# A variant of the Hadwiger–Debrunner (p, q)-problem in the plane

Sathish Govindarajan\*

Gabriel Nivasch<sup>†</sup>

#### Abstract

Let X be a convex curve in the plane (say, the unit circle), and let S be a family of planar convex bodies, such that every two of them meet at a point of X. Then S has a transversal  $N \subset \mathbb{R}^2$  of size at most  $1.75 \cdot 10^9$ .

Suppose instead that S only satisfies the following "(p, 2)-condition": Among every p elements of S there are two that meet at a common point of X. Then S has a transversal of size  $O(p^8)$ . For comparison, the best known bound for the Hadwiger–Debrunner (p, q)-problem in the plane, with q = 3, is  $O(p^6)$ .

Our result generalizes appropriately for  $\mathbb{R}^d$  if  $X \subset \mathbb{R}^d$  is, for example, the moment curve.

## 1 Introduction

Let S be a family<sup>1</sup> of convex bodies in  $\mathbb{R}^d$ . We say that S satisfies the (p,q)-condition, for positive integers  $p \ge q$ , if among every p elements of S there are q that meet at a common point. Hadwiger and Debrunner [12], in their celebrated problem, asked whether a family Sthat satisfies the (p,q)-condition, for  $p \ge q \ge d+1$ , has a transversal of size bounded by a constant  $HD_d(p,q)$  that depends only on d, p, and q. (A transversal for S is a set  $N \subset \mathbb{R}^d$ that intersects every element of S.)

This problem is a generalization of Helly's theorem [13]: Helly's theorem states that, if every d+1 elements of S intersect, then they all intersect; or, in other words,  $HD_d(d+1, d+1) = 1$ .

It is clear that q cannot be smaller than d + 1, since a family of n hyperplanes in general position provides a counterexample: Every d hyperplanes intersect, and yet a transversal must contain at least n/d points.

Hadwiger and Debrunner [12] showed that, for q > 1 + (d-1)p/d, one has  $HD_d(p,q) = p - q + 1$ .

Alon and Kleitman [4] settled the general question in the affirmative, by tackling the hardest case q = d + 1. Their proof uses an impressive array of tools from discrete geometry, including the fractional Helly theorem, linear-programming duality, and weak epsilon-nets. (Alon and Kleitman later published a more elementary proof in [5].)

<sup>\*</sup>gsat@csa.iisc.ernet.in. Indian Institute of Science, Bangalore, India.

<sup>&</sup>lt;sup>†</sup>gabrieln@ariel.ac.il. Ariel University, Ariel, Israel.

<sup>&</sup>lt;sup>1</sup>Throughout this paper we allow S to be a multi-set; meaning, the elements of S need not be pairwise distinct.

**Fractional Helly.** The fractional Helly theorem [14, 15] (see also [17, pp. 195]) states that, if S is a family of n convex bodies in  $\mathbb{R}^d$  such that at least an  $\alpha$ -fraction of the  $\binom{n}{d+1}$  (d+1)-tuples intersect, then there exists a point  $z \in \mathbb{R}^d$  contained in at least  $\beta n$  bodies, for some  $\beta > 0$  that depends only on d and  $\alpha$ . The bound  $\beta \ge \alpha/(d+1)$  is asymptotically optimal for small  $\alpha$ .

Weak epsilon nets. Given a finite point set  $P \subset \mathbb{R}^d$  and a parameter  $0 < \varepsilon < 1$ , a weak  $\varepsilon$ -net for P (with respect to convex sets) is a set  $N \subset \mathbb{R}^d$  that intersects every convex set that contains at least an  $\varepsilon$ -fraction of the points of P. Alon et al. [2] showed that P always has a weak  $\varepsilon$ -net of size bounded only by d and  $\varepsilon$ . The best known bounds for the size of weak  $\varepsilon$ -nets are  $f_2(\varepsilon) = O(\varepsilon^{-2})$  in the plane [2, 7], and  $f_d(\varepsilon) = O(\varepsilon^{-d} \operatorname{polylog}(1/\varepsilon))$  for dimension  $d \geq 3$  [7, 19].

