tessellation.

Let Π be the xy-plane. Much of our analysis will be done by considering how the axes of
the generating twists in the cubic tessellation project into Π. Assume that the axes of σ1,
σ2 and σ3 intersect Π on the points (p1, q1, 0), (p2, q2, 0), and (p3, q3, 0), respectively. Up
to duality and because of the freedom on the choice of the x and y axes, we may assume
that q1 = q2 = 0, p1 ∈ {0, 1

2}, p2 > p1 and p3 ≥ 0, q3 > 0. Note that p2, p3, q3 ∈ 1
2Z. As

a consequence of our previous assumptions, if p1 = 1
2 then p2 ∈ 1

2Z \ Z. Furthermore, if

p1 = 1
2 and q3 ∈ Z then p3 ∈ 1

2Z \ Z.
A twistoid on the dicosm with the parameters described above will be denoted by [DI |

c, p1, p2, p3, q3]. Note that such a twistoid contains 4cq3(p2 − p1) cubes, and therefore
192cq3(p2 − p1) flags.

The component of identity of Sym([DI | c, p1, p2, p3, q3]) consists of all translations by
a vector (0, 0, k) with k ∈ Z. Therefore, there are precisely 2c different automorphisms in
the component of identify of Aut([DI | c, p1, p2, p3, q3]). The rigidly isometric subgroup
of Aff(DI) is generated by translations α and β, mapping the axis of σ1 to that of σ2

and σ3, respectively, together with the reflection with respect to a plane perpendicular
to these axes. Since the reflection ρ with respect to a plane z = k for k ∈ 1

2Z is a
symmetry of [DI | c, p1, p2, p3, q3] for all possible parameters, the rigidly isometric part of
Sym([DI | c, p1, p2, p3, q3]) can be determined by calculating for which parameters α, β,
and αβ preserve the cubic lattice.

We choose α to be the translation by the vector (p2−p1, 0, 0) which is a symmetry of the
twistoid whenever p2 − p1 ∈ Z. Likewise, we choose β to be the translation by the vector
(p3 − p1, q3, 0), which is a symmetry whenever p3 − p1, q3 ∈ Z. Similarly, the translation
αβ is a symmetry whenever p3 − p2, q3 ∈ Z. Therefore the group of rigidly isometric
automorphisms of [DI | c, p1, p2, p3, q3] is either 〈ρ′〉, 〈ρ′, α′〉, 〈ρ′, β′〉, 〈ρ′, α′β′〉, or 〈ρ′, α′, β′〉,
where ρ′, α′, and β′ are the elements in the group of rigidly isometric automorphisms that
are induced by ρ, α, and β, respectively.

In order to complete the description of Sym([DI | c, p1, p2, p3, q3]), it remains to deter-
mine all symmetries in the deformable part of the Sym([DI | c, p1, p2, p3, q3]).

Let φ be an isometry in the deformable part of Sym([DI | c, p1, p2, p3, q3]). We may
assume that φ preserves the projection of σ1, as the group of deformable symmetries is a
quotient by the rigidly isometric ones. Furthermore, since all elements in the deformable
part preserve the lattice formed by the projection onto Π of the axes of twists in DI, in this
plane φ acts like an element in the dihedral group of order 8, preserving this lattice while
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fixing the projection of σ1. In this case, φ is a half-turn with respect to an axis parallel to
the corresponding axis in the projection, fixing U , or φ is a twist along the axis of σ1.

Since the projection of U into the plane Π yields a square grid, any symmetry of the
twistoid in the deformable part must be either a half-turn with respect to an axis with
direction vector (1, 0, 0), (0, 1, 0), (1, 1, 0) or (1,−1, 0) preserving the lattice, or a power of
a 4-fold-twist η along the axis of σ1. Note that the second power of η is equivalent under
the component of identity to σ1. Consequently, the half-turns along the axes determined
by (1, 0, 0) and (0, 1, 0) when they occur, are equivalent under the component of identity
and DI itself. Similarly, the half-turns along the axes (1, 1, 0) and (1,−1, 0) are equivalent.
Therefore we only need to determine whether η and the half-turns γ1 and γ2 with respect
to the axes generated by (1, 0, 0) and (1, 1, 0), respectively, occur as symmetries of the
twistoid.

