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On the equivalence between two problems of

asymmetry on convex bodies

Christos Saroglou

Abstract

The simplex was conjectured to be the extremal convex body for the two following “prob-
lems of asymmetry”:
P1) What is the minimal possible value of the quantity maxK′ |K ′|/|K|? Here, K ′ ranges over
all symmetric convex bodies contained in K.
P2) What is the maximal possible volume of the Blaschke-body of a convex body of volume 1?
Our main result states that (P1) and (P2) admit precisely the same solutions. This com-
plements a result from [K. Böröczky, I. Bárány, E. Makai Jr. and J. Pach, Maximal volume
enclosed by plates and proof of the chessboard conjecture], stating that if the simplex solves
(P1) then the simplex solves (P2) as well.

1 Introduction

Let K be a convex body in Rn. The goal of this paper is to study some properties of the
extremal convex bodies for the following problem.

Problem 1.1. Among all convex bodies K, find the one that minimizes the quantity

m(K) = max
K ′

|K ′|
|K| ,

where K ′ ranges over all symmetric convex bodies contained in K.

Here, | · | is the volume functional in Rn. However, the determination of these extremals is a
difficult and long standing problem. Besicovitch [2] proved that triangles the extremal bodies in the
plane (see also [7]). The problem remains open in higher dimensions. However, an asymptotically
sharp estimate due to Stein [30] is valid: m(K) > 2−n. Improvements of this result (with the same
quantitative estimate) were established in [7] and [23].

A remarkable result concerning this problem is due to Fáry and Rédei [9]. They proved that
there exists a unique symmetric convex body K ′ ⊆ K of maximal volume, called “the symmetric
kernel of K”. The center of K ′ is often called “the pseudo-center of K” (see e.g. [24]). We will
denote this by Ps(K).

Define the quantity

q(K) := max
x∈Rn

|(K + x) ∩−K| = max
x∈Rn

|(K + x) ∩−(K + x)| .
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Then,

m(K) =
q(K)

|K| .

Note that by the uniqueness result of Fáry and Rédei (mentioned previously), there exists a unique
point x0 ∈ Rn, such that |(K + x0) ∩ −K| = maxx∈Rn |(K + x) ∩ −K|. Since (K + x0) ∩ −K =
[(K+x0/2)∩−(K+x0/2)]+x0/2, it follows that x0/2 = Ps(−K). Set Q(K) = 2Ps(−K). Clearly,
the mapping K 7→ Q(K) is well defined and it is continuous with respect to the Hausdorff metric.
For the symmetric kernel K ′ of K we have

K ′ = (K +Q(K)) ∩ −K . (1)

As noted by Besicovitch [2], m(K) measures the asymmetry of K. We refer to the survey
of Grünbaum [13] for an extensive discussion on the topic of measures of asymmetry (for recent
developments, see e.g. [21] [22] [11] [12] [18]). Let us consider another measure of asymmetry. The
Blaschke-body ∇K of K is the unique origin-symmetric convex body whose surface area measure
is given by:

S∇K(·) = 1

2
[SK(·) + S−K(·)] ,

where SK is the surface area measure of K as defined on Sn−1 (see the next section). The existence
and uniqueness of ∇K are ensured by the Minkowski Existence Theorem, stating that any measure
on Sn−1, whose centroid is 0 and the affine hull of its support is full dimensional, is the surface
area measure of a unique (up to translation) convex body. It is true (see [19]) that |∇K| ≥ |K|,
with equality if and only if K is symmetric. Thus, the quantity |∇K|/|K| is indeed a measure of
asymmetry. The following problem arises naturally.

Problem 1.2. Among all convex bodies K, find the one that maximizes the quantity |∇K|/|K|.

The study of the Blaschke body of K (see [10]) is related to Nakajima’s problem [25], asking
whether a convex body of constant width and constant brightness has to be a ball. See [15], [16],
[17] for newer results on this problem.