For point sets P that satisfy additional constraints, better bounds are known. For example, if  $P \subset X$  for some convex curve  $X \subset \mathbb{R}^2$ , then P has a weak  $\varepsilon$ -net of size  $O((1/\varepsilon)\alpha(1/\varepsilon))$ , where  $\alpha(n)$  denotes the very slow-growing inverse-Ackermann function (Alon et al. [3]).

Regarding lower bounds, Bukh et al. [6] constructed, for every d and  $\varepsilon$ , a point set  $P \subset \mathbb{R}^d$  for which every weak  $\varepsilon$ -net has size  $\Omega((1/\varepsilon) \log^{d-1}(1/\varepsilon))$ .

Back to the Hadwiger–Debrunner problem. The argument of Alon and Kleitman [4] yields  $HD_d(p, d+1) \leq f_d(c_d p^{-(d+1)})$ , where  $f_d$  is the upper bound for weak epsilon-nets, and  $c_d > 0$  is some constant. Thus, for the planar case we obtain  $HD_2(p, 3) = O(p^6)$ .

The lower bound  $\operatorname{HD}_d(p, d+1) = \Omega(p \log^{d-1} p)$  follows from the lower bound for weak epsilon-nets: Let  $P \subset \mathbb{R}^d$  be a point set realizing the lower bound for weak  $\varepsilon$ -nets. Let S be the set of all convex hulls of at least an  $\varepsilon$ -fraction of the points of P. Then S satisfies the (p, d+1)-condition for  $p = 1 + d/\varepsilon$ ; and every transversal for S is a weak  $\varepsilon$ -net for P.

**Related work.** Many variants of the (p, q)-problem have been studied; see for example the survey [10].

Regarding the case q = 2, Danzer [8] (answering a question of Gallai) showed that any family of pairwise intersecting disks in the plane (i.e., satisfying the (2,2)-condition) has a transversal of size 4, and that this bound is optimal. More generally, Grünbaum [11] showed that any family of pairwise intersecting homothets of a fixed convex body in  $\mathbb{R}^d$  has a transversal bounded in terms only of d.

Kim et al. [16], together with Dumitrescu and Jiang [9], showed that for homothets of a convex body in  $\mathbb{R}^d$  having the (p, 2)-property, the transversal number is at most  $c_d p$  for some constants  $c_d$ .

#### 1.1 Our variant of the problem

We asked ourselves the following question: Can we obtain smaller transversals for S if we impose an additional constraint in S, analogous to the convex-curve constraint for weak epsilonnets?

In this spirit, we raised the following problem: Let X be a convex curve in the plane (say, X could be the unit circle  $\{(x, y) | x^2 + y^2 = 1\}$ ). Let S be a family of planar convex bodies as before. We now strengthen the (p, q)-condition by requiring that, among every p elements

of S, at least q meet at a point of X. What can we say then about the minimum size of a transversal for S?

**Problem 1.** Let X be a convex curve in the plane, and let S be a family of planar convex bodies, such that among every p elements of S, three of them meet at a point of X. Then we know that S has a transversal of size  $HD_2(p,3) = O(p^6)$ . Does S have a smaller transversal?

Since the conterexample that required  $q \ge 3$  does not hold in this new setting, we can ask what happens when q = 2.

**Problem 2.** Now suppose that among every p elements of S, two of them meet at a point of X. Does S then have a transversal of size depending only on p?

We do not know the answer to the first question, but we answer the second question in the affirmative:

**Theorem 1.** Let X be a convex curve in the plane, and let S be a family of planar convex bodies. Then:

- (a) If every pair of elements of S meet at a point of X, then there exists a point  $z \in \mathbb{R}^2$  that intersects at least a 1/15800-fraction of the elements of S, and S has a transversal of size at most  $1.75 \cdot 10^9$ .
- (b) If among every p elements of S, two of them meet at a point of X, then there exists a point  $z \in \mathbb{R}^2$  that intersects a  $\Omega(p^{-4})$ -fraction of the elements of S, and S has a transveral of size  $O(p^8)$ .

A generalization of Theorem 1 for  $\mathbb{R}^d$  is discussed in Section 3.