An easy calculation shows that γ1 is a symmetry of [DI | c, p1, p2, p3, q3] if and only
if p1 = p3 or p3 = p2+p1

2 . Furthermore, it follows from [13, Proposition 5] that γ2 is a
symmetry of [DI | c, p1, p2, p3, q3] if and only if

(1)
p3 − p1

q3
,

p2 − p1

q3
,

q2
3 − (p3 − p1)2

q3(p2 − p1)
∈ Z,

and that η is a symmetry if and only if

(2)
p3 − p1

q3
,

p2 − p1

q3
,

q2
3 + (p3 − p1)2

q3(p2 − p1)
∈ Z.

To complete the classification, for any set of parameters, we first determine the sub-
group of rigidly isometric symmetries. Then, for each possible rigidly isometric subgroup,
we determine the subgroup of deformable symmetries. When c ∈ Z, the previous anal-
ysis classified the twistoids [DI | c, p1, p2, p3, q3] according to their rigidly isometric and
deformable subgroups of symmetries shown as the families listed in Table 2. We note here
that the deformable subgroup is in fact determined by the symmetry type of the toroid
given by the projections of the axes of the σi’s.

From [13] we observe that there are 5 possible symmetry types of a maps on the torus
of type {4, 4}. Each of the columns of Table 2 correspond to one of these types, and each
entry of the table gives an example of a twistoid with the symmetries given in each row
and the projection of the axes given by the columns.

In what follows we explain why there are no twistoids in the families labelled “None” in
Table 2. We start with three remarks whose proofs are straight forward and thus omitted.

Remark 5.2. If the axes of the generating twists project to Π into exactly two different
types of points (vertices, centers of squares, midpoints of horizontal edges, or midpoints of
vertical edges) and γ2 is a symmetry of a twistoid, then the projections of the axes of the
generators are either vertices and centers of squares, or they are midpionts of vertical and
horizontal edges.
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1 2 20,2 21 4

〈ρ′〉 p1 = 0, p2 = 5
2 p1 = 0, p2 = 5

2 p1 = 0, p2 = 5
2 p1 = 0, p2 = 3

2 p1 = 0, p2 = 21
2

p3 = 0, q3 = 5
2 p3 = 1, q3 = 1

2 p3 = 0, q3 = 3
2 p3 = 1, q3 = 1

2 p3 = 2, q3 = 1
2

〈ρ′, α′〉 p1 = 0, p2 = 3 p1 = 0, p2 = 13 p1 = 0, p2 = 5 p1 = 0, p2 = 4 p1 = 0, p2 = 10
p3 = 3

2 , q3 = 3
2 p3 = 5

2 , q3 = 1
2 p3 = 5

2 , q3 = 1 p3 = 3
2 , q3 = 1

2 p3 = 1, q3 = 1
2

〈ρ′, β′〉 None None p1 = 0, p2 = 3
2 None p1 = 0, p2 = 11

2
p3 = 0, q3 = 2 p3 = 1, q3 = 2

〈ρ′, α′β′〉 None None None None p1 = 0, p2 = 5
2

p3 = 1
2 , q3 = 1

〈ρ′, α′, β′〉 p1 = 0, p2 = 2 p1 = 0, p2 = 5 p1 = 0, p2 = 6 p1 = 0, p2 = 3 p1 = 0, p2 = 20
p3 = 0, q3 = 2 p3 = 2, q3 = 1 p3 = 3, q3 = 1 p3 = 2, q3 = 1 p3 = 2, q3 = 1

Table 2. The 18 families of twistoids on the dicosm, where the trans-
lational component of σ1 is (0, 0, c). The columns of the table give the
deformable parts and the rows give the rigidly isometric parts.

Remark 5.3. If the axis of any of the generating twists has points with y coordinate in
1
2Z\Z, then the axes of σ1 and σ2 were chosen to contain points with integer y coordinate,

and therefore the axes of σ3 and σ4 have y coordinate in 1
2Z \ Z.

