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Abstract

We describe a O(log n)-approximation algorithm for computing the homotopic Fréchet distance
between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to
this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles.

A key technical ingredient in our analysis is a O(log n)-approximation algorithm for computing
the minimum height of a homotopy between two curves. No algorithms were previously known for
approximating this parameter. Surprisingly, it is not even known if computing either the homotopic
Fréchet distance, or the minimum height of a homotopy, is in NP.

1. Introduction

Comparing the shapes of curves – or sequenced data in general – is a challenging task that arises in many
different contexts. The Fréchet distance and its variants (e.g. dynamic time-warping [KP99]) have
been used as a similarity measure in various applications such as matching of time series in databases
[KKS05], comparing melodies in music information retrieval [SGHS08], matching coastlines over time
[MDBH06], as well as in map-matching of vehicle tracking data [BPSW05, WSP06], and moving objects
analysis [BBG08a, BBG+08b]. See [AB05, AG95] for algorithms for computing the Fréchet distance.

Informally, for a pair of such curves f, g : [0, 1] → D, for some ambient metric space (D, d), their
Fréchet distance is the minimum length of a leash needed to traverse both curves in sync. To this
end, imagine a person traversing f starting from f(0), and a dog traversing g starting from g(0), both
traveling continuously along these curves without ever moving backwards. Then the Fréchet distance
is the infimum over all possible traversals, of the maximum distance between the person and the dog.
This notion can be formalized via a reparameterization: a continuous bijection φ : [0, 1] → [0, 1]. The

width of φ, i.e., the longest leash needed by φ, is width(φ) = sup
t∈[0,1]

d
(
f(t), g(φ(t))

)
, where d(x, y) is the
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distance between x and y on D. Consequently, the Fréchet distance between f and g is defined to be

dF(f, g) = inf
φ:[0,1]→[0,1]

width(φ),

where φ ranges over all orientation-preserving homeomorphisms.
While this measure captures similarities between two curves when the underlying space is Euclidean,

it is not as informative for more complicated underlying spaces such as a surface. For example, imagine
walking a dog in the woods. The leash might get tangled as the dog and the person walk on two different
sides of a tree. Since the Fréchet distance cares only about the distance between the two moving points,
the leash would “magically” jump over the tree. In reality, when there is no “magic” leash that jumps
over a tree, one has to take into account the extra length needed (for the leash) to pass over such
obstacles.

Homotopic Fréchet distance. To address this shortcoming, homotopic Fréchet distance , a nat-
ural extension of the above notion was introduced by Chambers et al. [CCE+10]. Informally, revisiting
the above person-dog analogy, we consider the infimum over all possible traversals of the curves, but
this time, we require that the person is connected to the dog via a leash, i.e., a curve that moves con-
tinuously over time. Furthermore, one keeps track of the leash during the motion, where the purpose is
to minimize the maximum leash length needed.

To this end, consider a homotopy h : [0, 1]2 → D, which can also be viewed as a homeomorphism
between the unit square and D. For parameters σ, τ ∈ [0, 1] consider the one dimensional functions
`(τ) = h(τ, ·) : [0, 1] → D and µ(σ) = h(·, σ) : [0, 1] → D. These are parameterized curves that are the
natural restrictions of h into one dimension. We require that µ(0) = f and µ(1) = g. The homotopy
width of h is width(h) = sup

τ∈[0,1]
‖`(τ)‖, and the homotopic Fréchet distance between f and g is

dH(f, g) = inf
h:[0,1]2→D

width(h),

where the infimum is over all homeomorphisms h between [0, 1]2 and D, and ‖·‖ denotes the length of
a curve. Note that `(·), in particular, specifies a reparametrization between the curves f and g.