## 2 The proof

The first step (for case (b) only) is to apply Turán's theorem [20] (see also [1]):

**Lemma 2.** Let X be a convex curve in the plane, and let S be a family of n planar convex bodies, such that among every p elements of S, two of them meet at a point of X. Then, the number of pairs of elements of S that meet at a point of X is at least  $n^2/(2p)$ .

*Proof.* Let G be a graph containing a vertex for every element of S, and containing an edge for every pair of elements that *do not* meet at any point of X. Then our assumption on S is equivalent to saying that G contains no clique of size p. Therefore, by Turán's theorem, G contains at most  $\left(1-\frac{1}{p-1}\right)\frac{n^2}{2}$  edges, so it is missing more than  $n^2/(2p)$  edges.

The second, and main, step is to prove a fractional-Helly-type lemma:

**Lemma 3.** Let X be a convex curve in the plane, and let S be a family of n planar convex bodies. Then:

(a) If every pair of elements in S meet at a point of X, then there exists a point  $z \in \mathbb{R}^2$  that is contained in at least n/15800 elements of S.

(b) If a  $\gamma$ -fraction of the  $\binom{n}{2}$  pairs of elements of S meet at a point of X, for some  $0 < \gamma < 1$ , then there exists a point  $z \in \mathbb{R}^2$  that is contained in at least  $\Omega(\gamma^4 n)$  elements of S.

*Proof.* Let  $S_1, S_2, \ldots, S_n$  be the objects in S. We think of each set  $S_i$  as "colored" with color i. For each pair  $S_i, S_j$  that meet at a point of X, select a point  $p_{ij} \in X \cap S_i \cap S_j$ . In case (a) we have  $N = \binom{n}{2}$  points  $p_{ij}$ , while in case (b) we have  $N = \gamma \binom{n}{2}$  points. Note that these points are not necessarily pairwise distinct (in fact they could all be the same point); however, that would only make our problem easier.

Sort the points  $p_{ij}$  in weakly circular order around X, and rename the sorted points  $Q = (q_0, q_1, \ldots, q_{N-1})$ . We treat Q as a circular list, so after  $q_{N-1}$  comes  $q_0$ . Each  $q_a$  is colored with two distinct colors among  $1, \ldots, n$  (corresponding to the two objects in S that defined  $q_a$ ), and each pair of colors occurs at most once (or exactly once in case (a)).

Let  $Y = (y_0, \ldots, y_{N-1}) \subset X$  be a circular list of "separator" points, such that  $y_i$  lies (weakly) between  $q_{i-1}$  and  $q_i$  for every *i*.

Note that each quadruple of separator points  $y = (y_a, y_b, y_c, y_d)$  (listed in circular order) defines a partition of Q into four intervals:  $[q_a, q_{b-1}]$ ,  $[q_b, q_{c-1}]$ ,  $[q_c, q_{d-1}]$ ,  $[q_d, q_{a-1}]$ . The quadruple y is said to "pierce" color i if each of these four intervals contains a point colored with color i.

We make use of the following observation, which was previously used in [3] and [7].

**Observation 4.** Let  $y = (y_a, y_b, y_d, y_d)$  be a quadruple of separator points, and let  $z \in \mathbb{R}^2$  be the point of intersection of segments  $y_a y_c$  and  $y_b y_d$ . Then, if y pierces color i, then  $z \in S_i$  (see Figure 1 (left)).

Our strategy is to show that a randomly-chosen quadruple of separators pierces, in expectation, a constant fraction of the colors.

Define the distance between two points  $q_a, q_b \in Q$  as min  $\{(b-a) \mod N, (a-b) \mod N\}$ .

We now choose a parameter  $\alpha < 1$  independent of n: For case (a) we set  $\alpha = 0.027$ , while for case (b) we set  $\alpha = \gamma/300$ . We call a color *i* spread out if there exist four points  $q_a, q_b, q_c, q_d \in Q$ , colored with color *i*, such that all the pairwise distances between these four points are at least  $\alpha N$ .

