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Abstract

Let X be a convex curve in the plane (say, the unit circle), and let S be a family of
planar convex bodies, such that every two of them meet at a point of X. Then S has a
transversal N ⊂ R2 of size at most 1.75 · 109.

Suppose instead that S only satisfies the following “(p, 2)-condition”: Among every p
elements of S there are two that meet at a common point of X. Then S has a transversal
of size O(p8). For comparison, the best known bound for the Hadwiger–Debrunner (p, q)-
problem in the plane, with q = 3, is O(p6).

Our result generalizes appropriately for Rd if X ⊂ Rd is, for example, the moment
curve.

1 Introduction

Let S be a family1 of convex bodies in Rd. We say that S satisfies the (p, q)-condition, for
positive integers p ≥ q, if among every p elements of S there are q that meet at a common
point. Hadwiger and Debrunner [12], in their celebrated problem, asked whether a family S
that satisfies the (p, q)-condition, for p ≥ q ≥ d + 1, has a transversal of size bounded by a
constant HDd(p, q) that depends only on d, p, and q. (A transversal for S is a set N ⊂ Rd
that intersects every element of S.)

This problem is a generalization of Helly’s theorem [13]: Helly’s theorem states that, if
every d+1 elements of S intersect, then they all intersect; or, in other words, HDd(d+1, d+1) =
1.

It is clear that q cannot be smaller than d+ 1, since a family of n hyperplanes in general
position provides a counterexample: Every d hyperplanes intersect, and yet a transversal must
contain at least n/d points.

Hadwiger and Debrunner [12] showed that, for q > 1 + (d − 1)p/d, one has HDd(p, q) =
p− q + 1.

Alon and Kleitman [4] settled the general question in the affirmative, by tackling the
hardest case q = d+ 1. Their proof uses an impressive array of tools from discrete geometry,
including the fractional Helly theorem, linear-programming duality, and weak epsilon-nets.
(Alon and Kleitman later published a more elementary proof in [5].)

∗gsat@csa.iisc.ernet.in. Indian Institute of Science, Bangalore, India.
†gabrieln@ariel.ac.il. Ariel University, Ariel, Israel.
1Throughout this paper we allow S to be a multi-set; meaning, the elements of S need not be pairwise

distinct.
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Fractional Helly. The fractional Helly theorem [14, 15] (see also [17, pp. 195]) states that,
if S is a family of n convex bodies in Rd such that at least an α-fraction of the

(
n
d+1

)
(d+ 1)-

tuples intersect, then there exists a point z ∈ Rd contained in at least βn bodies, for some
β > 0 that depends only on d and α. The bound β ≥ α/(d+ 1) is asymptotically optimal for
small α.

Weak epsilon nets. Given a finite point set P ⊂ Rd and a parameter 0 < ε < 1, a weak
ε-net for P (with respect to convex sets) is a set N ⊂ Rd that intersects every convex set that
contains at least an ε-fraction of the points of P . Alon et al. [2] showed that P always has
a weak ε-net of size bounded only by d and ε. The best known bounds for the size of weak
ε-nets are f2(ε) = O(ε−2) in the plane [2, 7], and fd(ε) = O(ε−dpolylog(1/ε)) for dimension
d ≥ 3 [7, 19].

For point sets P that satisfy additional constraints, better bounds are known. For example,
if P ⊂ X for some convex curve X ⊂ R2, then P has a weak ε-net of size O((1/ε)α(1/ε)),
where α(n) denotes the very slow-growing inverse-Ackermann function (Alon et al. [3]).

Regarding lower bounds, Bukh et al. [6] constructed, for every d and ε, a point set P ⊂ Rd
for which every weak ε-net has size Ω((1/ε) logd−1(1/ε)).

Back to the Hadwiger–Debrunner problem. The argument of Alon and Kleitman [4]
yields HDd(p, d+ 1) ≤ fd(cdp−(d+1)), where fd is the upper bound for weak epsilon-nets, and
cd > 0 is some constant. Thus, for the planar case we obtain HD2(p, 3) = O(p6).