Clearly, dH(f, g) ≥ dF(f, g) and, furthermore, dH(f, g) can be arbitrarily larger than dF(f, g). We
remark that dH(f, g) = dF(f, g) for any pair of curves in the Euclidean plane, as we can always pick
the leash to be a straight line segment between the person and the dog. In other words, the map h in
the definition of dH can be obtained from the map φ in the definition of dF via an appropriate affine
extension. However, this is not true for general ambient spaces, where the leash might have to pass over
obstacles, hills, or more generally regions of positive or negative curvature, etc. In particular, in the
general settings, usually, the leash would not be a geodesic (i.e., a shortest path) during the motion.

The homotopic Fréchet distance is referred to as the morph width of f and g, and it bounds how far
a point on f has to travel to its corresponding point in g under the morph of h [EGH+02]. The length of
µ(σ) is the height of the morph at time σ, and the height of such a morph is height(h) = supσ∈[0,1] ‖µ(σ)‖.
The homotopy height between f and g, bounded by given starting and ending leashes `(0) and `(1),
is

h
(
f, g, `(0), `(1)

)
= inf

h
height(h),

where h varies over all possible morphs between f and g, such that each curve µ(σ) has one end on `(0)
and one end on `(1). See Figure 1.1 for an example. Note that if we do not constrain the endpoints of
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Figure 1.1: (i) Two curves f and g, and (ii) the parameterization of their homotopic Fréchet distance.

the curves during the morph to stay on `(0) and `(1), the problem of computing the minimum height
homotopy is trivial. One can contract f to a point, send it to a point in g, and then expand it to g. To
keep the notation simple, we use h(f, g) when f and g have common endpoints.

Intuitively, the homotopy height measures how long the curve has to become as it deforms from f to
g, and it was introduced by Chambers and Letscher [CL09, CL10] and Brightwell and Winkler [BW09].
Observe that if we are given the starting and ending leashes `(0) and `(1) then the homotopy height of
f and g when restricted on homotopies that agree with `(0) and `(1) is the homotopic Fréchet distance
between `(0) and `(1).

Here, we are interested in the problems of computing the homotopic Fréchet distance and the homo-
topy height between two simple polygonal curves that lie on the boundary of an arbitrary triangulated
topological disk.

Why are these measures interesting? For the sake of the discussion here, assume that we know
the starting and ending leash of the homotopy between f and g. The region bounded by the two
curves and these leashes, forms a topological disk, and the mapping realizing the homotopic Fréchet
distance specifies how to sweep over D in a geometrically “efficient” way (especially if the leash does not
sweep over the same point more than once), so that the leash (i.e., the sweeping curve) is never too long
[EGH+02]. As a concrete example, consider the two curves as enclosing several mountains between them
on the surface – computing the homotopic Fréchet distance corresponds to deciding which mountains
to sweep first and in which order.

Furthermore, this mapping can be interpreted as surface parameterization [Flo97, SdS00] and can
thus be used in applications such as texture mapping [BVIG91, PB00]. In the texture mapping prob-
lem, we wish to find a continuous and invertible mapping from the texture, usually a two-dimensional
rectangular image, to the surface.

Another interesting interpretation is when f is a closed curve, and g is a point. Interpreting f as
a rubber band in a 3d model, the homotopy height between f and g here is the minimum length the
rubber band has to have so that it can be collapsed to a point through a continuous motion within the
surface. In particular, a short closed curve with large homotopy height to any point in the surface is a
“neck” in the 3d model.

To summarize, these measures seem to provide us with a fundamental understanding of the structure
of the given surface/model.
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Continuous vs. discrete. Here we are interested in two possible models. In the continuous settings,
as described above, the leash moves continuously in the interior of the domain. In the discrete settings,
the leash is restricted to the triangulation edges. As such, a transition of the leash corresponds to the
leash “jumping” over a single face at each step. The two versions are similar in nature, but technically
require somewhat different tools and insights. This issue is discussed more formally in Section 2.

Previous work. The problem of computing the (standard) Fréchet distance between two polygonal
curves in the plane has been considered by Alt and Godau [AG95], who gave a polynomial time algorithm.
Eiter and Mannila [EM94] studied the easier discrete version of this problem. Computing the Fréchet
distance between surfaces [Fre24], appears to be a much more difficult task, and its complexity is poorly
understood. The problem has been shown to be NP-Hard by Godau [God99], while the best algorithmic
result is due to Alt and Buchin [AB05], who showed that it is upper semi-computable.

