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On the lower bound in the lattice point remainder
problem for a parallelepiped
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Abstract

Let I' C R® be a lattice, obtained from a module in a totally real
algebraic number field. Let G be an axis parallel parallelepiped, and
let |G| be a volume of G. In this paper we prove that

limsup(det T#(T'NG) — |G|)/In* |G| > 0.

|G|—00

Thus the known estimate det T# (' N G) = |G| + O(In*"1|G|) is ex-
act. We obtain also a similar result for the low discrepancy sequence
corresponding to I'.
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1 Introduction.

1.1. Lattice points. Let I' C R* be a lattice, i.e., a discrete subgroup of R*
with a compact fundamental set R*/I"; det '=vol(R*/T"). Let Ny,...,Ng > 0 be
reals, N = (Ny,..., Ng), BN = [0, N7) x --- x [0, Ny), vol(Bn) the volume of By,
tBn the dilatation of Byn by a factor ¢t > 0, tBn + x the translation of tByn by a
vector X € R®) (21, ..., x5) - (Y1, ., Ys) = (2191, ..., TsYs), and let (zq,...,x5) - By =
{(x1, ..y xs) - (Y1, -, Ys) | (Y1, .-, ys) € Bn}. Let

N(Bx+xT)=#Bx+x0T)=> 1z . (7) (1.1)

~el
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be the number of points of the lattice I' lying inside the parallelepiped By, where
we denote by 1y ., (v) the indicator function of By + x. We define the error
R(Bn + x,I") by setting

N(Bx +x,T) = (detI')'vol(Bx) + R(Bn +x,T). (1.2)
Let Nm(x) = z125 ... x5 for x = (x1,...,2,). The lattice I' C R® is admissible if

NmI'= inf |[Nm > 0.
int | |Nm(y)

Let I' be an admissible lattice. In 1994, Skriganov [Skr| proved the following theo-
rem:

Theorem A. Let t = (t1,...,ts). Then
[R(t - [-1/2,1/2)* + x,T)| < eo() logy ™" (2 + [Nm(t)]), (1.3)

where the constant co(I") depends upon the lattice T only by means of the invariants
detI" and Nm I.

In [Skr, p.205], Skriganov conjectured that the bound (L3)) is the best possible.
In this paper we prove this conjecture.

Let IC be a totally real algebraic number field of degree s > 2, and let o be
the canonical embedding of K in the Euclidean space R*, o : £ 3 & — o(§) =
(01(8),---,05(§)) € R®, where {0;}3_, are s distinct embeddings of K in the field
R of real numbers. Let Ni,g(&) be the norm of £ € K. By [BS, p. 404],

Nijo(§) = 01(§) - 05(§), and  |Ngjgla)| > 1

for all algebraic integers a € I\ {0}. We see that [Nm(co(&))| = [Ni/g(&)|. Let
M be a full Z module in K and let "y, be the lattice corresponding to M under
the embedding o. Let (cy)™! > 0 be an integer such that (cp) ™'y are algebraic
integers for all v € M. Hence

Nm 'y > iy

Therefore, I'y, is an admissible lattice. In the following, we will use notations
I'=Tu\, and N = N1 N,...Ng; > 2. In §2 we will prove the following theorem:



Theorem 1. With the above notations, there exist ¢;(M) > 0 such that

sup |R(Ban +x,T)| > c1(M)logs™ ' N (1.4)
06clo,1]°

for all x € R*.

In [Lal, Ch. 5], Lang considered the lattice point problem in the adelic setting.
In [Lal] and [NiSkr|, the upper bound for the lattice point remainder problem in
parallelotopes was found. In a forthcoming paper, we will prove that the lower
bound (I4]) can be extended to the adelic case. Namely, we will prove that the
upper bound in [NiSkr] is exact for the case of totally real algebraic number fields.

1.2. Low discrepancy sequences. Let ((8.n)n-, ) be a N-point set in an
s-dimensional unit cube [0,1)*, By = [0,y1) x --- x [0,y,) C [0,1)*,

A(By, (Ben)ig) =#{0<k < N | Bxn € By} — Ny1...9s. (1.5)

We define the star discrepancy of a N-point set (ﬁk,N)kN:_Ol as

D'(N) = D ((Bn))a) = s |=ABy, Ben)D). (16)

0<y1,...,ys<1 N

In 1954, Roth proved that there exists a constant ¢; > 0, such that
ND ((Briis) > (V)T

for all N-point sets (Byn)n g -
Definition 1. A sequence of point sets ((Bx.n)h o )X, is of Low discrepancy
(abbreviated 1.d.p.s.) if D*((Bkn)ry) = O(N"L(In N)*7Y) for N — oo.
For examples of 1.d.p.s. see e.g. in [BC], [DrTi|, and [Skr]. Consider a lower
bound for l.d.p.s. According to the well-known conjecture (see, e.g., [BC, p.283]),
there exists a constant ¢ > 0, such that

ND*((Brn)isg) > ea(lnN)* (1.7)

for all N-point sets (Bpn)p . In 1972, W. Schmidt proved this conjecture for
s = 2. In 1989, Beck [Be] proved that ND*(N) > ¢In N(Inln N)V/8=¢ for s = 3
and some ¢ > 0. In 2008, Bilyk, Lacey and Vagharshakyan (see [Bi, p.147], [BiLa,
p.2]), proved in all dimensions s > 3 that there exists some ¢(s),n > 0 for which
the following estimate holds for all N-point sets : N.D*(N) > ¢(s)(In N) 2 +7.
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There exists another conjecture on the lower bound for the discrepancy function:
there exists a constant ¢3 > 0, such that

ND*((Brw)iZo) > éa(InN)*"2

for all N-point sets (B.n)h g (see [Bi p.147], [BiLa, p.3] and [ChTr, p.153)).

Let W = (I' + x) N [0, )8 1'% [0,00). We enumerate W by the sequence
(21.1(%), 22.1(x)) with 21 x(x) € [0, )s I and 201(x) € [0,00). In [Skr|, Skriganov
proved that the point set ((Brn(X))p ) With B n(x) = (214(x), 224(x)/N) is of
low discrepancy (see also [Le ]) In §2. 10 we will prove

Theorem 2. With the notations as above, there exist co(M) such that

sup D*((Bev(x))iy ) = ea(M) log™ N (18)
ySG[O,l}
for all x € R?.
This result support the conjecture (7). In a forthcoming paper we will prove
that (L8 is also true for Halton’s sequence, (¢, s)-sequence, and 1.d.p.s. from [Le2].

2 Proof of Theorems.

2.1. Poisson summation formula. It is known that the set M= of all 5 € K, for
which Trx/q(af) € Z for all « € M, is also a full Z module (the dual of the module
M) of the field K (see [BS], p. 94). Recall that the dual lattice 'y, consists of all
vectors 4+ € R? such that the inner product < 4+, ~ > belongs to Z for each v € I'.
Hence Ty = I'jy. Let O be the ring of integers of the field K, and let aM* C O
for some a € Z\ 0. By (LT)), we have N (Bn+x,Ty) = N(a™'Bn+a'x, T y-10q).
Therefore, to prove Theorem 1 it suffices consider only the case M+ C O. We set

pr=min{b € Z | bO C M+ C O, b>0}. (2.1)

We will use the same notations for elements of O and I'p. Let Dy be the ring
of coefficients of the full module M, Uy, be the group of units of D;;, and let
M, ...,Ns—1 be the set of fundamental units of Uy.. According to the Dirichlet
theorem (see e.g., [BS, p. 112]), every unit € € Uy has a unique representation in
the form

e=(=1)"nf - mey, (2.2)
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where ay,...,as_1 are rational integers and a € {0,1}. It is easy to proof (see
e.g. [Le3, Lemma 1]) that there exists a constant ¢35 > 1 such that for all N
there exists n(N) € Uy with |N;N=V*| € [1/e3,¢c3), where N; = N;|oy(n(N))],
i=1,...,s,and N = Ny---N,. Let o(n(IN)) = (01(n(N)), ..., 05(n(N))). We see
that o(n(N)) - (0 - By +x) =6 - By +x; and

yel'MN(O@ -Bn+x)<v-0(n(N))el'yN(0- By +x1)),
with x; = o(n(N) - x + o(n(N)) - N/2 — N'/2. Hence
N(0-Bn+x,Tp) =N (0 By +x1,T01).
By (L2), we have
R(O - Bn+%x,I'p) =R(0 - By +x1, T Mm).
Therefore, without loss of generality, we can assume that
NN~V € [1/es,es), i=1,...,s. (2.3)

Note that in this paper O-constants and constants cy, co, ... depend only on M.
We shall need the Poisson summation formula:

detDY " fly = X) = > F@)el(7.x)), (2.4)

el ~yer+

where

~

fY) = 5 F(X)e((y, x))dx

is the Fourier transform of f(X), and e(z) = exp(2nv/—12), (y,x) = y121 + - - - +
ysts. Formula (2.4]) holds for functions f(x) with period lattice I' if one of the
functions f or f is integrable and belongs to the class C™ (see e.g. [StWe, p.
251]).