**Observation 5.** A randomly-chosen quadruple  $y = (y_a, y_b, y_c, y_d)$  has probability at least  $24\alpha^3(1-3\alpha)$  of piercing a given spread-out color.

*Proof.* Suppose color *i* is spread out. Consider four points  $q_a, q_b, q_c, q_d \in Q$  in cyclic order, that prove that *i* is spread out. Let the distances between them in cyclic order be  $\beta_1 N, \beta_2 N, \beta_3 N, \beta_4 N$ ; so  $\beta_1 + \cdots + \beta_4 = 1$ . Then *y* pierces color *i* with probability at least  $24\beta_1\beta_2\beta_3\beta_4$ . Subject to the constraints  $\beta_i \geq \alpha$  for  $1 \leq i \leq 4$ , this quantity is minimized when  $\beta_1 = \beta_2 = \beta_3 = \alpha$  and  $\beta_4 = 1 - 3\alpha$ .

We now proceed to derive a lower bound on the number of spread-out colors. First, we characterize when a color is spread out:

**Observation 6.** For each color *i*, exactly one of the following two options holds:

- 1. Color i is spread out.
- 2. All the instances of color i occur in at most three intervals of Q, each of length at most  $\alpha N$ .



Figure 1: Left: If the quadruple of separators pierces color i, then  $z \in S_i$ . Center: If color i is not spread out, then it is contained in three small intervals. Right: A family that requires a transversal of size 3.

*Proof.* If the second condition is true then clearly color i is not spread out, because we can at most choose  $q_a$ ,  $q_b$ , and  $q_c$  from three different intervals, and then we have no way of choosing  $q_d$ .

For the other direction, suppose color i is not spread out. Let I be the longest interval in Q that is completely free of color i. We must certainly have  $|I| > \alpha N$ , since otherwise Qwould have  $1/(2\alpha)$  points in cyclic order, with pairwise distances at least  $\alpha N$ , all colored with color i; and  $1/(2\alpha) > 4$ .

To the left and right of I are points  $q_a$  and  $q_b$ , respectively, colored with color i. Let  $q_{a'}$  be the farthest point left of  $q_a$ , still within distance  $\alpha N$  of  $q_a$ , that is colored with color i. Similarly, let  $q_{b'}$  be the farthest point right of  $q_b$ , still within distance  $\alpha N$  of  $q_b$ , that is colored with color i. Let  $q_c$  be the first point left of  $q_{a'}$  colored with color i; and let  $q_d$  be the first point right of  $q_{b'}$  colored with color i.

The distance between  $q_c$  and  $q_d$  must be less than  $\alpha N$ , since otherwise  $q_c$ ,  $q_a$ ,  $q_b$ ,  $q_d$  would prove that color *i* is spread out. Thus, all instances of color *i* are contained in the intervals  $[q_d, q_c], [q_{a'}, q_a], [q_b, q_{b'}]$ . See Figure 1 (center).

We now derive an upper bound on the number of colors that are *not* spread out.

**Lemma 7.** In case (a) the number of colors that are not spread out is at most  $3\sqrt{3\alpha}n + o(n)$ . In case (b) this number is at most  $(1 - \gamma/4)n + o(n)$ .

*Proof.* We will use the following graph-theoretic observation:

**Observation 8.** Let G = (V, E) be a graph, and for every  $v \in V$  let  $g(v) = \sum_{w \in N(v)} d(w)$  denote the sum of the degrees of the neighbors of v. Then, there exists a vertex  $v \in V$  for which  $g(v) \ge 4|E|^2/|V|^2$ .

*Proof.* We have  $\sum_{v \in V} g(v) = \sum_{v \in V} d^2(v)$ , since each vertex v contributes exactly d(v) to d(v) different terms of  $\sum g(v)$ . Therefore, the claim follows by the Cauchy–Schwarz inequality, noting that  $\sum_{v \in V} d(v) = 2|E|$ .

Let m = kn be the number of colors that are not spread out. In case (b) we may assume that  $k > 1 - \gamma/2$ , since otherwise we are done.