The two above remarks imply that there are no possible parameters such that the
twistoid [DI | c, p1, p2, p3, q3] has rigidly isometric subgroup giving the columns in Ta-
ble 2 labeled 1 or 21 while having a deformable subgroup given by 〈β′〉 or 〈α′β′〉.

Remark 5.4. If the axes of the generating twists project to Π into exactly two types of
different points (vertices, centers of squares, midpoints of horizontal edges, or midpoints of
vertical edges), and η is a symmetry of a twistoid, then p1 = 0 and the projections of the
axes of the generators are all vertices and centers of squares, since midpionts of vertical
and horizontal edges are interchanged by η.

Remarks 5.2 and 5.4 imply that there are no possible parameters such that the twistoid
[DI | c, p1, p2, p3, q3] has rigidly isometric subgroup giving the column in Table 2 labeled 2
while having a deformable subgroup given by 〈β′〉 or 〈α′β′〉.

Considering the conditions on the parameters, an easy algebraic argument shows that if
the deformable part contains γ1 and the rigidly isometric part contains αβ, then the rigidly
isometric part also contains α. To see this assume first that p3 = p1 and p3 − p2, q3 ∈ Z.
Then clearly p2 − p1 is an integer, implying that α is a symmetry of the twistoid. On the
other hand, if p3 = p1+p2

2 and p3 − p2, q3 ∈ Z, then p1−p2
2 ∈ Z implying that α is again a

symmetry of the twistoid. This shows that there are no twistoids having rigidly isometric
subgroup determined by the column labeled 20,2 while having a deformable part given by
〈α′β′〉.

We have now shown that there are eighteen non-empty families of twistoids [DI |
c, p1, p2, p3, q3] with c ∈ Z, and given a possible set of parameters for an example of
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each family. For each of these families we derive the number of flag-orbits of a twistoid
[DI | c, p1, p2, p3, q3].

As noted above, the number of flags of the twistoid [DI | c, p1, p2, p3, q3] is 192cq3(p2−p1).
Since the component of identify of Aut([DI | c, p1, p2, p3, q3]) has 2c different elements,
and the reflection ρ is always a symmetry, it follows that each such twistoid has at most
48q3(p2−p1) flag-orbits. In fact, this number is achieved when the projection of the axes of
the twists of DI form a lattice inducing a torus in class 4 (where the deformable subgroup
is trivial) and the rigidly isometric subgroup consists only of 〈ρ′〉.

If only one of α, β or αβ is a symmetry of [DI | c, p1, p2, p3, q3] then the number of
flag-orbits is reduced by a factor of 2. Furthermore, if all three of them are symmetries,
then the number of flag-orbits is reduced by a factor of 4. The precise number of flag-orbits
for a twistoid in each family is then determined by the deformable part. If the deformable
part is a group of order n then the number of flag-orbits is reduced by a factor of n. For
example, [DI | 28, 0, 2, 0, 2] has 3 · 2 · 2 = 12 flag-orbits.

Case 2: The axes of the generators have direction vector (1,−1, 0).

Let Π be the plane x = y. We denote by (p1, p1, q1), (p2, p2, q2) and (p3, p3, q3) the
projections of σ1, σ2, and σ3 to Π, respectively. Up to duality, we may choose p1 ∈ {0, 1

4}
and q1 = 0. Furthermore, by Lemma 5.1 we may assume also that q2 = 0. Note that
p2, p3 ∈ 1

4Z and q3 ∈ 1
2Z.

The norm of the translational component c of σ1 is an integer multiple of
√

2 if p1 = 0,

or an odd integer multiple of
√

2
2 if p1 = 1

4 . This implies that either p1, p2, p3 are all in 1
2Z

or none of them are.
A twistoid on the dicosm with the parameters described above will be denoted by [DI |

c, p1, p2, p3, q3]. Note that these twistoids are differentiated from those in the previous case
by whether c ∈ Z or not. The twistoid [DI | c, p1, p2, p3, q3] has 4c

√
2q3(p2 − p1) cubes,

and therefore 192c
√

2q3(p2 − p1) flags.
The component of identity of Sym([DI | c, p1, p2, p3, q3]) consists of all translations by

a vector (k,−k, 0) with k ∈ Z. That is, there are precisely
√

2c different elements of the
component of identity.