Let IBN () be the Fourier transform of the indicator function 1p (7). It is
easy to prove that TBN (0) = Ny--- Ng and

s

T =11 % -1I W(Z Niyi/2) for Nm(y £0). (2.5
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We fix a nonnegative even function w(zx), x € R, of the class C*°, with a support
inside the segment [—1/2,1/2], and satisfying the condition [, w(z)dz = 1. We set
Qx) = w(ry) - w(wy), O (x) =775 2y, ..., 77 ), 7> 0, and

0y) = [ elly.x)20x)dx (2:6)

Notice that the Fourier transform ), (y) = Q(ry) of the function €, (y) satisfies
the bound R
Q(ry)] < s, w)(1+ 7ly]) 7. (2.7)

It is easy to see that

Qy) = Q(0) +O(lyl) = 1+ O(ly|) for |y|—0. (2.8)

Lemma 1. There exists a constant ¢ > 0, such that we have for N > ¢

|R(BB-N + X, F) - R(BQ.N + X, F)| S 25,

where

R(Box +x.T) = (et 1) 3 T, (Avellrx). 7=N2 (29)
yer+\{0}

Proof. Let Biy = [0,max(0,0; N, £ 7)) x --- x [0, max(0,0,N, & 7)), and let

15(2) be the indicator function of B. We consider the convolutions of the functions

ez () and Q-(y) :

E]

0t Ly (0 = [ Qux= 3Ly 1)y (210)

It is obvious that the nonnegative functions (2.I0) are of class C* and are com-

pactly supported in 7-neighborhoods of the bodies B;'E,TN, respectively. We obtain

Lz, (00 < Ly (0 < Lgor (%), Lpon (1) € O Ly, (%) < 1z (%) (211)

6-N

Replacing x by v — x in (Z11]) and summing these inequalities over v € I' = I"y,
we find from (ILTI), that

N(Bax +x.I) S N(Bon +x,1) S N(Bgy +x, 1),
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and
N(Bgx +x.T) S N(Box +x,T) SN (B +x,T),

where .
N(Box+xT) =Y Q- x1p (v-x). (2.12)

~el
Hence
—N(Bggx+x,T')+N(Byi +x,T)
< N(Bopx +x,T) = N(Bon +x,T) < N(BL +x,T) — N(By & +x,T).
Thus

IN(Bon +x,I) = N(Bow +x,1)| S N(BJL +x,T) = N(By L +x,T). (2.13)

Consider the right side of this inequality. We have that B4, \ Bp4 is the union of
boxes B, i =1,...,2° — 1, where

vol(BW) < vol(Bf;") — vol(Bx") < H (N; +7) H(N 7)

=1

S S

SN(Hl‘i‘T H1_7)<53NT258/N77 T:N_27
i=1 =1

with some ¢ > 0. From (21]), we get M D pl_l(’) Hence |Nm(vy)| > pls for
~v € Ta\ 0. We see that [Nm(v, —7,)| < vol(BYW +x) < p® for v,,7v, € BY +x
and N > éps. Therefore, the box B® + x contains at most one point of I' 4 for

N > ¢ép§. By ([213), we have

IN(Box +x,T) =N (Bon +x,1)[ <2°—1, for N > épi. (2.14)
Let (B
R(Box +x,T) = N(Bpn + x,T) — %. (2.15)

By ([212), we obtain that NV(Bg.x + x,T) is a periodic function of x € R" with
the period lattice I". Applying the Poisson summation formula to the series (2.12)),
and bearing in mind that Q.(y) = Q(7y), we get from (2.9)

R(B@.N + X, F) = R(B@N + X, F)



Note that (Z.7) ensure the absolute convergence of the series (Z.9) over v € '\ {0}.
Using (L2), (Z14) and ([2.I3) , we obtain the assertion of Lemma 1. m

Let n(t) = n(|t]), t € R! be an even function of the class C'*°; moreover, let
n(t) = 0 for |t| < 1,0 < nt) < 1for |t| < 2 and n(t) = 1 for |[t| > 2. Let
n=s"'logy, N, M = [\/n] , and

mu(Y) = 1 =n2[Nm(y)|/M). (2.16)
By (23) and (29), we have
R(Bon +x,T) = (7% det T) L (A(x, M) + B(x, M)), (2.17)
where ~
u Q(1vy)e i
Ax M) = Y T[sin(rbNy) M) (Nﬁ(s; X))
~yer+\o =1
u — Q(r7)e !
B(x, M) = Z HSiIl(?TeiNi%) u nM(PY))NEnZ:) () x>7
~er\0 i=1
E(f) = f(0)de.
[0,1]°
By the triangle inequality, we get
m*detT sup |R(Bgn +x,T)| > [E(A(x, M))| — |E(B(x, M))|. (2.18)

0c(0,1]s

In §2.5 we will find the lower bound of |E(A(x, M))| and in §2.9 we will find the
upper bound of |E(B(x, M))|.

2.2. The logarithmic space and the fundamental domain. We consider
Dirichlet’s Unit Theorem (2.2]) applied to the ring of integers O. Let €y, ..., €51
be the set of fundamental units of Up. We set [;(x) = In|x;], i = 1,...,s, I(x) =
(l1(x), ..., ls(x)), 1 = (1,...,1), where x € R®* and Nm(x) # 0. By [BS, p. 311],
the set of vectors 1,1(€1),...,1(¢; — 1)) is a basis for R®. Any vector 1(x) € R?
(x € R*, Nm(x) # 0) can be represented in the form

I(x) =&+ &l(er) + -+ &1l(€-1) (2.19)
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where &, &4, ..., &1 are real numbers. In the following we will need the next defini-
tion

Definition 2. [BS,p. 312] A subset F of the space R® is called a fundamental
domain for the field IC if it consists of all points x which satisfy the following condi-
tions: Nm(x) # 0, in the representation (Z.19) the coefficients & (1 =1,...,s— 1)
satisfy the inequality 0 < & < 1, 1 > 0.

Theorem B. [BS, p. 312] In every class of associate numbers (# 0) of the field
IC, there is one and only one number whose geometric representation in the space
R? lies in the fundamental domain F .

Lemma A. [Wi, p.59, Theorem 2, ref. 3] Let I C R* be a lattice, detT' = 1,
Q C R* a compact convex body and r the radius of its greatest sphere in the interior.

Then
vol(Q)(l - g) <#TnQ< vol(Q)(l + @)

2r
provided r > 'k /2.

Let I' C R* be an arbitrary lattice. We derive from Lemma A

sup |[#0 N (tQ + x) — thvol(Q)/detT'| = O(t*Y) for t — 0. (2.20)

xeRS

See also [GrLe, p. 141,142].

Lemma 2. Let €, = max <<, |(€%);| and €, = min;<;<,|(€¥);|. There

exists a constant cyq,c5 > 0, such that

#kecZ7 e, <l =t Ot (2.21)
and
#kecZT e, >e =t Ot (2.22)
Proof. By ([219), we have that the left hand sides of (2.21)) and (2.22)) are equal
to
s—1
#HkeZ | Y kilj(e) <t j=1,..,5},
i=1
and .
#{k c Zs_l ‘ Zkllj(el) Z _ta j = 17 "'78}7
i=1



respectively. Let
={xeRM7; <1, j€l,8]} and Qy = {x e R* M3, > —1, j € [1,4]},

with 2; = x1l(€1)+- - -+ xs-10;(€5-1). Wesee 21 +---+25 = 0. Hence #; > —s+1
forx € Qand #; < s—1forxe Qs (j =1,..,5). By [BS, p. 115], we get
det(l;(|€;])ij=1, s-1) # 0. Hence, Q; is the compact convex set in R*™! ¢ = 1,2.
Applying [Z20) with k = s—1, and I = Z*~!, we obtain the assertion of Lemma 2.
n

Let cl(K) be the ideal class group of K, h = #cl(K), and cl(K) = {C}, ..., Cp}.
In the ideal class C;, we choose an integral ideal a;, i = 1,...,h. Let 9(a) be the
absolute norm of ideal a. If h = 1, then we set po =1 and I'y = 'n. Let h > 1,
i€ [1,h],

M, ={ueO|u=0 modaq}, I;=0(M,;), and p, = H‘ﬁ (a;).  (2.23)

Lemma 3. Let w > 1,i € [1,h], Fy,(s) ={y € F | |[Nm(y)| < My,

sgn(y;) = <,i = 1,...,s}, where sgn(y) = y/ly| for y # 0 and ¢ = (<1, ...,5) €
{—1,1}*. Then there exists cs; > 0, such that

sup Z 1 — co My jw®| = O(M;™Y®), for My — .

RS
XER e (ri+x)NFar, (<)

Proof. It is easy to see that Fyy, (¢) = M;/*Fy(s). By [BS, p. 312 ], the funda-
mental domain F is a cone in R®. Let F = {y € F| lu;| <o,sgn(yi) = s,
i=1,...stand let F = {y € F | [Nm(y)| > 1}, where y = SUDy R, (6)i=1, .5 lyi-
We see that Fy(s) = F\ F and F,F are compact convex sets. Using (Z20) with
k= s, = wl';, and t = Mll/s we obtain the assertion of Lemma 3. m

2.3. Construction a Hecke character by using Chevalley’s theorem.
Let m be an integral ideal of the number field K, and let J™ be the group of all
ideals of K which are relatively prime to m. Let S' = {z € C| |z| = 1}.
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Definition 3. [Ne, p. 470] A Hecke character mod m is a character
x: J™ — St for which there exists a pair of characters

Xp: (O/m)" =8 X (RY) = S,

such that
x((a)) = x(a)xoo(a)
for every algebraic integer a € O relatively prime to m.

The character taking the value one for all group elements will be called the
trivial character.

Definition 4. Let Ay, ..., Ay be invertible s X s commuting matrices with inte-
ger entries. A sequence of matrices Ay, ..., Ag is said to be  partially hyperbolic
if for all (ny,...,ng) € Z%\ {0} none of the eigenvalues of A}*... A% are roots of
unity.

We need the following variant of Chevalley’s theorem ([Ch], see also [Ve]):

Theorem C [KaNi, p. 282, Theorem 6.2.6] Let Ay, ..., Aq € GL(s,7Z) be com-
muting partially hyperbolic matrices with determinants wy, ..., wq, p*) the product
of the first k primes numbers relatively prime to wq, ...,wq. If z,2 € Z° and there
are d sequences {ji(k), 1 <i < d} of integers such that

.(n .(k
i &

AV Az =2( mod p®), k=12 ..

Y

then there exists a vector (jfo), ...,j[(io)) € 7Z° such that

it i
Al AV Z =1z (2.24)
Let
1, if sis odd,
=<2 if siseven, and Be with Nijo(€e) = —1, (2.25)
3, if siseven, and Je with Ny o(€) = —1.