Assume for simplicity that the non-spread-out colors are  $1, \ldots, m$ . For each color  $i, i \leq m$ , let  $I_{i1}, I_{i2}, I_{i3}$  be the three intervals Q, of length at most  $\alpha N$ , on which color i occurs, according to Observation 6.

Let G = (V, E) be a graph with 3m vertices, labeled  $v_{ia}$  with  $1 \le i \le m$  and  $1 \le a \le 3$ , and with an edge connecting vertices  $v_{ia}$  and  $v_{jb}$  if and only there is a point  $p_{ij}$ , having the pair of colors *i* and *j*, lying on the intervals  $I_{ia}$  and  $I_{jb}$ . In case (*a*) we have  $|E| = {m \choose 2}$ .

In case (b) we have  $|E| \ge N - (1-k)n^2$ , since the number of points  $p_{ij}$  that have a spread-out color (meaning, that i > m or j > m) is at most  $n(n-m) = (1-k)n^2$ . Thus,  $|E| \ge (k + \gamma/2 - 1)n^2$  ignoring lower-order terms. Note that this quantity is positive, by our assumption on k.

Denote by  $g(v) = \sum_{w \in N(v)} d(w)$  the sum of the degrees of the neighbors of vertex  $v \in V$ . By Observation 8, there exists a vertex  $v_{ia}$  for which  $g(v_{ia}) \ge 4|E|^2/|V|^2$ .

Consider the interval  $I_{ia}$  corresponding to this vertex  $v_{ia}$ . Recall that  $I_{ia}$  has length at most  $\alpha N$ . Let I' be an interval of Q of length  $3\alpha N$  centered around  $I_{ia}$ . All the intervals  $I_{jb}$  that correspond to neighboring vertices  $v_{jb} \in N(v_{ia})$  lie in I'. Each such  $I_{jb}$  contains  $d(v_{jb})$  points colored with color j. Thus, I' contains at least  $g(v_{ia})$  "colorings" of points. But at most two "colorings" happen at each point, so  $|I'| \geq g(v_{ia})/2 \geq 2|E|^2/|V|^2$ .

Therefore,  $3\alpha N \ge 2|E|^2/|V|^2$ . In case (a) we substitute |V| = 3m,  $|E| \approx m^2/2$ , and  $N \approx n^2/2$  (ignoring lower-order terms); we obtain  $m \le 3\sqrt{3\alpha}n + o(n)$ , as claimed.

In case (b) we substitute |V| = 3kn,  $|E| \ge (k + \gamma/2 - 1)n^2$ ,  $N = \gamma n^2/2$ , and  $\alpha = \gamma/300$ . Solving for k, we obtain

$$k \le \frac{1 - \gamma/2}{1 - 3\gamma/20}.$$

Since  $0 < \gamma < 1$ , this quantity is at most  $1 - \gamma/4$ , completing the proof.

Thus, the number of spread-out colors is at least  $(1 - 3\sqrt{3\alpha})n - o(n)$  in case (a), and  $\Omega(\gamma n)$  in case (b).

To conclude the proof of Lemma 3, we put together Observation 5 and Lemma 7. They give us a lower bound on the expected number of colors that are pierced by a randomly-chosen quadruple of separators. There must exist a quadruple  $y = (y_a, y_b, y_c, y_d)$  that achieves this expectation.

In case (a), the expectation is  $24\alpha^3(1-3\alpha)(1-3\sqrt{3\alpha})n - o(n)$ . Since we chose  $\alpha = 0.027$  (which is close to optimal), this is at least n/15800 for large enough n.

For case (b) we note that the bound in Observation 5 is  $\Omega(\alpha^3)$ , which is  $\Omega(\gamma^3)$  by our choice of  $\gamma$ . Hence, y pierces  $\Omega(\gamma^4 n)$  colors.

In both cases, by Observation 4, the point of intersection  $z = y_a y_c \cap y_b y_d$  is the desired point. This completes the proof of Lemma 3.