The lower bound HDd(p, d + 1) = Ω(p logd−1 p) follows from the lower bound for weak
epsilon-nets: Let P ⊂ Rd be a point set realizing the lower bound for weak ε-nets. Let S be
the set of all convex hulls of at least an ε-fraction of the points of P . Then S satisfies the
(p, d+ 1)-condition for p = 1 + d/ε; and every transversal for S is a weak ε-net for P .

Related work. Many variants of the (p, q)-problem have been studied; see for example the
survey [10].

Regarding the case q = 2, Danzer [8] (answering a question of Gallai) showed that any
family of pairwise intersecting disks in the plane (i.e., satisfying the (2, 2)-condition) has a
transversal of size 4, and that this bound is optimal. More generally, Grünbaum [11] showed
that any family of pairwise intersecting homothets of a fixed convex body in Rd has a transver-
sal bounded in terms only of d.

Kim et al. [16], together with Dumitrescu and Jiang [9], showed that for homothets of a
convex body in Rd having the (p, 2)-property, the transversal number is at most cdp for some
constants cd.

1.1 Our variant of the problem

We asked ourselves the following question: Can we obtain smaller transversals for S if we im-
pose an additional constraint in S, analogous to the convex-curve constraint for weak epsilon-
nets?

In this spirit, we raised the following problem: Let X be a convex curve in the plane (say,
X could be the unit circle {(x, y) | x2 + y2 = 1}). Let S be a family of planar convex bodies
as before. We now strengthen the (p, q)-condition by requiring that, among every p elements
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of S, at least q meet at a point of X. What can we say then about the minimum size of a
transversal for S?

Problem 1. Let X be a convex curve in the plane, and let S be a family of planar convex
bodies, such that among every p elements of S, three of them meet at a point of X. Then we
know that S has a transversal of size HD2(p, 3) = O(p6). Does S have a smaller transversal?

Since the conterexample that required q ≥ 3 does not hold in this new setting, we can ask
what happens when q = 2.

Problem 2. Now suppose that among every p elements of S, two of them meet at a point of
X. Does S then have a transversal of size depending only on p?

We do not know the answer to the first question, but we answer the second question in
the affirmative:

Theorem 1. Let X be a convex curve in the plane, and let S be a family of planar convex
bodies. Then:

(a) If every pair of elements of S meet at a point of X, then there exists a point z ∈ R2 that
intersects at least a 1/15800-fraction of the elements of S, and S has a transversal of
size at most 1.75 · 109.

(b) If among every p elements of S, two of them meet at a point of X, then there exists
a point z ∈ R2 that intersects a Ω(p−4)-fraction of the elements of S, and S has a
transveral of size O(p8).

A generalization of Theorem 1 for Rd is discussed in Section 3.

2 The proof

The first step (for case (b) only) is to apply Turán’s theorem [20] (see also [1]):

Lemma 2. Let X be a convex curve in the plane, and let S be a family of n planar convex
bodies, such that among every p elements of S, two of them meet at a point of X. Then, the
number of pairs of elements of S that meet at a point of X is at least n2/(2p).

Proof. Let G be a graph containing a vertex for every element of S, and containing an edge
for every pair of elements that do not meet at any point of X. Then our assumption on S
is equivalent to saying that G contains no clique of size p. Therefore, by Turán’s theorem, G

contains at most
(

1− 1
p−1

)
n2

2 edges, so it is missing more than n2/(2p) edges.

The second, and main, step is to prove a fractional-Helly-type lemma:

Lemma 3. Let X be a convex curve in the plane, and let S be a family of n planar convex
bodies. Then:

(a) If every pair of elements in S meet at a point of X, then there exists a point z ∈ R2 that
is contained in at least n/15800 elements of S.
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(b) If a γ-fraction of the
(
n
2

)
pairs of elements of S meet at a point of X, for some 0 < γ < 1,

then there exists a point z ∈ R2 that is contained in at least Ω(γ4n) elements of S.