Let € {1,2}. By [BS, p. 117], we see that there exist units €; € Up, with
Nig(€i) =1,i=1,...,s — 1, such that every € € Up can be uniquely represented
as follows

e=(—1)%" € with (k... ks) €Z°7", a e {0,1}. (2.26)
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Let © = 3. By [BS, p. 117], there exist units €; € Up, with Ng/g(e;) = 1,7 =
1,...,s—1and Nk/g(€) = —1, such that every € € Up can be uniquely represented
as follows

€= (—1)"e2e €, with (ky,...ke1) € Z°7Y, ar,a0 € {0,1}.  (2.27)

s

Consider the case p = 1. Let I; = diag((oj(€;))i<j<s), ¢ = 1,...,s =1, ['p =
0(0), f1,....f; be a basis of I'p, €; = (0,...,1,...,0) € Z°, i = 1,..., s a basis of Z°.
Let Y be the s X s matrix with ;Y =f;, « = 1,...,s. We have Z°Y = I'p. Let
Ai=YLY ' i=1,..,5—1. Wesee Z°A; =7° (i=1,...,s — 1). Hence, 4; is the
integer matrix with det A; =det; =1 (i=1,...,s — 1).

Let z = (1,...,1) and z = —z. Let h > 1, and let A, = poI, where [ is the

identity matrix. Taking into account that (" ...e" 7' ph* ); = 1 for some j € [1, 5]
if and only if k& = ... = ks = 0, we get that Al, ..., Ay are commuting partially

hyperbolic matrices. By Definition 4, —1 is not the eigenvalue of AI’“ AP and

ZAlfl...A’s‘“S # z for all (ky,...,ks) € Z°. Applying Theorem D with d = s, we have
that there exists an integer i > 1 such that (py,p®) = 1,

zAM A% 2 2( mod p®) forall (ki ..., ke 1) € Z°7,
and
(€. € ), # —1( mod p@) forall (ky,...keq) €Z°7', je[l,s]. (2.28)

We denote this p® by ps. We have (py, p3) = 1. If h = 1, then we apply Theorem D
with d = s — 1.

Let p3 = p3O and P = O/p3. Denote the projection map O — P by 7. Let O*
be the set of all integers of O which are relatively prime to p3, P* = 7 (O*),

E={velP |3 (k... k) € Z°  withv = (—1)7€M...€"'( mod ps)},
where j = 0,1, and £ = &E UE;. By 22]), &N & = 0. Let
Xips(v) = (=1)7, for ve€g;, j=0,1. (2.29)

We see that xi ,, is the character on group £. We need the following known asser-
tion (see e.g. [Is, p. 63|, [Ko, p. 446, Ch.8, §2, Ex.4]) :

Lemma B. Let G be a finite abelian group, H is a subgroup of G, and X iS5 a
character ofH Then there exists a character x g of G such that X (h) = xa(h)
for allh € H.
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Applying Lemma B, we can extend the character xi,, to a character xs,, of
group P*. Now we extend x3,, to a character xs,, of group O* by setting

X3.p3(V) = Xaps(m1(v)) for ve O (2.30)

Let
Xa.ps (V) = X3.p5(V)Xoo(v)  With  Xoo(v) = Nm(v)/[Nm(v)],
for v € O*, and let
X503 (V) = Xaps (V). (2.31)
We need to prove that the right hand side of (2.31)) does not depend on units

€ € Up. Let € = €. €. By [@26), 229), and ([230), we have X3ps(€) = 1,
Nm(e) =1, and xoo(€) = 1. Therefore

X4, (VE) = X35 (V€)X oo (VE) = X3.p5 (V) X305 (€) Xoo (V) Xoo (€) = X35 (V) Xoo (V)

Now let € = —1. Bearing in mind that y3,,(—1) = —1, Nm(—1) = —1, and
Xoo(—1) = —1, we obtain x4,,(—1) = 1. Hence, definition (2.31]) is correct. Let
77 be the group of all principal ideals of K which are relatively prime to p3. Let

X6.p5 ((01/02)) = X5.5((v1))/ X505 ((v2))  for vy, 0, € O

Let P* is the group of fractional principal ideals (a) such that a =1 mod p3 and
oi(a) >0, i=1,...,s. Let mg : IP — TP /PP be the projection map. Bearing in
mind that ygp,(a) =1 for a € PP, we define

X7.ps(M2(0)) = X6ps(a) for ae IPs.

By [Na, p. 94, Lemma 3.3], J%* /PP is the finite abelian group. Applying Lemma B,
we extend the character yz,, to a character xs,, of group J"/PP. We have
Xsps(a) =1 for a € PP and we set Xog,,(0) = Xsps(m3(a)), where 73 is the proec-
tion map JP — JP3/PP3. It is easy to verify

X055 (V) = X85 (T3((0))) = X705 (M3((0))) = X7, (m2((v)))

= X6.05 (V) = Xaps (V) = X3,5(V) Xoo (V)

for a € ZP. Thus we have constructed a nontrivial Hecke character.
Case pu = 2. We repeat the construction of the case p = 1, taking p3 = 1 and

Xaps ((v)) = Nm(v)/[Nm(v)].
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Case p = 3. Similarly to the case p = 1, we have that there exists ¢ > 0 with
€M #e( mod p?), forall (ky,.. k)€ Z" (2.32)
We denote this p® by ps. Let
E={veP |3 (ki ks 1) €Z° ' withov = el € ( mod p;s0)},
where j = 0,1, and £ = & U E;. By [232), EgNE = 0. Let
Xaps (V) = (=1)7 for veE;, j=0,1.

Next, we repeat the construction of the case u = 1, and we verify the correction of
definition (2.31)). Thus, we have proved the following lemma:

Lemma 4. Let p € {1,2,3}. There exists p3 = p3(pn) > 1, (p2,p3) = 1, a
nontrivial Hecke character X,,, and a character X,, on group (O/psO)* such that

Xps (V) = Xps (V) with Xy, (v) = X, (0)Nm(v) /[Nm(v)],
forv e OF, and X, (v) =0 for (v, psO) # 1.

2.4. Non-vanishing of L-functions. With every Hecke character y mod m,
we associate its L-function

L(s,x) =) mX((Z))

where a varies over the integral ideals of K, and we put x(a) = 0 whenever

(a,m) # 1.

Theorem C. [La, p. 313, Theorem 2|. Let x be a nontrivial Hecke character.
Then

L(1,x) # 0.

Theorem D. [RM, p. 128, Theorem 10.1.4] Let (ax)r>1 be a sequence of
complex numbers, and let Y, a, = O(2?), for some § > 0. Then

> an/n? (2.33)

n>1
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converges for R(s) > 4.

Theorem E. [Na, p. 464, Proposition I] If the series (233]) converges at a
point sg, then it converges also in the open half-plane s > Rsq, the convergence
being uniform in every angle arg(s —s0) < ¢ < 7/2. Thus (2.33) defines a function

regular in s > Rsy.

Let fi, ..., f, be a basis of ', and let fi", ..., f1 be a dual basis (i.e. (f;, ) = 1,

(fi,£) =0,1<4,j<s,i#7). Let
Ay ={aff+ - +aff|0<a; <w—1,i=1,..,s},
and Af, ={b €A, | (w,b)=1}.
Lemma 5. With notations as abowve,
p(M, j) = > Xps(¥) = O(M'Ve), je(L,h],
~yeT';NF, INm(v)|<M/2

and

Y () =0

N(a)<M/2

for M — oo, where a varies over the integral ideals of IC.

Proof. By Lemma 4, we have

p(MG)= > Sps(@) Y a-esplas, ),

ach;, Ge{—1,+1},i=1,....s

plas,j) = > L.

~yel';NF, v=a mod ps,
INm(v)[<M/2, sgn(v;)=si, i=1,...,8

where

Using Lemma 3 with M; = M /2 and w = p3 , we get

pla,s,j) = > 1= ¢, M/p§ + O(M~V*).

YE(psl'j+a)nF, [Nm(vy)|<M/2
sgn(v:)=¢i, i=1,...,s

15
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Therefore

i)=Y in) > G Gs(eo M/psHO(M! ) = O(M' ).

achs, Ge{—1,+41},i=1,...,s

Hence, the assertion (2.35]) is proved. The assertion (2.36]) can be proved similarly
(see also [CaFr, p. 210, Theorem 1}, [Mu, p. 142, and p.144, Theorem 11.1.5]). [ |

Lemma 6. There exists My > 0, ig € [1,h], and ¢; > 0, such that

po(M.io)| > ¢; for M > My, with po(M,i) = 3 Xes(7)
~el;NF, INm(y)|<M/2 | m(’Y)‘

Proof. Let cl(K) = {C4,...,Cy}, a; € C; be an integral ideal, i = 1, ..., s, and let
C} be the class of principal ideals. Consider the inverse ideal class C;'. We set
a; = {ai,...,a,} N C; . Then for any a € C; the product ad; will be a principal
ideal: aa; = (), (o € K). By [BS, p. 310], we have that the mapping a — («)
establishes a one to one correspondence between integral ideal a of the class C; and
principal ideals divisible by a;. Let

p1(M) = Z Xps (@)/D(a).
N(a)<M/2
Similarly to [BS, p. 311], we get
-y 3 Xps(a) 3 3 X (0/81)
1<i<h  a€Cy,M(a)<M/2 N(a) 1<i<h aeCy,M(a/d;))<M/2 N(a/a;))
a=0 mod a;

Let
p2(M, i) = > Xp(@)/Na).
acCh, N(a)<M/2
a=0 mod a;
We see 1
-y 2 Xp3 /“’ po(MN(&;), 7). (2.37)
1<i<h

By Lemma 4, we obtain X,,(v)/INm(vy)| = Xps((7))/9M((7y)). Using Theorem B,
we get po(M, i) = pa(M,i). From (236), Theorem C, Theorem D, and Theorem E,

we derive p (M) — Moo L(1, xp,) # 0. By (2.35) and Theorem D, we obtain that

16



there exists a complex number p;, such that po(M, 1) Mogo pi, © = 1,..., h. Hence,

there exists My > 0, such that

[L(LXp)1/2 < |pr(M)], and [ = p2(M, i) < |L(1, %) [(88) ", (2.38)

with ﬁ = Zlgigh ‘ﬁ(al), for M Z Mo. Let P = Maxj<i<p ‘pz‘ = |pi0‘.
Using (2.37), we have

|L(1, Xps)| /2 < |pr(M)]| < pB + ’ Z Xps(ll//ag)
1<i<h

< pB+|L(1,xp,)|/8 for M > M.
By (2.38), we get for M > M,

p > |L(L, Xp)|(48)7Y and  [po(M,io)| = [pa(M, )| > [L(1, Xy, )|(88) 7

Therefore, Lemma 6 is proved. =

(pi = p2(MN(a;),14))

Lemma 7. There exists My > 0, such that

|U| > c7/2 for M > M,, where o= Z M.