Efrat et al. [EGH+02] considered the Fréchet distance inside a simple polygon as a way to facilitate
sweeping it efficiently. They also used the Fréchet distance with the underlying geodesic metric as a way
to obtain a morph between two curves. For recent work on the Fréchet distance, see [CW10, CLJL11,
HR11, CDH+11, DHW12, CW12] and references therein.

Chambers et al. [CCE+10] gave a polynomial time algorithm to compute the homotopic Fréchet
distance between two polygonal curves on the Euclidean plane with polygonal obstacles. Chambers and
Letscher [CL09, CL10] and Brightwell and Winkler [BW09] considered the notion of minimum homotopy
height, and proved structural properties for the case of a pair of paths on the boundary of a topological
disk. We remark that in general, it is not known whether the optimum homotopy has polynomially long
description. In particular, it is not known whether the problem is in NP.

Variants of the Fréchet distance for curves that are known to be computationally hard, include (i)
the problem of finding the most similar simple (i.e., no self crossings) curve to a given curve on a surface
[SW13], and (ii) computing the optimal Fréchet distance when allowing shortcuts anywhere on one of
the curves [BDS13]. Chambers and Wang [CW13] study a measure of similarity between curves that
involves the minimum area spanned by a homotopy.

For a Riemannian 2-disk with boundary length L, diameter d and area A � d, Papasoglu [Pap13]
showed that there is a homotopy that contracts the disk to a point, such that the maximum length of
the homotopy curve is at most L+2d+O

(√
A
)
. Chambers and Rotman [CR13] showed that given such

a homotopy with maximum length L (i.e., any contraction of a disk to a point), one can modify it into
a homotopy using only the loops of a base point p, contracting the disk into p, with maximum length
L+ 2d+ ε, where ε > 0 is arbitrarily small.

Our results. In this paper, we consider the problems of computing the homotopic Fréchet distance
and the homotopy height between two simple polygonal curves that lie on the boundary of a triangulated
topological disk D that is composed of n triangles. We give a polynomial time O(log n)-approximation
algorithm for computing the homotopy height between f and g. Our approach is based on a simple, yet
delicate divide and conquer approach.

We use the homotopy height algorithm as an ingredient for a O(log n)-approximation algorithm for
the homotopic Fréchet distance problem. Here is a high-level description of our algorithm for approxi-
mating the homotopic Fréchet distance: We first guess (i.e., search over) the optimum (i.e., dH(f, g)).
Using this guess, we classify parts of D as “obstacles”, i.e., regions over which a short leash cannot pass.
Consider the punctured disk obtained from D after removing these obstacles. Intuitively, two leashes
are homotopic if one can be continuously deformed to the other within the punctured disk, while its
endpoints remain on the boundary during the deformation. Observe that the leashes of the optimum
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solution are homotopic. We describe a greedy algorithm to compute a “small” number of homotopy
classes out of infinitely many choices. The homotopic Fréchet distance constrained to paths inside one
of these classes is a polynomial approximation to the homotopic Fréchet distance in D. We can then
perform a binary search over this interval to acquire a better approximation. An extended version of
the homotopy height algorithm is used in this algorithm in several places.

The O(log n) factor shows up in the homotopic Fréchet distance algorithm only because it uses the
homotopy height as a subroutine. Thus, any constant factor approximation algorithm for the homotopy
height problem implies a constant factor approximation algorithm for the homotopic Fréchet distance.

We also shortly sketch, in Appendix A, an algorithm for sweeping the boundary of a convex polytope
in three dimensions, by a guard that is connected by a continuously moving leash to a base point on the
boundary of the polytope. This algorithm is a warm-up exercise for the more involved problem studied
in this paper, and it might be of independent interest.