As before, the group of rigidly isometric part of Aff(DI) is generated by translations
α, β, and αβ mapping the axis of σ1 to that of σ2, σ3 and σ4, respectively, together with
the reflection with respect to a plane perpendicular to these axes.

The reflection with respect to a plane through the origin with normal vector (1,−1, 0)
is a symmetry of [DI | c, p1, p2, p3, q3] for all possible parameters.

If p2 − p1 ∈ Z then the translation α by the vector (p2 − p1, p2 − p1, 0) also preserves
U and normalizes DI, and therefore is a symmetry of [DI | c, p1, p2, p3, q3] for all possible
parameters. On the other hand, if p2−p1 ∈ Z

2 \Z then we may take α to be the translation

by the vector (q2− q1 + 1
2 , q2− q1− 1

2 , 0); in this case α does not preserve Π. It follows that
the translation β is a symmetry if and only if αβ is a symmetry.

Since the projection of U into the plane Π yields a rectangular grid, by arguments similar
to the previous case, any nontrivial symmetry of the twistoid in the deformable part must
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be either a half-turn about an axis with direction vector (1, 1, 0) or (0, 0, 1) preserving the
lattice, or a 2-fold-twist along the axis of σ1. Note that the latter is equivalent under the
component of identity to σ1. Consequently, the other two half-turns, in the case where
they occur, are equivalent under the component of identity and DI itself.

Therefore, in order to determine the entire set of symmetries of [DI | c, p1, p2, p3, q3] it
remains to determine for which parameters the translation β by (p3 − p1, p3 − p1, q3 − q1)
and the half-turn χ along the axis {k(1, 1, 0) | k ∈ R} are symmetries of the twistoid. An
easy calculation shows that χ is a symmetry of [DI | c, p1, p2, p3, q3] if and only if p3 = p1

or p3 = p1+p2
2 . On the other hand, β is a symmetry if and only if q3 ∈ Z.

Recall that p2 − p1 ∈ Z (resp. p3 − p1 ∈ Z) if and only if the direction vector of α (resp.
β) can be chosen to be perpendicular to (1,−1, 0).

The previous analysis classifies the twistoids [DI | c, p1, p2, p3, q3] in the following nonempty

families when c ∈
√

2
2 Z:

• q3 ∈ Z and (p3 = p1 or p3 = p1+p2
2 ), admitting all possible symmetries arising from

the rigid as well as the deformable part. Twistoids in this family have 12q3(p2−p1)
flag-orbits.
• q3 /∈ Z and (p3 = p1 or p3 = p1+p2

2 ), admitting all possible symmetries arising from
the deformable part, but not from the rigid part. Twistoids in this family have
24q3(p2 − p1) flag-orbits.
• q3 ∈ Z, p3 6= p1, and p3 6= p1+p2

2 , admitting all symmetries arising from the rigid
part, but not from the deformable part. Twistoids in this family have 24q3(p2−p1)
flag-orbits.
• q3 /∈ Z, p3 6= p1, and p3 6= p1+p2

2 , including all twistoids not considered in the
previous families. Twistoids in this family have 48q3(p2 − p1) flag-orbits.

6. Tricosm

In this section we will show that the twistoids on tricosm can be classified into three
distinct families.

It follows from the notation in [3] that the group T R is generated by three twists σ1, σ2,
and σ3, whose axes are parallel and project orthogonally to the vertices of an equilateral
triangle. Furthermore, their translational component coincides. It can be easily seen that
σ1 and σ2 determine σ3, for example by σ2

3 = σ1σ2. Hence, the group T R is generated by
two twists whose axes are parallel, having equal translational component.