’YEF@OQ}- Nm(’y)
Proof. Let ny (k) =1 —n(2|k|/M),
>~<P3 ('7) >~<p3 (7)77M(Nm(7))
= > ,oand dh= Y .
&, TNmfy) R Non(y)]
[Nm(v)[<M/2 M/2<[Nm(y)|<M
From Z.I6), we get na(y) = nu(Nm(vy)), nu(vy) = 1 for [Nm(y)| < M/2, and
v (7y) = 0 for |[Nm(vy)| > M. mg Lemma 4, we derive
. SN
9= 3 i @my) =g 9= 9, 40, (2.39)
~y€el'y,NF, [Nm(vy)|<M |Nm(7)|
iQ s =
Bearing in mind that Nm(vy) € Z and Nm(y) # 0, we have
Ay, ] k . ~
9y = Z 777]]:‘[( ), with a;, = Z Xps (7)-
M/2<n<M Y€, NF, [Nm(~)|=r
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Applying Abel’ transformation
S ogfi=gFi— Y (91— gs)Fr, where Fo= > f;

m<k<n m<k<n—1 m<i<k

with fy = ar, gr = ia(k)/k and Fie = 32 cr o7 my2—0.1<|Nm(y)|<k Xs (V)
we obtain

do =nu(M)Fy /M — > (ar(k+1)/(k+1) — 0 (k) /k) Fe.  (2.40)

M/2-0.1<k<M—1
Bearing in mind that 0 < 7y(x) < 1 and 7' (z) = O(1), for |z| < 2, we get
e (ke + 1)/ (k +1) = e (R)/R)| < e (k 4+ 1) /(B + 1) = s (k + 1) /)]
+ | (k1) = e (k) /k] < 1/K2 +2(kM) ™ sup [ (2)] = O(k?).

z€(0,2]

Taking into account that Fy, = O(M'~'/*) (see (Z35))), we have from (Z40) that
¥y = O(M~1/#). Using Lemma 6 and (Z39), we obtain the assertion of Lemma 7.
]

2.5. The lower bound estimate for E(A(x, M)). Let n = s™'log, N with
N=N N, 7=N"2 M= [/n], and

Go={y €T |[Nm(v)| > M},
Gi={y €I ||Nm(y)| < M, max|y| > 1/7°},

Gy ={y el | |Nm(y)| < M, 1/7° > mlaxhi\ >n/T}, (2.41)

Gy ={y el ||Nm(y)| < M, n/7 > max |y| > n"*/7},
Gy={yel'*\0||Nm(y)| < M, mlax|fyi| <n7*t7Y nT > NYs miin\%-\},
Gs = {7 € T [Nm(9)] < M, max | < n~*r L, N min | € o, n']}
Gs={v €T+ | |Nm(y)| < M, mlax\%-| <n7Sr7l NYs miin |v:] > n}.

We see that

FJ'\OZG()U"'UGG, and GiﬂGj:Q),fori#j.
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Let p = pipeps, b € A,. By (2.16) and (2.17), we have

A(b/p, M Z Ai(b/p, M), and Ay(b/p, M) =0, (2.42)
where
sin (6, Ny P DA Y)e(r. b/p) + &)
b WEZG 11 i) Nm(v) = (2.43)

We will use the following simple decomposition (see notations from §2.2 and

@225) - @.21)):
6= U U U {vea

1<GSM 7€l LN F, Nm(yo)|€(i—1,j]  a1,02=0,1

N = (1) ek, k € 75 1} i€ 1,6], (2.44)
where k = (ky, ..., ks_1), €< =€ .- €' and €y =1 for = 1,2.

Lemma 8. With notations as above
Ai(b/p, M) = O(n**?Inn), where M =[y/n] and i€ [1,5].

Proof. By (2.43), we have

[Ai(b/p, M) < Y [T |sin(#60;N;j9)Q(7)/Nm(7)]. (2.45)

~eG; 1<5<s

Casei = 1. Applying [220), we obtain #{y € T+ : j < |vy| < j+1} = O(5*71).
By 1) we get Q(my) = O((7|v])~%) for v € G;. From [24H) and (Z41]), we have

Ailb/p, M) = O( > 72 (max b))
~YElL max;epy o [7i|>1/72

—2s
o(X X ) =0 £ ) =ow
jzr=?  qert et o2
max; |v;|€[7,5+1)
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Case i = 2. By (27) we obtain Q(7v) = O(n=2) for v € G,. By [BS, pp. 312,
322], the points of I'o N F can be arranged in a sequence 4*) 5o that

INm(5M)| < [Nm(5?)| < ... and Yk < [Nm(5®)| < Pk, (2.46)

k= 1,2,.. for some c® > ) > 0. Let €, = max;<i,|(€¥);| and €, =
min; <<, |(€¥);]. Using Lemma 2, we get

#keZ e, <7 =0n""), where T=N"?=¢" (2.47)

max

Applying (2.44]) - ([2:47), we have
Ampin=0( Y ¥ aF) =0 =oq).

1<Gj<M kezs—1, ek, <172

mar —

Case i = 3. Using Lemma 2, we obtain

#lk e Z | €k e L r,ne 7)) (2.48)

max

= cy(In* 1 (/1) = In* N (n /7)) + O(n*72)
= ojmet o (1 BT (L CE DRI o),

| In 7| | In 7|

Applying (2.44)) - ([2.47)), we get
As(b/p, M) = O( Z Z 1) = O(Mn*?Inn).

1<j<M  keZs—1eK, . €n—"1/rnst1/7]

max

Case i = 4. We see min;<;<s | sin(mN;y;)| = O(n™°) for v € G4. Applying (2.44))
- [2417), we have

| As(b/p, M ( Z Z n_s) = O(Mn™?).

1<j<M keZs-1, ek, <r—4
Case i = 5. Similarly to (2.48]), we obtain from Lemma 2 that

{k c 75 1 | 6 [ _S_lN_l/S,nS+1N_1/S]} — O(ns—2 lIlTL)

min

Therefore

As(b/p, M) = O( Z Z 1) = O(Mn*?Inn).

1<j<M xe7s— 1 k E[n s—1N—1/s nSTIN— l/s]
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Hence, Lemma 8 is proved. =
Let ¢ = ($1,..,65), L = (1,1,...,1), and

As(b/p, M,¢) =1+ s,(2V=1)7" Q(”)”M(”)lflfé’(g’;o/ PO (54

v€Gs

with () = (61(s), ..., 05(s)) and 0;(s) = (1 +)0;N; /4, i =1,...,s
By ([2.43), we see

As(b/p,M)= > As(b/p,M,s). (2.50)

§€{17—1}S

Lemma 9. With notations as above

E(AG(b/pa M)) = AG(b/p> Ma _l) + O(l)a

where
. ’b )
Ailb/p, M, —1) = (~2y=T) 37 ) N <(7> /) _ya L (2s)
v¥€G; m
Proof. By (2.49) and (Z.50), we have
y E(e(c0; Ny /4
Eb/p M) — do(bfp 0t -1 =0 3 3 3 me A}
se{1,-1}* v€Gs 1<i<s
s#-1
Bearing in mind that
e(z) —1
E(e(6;2)) = —— 2.52
el = LD 25)

and that |N;v;| > n®/cs for v € G (see (23), and ([241])), we get

[E(As(b/p, M)) = As(b/p, M, ~1)| = O( Y n~*[Nm()| ).

v€Gs

By ([249) and (Z5I), we obtain
Ao/ M, 1) — A fp, 1, ~1)] = O Y 12U B,
6 ) ) T = 6 ) ) = |NII1

~eGe
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By (Z8) and A1), we see Q(ry) = 1 + O(n~*) for v € Gg. From (24T, [(2.44)
and (2.47), we have #Gs = O(Mn*~'). Hence

E(As(b/p, M)) = As(b/p, M, 1) = 0( > n~*INm(5)| ") = 0(1).

v€Gs

Therefore, Lemma 9 is proved. =

Let
G7 - U U U T’Yoﬂhaz,ka (2.53)
~oETHNF,Nm(vo)|<M  a1,02=0,1 kEYN
with
Vv ={kez " [en, = N7/}, (2.54)
and

Typarake = {7 €T |7 = 7p(—1)" €5 €}
We note that #7541 ek < 1 (may be vy(—1)"€j?e* ¢ I'H).
Lemma 10. With notations as above
E(A(b/p, M)) = Az(b/p, M, —1) + O(n*~3?Inn), where M =[y/n]. (2.55)
Proof. By (2.51]), we have
[ As(b/p, M, —1) — Az(b/p, M, ~1)| = O(#(G= \ Ge) + #(Gs \ G7)).