Introduce the quantities

mn := inf{m(K) : K is a convex body in Rn} ,

Mn := sup{|∇K|/|K| : K is a convex body in Rn} .

Clearly, the functionals m(K) and |∇K|/|K| are affine invariant (see e.g. [29] for the second). Since
they are also continuous with respect to the Hausdorff distance, the existence of convex bodies for
which the quantities mn and Mn are attained (i.e. the existence of solutions to Problems 1.1 and
1.2) follows easily by the Blaschke selection theorem. It has repeatedly been conjectured (see e.g.
[8] [9] [5]) that Problems 1.1 and 1.2 admit only one solution: the simplex. Problem 1.2 is open as
well; in two dimensions it is confirmed [5] that the simplex is the only solution. In addition, in [5],
the following was established: If the simplex is a solution for Problem 1.1, then it solves Problem

1.2 as well. Moreover, Mn ≤ m
−1

n−1
n . We are now ready to state our main results.

Theorem 1.3. Let K be a convex body in Rn. K is a solution for Problem 1.1 if and only if K is
a solution for Problem 1.2.
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Theorem 1.4. If K is a solution for Problem 1.1 or for Problem 1.2 and |K ∩−K| = q(K), then

K ∩ −K = m
1

n−1
n ∇K . (2)

Corollary 1.5. Mn = m
−1

n−1
n .

Proof. Take K of volume 1 to be a solution of Problem 1.1, such that |K ∩−K| = q(K). Then, by
Theorem 1.3, |∇K| = Mn and the assertion follows immediately by taking volumes in (2).

Corollary 1.6. [2] (The planar case) The triangle is the only solution for Problem 1.1.

Proof. Let K be a two-dimensional convex body. It is well known that in R2, ∇K = 1
2(K − K),

so by the Rogers-Shephard inequality [26], |∇K|
|K| is maximal if and only if K is a simplex. This was

remarked in [5]. Thus, the triangle is the only solution for Problem 1.2 in two dimensions and (by
Theorem 1.3) it is the only solution for Problem 1.1 as well.

2 Background

We will need some basic results about convex bodies. We refer to [29] for an extensive discussion,
proofs and references concerning the facts that will be mentioned in this section.

Let K be a convex body in Rn. The support function of K at x ∈ Rn is defined as

hK(x) = max
y∈K

〈x, y〉 ,

where 〈·, ·〉 is the (usual) inner product in Rn. Note that if K contains 0 in its interior, F is a facet
of K and u is the outer unit normal vector of F , then hK(u) is exactly the distance of F from the
origin. It should be remarked that any convex and positively homogeneous function h : Rn → R is
a support function of a unique convex body.

Let Ω be a Borel subset of the unit sphere Sn−1. The inverse spherical image of K at Ω is the
set:

τ(K,Ω) =
{
x ∈ bdK : ∃u ∈ Ω, such that 〈x, u〉 = hK(u)

}
.

The surface area measure of K (viewed as a measure on Sn−1) is defined as

SK(Ω) = Hn−1
(
τ(K,Ω)

)
, Ω Borel subset of Sn−1 .

Here, Hn−1(·) stands for the (n− 1)-dimensional Hausdorff measure.
A fact that will be used subsequently is that whenever a sequence of convex bodies converges,

in the sense of the Hausdorff distance, to a convex body K, then the corresponding sequence of the
surface area measures converges weakly to the surface area measure of K.

If K is a polytope, the support of SK is exactly the set of the outer unit normal vectors of the
facets of K. Using this fact, one can easily see that

|K| = 1

n

∫

Sn−1

hK(x)dSK(x) . (3)
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Let L be another convex body. The mixed volume V (K,L, . . . , L) of K and L is defined as
the derivative of the quantity |tK + L|, as t → 0+. Here A + B = {x + y : x ∈ A, y ∈ B} is the
Minkowski sum of the sets A, B. It can be proven that

V1(L,K) = V (L, . . . , L,K) =
1

n

∫

Sn−1

hK(x)dSL(x) . (4)