Organization. We provide basic definitions in Section 2. Then we consider the discrete version of the
homotopy height problem in Section 3. Later, in Section 4, we describe an algorithm to approximately
find the shortest homotopy in the continuous settings. In Section 5, we address the homotopic Fréchet
distance, for both the discrete and the continuous cases. We conclude in Section 6.

2. Background

2.1. Planar graphs

Let G = (V,E) be a simple undirected graph with edge weights w : E → IR+. For any u, v ∈ V we
denote by dG(x, y) the shortest-path distance between u and v in G, where every edge e has length w(e).
An embedding of G in the plane maps the vertices of G to distinct points in the plane and its edges
to disjoint paths except for the endpoints. The faces of an embedding are maximal connected subsets
of the plane that are disjoint from the union of the (images of the) edges of the graph. The notation
∂f refers to the boundary of a single face f . The term plane graph refers to a graph together with its
embedding in the plane.

The dual graph G∗ of a plane graph G is the (multi-)graph whose vertices correspond to the faces of
G, where two faces are joined by a (dual) edge if and only if their corresponding faces are separated by
an edge of G. Thus, any edge e in G corresponds to a dual edge e∗ in G∗, any vertex v in G corresponds
to a face v∗ in G∗ and any face f in G∗ corresponds to a vertex f ∗ in G∗.

A walk W in G is a sequence of vertices (v1, v2, · · · , vk) such that each adjacent pair ei = (vi, vi+1)
is an edge in G. The length of W is ‖W‖ =

∑k−1
i=1 w(ei).

Let vi and vj be two vertices that appear on W . Here, W [vi, vj] denotes the sub-walk of W that starts
at the first appearance of vi and ends at the first appearance of vj after vi on W . For two walks, W1 =
(v1, v2, . . . , vi) and W2 = (vi, vi+1, . . . , vj), their concatenation is W1 ·W2 = (v1, v2, . . . , vi, vi+1, . . . , vj).

A walk with all the vertices being distinct is a path . The term (u, v)-walk refers to a walk that
starts at u and ends in v, and (u, v)-path is defined similarly. A walk is closed if its first and last vertices
are identical. A closed path is a cycle . Two walks cross if and only if their images cross in the plane.
That is, no infinitesimal perturbation makes them disjoint.

5



2.2. Piecewise linear surfaces and geodesics

A piecewise linear surface is a 2-dimensional manifold composed of a finite number of Euclidean
triangles by identifying pairs of equal length edges. In this paper, we work with piecewise linear surfaces
that can be embedded in three dimensional space such that all triangles are flat and the surface does not
cross itself. This assumption lets us exploit existing shortest paths algorithms for polyhedral surfaces¬.

A triangulated surface is non-degenerate if no interior vertex has curvature 0, i.e., when for every
non-boundary vertex x, the sum of the angles of the triangles incident to x is not equal to 2π.

Assumption 2.1. We assume that the input surface is always non-degenerate. One can turn any triangu-
lated surface into being non-degenerate by perturbing all edge lengths by a factor of at most 1 + ε, for
some ε = O(1/n2) (alternatively, one can perturb the vertices and edges). This changes the metric of
the surface by at most a factor of 1 + 1/n, and thus the minimum height of a homotopy. Such a factor
will be negligible for our approximation guarantee.

A path γ on the surface D is a function γ : [0, 1]→ D; γ(0) and γ(1) are the endpoints of the path,
and ‖γ‖ denotes the length of γ. The path γ is simple if and only if it is bijective. A path is a geodesic
if and only if it is locally a shortest path; i.e., it cannot be shortened by an infinitesimal perturbation.
In particular, global shortest paths are geodesics. The terms path or curve are used interchangeably,
and mean the same thing. A path or a curve is polygonal if it is composed of a finite number of line
segments.