Since the generators are 3-fold twists, they must be parallel to the diagonal of a cube of
the tessellation, that is, of types V III or IX. Without loss of generality we assume that
the translational component of σ1 and σ2 is c(1, 1, 1)/

√
3. More generally, for i ∈ {1, 2},

the axis of σi can be taken to be {t(1, 1, 1) + (pi, qi, ri) | t ∈ R}.
Let Π be the plane through (0, 0, 0) with normal vector (1, 1, 1). Then the projection of

U to Π induces the vertex lattice Λ of a tessellation of Π by equilateral triangles. Since σi
preserves U , it induces a 3-fold rotation on Λ with respect either to a point of Λ or to a
centroid of an equilateral triangle (marked with a gray ‘X’ in Figure 3, where the projection
of the three coordinate axes are marked). Without loss of generality we may assume that
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X

Y

Z

v1
v2

Figure 3. Projection Λ of U to Π

(p1, q1, r1) = (0, 0, 0) if the axis of σ1 contains points of Λ, or (p1, q1, r1) = 1
3(1,−1, 0)

otherwise. Note that in the latter case, the axis of σ1 is the axis of a Petrie polygon of U .
If the axis of a 3-fold twist preserving U contains a vertex of U then c ∈

√
3Z. On

the other hand, if the axis of a 3-fold twist is the axis of a Petrie polygon of U then

c ∈
√

3
3 Z \

√
3Z. It follows that if the axis of σ1 contains a vertex of U then the axis of σ2

also contains a vertex of U .
Additionally, if c√

3
= 3k+ 1 for some integer k, then the axis of σ1 is the axis of a right

Petrie polygon of U and induces a clockwise 3-fold rotation in Π. On the other hand if
c√
3

= 3k + 2, then the axis of σ1 is the axis of a left Petrie polygon of U and induces a

counterclockwise 3-fold rotation. In either case, the projections of the axes of σi all are
centers of triangles of the same color (in the natural 2-coloring of the tessellation of the
plane by regular triangles).

As in Section 5, the value of c determines the location of the axis of σ1. If c ∈
√

3Z
then (p1, q1, r1) = (0, 0, 0), otherwise (p1, q1, r1) = 1

3(1,−1, 0). For convenience, we locate
the axis of σ2 in terms of its projection to Π, with respect to the basis B = {v1, v2} where
v1 = 1

3(2,−1,−1) and v2 = 1
3(1, 1,−2) (see Figure 3).

In this notation, the intersection of the axis of σ2 with Π is described as (a, b) = av1 +bv2

with a, b ∈ Z. We may assume without loss of generality that both a and b are positive.
Since σ3 was chosen such that σ1σ2 = σ2

3, the intersection of the axes of σ1, σ2, and σ3

with Π forms an equilateral triangle such that a clockwise 3-fold rotation permutes the
intersections with Π of the axes of σ1, σ3 and σ2 in that order.

The parameters c, a, b then determine completely the twistoid, and therefore a twistoid
with these parameters is denoted by [T R | c, a, b].

Using that |av1 + bv2| =
√

2a2+2b2+2ab
3 it follows that the volume (number of cubes) of

the fundamental region with these parameters is
√

3c(2a2 + 2b2 + 2ab) and therefore the
twistoid [T R | c, a, b] has 48c

√
3(a2 + b2 + ab) flags.
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The component of identity of Sym([T R | c, a, b]) consists of all translations by a vector
(k, k, k) with k ∈ Z. Therefore, there are precisely

√
3c different elements in the component

of identity of Aut([T R | c, a, b]). Since the deformable part in this case is trivial, it only
remains to determine the rigidly isometric symmetries.

Define α as a translation sending the axis of σ1 to the axis of σ2 while preserving the
cubic lattice Then α is a translation by the vector av1 + bv2 + k(1, 1, 1) for some k ∈ 1

3Z.