Let us state two fundamental facts about mixed volumes: The first is monotonicity; it is true that
if K ⊆ K ′, then V1(L,K) ≤ V1(L,K

′). The second is the Minkowski inequality

V1(L,K) ≥ |K| 1n |L|n−1

n . (5)

Equality here holds if and only if K and L are homothetic.
The projection body ΠK of K is defined as the convex body whose support function along the

direction u ∈ Sn−1 equals the (n− 1)-dimensional volume of the orthogonal projection of K in the
same direction. It is true that

hΠK(u) =
1

2

∫

Sn−1

|〈x, u〉|dSK(x) .

This, together with Theorem 1.4, shows immediately the following:

Corollary 2.1. If |K ∩−K| = q(K) = mn|K|, then the projection bodies of K ∩−K and ∇K are
homothetic.

It is natural to ask the following:

Problem 2.2. For which (non-symmetric) convex bodies K, such that Q(K) = 0, the projection
bodies of K and of K ∩ −K are homothetic?

It is true that the simplex is such a convex body, however it is certainly not the only one as the
examples of the regular polygons show.

3 Proofs

This section is devoted to the proof of Theorems 1.3 and 1.4. The two theorems will be proven
simultaneously. In what follows, every convergence of convex sets will be in the sense of the
Hausdorff distance.

Let F : Sn−1 → (0,∞) be a continuous function. The Wulff-shape W (F ) associated with the
function F is the convex set defined by:

W (F ) =
⋂

u∈Sn−1

G−
(
u, F (u)

)
,

where G−
(
u, k

)
:= {x ∈ Rn : 〈x, u〉 ≤ k}, u ∈ Sn−1, k ∈ R. Set, also, G+(u, k) to be the

complementary closed half-space of G−(u, k), i.e. G+(u, k) = {x ∈ Rn : 〈x, u〉 ≥ k}.
It follows by the definition that W (F ) is the maximal, with respect to inclusion, convex body,

with support function less or equal than F . It was shown by Aleksandrov that

|W (F )| = 1

n

∫

Sn−1

F (u)dSW (F )(u) .

We will make use of the following lemma due to Aleksandrov [1] (see also [14], [6] for further
applications and a generalization and [29] for additional references).
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Lemma 3.1. [1] Let F,G : Sn−1 → R+ be continuous functions, where G is strictly positive. If
W (F ) is a convex body (i.e. it is bounded), then W (F + tG) → W (F ), as t → 0+ and

lim
t→0+

|W (F + tG)| − |W (F )|
t

=

∫

Sn−1

G(u)dSW (F )(u) .

Let f : Sn−1 → R+ be a continuous function. We will work with the following continuous
deformation of K.

Kt(f) := W (hK + tf) , t ≥ 0.

It is clear that Kt(f) contains K, for t > 0 and that K0(f) = K. Also, by Lemma 3.1, Kt(f) → K,
as t → 0+. Following the idea of the proof of Lemma 3.1, we will show:

Lemma 3.2. Let K be a convex body with |K ∩ −K| = q(K) and f : Sn−1 → R+ be a continuous
even function. Then,

lim
t→0+

|Kt(f)| − |K|
t

=

∫

Sn−1

f(u)dSK(u)

and

lim sup
t→0+

∣∣−Kt(f) ∩
(
Kt(f) +Q(Kt(f))

)
\
(
−K ∩ (K +Q(Kt(f)))

)∣∣
t

≤
∫

Sn−1

f(u)dSK∩−K(u) .

Proof. The first assertion is an immediate consequence of Lemma 3.1. To prove the second assertion,
define the sets:

Mt := −Kt(f) ∩
(
Kt(f) +Q(Kt(f))

)
and Rt := −K ∩

(
K +Q(Kt(f))

)
.