The final step is to apply the standard Alon–Kleitman machinery. We follow Matoušek's presentation in [17]:

Proof of Theorem 1. We recall some concepts. Given a finite family S of objects in  $\mathbb{R}^d$ , a fractional transversal for S is a finite point set  $N \subset \mathbb{R}^d$ , together with a weight function  $w: N \to [0, 1]$ , such that  $\sum_{x \in N \cap S} w(x) \ge 1$  for each  $S \in S$ . (A regular transversal is then a

fractional transversal for which w(x) = 1 for all  $x \in N$ .) The size of the fractional transversal is defined as  $\sum_{x \in N} w(x)$ .

A fractional packing for S is a weight function  $\phi : S \to [0, 1]$ , such that  $\sum_{S \in S: x \in S} \phi(S) \leq 1$  for every point  $x \in \mathbb{R}^d$ . The size of the fractional packing is defined as  $\sum_{S \in S} \phi(S)$ .

Since S has a finite number of elements, they define a partition of  $\mathbb{R}^d$  into a finite number of regions. It does not matter which point we choose from each region, and therefore, there is only a finite number of points we have to consider.

The problems of minimizing the size of a fractional transversal of S, and of maximizing the size of a fractional packing of S, are both linear programs, and furthermore, they are duals of each another. Therefore, by LP duality, the size of their optimal solutions coincide (see also [18]). We denote by  $\tau^*(S)$  the optimal size of the linear programs.

Now consider the family S given in Theorem 1. Recall that S satisfies our strengthened (p, 2)-condition: Among every p elements of S, two meet at a point of X (with p = 2 in case (a)). We can assume that every element of S intersects X, since otherwise, the remaining elements would satisfy the (p - 1, 2)-condition.

Let  $\phi$  be a fractional packing for S achieving the optimal size  $\tau^* = \tau^*(S)$ . We can assume that  $\phi(S)$  is rational for every  $S \in S$ . Write  $\phi(S) = m(S)/D$ , where m(S) and D are integers and D is a common denominator. Then  $\sum_{S \in S} m(S) = \tau^*D$ , and

$$\sum_{S \in \mathcal{S}: x \in S} m(S) \le D \quad \text{for every point } x \in \mathbb{R}^d.$$
(1)

Define a family of objects  $\mathcal{T}$  obtained by repeating each  $S \in \mathcal{S}$  m(S) times. Since  $\mathcal{S}$  satisfies our strengthened (p, 2)-condition, so does  $\mathcal{T}$  (if among the p elements we select two copies of the same object, then they clearly meet in X). Thus, by Lemmas 2 and 3, there exists a point  $z \in \mathbb{R}^2$  contained in at least an  $\varepsilon$ -fraction of the  $\tau^*D$  objects in  $\mathcal{T}$ , where  $\varepsilon = 1/15800$  in case (a) or  $\varepsilon = \Omega(p^{-4})$  in case (b). On the other hand, equation (1) implies that z cannot intersect more than D objects of  $\mathcal{T}$ . Hence,  $\tau^* \leq 1/\varepsilon$ .

By LP duality, this means that  $\mathcal{T}$  has a fractional transversal (N, w) of size at most  $1/\varepsilon$ . As before, we can assume that all the weights in the fractional transversal are rational. We replace N by an unweighted point set N', in which each point of  $x \in N$  is replaced by a tiny cloud of size proportional to w(x). Then, each object in  $\mathcal{T}$  (and thus, each object in S) contains at least an  $\varepsilon$ -fraction of the points of N'.

Finally, we take a weak  $\varepsilon$ -net M for N'. Since M intersects every convex set that contains an  $\varepsilon$ -fraction of the points of N', M is our desired transversal for S. Its size is  $f_2(\varepsilon) = O(\varepsilon^{-2})$ , which in case (b) is  $O(p^8)$ . For case (a) we use the more explicit bound  $f_2(\varepsilon) \leq 7\varepsilon^{-2}$  of Alon et al. [2], and we get  $|M| \leq 1.75 \cdot 10^9$ , as claimed.<sup>2</sup>

# **3** Generalization to $\mathbb{R}^d$

**Convex curves.** A convex curve in  $\mathbb{R}^d$  is a curve that intersects every hyperplane at most d times [22, p. 314]. The most well known convex curve is the moment curve

$$\{(t,t^2,\ldots,t^d) \mid t \in \mathbb{R}\}.$$

<sup>&</sup>lt;sup>2</sup>The bound of Alon et al. can actually be improved to  $f_2(\varepsilon) \leq 6.37\varepsilon^{-2} + o(\varepsilon^{-2})$  by simply optimizing the parameter involved in the divide-and-conquer argument. This would lead to a modest improvement in our bound for |M|.