Consider v € G (see (Z4I)). Bearing in mind that min,<i<, || > n*N~V5 we
get

|7i| = [Nm()| H |7j|_1 < p ST NIHE=D/s o n~*/T, with 7= N2,
[1,8]35i

Thus
Gs={y €T | Nm(y)| <M, NY*minl|y|>n}.

From (2.53), we obtain G7 D Gg. Bearing in mind that [Nm(v)| > 1 for v € '\ 0,
we have that Gg O G5, where

G5 = U U U T’yo,al,ag,kv

YoELNF, [Nm(vyo)|<M a1,a2=0,1 keyy
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with
Vv ={keZ 1| NVsek, > n>}. (2.56)

By Lemma 3, we get #{~v, € ['* N F, [Nm(v,)| < M} = O(M). Therefore
[As(b/p, M, ~1) = Ar(b/p, M, ~1)| = O(M#(Yx \ Vx))-
Using Lemma 2, we obtain
#Vv\Vn) = {k e 277! | ey, € [NTH2, 0 N7}
= c5(lns_1(N1/s) — lns_l(n_2sN1/s)) +0(n*7?)

2
= O(lns_l N((l - (1- %)#ID) =0O(n*?Inn), n=s"log, N.

Hence . .
| Ag(b/p, M, —1) — Az(b/p, M, —1)| = O(Mn*%1nn).

Applying Lemma 8 and Lemma 9, we get the assertion of Lemma 10. =
Let

5u(y) = 1, if v ewO,
wi)= 0, otherwise.

Lemma 11. Let v € O, then

Y <y > ) =),

YEAw

Proof. It easy to verify that

1, ifb=0 mod w,

i (2.57)
0, otherwise.

0<k<w

v Z (kbjw) = 6, (b), where 5w(b):{

Let v = dify + -+ + dJf, and y = aiff + -+ + a,f (see @Z34)). We have
(v,¥) = a1dy + - - + asds. Bearing in mind that v € wQ if and only if d; = 0
mod w (i =1,...,s), we obtain from (2.57)) the assertion of Lemma 11. m
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Lemma 12. There exist b € A, ¢s > 0 and Ny > 0 such that
|E(A(b/p, M))| > cgn® ' for N > Nj.

Proof. We consider the case = 1. The proof for the cases p = 2,3 is similar.
By (2.51) and Lemma 11, we have

2 Nz (Y1) (Y2)0p (Y1 — 72)
T 2 Wb/ M Nom(,) N

beA, Y1,72€G7

Sl =

beA, ~€G7,v=b modp

Bearing in mind that ny(7) = 0 for [Nm(vy)| > M (see (2.16)), we get from (2.53))

that (ceby)
_ melsey)
=X X X 2. Nmenyl
beAp, <=—11keYN ~ellnF, cek~yelt

gek"yzb mod p

We consider only b = p1by € A, where by € A,,,, and p = p1paps. By (2.1]), we
obtain T'y,0 CT+ CTp and I'y,0 = {v € '*|y =0 mod p;}. Hence, we can take
[',,0 instead of T+, We see sy € T'p for all v € T'p, k € Z*7! and ¢ € {—1,1}.

Thus ( y e
GE
D o D S S

k
€
bEAp,pg <——11 yeToNF (p1§ 7)
k€EYN  cek¥y=b mod paps

By Lemma 4, (p2, p3) = 1. Hence, there exists wy, w3 € Z such that
powe =1 mod p3 and pzws = 1 mod py. It is easy to verify that if b2, b2 € Ay,
(see (m])) bg,bg - APJ’ and (bg,bg) 7& (bg,bg) then

bngw?, + 53P2w2 # 52293103 + 53P2w2 mod paps.
Therefore
Apng = {b € Ap2p3 ‘ B b2 € A;nzv b3 - Apg with b = b2p3w3+b3p2w2 mod pgpg}.

Thus

TIM(pl’Y) 2
> AL T
EDDIDS ) Rm(pre)
ba€Ap, bs€Ap; s=—1,1 ~YeToNF
keVN cefy=bopzws+bapows mod paps
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[\

. N (p17y)
ba€Ap, bs€Ap, ¢=-1,1 ~YeT' oNF
KeVN cefy=bopsws+bspows mod paps

-y ¥ ‘ 3 S Xps (S€°Y) a1 (p17Y)
baChpy bachp, =Ll veTonF Nm(pis)
keVn ceky=bopzws+bzpows mod pap3

N

Using the Cauchy—Schwartz inequality, we have

P> Z ‘ Z Z Z Xps (SEY) s (P1Y) .

SN
bo€Ap, b3z€Ap; s=—11 ~eToNF b1 (<7)
keVN  ceky=bapzws+bzprws mod paps

We see that ceXy = bypsws = by mod p, if and only if there exists bs € A,, such
that ceXy = bopsws + bspows mod pops. Hence

P20 > Z ‘ Z Z Xps (S€°Y) 1 (1Y) 2' (2.59)

Nm
b2€Ap2 ¢=-—1,1 ~yeloNF (g7>
keyn ce¥y=bs mod po

By 223), we get T';, = <€k, for all k € Z*7! ¢ € {—1,1}, and there exists
(bi() g Ap2 with

Liy = U (p2l'o +b),  where (p2l'o +b1) N (pel'o +b2) =0, for by # by.

bECPiO

We consider in (2.59) only by € ®;,. Applying the Cauchy—Schwartz inequality, we
obtain

. K

Nm
b2€<1>i0 ¢=—1,1 ~yeToNF (§7)
EVN ceky=by mod p2

‘ 2

:’ D Xps ($€“%) s (p1y)

‘ 2

¢=—1,1 ’VEFiOﬁ]‘— Nm(§7)
keYn
Using Lemma 4, we get
oy Nm(y)] o Nm(cey)
Xp3(§€ 7) Nm(g'y) = Xps (§6 7) ‘Nm(gekv)‘
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[Nm(v)]
Nm(y)

25,0805 0 > } XPS(V)UM(pIV)
D1 PaP30 = g;l WEFZOF Nm(7)
b 7/0
keyn

= Xpa ((SE*Y)) = Xps (7)) = Xps (V)

Hence

:

Bearing in mind that 9 (p1y) = Nar/ps (77) (see ([2.I6)), we obtain

Xps (V)1 /w3 (7) ‘2

PIDED0 > 4#37%‘ > Nan()|

’VEFZ'OO]:

Applying Lemma 2, we have from (234) that #Yy > 0.5¢5(n/s)*"" for N > N
with some Ny > 1, and n = s~ 'log, N. By Lemma 7 and (Z58)), we obtain

sup |A7(b/p, M, —1)| > 270" > c7(2p3paps) *#Vn > 0.5¢5¢7(2p2papss) *n®~ Y,
EAp

with M = [/n] = [\/logy N] > M, + log, Ny. Using Lemma 10, we get the asser-
tion of Lemma 12. =

2.6. Auxiliary lemmas. We need the following notations and results from

[Skr]:
Lemma C. [Skr, Lemma 3.2] Let I' C R® be an admissible lattice. Then

sup > [[ 1+ v — @)™ < Hp

x€RS ’yef‘ 1<i<s

where the constant Hy depends upon the lattice T only by means of the invariants
detI" and Nm I" .

Let f(t), t € R, be a function of the class C*°; moreover let f(t) and all
derivatives f*) belong to L'(R). We consider the following integrals for 7+ > 0:

f6) = [~ D

t

dt, J;(#,€) = /_ T HOB(Fe(—eDdt. (2.60)

—00
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Lemma D. [Skr, Lemma 4.2] For all « > 0 and § > 0, there exists a constant
C(a,8) > 0 such that

max(|1(#, &), [J(F, €)]) < Ca,p) (L +7)7*(1+ €))7,

Let m(t), t € R, be an even non negative function of the class C'*°; moreover
m(t) =0 for |t| < 1, m(t) =0 for |t| > 4, and

—+00

> m(27) = 1. (2.61)

g=—00

Examples of such functions see e.g. [Skr, ref. 5.16]. Let p = (p1,...,0s), pi > 0, i =
1,...,8,a>0, 20 =7 =1,

/Wmi(p’x) — w(p1x1>77(ax1) w(p]xj)m(x]> l fOI' Nm x # 07 (262)

T Z;j xX;

j=2
and /V[?av,-(p,x) =0 for Nm(x) =0, i=0,1,...,s. Let

Wa,i(rapax): Z /Wa,i(p>7)e(<7>x>)' (263)

~er+\o

By (2.6]) and (2.7)), we see that the series (2.63)) converge absolutely, and Waﬂ-(p, X)
belongs to the class C*°. Therefore, we can use Poisson’s summation formula (2.4]):

Wa,i(f‘>p>x) = detrZWa,i(p>7 - X)> (264)

~el

where /Wa,i(p, x) and W, ;(p, x) are related by the Fourier transform. Using (2.62),
we derive

. 1),/. 2) /.
Wa,i(pax) = H wg )(pjaxj) H wj( )(pj>Ij)?
Je{L,... s\ {i} Je{L,...,s}n{i}

where co-factors can be described as follows (see also [Skr, ref. 6.14-6.17]):
If j=1and i # 1, then

w(r, &) = /_ h %n(at)@(ﬁ)e(—gt)dt = I(a"'r,a7'¢). (2.65)

oo
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Note that here we used formula ([2.60). If j =1 and ¢ = 1, then
@) (1 - et — ade (a-tr g
wi (&) = [ gnlat)u(rt)e(=gt)dt = alp(a™ 7 a™§).
Note that here we used formula ([2.60) with f;(t) = n(t)/t*. If j > 2, then
o q R
w(r9) = [ GmOB(re(-et)dt = Iy (7€) (2.66)

Here we used formula (2.60) with fo(t) = m(t)/t!, j=2,...,s, [ =1,2.
Applying Lemma D, we obtain for 0 < a < 1 that

11 (7, €)] < Easzn(1+ a7 €))7, and (1, €)] < épuan(1+ €N, (2.67)

with j = 2,...,s, and [ = 1,2. Now, using (2.64)) and Lemma C, we get (see also
[Skr, ref. 6.18, 6.19, 3.7, 3.10, 3,13)):

Lemma E. Let T C R® be an admissible lattice, and 0 < a <1 . Then

sSup |Wa,i(ra pa X)| < 5(25725) det PHF
x€Rs

2.7. Dyadic decomposition of B(b/p, M). Using the definition of the func-

tion m(x) (see (Z.6I))), we set

M(x) = Hm(xj). (2.68)
Let 29 = (291, ...,2%), and
Ya(y) = M(279 - 4)Q(r7)/Nm(v), (2.69)

Bo(M) = Bq(b/p, M) = Y [ sin(m:Nivi) (1 = s (7)o (7))e((v, b/p) + ),

yer+\o i=1
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By (217) and (2.61]), we have
B(b/p, M) = By( (2.70)

QeL

with £L={q=(¢1,..,¢s) €EZ° | 1 + -+ - + qs = 0}.
Let

By(M) = > []sin(x0:iNivi)n(m2™® /M)dg(v)e((y,b/p) + &), (2.71)

~yert\o i=1

and

> T sin(mb:iNi:) (1 =nar (7)) (1 =0 (12270 /M))ibq(v)e((v, b/p) + ).