2.2.1. Computing shortest paths on a polyhedral surface

Mitchell et al. [MMP87] describe an algorithm to compute the shortest path distance from a single source
to the whole surface in O(n2 log n) time. Underlying this algorithm are the following two observations:

(A) Shortest paths from the source s can not intersect in their interior.
(B) Consider two points p and p′ on an edge e of D, and their two shortest paths ζ and ζ ′, respectively,

to the source s. Furthermore, assume that these shortest paths approach e from the same side.
Then, all the shortest paths from s to the points on the edge e between p and p′ (coming from the
same side of e as ζ and ζ ′), must lie inside the disk on D having the boundary s ·ζ ·e[p, p′] ·ζ ′. This
property requires that the topology of the input surface to be either a disk or, more generally, a
punctured disk.

These two observations still hold when the source is an edge instead of a point. As such, the algorithm
of Mitchell et al. [MMP87] can be adapted to compute the shortest path distance from an edge to the
whole surface (with the same running time). This requires modifying the wavefront maintenance and
propagation to be the distance from an edge instead from a point.

As such, by running this modified algorithm O(n) times, one can compute, in O(n3 log n) time, the
shortest path from a set of O(n) edges to the whole surface.

Signature & medial points. Any shortest path in D is a polygonal line that intersects every edge
at most once and passes through a face along a segment. Moreover, the shortest path crossing an edge
looks locally like a straight line segment, if one rotates the adjacent faces so that they are coplanar. See
[MMP87] for more details.

¬However, all of these algorithms should work verbatim even if the surface is not embedded in 3d, assuming it is an
oriented and has the topology of a disk. Nevertheless, we keep this assumption to make the discussion more concrete and
hopefully more intuitive.
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Figure 2.1: From left to right: face-flip, spike/reverse spike, person-move and dog-move.

Let S be a set of edges of D, and let ζ be a shortest path from S to a point p ∈ D. The signature
of ζ is defined to be the ordered set of edges and vertices (crossed or used) by ζ. Since ζ is locally a
straight line segment, we can rotate all faces that intersect ζ one by one so that ζ becomes a straight
line. It follows that two geodesics with the same signature from p are identical. A point p on the surface
is a medial point with respect to S if there are more than one shortest paths (with different signatures)
from p to S.

Note that a shortest path has a vertex of D in its interior, if and only if, the vertex is a boundary
vertex, or the vertex has negative curvature (i.e., the total sum of the angles of the triangles adjacent
to this vertex is larger than 2π). In particular, a vertex with positive curvature (i.e., total sum of
angles < 2π), which is not on the boundary of D, can not be in a signature of a shortest path, see also
Assumption 2.1.

2.3. Homotopy and leash function

Let L and R be two paths with the same endpoints s and t on a surface D. A homotopy h : [0, 1]×[0, 1]→
D is a continuous function, such that h(·, 0) = L, h(·, 1) = R, h(0, ·) = s and h(1, ·) = t. So, for each
τ ∈ [0, 1], h(·, τ) is an (s, t)-path. The height of such a homotopy (as defined previously) is defined to
be supτ∈[0,1] ‖h(·, τ)‖.

Let B and C be two disjoint curves. A curve connecting a point in B to a point in C is a (B,C)-leash .
A (B,C)-leash function is a function f that maps every τ ∈ [0, 1] to a leash with endpoints b(τ) ∈ B
and c(τ) ∈ C such that b : [0, 1]→ B and c : [0, 1]→ C are reparametrizations of B and C, respectively.
A (B,C)-leash function f is continuous if the leash f(τ) varies continuously with τ . The height of a
leash function f is supτ∈[0,1] ‖f(τ)‖. Recall that the Fréchet distance between B and C is the height
of the minimum height (B,C)-leash function. The homotopic Fréchet distance between B and C is the
height of the minimum height continuous (B,C)-leash function.

2.3.1. The discrete version

Let W1 be an (s, t)-walk and f be a face in an embedded planar graph G. Assume that α1 is a subwalk
of W1 and ∂f = α1 · α2, where α1 and α2 are walks that share endpoints u and v, such that u is closer
to s on W1. The face flip operation is the following: The walk W2 = W1[s, u] ·α2 ·W1[v, t] is the result
of flipping W1 over f . In this case, W1 and W2 are one face flip operation apart. See Figure 2.1.