If d is even, then a convex curve in  $\mathbb{R}^d$  can be open (like the moment curve) or closed, like the Carathéodory curve [21, p. 75]

 $\left\{ (\sin t, \cos t, \sin 2t, \cos 2t, \dots, \sin \frac{d}{2}t, \cos \frac{d}{2}t) \mid 0 \le t < 2\pi \right\}.$ 

For d even it is convenient to think of the curve as being always closed, by pretending, if necessary, that the curve's two endpoints are joined together. In other words, for d odd we consider the points on the curve to be linearly ordered, while for d even we consider the points to be circularly ordered.

Weak epsilon-nets. The result by Alon et al. [3] on weak epsilon-nets mentioned in the introduction generalizes as follows: If P is a finite point set that lies on a convex curve  $X \subset \mathbb{R}^d$ , then P has a weak  $\varepsilon$ -net of size at most  $(1/\varepsilon)2^{\operatorname{poly}(\alpha(1/\varepsilon))}$ .

Note that this bound is barely superlinear in  $1/\varepsilon$ , and it is much stronger than the general bound for weak  $\varepsilon$ -nets in  $\mathbb{R}^d$ .

#### 3.1 Generalization of our result

Theorem 1(b) generalizes as follows:

**Theorem 9.** Let X be a convex curve in  $\mathbb{R}^d$ , and let S be a family of convex bodies in  $\mathbb{R}^d$ , with the property that among every p elements of S, two meet at a point of X. Then, there exists a point  $z \in \mathbb{R}^d$  intersecting a  $\Omega(p^{-j})$ -fraction of the elements of S, for some constant  $j = d^2/2 + O(d)$ .

As a result, S has a transversal of size  $O(p^{j'})$  for some constant  $j' = d^3/2 + O(d^2)$ .

For comparison, the bound for  $HD_d(p, d+1)$  obtained by Alon and Kleitman is only  $O(p^{j''})$  for  $j'' = d^2 + O(d)$ .

The proof of Theorem 9 proceeds like the proof of Theorem 1(b), with the following main changes:

Instead of Observation 4 we use the following Lemma:

**Lemma 10** (Alon et al.  $[3]^3$ ). Let X be a convex curve in  $\mathbb{R}^d$ , and define

$$j = \begin{cases} (d^2 + d + 2)/2, & d \text{ even;} \\ (d^2 + 1)/2, & d \text{ odd.} \end{cases}$$
(2)

Let A be a set of j points on X. Note that A partitions X into j + 1 intervals if d is odd, or j intervals if d is even.

Then, there exists a point  $p \in \operatorname{conv}(A)$  with the following property: For every set  $B \subset X$  that contains a point in each of the above-mentioned intervals, we have  $p \in \operatorname{conv}(B)$ .

In our application of the Lemma, A plays the role of the separator points, and B plays the role of the points colored with color i. Hence, instead of quadruples of separator points, we consider j-tuples.

A color *i* is now spread out if there exist j + 1 points for *d* odd, or *j* points for *d* even, colored with color *i*, such that all the pairwise between these points are at least  $\alpha N$ . Then,

<sup>&</sup>lt;sup>3</sup>Alon et al. state this lemma specifically for the moment curve, but it is true for any convex curve.

exactly one of the following is true: Either color i is spread out, or all instances of color i occur in at most j intervals for d odd, or j-1 intervals for d even, each of length at most  $\alpha N$ .

The probability of a random *j*-tuple of separators piercing a spread-out color is now  $\Omega(\alpha^j)$  for *d* odd, and  $\Omega(\alpha^{j-1})$  for *d* even. Instead of setting  $\alpha = \gamma/300$ , we set  $\alpha = c_d \gamma$  for a small enough positive constant  $c_d$ .