~yer+\o =1

According to (2.10), we get ny(v) = 1 — n(2|]Nm(y)|/M), n(z) = 0 for |z| < 1,

n(x) = n(—x) and n(x) = 1 for |z| = 2. Let n(y2~" /M)m(227%) - --m(y:27%) #
0, then |[Nm(~y)| > M (see (2.61])), and

(1= (V)27 /M) = n(2[Nm()[/M)n(y27" /M) = n(n2"" /M)
Hence
By(M) = By(M) + Cq(M). (2.72)
Let n=s"'log, N, 7 = N~2 and

Gi={qel | max g; > —log, 7 + logy n}, (2.73)

.....

Go={qeL\G | mln q,ﬁ —n —1/2logy n},

.....

Gs={qe L] —n—1/210g2n< n;un ¢i, MAxX ¢ < —log, 7 + logy n},

..........

Gs={a€Gs|q > —n+slogyn},
Gs={q€Gs| —n—slogyn <q < —n-+slogyn},
Go={d€Gs| ¢ <—n—slogyn}.
We see
L=GUGUG;, G3=G,UGUGs and G, NG, =0, fori+#j (2.74)
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and 4,5 € [1,3] or 4,j € [4,6]. Let

M) =" By(M). (2.75)
acy;
By (270)), we obtain
B(b/p,Al)::Eﬁ(ﬂl)4‘[ﬁ(ﬂ4)%‘f%(ﬂ4). Cl76)
Let
M) =3 Bo(M), Cs(M)= ) Cq(M). (2.77)
q€Gs qcgs
Applying (2.72) and [2.75]), we get
Bs(M) = Bs(M) + C5(M). (2.78)

By (2.7), we obtain the absolute convergence of the following series

Y 1Q(ry)/Nm(v)].

~yert\o
Hence, the series (2.71]), (275) and (2.77) converges absolutely.
Let
Bo(M,s) = Y n(m2 % /M)iq(v)e((v,b/p +6(s))) (2.79)
~el't\o

with 0(s) = (61(s), ..., 0s(s)) and ;(s) = (1 +)0;N; /4, i = 1, ..., s. By ([TI), we

have

Bo(M)= > - (2V=1)"By(M,5). (2.80)
ce{l,—1}s
Let 6o = —1=—(1,1,..,1),¢3=1=(1,—1,...,—1), and let
Bsa(M)=>" > - a2V=1)"Be(M,5), (2.81)
qegs ce{1,—1}°
$#62,63
By (M) = (—17(2v=1)" Y By(M.s;), i=34,56,j=23. (2.82)
a€g;

Using (Z.77) and (Z80), we derive
By(M) = By 1 (M) + By 2(M) + Ba3(M).
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Bearing in mind (2.74), we obtain

Bs(M) = Bs 1 (M) + B; ;(M). (2.83)

Let

Boju(M) = (=1)"59(2v=1)"" > B(M,s;), j=23 k=12 (2.84)

q<fs

where

BP(M.s) = Y7 a2 ™ /M)dg(v)n(2" "5 "y1)e((y. b/p + 6(<)))

~Y€ET+\0
and
BO(M,¢) = 3 n(n2™/M)ug(y)(1 = (2" "1))e((y, b/p + 8(c))).
~yer't\o

From ([2.79), (Z82) and (Z84) , we get
By(M,s) = B (M, ) + B (M,s) and Bs;(M) = B ;1(M) + Bs jo(M).

So, we proved the following lemma:
Lemma 13. With notations as above, we get from (2.76), (2-78) and (2.83)

B(b/p, M) = B(M) + C3(M), (2.85)

where

B(M) = By(M) 4 By(M) + Bs(M) (2.86)

and

Bs(M) = By (M) + > (By;j(M) + Bs (M) + B j1 (M) + B jo(M)).  (2.87)

7=2,3

2.8. The upper bound estimate for E(B(M)).

Lemma 14. With notations as above



Proof. Let q € Gy, and let j = ¢;, = maxi<i<s ¢, 90 € [1,...,s]. By 213), we
have j > —log, 7 + log, n. Using (2.69]), we obtain

M(279 - 7)Q(ry)

Ba) < Y- | T sin(mé:Nim) . (2.89)
To ol Nm(v)
yeI't\o
From (2.68) and (2.61]), we get
. IM(7)Q(29 - )|

Bo(M)| < p1 + pa, with p; = , 2.89

where .
X ={v€270.TH\0| || <2", |yl € [1,4], i =2,.... s},

and

Xy ={y €270 T\ 0| [yl > 2%, |yl € [1,4), i =2, .5},

We consider the admissible lattice 279 -T't, where Nm(T't) > 1. Using Theorem A,
we obtain that there exists a constant cg = co(I'*) such that

#{ye2 0T ||yl <4,i=2,..,5 20 Vy| € [k, 2k]} < ok,  (2.90)

where £k =1,2,.....
Let 49 = 1. We see that 729 = 727 > 2lee2n = . By ([2.7), (28]) and (Z.90),
we get

Balb) = O(F 3 [@(r209)| _ O<Z(1+T2q1+k)_2s>_

120 yer-ariyo < vz V()] =
20 y€2-9TH\0, 1<|y;|<4, i>2 >
240~ 1) |y €[2%, 2541
Hence ,
By(M) = O((127)2). (2.91)

Let 49 > 2. Bearing in mind (2.7) and (2.90), we have

pr = O( 3 3 M) - O( 3 (1+72%‘o)—23>.

i aps _ [Nm(v)| .
<k<ds(j+1) y€279.T1\0, 1< || <4, i>2 0<k<4s(j+1)
24057 |y |2, 28]

Hence _
pr = O@(1 +727)7%). (2.92)
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Taking into account that ¢, = —(gz +++-+¢s) > —(s—1)j and 727 > n, we obtain

B2, )5 (7270, )|
-o( X2 2 T

k24sj ye279.T1\0, 1<|;[<4, i>2
24D e[t 24 ]

- o( 3 (14 T2t (1 72%)—25> - O((l + 72%0)—%).

k>4sj

Therefore .
pa = O((1 + 727)7%). (2.93)

Thus |
By(M) = O(j(r27)7%). (2.94)

From (2.20), we have
> 1=0(*?). (2.95)

q€Z?, qi+...+4qs=0, max; ¢;=J

By @73). (7). @94 and [Z31), we get
Bi(M) =Y Bymy=0( > > i) )

q€Gy j>—logy T+logan Q€L max; q;=j

—o( Y ) = o)) = o).

j>—logy T+logy

Hence, Lemma 14 is proved. m

Lemma 15. With notations as above
Bo(M)| + |Boao(M) + By s.a(M)| = O(n*=3/2).

Proof. We consider By(M) (see [2.69), (Z73) and [273)). Let q € Go, and let
J = —Qi, = MiNo<;<s ¢, ip € [2, ..., s]. Wesee j > n+1/2log,n and |sin(mN;,7vi,)| <

7N, 27972 for m(27 %y, ) # 0. By (2:88) and (2.89), we obtain

NY527IM(7)Q(729 - )]
[Nm ()] '

Bq(M> = O(ﬂl +p2), with p; = Z |

qeX;

33



Similarly to (2.92), (2.93), we get
N5
neo( X > )

0<k<4s(j+1) ve2-a.T+H\0, 1<|y;|<4, i>2
24(371)‘71|6[2k,2k+1}
— 0( 3 Nl/SQ‘j) — O(jNV*279).
0<k<4s(j+1)

We see

1/s9—7175 1
p2:O< 3 3 N2 w2 7q1)|>'

et | [Nm(-y)]
>4sj y€2~9TH\0, 1<|y;[<4, i>2
24~y g2k 2741

We have maxj<;<s ¢ < —log, 7 + logy,n for q € Go. Hence ¢4 = —(q2 + ... + ¢5) >

(s — 1)(logy T — logy n) and 729 > 7o~ 5T = 272nsp s+l ~ 97255 Thyg

po=O(NV27 Y~ (14 720HF)72) = O(NVs279 Y~ 97 2(=20)) = O(N'/*27),
k>4s; k>4s;

Bearing in mind (Z95)), we derive

Bo(M) = 3 By(M) = o( 3 3 le/sz—j)

q<€Ga j>n+1/2logy n qEL ming<i<s gi=—J

_ O( Z js—lNl/s2—j> _ O(ns_?’/z).

j>n+1/2logy n

Consider p := éc(f)(M, 1)+ léff)(M, —1). By (269) and (2:84), we have

p=0( 3 Isin(xt Nyy)n(32 " /M)M(2 0 4)(7)/Nm ()

~yelrt\o
x (1= (215" ))e((v,b/p)|

=0 ( > |sin(m Ny 2%y (1 — 77(2“"“%"71))M(7)/Nm(7)|>-

~e2—ari\o
Applying (2.16)), (2.68) and (2.90), we obtain
p=0( ) [N1205,M(7)/Nm(v)]) = O(1/n).