Now, let W1 be an (s, t)-walk, and suppose W1 = W ′
1 ·W ′′

1 . Also, let u be the common endpoint
of W ′

1 and W ′′
1 , and let e = (u, v) be any edge in G. By applying a spike to W1 we obtain W2 =

W ′
1 · (u, v) · (v, u) ·W ′′

1 . Equivalently, we can obtain W1 from W2 via a reverse spike . In this case, W1
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and W2 are one spike operation apart.
In general, W1 and W2 are one operation apart if one can transform one to the other using a single face

flip, spike, or reverse spike. Chambers and Letscher [CL09, CL10] introduce the same set of operations
with the names: face lengthening, face shortening, spike and reverse spike.

Let L and R be two (s, t)-walks on the outer face of G. The sequence of walks (L = W0,W1, . . . ,Wm =
R) is a (L,R)-discrete homotopy if, for i = 1, . . . ,m, Wi and Wi−1 are one operation apart. We may
use the word homotopy as a short form of discrete homotopy when it is clear from the context. The
height of the homotopy is defined to be the length of the longest walk in its sequence. The homotopy
height between L and R, is the height of the shortest possible (L,R)-homotopy.

Definition 2.2. Let B = (b0, b1, . . . , bk) and C = (c0, c1, . . . , ck′) be walks of G. The walk W1 =
(
bi =

w1, w2, . . . , wk = cj
)

changes to the walk W2 =
(
bi+1, bi = w1, w2, . . . , wk

)
after a person move .

Similarly, the walk W1 =
(
bi = w1, w2, . . . , wk = cj

)
changes to the walk W2 =

(
w1, w2, . . . , wk =

cj, cj+1

)
after a dog move . A leash operation is a dog move, a person move, a face flip, a spike or a

reverse spike.

Definition 2.3. An (B,C)-walk is a walk that has one endpoint on B and one endpoint on C. A sequence
of (B,C)-walks, (W1,W2, . . . ,Wq) is called an (B,C)-leash sequence if

(i) W1 is a (b0, c0)-walk,
(ii) Wq is a (bk, ck′)-walk, and

(iii) we have that, for i = 1, . . . , q − 1, Wi changes to Wi+1 by performing a sequence of leash
operations containing either at most one dog move and no person moves, or at most one
person move and no dog moves.

The height of a leash sequence is the length of its longest walk.

Definition 2.4. The discrete Fréchet distance of B and C is the height of the minimum height (B,C)-
leash sequence­. The homotopic discrete Fréchet distance of B and C is the height of the minimum
height (B,C)-leash sequence, where two consecutive walks differ by a single leash operation (and this is
not required in the discrete Fréchet distance, where two consecutive walks might “jump”).

3. Approximating the height – the discrete case

In this section, we give an approximation algorithm for finding a discrete homotopy of minimum height
in a topological disk D, whose boundary is defined by two walks L and R that share their endpoints s
and t. The disk D is a triangulated edge-weighted planar graph. The ideas developed here are used
later for the continuous case, see Section 4.

3.1. Preliminaries

We are given an edge-weighted plane graph G all of whose faces (except possibly the outer face) are
triangles. Let s, t ∈ ∂G and L and R be two non-crossing (s, t)-walks on ∂G in counter-clockwise and
clockwise order, respectively. We use D to denote the topological disk enclosed by L · R. The vertices
of G (inside or on the boundary of D) are also the vertices of D. Our goal is to find a minimum height
homotopy from L to R of non-crossing walks. Recall that a homotopy is a sequence of walks, where
every two consecutive walks differ by either a triangle, or an edge (being traversed twice).

­The discrete Fréchet distance defined here is different than the more standard definition, which is usually defined
over sequences of points.
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Lemma 3.1. Let x and y be vertices of G that are at graph distance ρ. Then any discrete homotopy
between L and R has height at least ρ.