Proof. Let S1, S2, . . . , Sn be the objects in S. We think of each set Si as “colored” with color
i. For each pair Si, Sj that meet at a point of X, select a point pij ∈ X ∩ Si ∩ Sj . In case
(a) we have N =

(
n
2

)
points pij , while in case (b) we have N = γ

(
n
2

)
points. Note that these

points are not necessarily pairwise distinct (in fact they could all be the same point); however,
that would only make our problem easier.

Sort the points pij in weakly circular order around X, and rename the sorted points
Q = (q0, q1, . . . , qN−1). We treat Q as a circular list, so after qN−1 comes q0. Each qa is
colored with two distinct colors among 1, . . . , n (corresponding to the two objects in S that
defined qa), and each pair of colors occurs at most once (or exactly once in case (a)).

Let Y = (y0, . . . , yN−1) ⊂ X be a circular list of “separator” points, such that yi lies
(weakly) between qi−1 and qi for every i.

Note that each quadruple of separator points y = (ya, yb, yc, yd) (listed in circular order)
defines a partition of Q into four intervals: [qa, qb−1], [qb, qc−1], [qc, qd−1], [qd, qa−1]. The
quadruple y is said to “pierce” color i if each of these four intervals contains a point colored
with color i.

We make use of the following observation, which was previously used in [3] and [7].

Observation 4. Let y = (ya, yb, yd, yd) be a quadruple of separator points, and let z ∈ R2 be
the point of intersection of segments yayc and ybyd. Then, if y pierces color i, then z ∈ Si (see
Figure 1 (left)).

Our strategy is to show that a randomly-chosen quadruple of separators pierces, in expec-
tation, a constant fraction of the colors.

Define the distance between two points qa, qb ∈ Q as min {(b− a) mod N, (a− b) mod N}.
We now choose a parameter α < 1 independent of n: For case (a) we set α = 0.027,

while for case (b) we set α = γ/300. We call a color i spread out if there exist four points
qa, qb, qc, qd ∈ Q, colored with color i, such that all the pairwise distances between these four
points are at least αN .

Observation 5. A randomly-chosen quadruple y = (ya, yb, yc, yd) has probability at least
24α3(1− 3α) of piercing a given spread-out color.

Proof. Suppose color i is spread out. Consider four points qa, qb, qc, qd ∈ Q in cyclic order, that
prove that i is spread out. Let the distances between them in cyclic order be β1N , β2N , β3N ,
β4N ; so β1+ · · ·+β4 = 1. Then y pierces color i with probability at least 24β1β2β3β4. Subject
to the constraints βi ≥ α for 1 ≤ i ≤ 4, this quantity is minimized when β1 = β2 = β3 = α
and β4 = 1− 3α.

We now proceed to derive a lower bound on the number of spread-out colors.
First, we characterize when a color is spread out:

Observation 6. For each color i, exactly one of the following two options holds:

1. Color i is spread out.

2. All the instances of color i occur in at most three intervals of Q, each of length at most
αN .
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Figure 1: Left: If the quadruple of separators pierces color i, then z ∈ Si. Center: If color i
is not spread out, then it is contained in three small intervals. Right: A family that requires
a transversal of size 3.

Proof. If the second condition is true then clearly color i is not spread out, because we can at
most choose qa, qb, and qc from three different intervals, and then we have no way of choosing
qd.

For the other direction, suppose color i is not spread out. Let I be the longest interval
in Q that is completely free of color i. We must certainly have |I| > αN , since otherwise Q
would have 1/(2α) points in cyclic order, with pairwise distances at least αN , all colored with
color i; and 1/(2α) > 4.

To the left and right of I are points qa and qb, respectively, colored with color i. Let qa′

be the farthest point left of qa, still within distance αN of qa, that is colored with color i.
Similarly, let qb′ be the farthest point right of qb, still within distance αN of qb, that is colored
with color i. Let qc be the first point left of qa′ colored with color i; and let qd be the first
point right of qb′ colored with color i.