Since Rt ⊆ Mt, we need to show that lim supt→0+(|Mt| − |Rt|)/t ≤
∫
Sn−1 f(u)dSK∩−K(u). Note

that R0 = M0 = K ∩ −K and that Mt, Rt → K ∩ −K, with respect to the Hausdorff metric, as
t → 0+. For u ∈ Sn−1, t ≥ 0, and since f is even, we have:

hMt
(u) ≤ min

{
h−Kt(f)(u), hKt(f)+Q(Kt(f))(u)

}

≤ min
{
hK(−u) + tf(−u), hK(u) + 〈Q(Kt(f)), u〉+ tf(u)

}

= min
{
h−K(u), hK+Q(Kt(f))(u)

}
+ tf(u) =: Ft(u) + tf(u) . (6)

Since, clearly, Rt is the maximal convex body whose support function is dominated by Ft, we have

|Rt| =
1

n

∫

Sn−1

Ft(u)dSRt
(u) , t ≥ 0 .

Using (6), (4) and the previous equation, we immediately obtain:

V1(Rt,Mt) ≤
1

n

∫

Sn−1

(Ft + tf)dSRt
= |Rt|+ t

1

n

∫

Sn−1

fdSRt
,

thus

lim sup
t→0+

V1(Rt,Mt)− |Rt|
t

≤ lim sup
t→0+

1

n

∫

Sn−1

fdSRt
=

1

n

∫

Sn−1

fdSK∩−K . (7)
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On the other hand, by the Minkowski inequality (5), we get:

lim sup
t→0+

V1(Rt,Mt)− |Rt|
t

≥ lim sup
t→0+

|Rt|(n−1)/n|Mt|1/n − |Rt|(n−1)/n|Rt|1/n
t

= |K ∩ −K|(n−1)/n lim sup
t→0+

|Mt|1/n − |Rt|1/n
t

. (8)

Set f(t) = |Mt|1/n and g(t) = |Rt|1/n. Then,

lim sup
t→0+

fn(t)− gn(t)

t
= lim sup

t→0+

f(t)− g(t)

t

(
fn−1(t) + fn−2(t)g(t) + · · ·+ gn−1(t)

)

= n|K ∩ −K|(n−1)/n lim sup
t→0+

f(t)− g(t)

t
.

This, together with (7) and (8) prove our claim.

Lemma 3.3. Let K be a convex body with |K ∩ −K| = q(K) = mn|K|. Set A = {v ∈ Sn−1 :
hK(v) > hK∩−K(v)}. Then, SK(A) = 0.

Proof. Let Ω be a Borel subset of Sn−1. We will need the following notation:

K̃(Ω) :=
⋂

u∈Sn−1\Ω

G−
(
u, hK(u)

)
.

Claim: Let ε > 0, K be a convex body that contains 0 in its interior and Ω ⊆ Sn−1 be a Borel
set, with SK(Ω) > 0. Then, there exist a closed Ω′ ⊆ Ω, u ∈ Ω′, such that SK(Ω′) > 0 and

K̃(Ω′) \K ⊆ G+
(
u, hK(u)− ε

)
.

Proof of Claim. First choose a closed subset Ω1 of Ω, with SK(Ω1) > 0. Note that there exists
u ∈ Ω1 and a sequence {Om} of open subsets of Sn−1, such that Cm := cl

(
Om ∩ Ω1

)
ց {u} and

SK(Cm) > 0. If not, for every point v in Ω1, there would exist an open-in Ω1-set of SK-measure 0,
containing v. By compactness, Ω1 would be covered by a finite collection of sets of SK-measure 0,
thus SK(Ω1) would be equal to 0, a contradiction. It is true that {τ(K,Cm)} (τ(K, ·) was defined
in Section 2) is a family of compact sets, whose intersection equals the intersection of K with
its supporting hyperplane, whose outer unit normal vector is u. Thus, for some large m0 ∈ N,
τ(K,Cm0

) ⊆ G+
(
u, hK(u) − ε

)
. Set Ω′ := Cm0

. Let x ∈ bdK ∩ intG−
(
u, hK(u) − ε

)
. Then, K

cannot be supported at x by any halfspace of the form G−
(
v, hK(v)