~€2-ar-L\0, |y |<2~ 91— n—logg ntd
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- 0( 3 leql) — O(Ny2m2-n-n=log ) — (1 /p).

~E27ATH\0, 1< |y;] <4, i>2
71| <291l ntd

We get from (2.73) that
#Gs = O(n* ). (2.96)

By 273) and (ZR4), we get Bgao(M) + Bsa(M) = (n*2).

Hence, Lemma 15 is proved. m

Lemma 16. With notations as above
|E(l§31(M))| + |E(g43(M))| + |1§52(M)| + |1§53(M)| = O(n"*?).
Proof. By (2.69) and (2.79), we have
Ba(M,s) = Y nly/Mvg(2® - y)e((v, %)) (2.97)

~ye2—a.T'1L\0

S BEm Ty M) FT A ms)

~ye2-a.r+\o n Jj=2 i

with x = 29 - (b/p + 0(s)) and 6;(s) = (1 +G)0iN;i/4,i=1,..,s.
Applying ([2.64) and Lemma E with I' = 279", i = 0, and p = 729, we get

%

By(M,s) =0O(1).

Using (Z.73)), we obtain #G5 = O(n*"2logyn).
By [282)) , we get

Bsi(M) = 0( S 1By (MM, g)\) — O(n*2logyn), i=2,3.  (2.98)

qegs

Consider E(Bs1(M)) and E(Bys(M)). Let

Ez(f) = /0 f(e)dei-

Let ¢ # —1. Then there exists ig = io(s) € [1, s] with ¢;, = 1.
By ([252) and (2.97), we have
%] e(N; 2%o~, /2) —1 B(2% M
B By = 3 ANaZi/2) =1 6@ Tnin/M)
™V —1Ni02q10’%~0 0%

~ye2-a.T+\0
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with some x € R*. Hence

Eiy (Bq(M,5)) = O(N,'27% sup

x€ERS

> BuMvio)e((.%)]).

ye2—4.T1\0

where

~ W21 ry)n(y1 /M) f[ W% 7Ty;)m(y;) 1
/yj /yio

BQ(M7777;0) = "

Jj=2

Applying [264) and Lemma E with I' = 279I", and p = 729, we obtain

E(Bq(M, <)) = E(E; (B(M,<))) = O(N;;'27%). (2.99)

E(g31(M)) = O( Z Z Ni;(lc)g—qio(g))‘
§€{17—1}S qeg3
s#-1,1

Using 273), we get #{q € G3 | ¢, = 7} = O(n*7?) and j > —n — 1/2log, n.
Hence

E(By,(M)) = O(ns—2 S N‘1/82‘j> — O(n*~%/2), (2.100)

j>—n—1/2logyn

From [2.73), we get ¢; > —n + slogyn for q € G4. Applying [232), (2.96) and
(2:99) with ig(s) = 1, we obtain

E(B,3(M)) = 0( 3 Nl‘12“11> - 0<n8—1 3 N—1/82—q1) —0(1).

q€Ga q1>—n+slogyn

By (298) and (2.100), Lemma 16 is proved. m

Lemma 17. With notations as above

g472(M) = O(ns_?’/z).
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Proof. By (2.97), we have

M e | Ee e R

ye2—4.T1\0 Jj=2

From (2.63)), we derive that I(d,v) = 0 for v = 0. Hence wi(7,0) = 0. Now
applying (2.64) - 267) with 't =279.T+ i =0and a = M}, we get

1Bo(M, —1)| < 4,95 det T > 1+ My —27(b/ph])

ye€29.T', v1#(b/p)1

<« T+ b — 2% (b /p)il)

i=2
Bearing in mind (2.1)), we get pj['o C I't C T'p. Taking into account that p =
pip2ps and b € I'p, we obtain

s

[By(M, —1)| < &gq.9¢) det Tp° Z (1+M|71\)‘23H(1+|%-\)‘23. (2.101)

y€EP29-T\0 i=2
We have } )
|Bq(Ma _l)| < 5(28,28) det Fp28 (a'l + a2)a (2102)
where .
a = > (1 M) T+ ),
~E€p29-T\0,max |y; | <M/s i=2
and

S

0 = 3 A+ M) T[0 + bl

~€p2a-T\0,max |y;|>M1/s i=2

We see that |y,| > M~C=Y/5 for maxi<ij<, || < MY*. Applying Theorem A, we
have
a; < M2 > 1=0(M™),
Y€p29-T\0,max |y;|[<M1/¢

and

< Y Y = 0( 3 j‘s> — O(M~=D/s). (2.103)

j>MYs  ~Ep29.T\O j>M/s
max |y;|€[7,74+1)
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Taking into account that #G; = O(n*') (see (296)), we get from (2.102) and
(2:82) that

Bao(M) = 0( S By(M, —1)) - 0( 3 M—1/2) — O(M~ 250,

a€lu q€egs

Hence, Lemma 17 is proved. m

Lemma 18. With notations as above
Bso1 (M) + Bgs1(M) = O(n*~%?), M =[y/n].

Proof. Let M, = 2-@—n-loe2n By ([73), we get M; > n > 2M for q € Gg and

n > 4. From (2.16), we have n(v1/M)n(v1/My) = n(v/M;). Using (2.69), (279)
and (2.84]), we derive similarly to (Z97)) that

021 7y1)n(y1 /M)
4!

éél)(M’ Sj) = Z

~¥€29.T\0

2 (2% y;)m(y; ,
X H ( ’yj) ( ])e(<772q ' (b/p + (.] - 2)‘91N1(1707 70))>>
i=2 J
with j = 2,3, 6o = —1 and ¢3 = 1.
By(2.66]), we obtain that, Jp,(7,v) = 0 with fo(t) = m(t)/t for v = 0 . Hence
wi"(7,0) = 0. Now applying [Z64) - [Z67) with I'* = 279. T+ i = 0 and
a= Mt =2uFnHosn we get analogously to (2101

S

B (M, 65)| < Eaoze) det Tp™* Y (L4 Mify — () > [T(1+ )™,

~€Ep24-T\0 =2

with z(j) = (j — 2)p#: 27 N;. We have

B (M, 65)| < Eaa2e) det Tp* (a5 + as), (2.104)
where
az = > (1+ M|y —2(G)) > [+ ),
~€p2a-T\0, max |y; | <M1/s i=2

38



and
S

ag = > (14 My —2()) > TJ+ 1)~

~€pP29.-T max |y;|>M1/s i=2

We see that |y,| > M~6=D/s for maxi<i<s || < MU'#. Bearing in mind that
|z(j)| < espn™* for q € Gg, we obtain |y;| > 2|z(j)| for M = [\/n] and N > 8pscs.
Applying Theorem A, we get

ag < 2% My > MY > 1=0(M™).
~€EP2a.T, max |y;|<M1/s
Similarly to (ZI103), we have

< Y Y it=o( Y )=o),

j>M1/s  ~€p29.-T\O G>M1/s
max || €[7,j+1)

By @73) and ([2.96]), we obtain #Gs < #G3 = O(n*~!). We get from (2.84) and
(2104) that

Boaa(M) + B (M) = 0( 3° BP(M.;)) = O(M 07

q€g67 .7:273

Hence, Lemma 18 is proved. m

Using (2.87), (2.86) and Lemma 14 - Lemma 18, we obtain
Corollary 1. With notations as above

E(B(M)) = O(n*="/Y), M = [/,

2.9. The upper bound estimate for E(C3(M)) and Koksma—Hlawka
inequality. Let

.....

Gs={q€Gs\Gr|qu < —n—1/2log,n}, (2.105)
Go=1{a€Gs\Gr| 1 > —n—1/2logyn},
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and let

M) =Y Cq(M), i=17,8,09

qcg;
It is easy to see that

G5 =G;UGsUGy, and G, NG; =0, fori#j.

Hence _ _ _ _
Cs(M) =C7(M) + Cs(M) + Co(M). (2.106)
From (2.71]), we have similarly to (2.79) that
CalM) = 3 @V D) " C(Mis), (2.107)
ce{l,—1}s
where

= > aA = ()1 = (327" /M))e((v,b/p+ 6(5))),
~el't\o
with 6;(¢) = (1 + )0:N;/4, i =1,.... s
By (2107) and (2.105)), we get

Co(M) = Cyo(M) + Ci1 (M), (2.108)
where
Co(M) =" Y a-a@2V=1)"Cq(M,s), (2.109)
qc€Gy cec{;_ll}s
and B
Cii(M) = (=1)°*(2V=1)"" Y _ Cq(M, —1). (2.110)
q€Go

Lemma 19. With notations as above
E(C;(M)) =0(n*~3?), i=1,810, M =[/n].

Proof. Let v € 279-T+\ 0. By (2.16)), (2.61) and (2.68), we have
(1= mar (7)) = n(yn/M))M(v) # 0 only if 272HM < |y| < 2M, || € [1,4],
i=2,..,s. From(2.71]), we derive

<Z ‘ Hsm (m0; N;2%~;) M( 3\&522; ) ’) (2.111)

YyeX =1
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where
X={ye2 9. THE\0|2755M < |y| <2M, |v| €[1,4], i =2,...,5}.