The distance between qc and qd must be less than αN , since otherwise qc, qa, qb, qd would
prove that color i is spread out. Thus, all instances of color i are contained in the intervals
[qd, qc], [qa′ , qa], [qb, qb′ ]. See Figure 1 (center).

We now derive an upper bound on the number of colors that are not spread out.

Lemma 7. In case (a) the number of colors that are not spread out is at most 3
√

3αn+ o(n).
In case (b) this number is at most (1− γ/4)n+ o(n).

Proof. We will use the following graph-theoretic observation:

Observation 8. Let G = (V,E) be a graph, and for every v ∈ V let g(v) =
∑

w∈N(v) d(w)
denote the sum of the degrees of the neighbors of v. Then, there exists a vertex v ∈ V for
which g(v) ≥ 4|E|2/|V |2.

Proof. We have
∑

v∈V g(v) =
∑

v∈V d
2(v), since each vertex v contributes exactly d(v) to d(v)

different terms of
∑
g(v). Therefore, the claim follows by the Cauchy–Schwarz inequality,

noting that
∑

v∈V d(v) = 2|E|.
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Let m = kn be the number of colors that are not spread out. In case (b) we may assume
that k > 1− γ/2, since otherwise we are done.

Assume for simplicity that the non-spread-out colors are 1, . . . ,m. For each color i, i ≤ m,
let Ii1, Ii2, Ii3 be the three intervals Q, of length at most αN , on which color i occurs, according
to Observation 6.

Let G = (V,E) be a graph with 3m vertices, labeled via with 1 ≤ i ≤ m and 1 ≤ a ≤ 3,
and with an edge connecting vertices via and vjb if and only there is a point pij , having the
pair of colors i and j, lying on the intervals Iia and Ijb. In case (a) we have |E| =

(
m
2

)
.

In case (b) we have |E| ≥ N − (1 − k)n2, since the number of points pij that have a
spread-out color (meaning, that i > m or j > m) is at most n(n −m) = (1 − k)n2. Thus,
|E| ≥ (k + γ/2− 1)n2 ignoring lower-order terms. Note that this quantity is positive, by our
assumption on k.

Denote by g(v) =
∑

w∈N(v) d(w) the sum of the degrees of the neighbors of vertex v ∈ V .

By Observation 8, there exists a vertex via for which g(via) ≥ 4|E|2/|V |2.
Consider the interval Iia corresponding to this vertex via. Recall that Iia has length at

most αN . Let I ′ be an interval of Q of length 3αN centered around Iia. All the intervals Ijb
that correspond to neighboring vertices vjb ∈ N(via) lie in I ′. Each such Ijb contains d(vjb)
points colored with color j. Thus, I ′ contains at least g(via) “colorings” of points. But at
most two “colorings” happen at each point, so |I ′| ≥ g(via)/2 ≥ 2|E|2/|V |2.

Therefore, 3αN ≥ 2|E|2/|V |2. In case (a) we substitute |V | = 3m, |E| ≈ m2/2, and
N ≈ n2/2 (ignoring lower-order terms); we obtain m ≤ 3

√
3αn+ o(n), as claimed.

In case (b) we substitute |V | = 3kn, |E| ≥ (k + γ/2 − 1)n2, N = γn2/2, and α = γ/300.
Solving for k, we obtain

k ≤ 1− γ/2
1− 3γ/20

.

Since 0 < γ < 1, this quantity is at most 1− γ/4, completing the proof.

Thus, the number of spread-out colors is at least (1 − 3
√

3α)n − o(n) in case (a), and
Ω(γn) in case (b).

To conclude the proof of Lemma 3, we put together Observation 5 and Lemma 7. They
give us a lower bound on the expected number of colors that are pierced by a randomly-chosen
quadruple of separators. There must exist a quadruple y = (ya, yb, yc, yd) that achieves this
expectation.