)
, v ∈ Ω′, because otherwise x

would be contained in τ(K,Ω′). Consequently, there exists X ⊆ Sn−1 \ Ω′, such that

intG−
(
u, hK(u)− ε

)
∩K = intG−

(
u, hK(u)− ε

)
∩

⋂

v∈X

G−
(
v, hK(v)

)
,

which shows that if a point y is contained in G−
(
u, hK(u) − ε

)
\ K, then y is contained in the

interior of G+
(
v, hK(v)

)
, for some v ∈ Sn−1 \Ω′. This proves that y /∈ K̃(Ω′), hence the pair (u,Ω′)

satisfies the assertion of our Claim.
We are, now, ready to prove Lemma 3.3. If our assertion is wrong, there clearly exists a

0 < δ < minv∈Sn−1 hK(v), such that SK(Aδ) > 0, where Aδ := {v ∈ Sn−1 : hK(v)−δ > hK∩−K(v)}.
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Then, by the previous Claim, we can find a closed set Ω ⊆ Aδ , such that SK(Ω) > 0 and K̃(Ω)\K ⊆
G+(u, hK(u)−δ/2), for some u ∈ Ω. By the definition of Aδ, we have K∩−K ⊆ G−

(
u, hK(u)−δ

)
,

so −K ⊆ G−
(
u, hK(u) − δ

)
. Thus, if f : Sn−1 → R+ is a continuous function with supp(f) ⊆ Ω

and
∫
Ω fdSK > 0, then Kt(f) \ K ⊆ K̃(Ω) \ K ⊆ G+(u, hK(u) − δ/2) and by the continuity of

Q(Kt(f)), with respect to the Hausdorff distance, there exists t0 > 0, such that
(
(Kt0(f) \K) +Q(Kt0(f))

)
∩ −

(
Kt0(f) \K

)
= ∅

and
(
Kt0(f) \K

)
∩ −

(
Kt0(f) +Q(Kt0(f))

)
=

(
(Kt0(f) \K) +Q(Kt(f))

)
∩ −Kt0(f) = ∅ .

Therefore, we get
∣∣(Kt0(f) +Q(Kt0(f))

)
∩−Kt0(f)

∣∣ =
∣∣(K +Q(Kt0(f))

)
∩−K

∣∣ ≤ mn|K| < mn|Kt0(f)| .

This is a contradiction and our assertion is proved.

Lemma 3.4. Let K be a convex body. If |K ∩ −K| = q(K) = mn|K|, then SK∩−K = mnS∇K .

Proof. Assume that the assertion is not true. We distinguish two cases.
Case I : SK∩−K � mnS∇K.

Then, there exists an even continuous function f : Sn−1 → R+, withmn

∫
Sn−1 fdS∇K >

∫
Sn−1 fdSK∩−K.

Then, by Lemma 3.2, we obtain:

lim sup
t→0+

∣∣−Kt(f) ∩
(
Kt(f) +Q(Kt(f))

)
\
(
−K ∩ (K +Q(Kt(F )))

)∣∣
|Kt(f)| − |K|

≤
∫
Sn−1 fdSK∩−K∫

Sn−1 fdSK
=

∫
Sn−1 fdSK∩−K∫
Sn−1 fdS∇K

< mn .

Set Bt := −Kt(f) ∩
(
Kt(f) + Q(Kt(f))

)
\
(
−K ∩ (K + Q(Kt(F )))

)
. It follows that there exists

t > 0, such that |Bt| < mn|Kt(f) \K|. Thus,
∣∣−Kt(f) ∩

(
Kt(f) +Q(Kt(f))

)∣∣ =
∣∣(−K ∩ (K +Q(Kt(F )))

∣∣ + |Bt|
≤ mn|K|+ |Bt| < mn|K|+mn|Kt(f) \K| = mn|Kt(f)| .