Bearing in mind (2.90), we get Cq(M) = O(1).
Using (2.20), 273) and (2.I05), we obtain #G; = O(n*%logyn). Apply-
ing (2.105]), we get

M) =" Cq(M) = O(n**logyn). (2.112)

qegr

Consider Cs(M). Let v € X. Then | sin(m N12917,)| < wMN; 2141,
By (2111, we have

|MNY+20:() (729 . ~)|
(Z INm(~y)]

) = O(MNe2m),

YEX

Using (2.20) and (2I05), we derive #{q € Gs|q1 = d} = O(n*~?). Hence

M) =" cq(M) = 0( 3 3 MN1/82‘j>

q€gs j>n+0.5logon q€Gs, 1=—3
- 0<n5—2M 3 2"—3‘) — O(n*~2). (2.113)
j>n+0.5logy, n

Consider Cro(M). From(ZI0J), we get that there exists 4o = io(s) € [1, s] with
i, = 1. By (252), (269) and (2.I07), we have

- Y G )
~erL\o io" Jio

with some x € R®, where

Ca(M,~) = (1 = nae(7)) (1 = (271 /M)Q(T - v)M(27%) /Nm(7).
Hence

Eio(éq(Ma S)) = O<Nigl2_% Z |éq(M>7ai0)|>a

~y€2-9.T'1L\0
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with
i) = (L= )=/ ) 1
4! o Vi Tio

1=

Applying (2.111]), we obtain max,ex eq1. |1/7%| = O(1).
By (2.I6) and (Z90), we have

E(Ca(M, s)) = B(E;, (Ca(M,))) = O(N;'27% S~ 1/|Nm(y)[ ) = O(N;;'27%).

YEX

Similarly to (2.99) - (2.I00), we get from (2.I08) and (Z.73), that
(Clo < Z ZN‘l 2 %(‘))

ce{l,—1}° q€ly
c#-1

— 0( >y 3 2—"“) - 0<n5—2 3 23‘) = O(n*=3/?).

1<i<s j<n+0.5log, n q€G9,q;i=—1j j<1/2logy n

Using (ZI12) and (ZII3), we obtain the assertion of Lemma 19. m

Lemma 20. With notations as above

E(Cs(M)) = Cio(M) + O(n*™*?), M = [/n],

where

512(M> _( Z Z 70,b/p ( 0)7 (2114)

qegg Yo EAP

Cavo) =M™ Y g(v), g(x) =n2Nm(x))(1 = n(z1)))M(x)/Nm(x),

YEL a1,q(7Y0)

Targ(o) = 0274 T +7,) - (1/M, 1,1, ..., 1).

Proof. By (2.106), (2.108) and Lemma 19, it is enough to prove that
Cu(M) = Cia(M) + O(n* 7).
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Consider Cq(M, —1). Let

Ca(M,—1) = >~ (1 =nu(y))e((,b/p)))
~er't\o
X (27" /M)M(27% - ) /Nm(7).
By (2I07), we have
Ca(M,=1) = Cq(M,~1)[ < Y |(1 = nu()n(2 "y /M)M(27 - )|
~yert\o
x |(Q(ry) = 1)/Nm(v)|.

We examine the case (1 — (7127 /M))M(27%y) # 0. By [2I6) and (ZGI), we
get [yi| < M297! and || < 29472, > 2.

Hence, we obtain from (273) and (ZI0F), that |7y < 4n~*tY/2 i > 1 for
qc gg. N
Applying [Z8), we get Q(7y) = 14+0(n~**/2) for q € Gy. Bearing in mind (Z90),
we have 5 B
Co(M, 1) = Cy(M, ~1) + O(n™). (2115)

Taking into account that (0) = 0 (see (2.I6])), we get

Ca(M,—1) = > ({75, b/p))Ca(70):

Yo EAP

with

Calvo) = Y n@Nm(y)[/M)(1 = n(n/M))M(y)/Nm(7).

~€279(pl' Lt +,)

It is easy to verify that Cq(v,) = Cq(vo). By @II0) and (ZI14), we obtain

Cri(M) = (1 @V=D) 3 (30 ellr0:b/p))Ca(v0)+0(n7) ) = Cra(M)+O(n*2)

a€Gy  Yo€Ap

Hence, Lemma 20 is proved. m

We consider Koksma-Hlawka inequality (see e.g. [DrTy, p. 10, 11]):
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Definition 5. Let a function f : [0,1]° — R have continuous partial
derivative ' fF /0x; ---Ox; on on the s — | dimensional face Fy, defined by
Ty ==z, =1, and let

(s=0( rFry —
Vi ph) /F

V() =Y > v

0<i<s F

ol fUF)
Ox;, -+ - 0z,

dflfil s dl‘il.

Then the number

1s called a Hardy and Krause variation.

Theorem F. (Koksma-Hlawka) Let f be of bounded variation on [0, 1]° in the
sense of Hardy and Krause. Let ((Brrx)i—y') be a K-point set in an s-dimensional
unit cube [0,1)°. Then we have

= 3 ) -

0<k<K-1 [0,1]¢

x| < V(D))

Lemma 21. With notations as above
E(C3(M)) = O(n*™*"), M = [v/n].
Proof. By (ZII4) g(x) = n(2Nm(x))(1 — n(x1)))M(x)/Nm(x). We have that

g is the odd function, with respect to each coordinate, and g(x) = 0 for x ¢
[—2,2] x [—4,4]*~!. Hence

/ g(x)dx = 0.
[~2,2] x[—4,4]s~1
Let f(x) = g((4xy — 2,8z9 — 4, ...,8z5, — 4)). It is easy to verify that f(x) = 0 for

x ¢ [0,1]°, and
(x)dx = / g(x)dx = 0.
[0,1]° [—2,2] X [—4,4]5~1

We see that f is of bounded variation on [0, 1]* in the sense of Hardy and Krause.
Let T(vo) = {((n +2)/4, (72 +4)/8, ..., (3 +4)/8) [ v € Tava(70) }-
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Using (2.114), we obtain

Calvo) =M™ > ().

’VEf‘(’Vo)

Let H = f‘(’yo) N [0,1)°, and K = #H. Applying Theorem A, we get K €
[c1 M, coM] for some ¢y, ¢ > 0. We enumerate the set H by a sequence ((Bk.x )t )-

By Theorem A, we have D((Bi.x)1') = O(M~ In*"" M).

Using Theorem F, we obtain Cq(vy,) = O(M~'1In*~! M).

Bearing in mind that #G3 = O(n*!) (see (2.96))), we derive from (2.114]) that
Cio(M) = O(n* M~ 1n*"* M).

Applying Lemma 20, we obtain the assertion of the Lemma 21. m

Now using (2.85)), Corollary 1 and Lemma 21, we get

Corollary 2. With notations as above

E(B(b/p,M)) = O(n*>"), M = [Vn].

Let N = (Ny,...,N,), N = N;---N,, n = s tlogy N, cg = 0.25(n*det ") Lcg
and M = [/n]. From Lemma 12, Corollary 2 and (2.I8)), we obtain that there
exist Ny > 0, and b € A, such that

sup |E(R)(Box +b/p,I)| > con®™t for N > Nj. (2.116)

6co,1]¢

2.10. End of proof. End of the proof of Theorem 1.
We set R(z,y) = R(By_, +2,1'), where y; > 2; (i = 1,...;s) (see (L2)). Let us
introduce the difference operator A,, 5, : R®* — R, defined by the formula

Aai,hiﬁ(z> Y) = R(Z> (yb e Yi—-1, hia Yit1y -0y ys)) - R(Z> (yla s Yi—1, Qi Yit 1y ooy ys))

Similarly to [Sh, p. 160, ref.7], we derive

Aal,hl T Aas,th(Za y) = R(a, h), (2117)
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where h; > a; > 2z (1 = 1,...,s). Let f,....f; be a basis of I We have that
F={pfi+ -+ psfs | (p1,...,ps) €[0,1)°} is the fundamental set of I'. It is easy
to see that R(Bn +x,I') = R(Bn +x+7,T) for all v € I'. Hence, we can assume
in Theorem 1 that x € F. Similarly, we can assume in Corollary 2 that b/p € F.
We get that there exists v, € I' with |y, < 4max;|f;| and z; < (b/p); + Y04,
i=1,...,s. Let by = b+ pvy,. By (2II0), we have that there exists 6 € [0, 1]° and
b € A, such that

IR(by/p,b1/p+0-N)| > con® . (2.118)
Let S = {y | i = (bp)i,(b/p); +O:N;, i = 1,...,s}. We see #S = 2°. From

([ZI17), we obtain that R(by/p,by/p+6-N) is the sum of 2° numbers +R(x, y7),
where y/ € S. By ([2118), we get

IR(By_x +x,I)| = |R(x,y)| > 2 %con®~!, forsome yeS.

Therefore, Theorem 1 is proved. m

Proof of Theorem 2. Let n > 1, N € [2",2""!) y = (y1,...,ys_1) and T' = T'y.
By (LH) and [Le3, p.41], we have

([ysN] + 1)A(By, (Bin)isy) = o1 — 1 -+ yso10 + O(logs " n), (2.119)
where
a1 =N(Buy,, .y 1ysndetr) +X,T), and oy = N(Ba,. 1 yndeer) + X, T).
From (L2), we get
a1 — Y1 Ys—102 = B — Y1 Ys—1P2, (2.120)
with
B =R(By,,.yo1yNdeer) + X, 1), and fo = R(Ba,. 1y.Ndeer) +X,1).

Let yo = 0.125min (1,1/detT, (cl(./\/l)/co(f‘))l/(s‘l)), 0 = (61,...,05), vi = yob,
1=1,...,s — 1, and ys = #,. Using Theorem A, we obtain

Y1+ Ys 1 R(B(,.. 1 .M detT) + X, )| < v 'eo(T) logy™ (2 + ysN det T)

< (200)* teo(T) logs ™' N < 0.25¢; (M)n*™' for N > detT + 2. (2.121)
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Applying Theorem 1, we have

S[U_p) |R(B(91yo ----- 0s—1y0,0sN detT") + X, P)| > (M) logg—l(yg—l det FN)
0€[0,1)s

> el (M)n* 114+ n (s — 1) log,(ys det T')) > 0.5¢; (M)n**
for n > 10(s — 1)|logy(ys " detT')|. Using (L), ZI19), (2120) and ZI21), we

get the assertion of Theorem 2. m
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