Without loss of generality we can assume that k ∈ {0, 1
3 ,

2
3}. Considering the natural

2-coloring of the triangles in Λ, such an α always exists, and yields a non-trivial rigidly
isometric part. Note that a similar translation sending the axis of σ1 to the axis of σ3 is
equivalent to α under under the quotient of T R; in fact it is the conjugate of α by σ2

1.
If the parameters allow it, we define χ as the half-turn about a line meeting the axes of

σ1 and σ2, perpendicular to both and preserving the cubic tessellation. The projection of
the axis χ onto the plane Π gives a line, about χ which acts like a reflection when restricted
to Λ. When c /∈

√
3Z, the only possible way for the axis for χ to project to such a line is

if a = b. Furthermore, in this case, it can be seen that χ is a symmetry of the twistoid
[T R | c, a, b] if and only if a = b. If c ∈ Z then, in order to preserve Λ, the axis of χ could
also project to the edges of the triangles; however, no axis of a 2-fold rotation preserving
the cubic tessellation projects to such lines. It is easy to see now that, for all c, χ is a
symmetry of [T R | c, a, b] if and only if a = b.

In case there is no half-turn about lines meeting the axes of σ1 and σ2, perpendicular to
both and preserving the tessellation, there may be a half-turn ζ about a line perpendicular
to the axis of σ1, interchanging the axes of σ2 and σ3. By arguments similar as above, we
can easily see that [T R | c, a, b] has ζ as a symmetry if and only if a = 0 or b = 0.

Finally, we note that there is a 6-fold rotation about the axis of σ1 preserving the group;
however, such an isometry does not preserve the cubic tessellation, implying that such an
outer automorphism of T R can never be realized as a symmetry of a twistoid.

Recall that the outer automorphism group of T R is isomorphic to Z2 × S3. Since the
symmetry group of every twistoid [T R | c, a, b] contains α, which projects to an element α
of order 3 in Out(T R), it follows that 〈α〉 is normal in Out(T R) and that Out(T R)/〈α〉
is isomorphic to Z2 × Z2. Furthermore, the non-trivial elements of the latter are the
classes of χ, ζ and χζ. Note that χζ is a 6-fold twist, and no such isometries preserve U .
Consequently, at most one of χ and ζ is a symmetry of the twistoid. Therefore there are
three non-empty families of twistoids in the tricosm as explained next.

• a = b, allowing the symmetry χ. Twistoids in this family have 8(a2 + b2 + ab)
flag-orbits.
• a = 0 or b = 0, allowing the symmetry ζ. Twistoids in this family have 8(a2+b2+ab)

flag-orbits.
• ab(a−b) 6= 0, allowing none of χ or ζ. Twistoids in this family have 16(a2 +b2 +ab)

flag-orbits.
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7. Tetracosm

In this section we will show that the twistoids on tetracosm can be classified into four
distinct families.

The tetracosm is the quotient of E3 by the group T E . The canonical generators of this
group are two 4-fold twists (which we denote by σ and σ1) and one 2-fold twist (which we
denote by σ2), all of which have parallel axes. The translational component of σ and σ1 is
the same and we denote its norm by c. The norm of the translational component of σ2 is
then 2c. It can be easily seen that σ can be obtained from σ1 and σ2. Hence, the group
T R is generated by two twists whose axes are parallel; one of them is a half-turn twist
with translational component twice the translational component of the other one, which is
a 4-fold twist.

Since one of the generators is a 4-fold twist, all the axes of the generators must be
parallel to some coordinate axis, that is, of types I, II or III. Without loss of generality
we assume that the translational component of σ1 is (0, 0, c). More generally, for i ∈ {1, 2},
the axis of σi is {t(0, 0, 1) + (pi, qi, 0) | t ∈ R}. By choosing σ such that σ−1

1 σ2 = σ we
observe that the axis of σ is {t(0, 0, 1) + (p2 − q2, p2 + q2, 0) | t ∈ R}.