In case (a), the expectation is 24α3(1− 3α)(1− 3
√

3α)n− o(n). Since we chose α = 0.027
(which is close to optimal), this is at least n/15800 for large enough n.

For case (b) we note that the bound in Observation 5 is Ω(α3), which is Ω(γ3) by our
choice of γ. Hence, y pierces Ω(γ4n) colors.

In both cases, by Observation 4, the point of intersection z = yayc ∩ ybyd is the desired
point. This completes the proof of Lemma 3.

The final step is to apply the standard Alon–Kleitman machinery. We follow Matoušek’s
presentation in [17]:

Proof of Theorem 1. We recall some concepts. Given a finite family S of objects in Rd, a
fractional transversal for S is a finite point set N ⊂ Rd, together with a weight function
w : N → [0, 1], such that

∑
x∈N∩S w(x) ≥ 1 for each S ∈ S. (A regular transversal is then a
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fractional transversal for which w(x) = 1 for all x ∈ N .) The size of the fractional transversal
is defined as

∑
x∈N w(x).

A fractional packing for S is a weight function φ : S → [0, 1], such that
∑

S∈S:x∈S φ(S) ≤ 1
for every point x ∈ Rd. The size of the fractional packing is defined as

∑
S∈S φ(S).

Since S has a finite number of elements, they define a partition of Rd into a finite number
of regions. It does not matter which point we choose from each region, and therefore, there is
only a finite number of points we have to consider.

The problems of minimizing the size of a fractional transversal of S, and of maximizing
the size of a fractional packing of S, are both linear programs, and furthermore, they are duals
of each another. Therefore, by LP duality, the size of their optimal solutions coincide (see
also [18]). We denote by τ∗(S) the optimal size of the linear programs.

Now consider the family S given in Theorem 1. Recall that S satisfies our strengthened
(p, 2)-condition: Among every p elements of S, two meet at a point of X (with p = 2 in case
(a)). We can assume that every element of S intersects X, since otherwise, the remaining
elements would satisfy the (p− 1, 2)-condition.

Let φ be a fractional packing for S achieving the optimal size τ∗ = τ∗(S). We can assume
that φ(S) is rational for every S ∈ S. Write φ(S) = m(S)/D, where m(S) and D are integers
and D is a common denominator. Then

∑
S∈S m(S) = τ∗D, and∑

S∈S:x∈S
m(S) ≤ D for every point x ∈ Rd. (1)

Define a family of objects T obtained by repeating each S ∈ S m(S) times. Since S
satisfies our strengthened (p, 2)-condition, so does T (if among the p elements we select two
copies of the same object, then they clearly meet in X). Thus, by Lemmas 2 and 3, there exists
a point z ∈ R2 contained in at least an ε-fraction of the τ∗D objects in T , where ε = 1/15800
in case (a) or ε = Ω(p−4) in case (b). On the other hand, equation (1) implies that z cannot
intersect more than D objects of T . Hence, τ∗ ≤ 1/ε.

By LP duality, this means that T has a fractional transversal (N,w) of size at most 1/ε.
As before, we can assume that all the weights in the fractional transversal are rational. We
replace N by an unweighted point set N ′, in which each point of x ∈ N is replaced by a
tiny cloud of size proportional to w(x). Then, each object in T (and thus, each object in S)
contains at least an ε-fraction of the points of N ′.

Finally, we take a weak ε-net M for N ′. Since M intersects every convex set that contains
an ε-fraction of the points of N ′, M is our desired transversal for S. Its size is f2(ε) = O(ε−2),
which in case (b) is O(p8). For case (a) we use the more explicit bound f2(ε) ≤ 7ε−2 of Alon
et al. [2], and we get |M | ≤ 1.75 · 109, as claimed.2

3 Generalization to Rd

Convex curves. A convex curve in Rd is a curve that intersects every hyperplane at most
d times [22, p. 314]. The most well known convex curve is the moment curve{

(t, t2, . . . , td)
∣∣ t ∈ R

}
.