This is a contradiction, so Case I cannot occur.
Case II : SK∩−K ≥ mnS∇K and there exists Ω1 ⊆ Sn−1, such that SK∩−K(Ω1) > mnS∇K(Ω1).

It follows by the assumption of Case II, Lemma 3.3 and (3), that

|K ∩ −K| =
1

n

∫

Sn−1

hK∩−KdSK∩−K

>
mn

n

∫

Sn−1

hK∩−KdS∇K

=
mn

n

(
1

2

∫

Sn−1

hK∩−KdSK +
1

2

∫

Sn−1

hK∩−KdS−K

)

=
mn

n

(
1

2

∫

Sn−1

hKdSK +
1

2

∫

Sn−1

h−KdS−K

)
= mn|K| .

This contradicts our assumption and our lemma is proved.
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The following lemma will make use of the Minkowski inequality in the same way as in [5,
Theorem 5′].

Lemma 3.5. Let K be a convex body in Rn, with q(K) = |K ∩ −K|. Then,

|K ∩ −K|1/n|∇K|(n−1)/n ≤ |K| . (9)

In particular, Mn ≤ m
−1/(n−1)
n .

Proof. The Minkowski inequality (5) (together with (4) and the definition of the Blaschke-body)
imply

|K ∩ −K|1/n|∇K|(n−1)/n ≤ V1(∇K,K ∩−K) =
1

2
V1(K,K ∩−K) +

1

2
V1(−K,K ∩ −K) ≤ |K| .

Proof of Theorems 1.3 and 1.4:
Let K be a convex body with |K ∩ −K| = q(K). First assume that K solves Problem 1.1. Then,
by Lemma 3.4,

SK∩−K = mnS∇K = S
mn

1
n−1 ∇K

and by the uniqueness of the solution in the Minkowski problem for even measures (see e.g. [29]),

it follows that (2) holds. Taking volumes in (2), we obtain: mn|K| = m
n/(n−1)
n |∇K| and thus

m
−1/(n−1)
n ≤ |∇K|/|K| ≤ Mn. Since we already know the reverse inequality (by Lemma 3.5), it

follows that m
−1/(n−1)
n = Mn. Therefore, |∇K|/|K| = Mn, so K is a solution to Problem 1.2. It

remains to show that if K solves Problem 1.2, then K solves Problem 1.1 as well. In this case, (2)
will hold by our previous discussion. By Lemma 3.5, we get:

Mn = |∇K|/|K| ≤ (|K|/|K ∩ −K|)1/(n−1) ≤ m−1/(n−1)
n = Mn .

This proves our last assertion.

Remark 3.6. (i) Using similar variational arguments as in Lemma 3.4, one can prove the fol-
lowing: Suppose that K ∩ −K = q(K) and K is an extremal body for Problem 1.1 or equivalently
Problem 1.2. Then, K ∩ −K contains no extreme points of K in its interior. This shows for
example that the extremal bodies cannot have smooth boundary.
(ii) Our method shows that Problems 1.1 and 1.2 remain equivalent even restricted in certain closed
subclasses of the class of all convex bodies. Such examples are the class of all polytopes with at most
N facets, N ∈ N or the class of all convex bodies whose surface area measures are supported in a
prescribed subset of Sn−1.

4 The projection body of the Blaschke-body of the

simplex

Schneider (1982) [28] asked for the maximizers of the affine invariant

P (K) :=
|Π(K)|
|K|n−1

.
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His original conjecture stated that the maximum among centrally symmetric convex bodies is
attained if K is the n-dimensional cube Cn; in this case, P (Cn) = 2n. Counterexamples were
discovered by Brannen [3], [4]. He conjectured that the simplex is the only maximizer in the
general case and the centrally symmetric convex body of maximal volume contained in the simplex
in the centrally symmetric case (see also [27] for the proof of some other conjectures of Brannen
concerning Schneider’s problem). The latter is (as observed in [5]) homothetic to the Blaschke-body
of the simplex, ∇∆n. Below, we mention some observations about the role of the Blaschke-body
of the simplex (which is, in some sense, conjectured to be the extremal body for Problems 1.1 and
1.2) in the study of Schneider’s problem.