Let Π be the xy-plane. Then the projection of U to Π induces a square tessellation Λ.
Since σ1 preserves U , it acts like a 4-fold rotation in Λ with respect either to a vertex of Λ
or to a centroid of a square. Without loss of generality and up to duality, we may assume
that (p1, q1) = (0, 0). Furthermore, p2, q2 ∈ 1

2Z. For convenience we shall denote p2 and q2

by p and q respectively.
Since σ−1

1 σ2 = σ, the intersection of the axis of σ with Π forms a right isosceles triangle
with the intersection of the axes of σ1 and σ2 with Π such that the right angle is at
the projection of σ2. The parameters c, p, q then determine completely the twistoid and
therefore a twistoid with these parameters is denoted by [T E | c, p, q]. It is easy to see
that the volume (number of cubes) of the fundamental region with these parameters is
4c(p2 + q2) and therefore the twistoid [T E | c, p, q] has 192c(p2 + q2) flags.

The component of identity of Sym([T E | c, p, q]) consists of all translations by a vector
(0, 0, k) with k ∈ Z. Note that there are 4c different elements of the component of identity
of Aut([T E | c, p, q]). Since the deformable part in this case is again trivial, it only remains
to determine all symmetries of the twistoid that project to the rigidly isometric part.

We define α as the translation by the vector (p− q, p+ q) sending the axis of σ1 to the
axis of σ. Then α is a symmetry of the twistoid [T E | c, p, q] if and only if p − q ∈ Z.
Furthermore, we define χ as the half-turn about the line {t(p, q, 0) | t ∈ R}. The axis χ is
a line, about which χ acts like a reflection when considering its action on Λ. It is easy to
see that χ is a symmetry of [T E | c, p, q] if and only if pq(p− q) = 0.

Recall that the outer automorphism group of T E is isomorphic to Z2
2. Note that α and

χ represent different outer automorphisms. Furthermore, αχ is a symmetry of the twistoid
[T E | c, p, q] only if α and χ are also symmetries. (Note here that αχ is a half-turn twist
whose axis must act like a glide reflection in Λ, which can happen only if pq(p − q) = 0.
Furthermore, it maps the axis of σ1 to a conjugate of the axis of σ, which implies that
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p − q ∈ Z.) Therefore, there are four non-empty families of twistoids in the tetracosm as
follows.

• pq(p− q) = 0 and p− q ∈ Z, allowing symmetries α and χ. Twistoids in this family
have 12(p2 + q2) flag-orbits.
• pq(p − q) 6= 0 and p − q ∈ Z, allowing symmetry α but no χ. Twistoids in this

family have 24(p2 + q2) flag-orbits.
• pq(p − q) = 0 and p − q /∈ Z, allowing symmetry χ but not α. Twistoids in this

family have 24(p2 + q2) flag-orbits.
• pq(p − q) 6= 0 and p − q /∈ Z, not allowing symmetries α or χ. Twistoids in this

family have 48(p2 + q2) flag-orbits.

8. Toroidal Covers

As noted in the introduction, the classification of cubic twistoids on the 3-torus (also
called equivelar 4-toroids) by symmetry type was completed in [13]. It is natural to relate
this classification to our classifications in Sections 5, 6, and 7.

When describing the minimal toroidal covers of the twistoid T = [DI | c, p1, p2, p3, q3]
on the dicosm we first consider when c ∈ Z, that is, the axes of the standard generators
are parallel to the z-axis. Given such a twistoid on the dicosm T = [DI | c, p1, p2, p3, q3] =
U/T R, the minimal covering 4-toroid P = U/Λ can be described by the three generating
translations of Λ by the vectors t1 = (0, 0, 2c), t2 = (2(p2 − p1), 0, 0), and t3 = 2(p3 −
p1, 2q3, 0).

We note that all these toroids arise from a vertical translation lattice as defined in Section
6.2 of [13]. Furthermore, the minimal toroidal cover of all twistoids in each of the families
described in Table 2 depends only on the column and not on the row where the family is
located. From Table 2 in [13] it follows that a twistoid in a family appearing in the first
column has a minimal toroidal cover P in class 1 whenever both p3 = p1 and p2 − p1 =
q3 = c; the cover is in class 3 otherwise. If the family of [DI | c, p1, p2, p3, q3] appears in the
column labelled 2, then P is in class 6C . If the family of [DI | c, p1, p2, p3, q3] appears in the
column labelled 20,2 then P is in class 6A. If the family of [DI | c, p1, p2, p3, q3] appears in
the column labelled 21 then P is in class 6B. Finally, if the family of [DI | c, p1, p2, p3, q3]
appears in the column labelled 4 then P is in class 12A. This classification implies that
the automorphism group of P acts on its flags with 1, 3, 6, or 12 orbits.