2The bound of Alon et al. can actually be improved to f2(ε) ≤ 6.37ε−2 + o(ε−2) by simply optimizing the
parameter involved in the divide-and-conquer argument. This would lead to a modest improvement in our
bound for |M |.
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If d is even, then a convex curve in Rd can be open (like the moment curve) or closed, like the
Carathéodory curve [21, p. 75]{

(sin t, cos t, sin 2t, cos 2t, . . . , sin d
2 t, cos d2 t)

∣∣ 0 ≤ t < 2π
}
.

For d even it is convenient to think of the curve as being always closed, by pretending, if
necessary, that the curve’s two endpoints are joined together. In other words, for d odd we
consider the points on the curve to be linearly ordered, while for d even we consider the points
to be circularly ordered.

Weak epsilon-nets. The result by Alon et al. [3] on weak epsilon-nets mentioned in the
introduction generalizes as follows: If P is a finite point set that lies on a convex curve X ⊂ Rd,
then P has a weak ε-net of size at most (1/ε)2poly(α(1/ε)).

Note that this bound is barely superlinear in 1/ε, and it is much stronger than the general
bound for weak ε-nets in Rd.

3.1 Generalization of our result

Theorem 1(b) generalizes as follows:

Theorem 9. Let X be a convex curve in Rd, and let S be a family of convex bodies in Rd,
with the property that among every p elements of S, two meet at a point of X. Then, there
exists a point z ∈ Rd intersecting a Ω(p−j)-fraction of the elements of S, for some constant
j = d2/2 +O(d).

As a result, S has a transversal of size O(pj
′
) for some constant j′ = d3/2 +O(d2).

For comparison, the bound for HDd(p, d+1) obtained by Alon and Kleitman is only O(pj
′′
)

for j′′ = d2 +O(d).
The proof of Theorem 9 proceeds like the proof of Theorem 1(b), with the following main

changes:
Instead of Observation 4 we use the following Lemma:

Lemma 10 (Alon et al. [3]3). Let X be a convex curve in Rd, and define

j =

{
(d2 + d+ 2)/2, d even;

(d2 + 1)/2, d odd.
(2)

Let A be a set of j points on X. Note that A partitions X into j + 1 intervals if d is odd, or
j intervals if d is even.

Then, there exists a point p ∈ conv(A) with the following property: For every set B ⊂ X
that contains a point in each of the above-mentioned intervals, we have p ∈ conv(B).

In our application of the Lemma, A plays the role of the separator points, and B plays
the role of the points colored with color i. Hence, instead of quadruples of separator points,
we consider j-tuples.

A color i is now spread out if there exist j + 1 points for d odd, or j points for d even,
colored with color i, such that all the pairwise between these points are at least αN . Then,

3Alon et al. state this lemma specifically for the moment curve, but it is true for any convex curve.
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exactly one of the following is true: Either color i is spread out, or all instances of color i
occur in at most j intervals for d odd, or j−1 intervals for d even, each of length at most αN .

The probability of a random j-tuple of separators piercing a spread-out color is now Ω(αj)
for d odd, and Ω(αj−1) for d even. Instead of setting α = γ/300, we set α = cdγ for a small
enough positive constant cd.

The remaining details are left to the reader.

4 Conclusion

Figure 1 (right) shows a family of seven convex sets, every pair of which meet at a point of
the unit circle, that requires a transversal of size 3. The points a, . . . , g are uniformly spaced
along the unit circle, except for f , which has been moved a bit towards e. The seven sets are
the convex hulls of abc, cde, efa, bdf , adg, beg, cfg, respectively. If 2 points were enough
to pierce all the triangles, then at least one point must intersect 4 triangles. There are three
regions which are overlaps of 4 triangles (the darkest shades of gray in the figure). But in each
case, there are three triangles left that cannot be intersected with a single point.

We believe that the true bound for this problem is less than 10.
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