The remaining details are left to the reader.

### 4 Conclusion

Figure 1 (right) shows a family of seven convex sets, every pair of which meet at a point of the unit circle, that requires a transversal of size 3. The points  $a, \ldots, g$  are uniformly spaced along the unit circle, except for f, which has been moved a bit towards e. The seven sets are the convex hulls of *abc*, *cde*, *efa*, *bdf*, *adg*, *beg*, *cfg*, respectively. If 2 points were enough to pierce all the triangles, then at least one point must intersect 4 triangles. There are three regions which are overlaps of 4 triangles (the darkest shades of gray in the figure). But in each case, there are three triangles left that cannot be intersected with a single point.

We believe that the true bound for this problem is less than 10.

## References

- [1] M. Aigner and G. Ziegler, *Proofs from THE BOOK*, Springer, 4th ed., 2010.
- [2] N. Alon, I. Bárány, Z. Füredi, and D. Kleitman, Point selections and weak ε-nets for convex hulls, *Combin. Probab. Comput.*, 1:189–200, 1992.
- [3] N. Alon, H. Kaplan, G. Nivasch, M. Sharir, and S. Smorodinsky, Weak ε-nets and interval chains, J. ACM, 55, article 28, 32 pages, 2008.
- [4] N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger–Debrunner (p,q)problem, Adv. Math., 96:103–112, 1992.
- [5] N. Alon and D. J. Kleitman, A purely combinatorial proof of the Hadwiger–Debrunner (p,q) conjecture, *Electron. J. Comb.*, 4(2), R1, 1997.
- [6] B. Bukh, J. Matoušek, and G. Nivasch, Lower bounds for weak epsilon-nets and stairconvexity, *Israel J. Math.*, 182:199–228, 2011.
- [7] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, M. Sharir, and E. Welzl, Improved bounds on weak  $\epsilon$ -nets for convex sets, *Discrete Comput. Geom.*, 13:1–15, 1995.
- [8] L. Danzer, Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene, Stud. Sci. Math. Hung. 21:111–134, 1986.
- [9] A. Dumitrescu and M. Jiang, Piercing translates and homothets of a convex body, Algorithmica 61:94–115, 2011.
- [10] J. Eckhoff, A survey of the Hadwiger-Debrunner (p,q)-problem, in (B. Aronov et al., eds.) Discrete and Computational Geometry: The Goodman-Pollack Festschrift, vol. 25 of Algorithms and Combinatorics, pp. 347–377, Springer, 2003.

- [11] B. Grünbaum, On intersections of similar sets, Port. Math., 18, 155–164, 1959.
- [12] H. Hadwiger and H. Debrunner, Über eine Variante zum Helly'schen Satz, Arch. Math., 8:309–313, 1957.
- [13] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresber. Deutsch. Math. Verein., 32:175–176, 1923.
- [14] G. Kalai, Intersection patterns of convex sets, Israel J. Math., 48:161–174, 1984.
- [15] M. Katchalski and A. Liu, A problem of geometry in R<sup>n</sup>, Proc. AMS, 75:284–288, 1979.
- [16] S.-J. Kim, K. Nakprasit, M. J. Pelsmajer, and J. Skokan, Transversal numbers of translates of a convex body, *Discrete Math.*, 306:2166–2173, 2006.
- [17] J. Matoušek, Lectures on Discrete Geometry, Springer, 2002.
- [18] J. Matoušek and B. Gärtner, Understanding and Using Linear Programming, Springer, 2007.
- [19] J. Matoušek and U. Wagner, New constructions of weak  $\varepsilon$ -nets, *Discrete Comput. Geom.*, 32:195–206, 2004.
- [20] P. Turán, On an extremal problem in graph theory, Matematikai és Fizikai Lapok, 48:436– 452, 1941.
- [21] G. Ziegler, Lectures on Polytopes, Springer, 1995.
- [22] R. T. Živaljevič, Topological methods, in (J. E. Goodman and J. O'Rourke, eds.), Handbook of Discrete and Computational Geometry, ch. 14, pp. 305–329, Chapman & Hall/CRC, 2nd ed., 2004.