We now turn our attention to twistoids [DI | c, p1, p2, p3, q3] in the dicosm with c ∈
√

2
2 Z.

Given such a twistoid on the dicosm T = [DI | c, p1, p2, p3, q3] = U/DI, the minimal
covering 4-toroid P = U/Λ can be described by the three generating translations of Λ by
the vectors t1 =

√
2c(1,−1, 0), t2 = 2(p2 − p1, p2 − p1, 0), and t3 = 2(p3 − p1, p3 − p1, q3).

In order to understand these minimal toroidal covers more easily we define the following
parameters (as in the notation of [13]). Let a := 2(p3 − p1), b := q3, c′ := 2(p2 − p1), and
d :=

√
2c.

Recall that there is a symmetry γ1 of the twistoid [DI | c, p1, p2, p3, q3] if and only if
either p3 = p1 or p3 = p2+p1

2 . If p3 = p1, then T is generated by the translations (a, a, 0),
(d,−d, 0), and (0, 0, b), which is in class 3 or 6B as in Table 2 of [13]. On the other hand,
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if p3 = p2+p1
2 , then T is generated by the translations (2a, 2a, 0), (d,−d, 0), and (a, a, b),

which is in class 6B as in Table 4 of [13]. If γ1 is not a symmetry, then c does not divide
2a, and thus according to Line 2 of Table 6 of [13], P is in class 12B. This classification
implies that the automorphism group of P acts on its flags with 3, 6 or 12 orbits.

We next consider toroidal covers of twistoids on the tricosm. Given such a twistoid
T = [T R | c, a, b] = U/T R, the minimal covering 4-toroid P = U/Λ can be described by
the three generating translations of Λ by the vectors t1 = c

√
3(1, 1, 1), t2 = (a, b,−a− b),

and t3 = (−b, a + b,−a). The last two vectors are determined by finding the smallest
translations that send the axis of σ1 to the axis of one of its conjugates. Note that there
is a fundamental region for the group T R, different from the one we described, which is a
prism over a rhombus, where the rhombus is determined by the two vectors t2 and t3.

There are three distinct cases for these minimal toroidal covers. First, if ab = 0, then
the toroid P is described in Line 1 of Table 5 of [13], and is in class 4. Next, if a− b = 0,
then the toroid P is described in Line 3 of Table 5 of [13], and is also in class 4. Note that
the translation group described in Line 3 is the same as the one we described, but with
different generators. Finally if pq(p − q) 6= 0 then the toroid P is described in Line 5 of
Table 5 of [13], and is in class 8.

In each case, the lattice associated with the group Λ is invariant under the 3-fold rotation
about the line generated by the vector (1, 1, 1) - that symmetry is denoted by R2R1 in [13].
Furthermore, the classification of such 4-toroids implies that the automorphism group of
P acts on its flags with 4 or 8 orbits.

Finally, given a twistoid on the tetracosm T = [T E | c, p, q] = U/T E , the minimal
covering 4-toroid P = U/Λ can be described by the three generating translations of Λ by
the vectors t1 = (0, 0, 4c), t2 = (2p, 2q, 0), and t3 = (2q,−2p, 0).

We observe that there are two distinct cases for these minimal toroidal covers; either
pq(p − q) = 0 when P is in class 3, or pq(p − q) 6= 0 when P is in class 6C . In each case,
the lattice associated with the group Λ is called a vertical translation lattice in [13], and
is invariant under the reflection in the plane z = 0. Furthermore, the classification of such
4-toroids implies that the automorphism group of P acts on its flags with 3, or 6 orbits
(see Table 2 of [13]).

Finally, we point out that the minimal toroidal cover of an oriented twistoid (on a
manifold other than the torus) never has 24 flag orbits.
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