Fact 4.1. Suppose that ∇∆n is the only maximizer of P (·) in the symmetric case and that the
simplex is the only solution for Problem 1.2. Then ∆n is the only maximizer of P (·) in the general
case.

Proof. It is true that

P (K) =
|Π∇K|
|K|n−1

=
|Π∇K|
|∇K|n−1

· |∇K|n−1

|K|n−1

≤ |Π∇∆n|
|∇∆n|n−1

· |∇∆n|n−1

|∆n|n−1

= P (∆n) ,

with equality if and only if K is a simplex.

Let us discuss another question concerning Schneider’s problem. As mentioned earlier, there
exists a convex body K with P (K) > P (Cn). It is natural to ask however if Schneider’s conjecture
is in some sense “almost” correct. It is well known that

P (K) < An ,

for all convex bodies K, where A > 0 is some absolute constant. What appears to be unknown is
the following

Problem 4.2. Is it true that the ratio

(
maxK P (K)

P (Cn)

) 1

n

tends to 1, as n tends to infinity? Here K runs over all symmetric convex bodies.

Fact 4.3. Let ∆n be an n-dimensional simplex. Then,

P (∇∆n)

c
√
nP (Cn)

→ 1 , as n → ∞ , (10)

where c > 0 is some absolute constant. Thus, if the conjecture of Brannen in the symmetric case
of Schneider’s problem is correct, then the previous question has a strong affirmative answer.
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To see that (10) is correct, use the asymptotic formula (proven in [5] [9])

|∇∆n|
|∆n|

∼
√

3

2
e
(e
2

)n
, (11)

and also note that it is not too difficult to compute that

P (∆n) =
nn(n+ 1)

n!
.

Remark 4.4. As (10) shows, for large dimensions, P (∇∆n) > 2n = P (Cn) (thus, the Blaschke-
body of the simplex indeed provides a counterexample to the original conjecture of Schneider). To
prove that the same is true in any dimension, one can argue similarly as in [27, Lemma 3.3] to
show that P (ΠK) = 2n, for any symmetric convex body K with at most 2(n + 1)-facets. Then,
one can use Schneider’s trick (see again [29]) that P (K) ≥ P (ΠK), with equality if and only if the
bodies K and ΠΠK are homothetic. Since ∇∆n has 2(n + 1)-facets and it is well known that it is
not the projection body of any convex body, our claim follows.

Finally, take the polar body Π∗K of ΠK (i.e. the unit ball of the dual of the normed space that
has ΠK as its unit ball) and the affine invariant R(K) := |Π∗K||K|n−1. It has been conjectured
that Cn minimizes R(K) among all centrally symmetric convex bodies (see e.g. [20]). The non-
symmetric version of the previous conjectured inequality is indeed true [31] (see also [29] for related
results). One may consider the following analogue of Problem 4.2.

Problem 4.5. Is it true that the ratio

(
minK R(K)

P (Cn)

) 1

n

tends to 1, as n tends to infinity? Again, K runs over all symmetric convex bodies.

One might think of the Blaschke body of the simplex as a natural candidate for minimizing R(K)
in the class of symmetric convex bodies. However, this is not true, at least for large dimensions.
Nevertheless, the values R(∇K) and R(Cn) are still asymptotically close. Indeed, using (11) and
the exact value of R(∆n) (see again [29]), one easily obtains:

Fact 4.6. There exists a constant C > 1, such that

R(∆n)

R(Cn)
→ C , as n → ∞ .

Acknowledgement. I would like to thank the referee(s) for many helpful suggestions and im-
provements, especially for discovering a serious logical gap in a previous version of this manuscript,
in particular in the following statement: Every solution for Problem 1.1 is a limit of solutions for
Problem 1.1, restricted in the class of polytopes with at most N facets, as N → ∞.
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