Proof: Fix a homotopy of height δ. This homotopy contains an (s, t)-walk ω that passes through x, and
an (s, t)-walk χ that passes through y. We have, by the triangle inequality, that ρ = dG(x, y) ≤ ‖ω[s, x]‖+
‖χ[s, y]‖ , and, similarly, ρ ≤ ‖ω[x, t]‖+ ‖χ[y, t]‖. Therefore, ρ ≤ (‖ω‖+ ‖χ‖)/2 ≤ max(‖ω‖ , ‖χ‖) ≤ δ,
as required.

Lemma 3.2. Suppose d1 is the maximum distance of a vertex of G from L, d2 is the largest edge weight,
and let dL = max {d1, d2}. Furthermore, let D, L, and R be defined as above. Then any discrete homotopy
between L and R has height at least dL.

Proof: The height is at least d1 by Lemma 3.1. On the other hand, for every homotopy between L and
R, and for every edge e, there exists a walk in the homotopy that passes through e. Therefore, the
height of the homotopy is at least d2.

3.2. The algorithm

Theorem 3.3. Let D be an edge-weighted triangulated topological disk with n faces such that its bound-
ary is formed by two walks L and R that share endpoints s and t. Then one can compute, in O(n log n)
time, a homotopy from L to R of height at most ‖L‖+ ‖R‖+O(dL log n), where dL is the largest among
(i) the maximum distance of a vertex of D from L, and (ii) the maximum edge weight.

In particular, the generated homotopy has height O(hopt log n), where hopt is the minimum homotopy
height between L and R.

Proof: We present a recursive algorithm that reduces the problem to sub-problems with a smaller number
of triangles. The recursion might create instances where the boundary walks L and R are not interior
disjoint. For such instances, it is immediate that one can obtain a solution by computing a homotopy
independently for each maximal disk bounded by L · R, and composing them to obtain the desired
homotopy between L and R. We may therefore focus on the case where L and R are interior disjoint.

Let b(δ, dL, n) be the maximum possible height of a homotopy obtained by our algorithm for any disk
of perimeter δ that is composed of n faces and has dL as defined in the statement of the theorem. We
prove by induction that b(δ, dL, n) ≤ δ+c0dL log n for some constant c0, implying the theorem statement.
Note that the inductive argument implies that b is linear in δ.

The base case n = 0 is easy. Indeed, if we have two edges (u, v) and (v, u) consecutive in R (or in L)
we can retract these two edges. By repeating this we arrive at both L and R being identical, and we are
done. The case n = 1 is handled in a similar fashion. After one face flip, the problem reduces to the
case n = 0. Hence, b(‖L‖+ ‖R‖ , dL, 1) ≤ ‖L‖+ ‖R‖+ dL.

For n > 1, compute for each vertex of G its shortest path to L, and consider the set of edges E used
by all these shortest paths. Clearly, these shortest paths can be chosen so that L ∪ E form a tree. We
consider each edge of R to be “thick” and have two sides (i.e., we think about these edges as being
corridors – this is done to guarantee that in the recursive scheme, done below, there are exactly two
subproblems to each instance). If E uses an edge of R then it uses the inner copy of this edge, while R
uses the outer side. Similarly, we consider each original vertex of R to be two vertices (one inside and
the other one on the boundary R). The set E would use only the inner vertices of R, while R would use
only the outer vertices. To keep the graph triangulated we also arbitrarily triangulate inside each thick
edge of R by adding corridor edges. Each corridor edge either connects two copies of a single vertex
(thus has weight zero) or copies of two neighbors on R (and so has the same weight as the original edge).

9
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Clearly, if we cut D along the edges of E , what remains is a simple triangulated polygon (it might
have “thin” corridors along the edges of R). One can find a diagonal uv such that each side of the
diagonal contains at least dn/3e triangles and at most b2n/3c triangles of the original G. We emphasize
that we count only the “real” triangles of G. This can be achieved as follows: We first assign weight zero
to the faces within corridors and unit weight to all other faces. Then we find a diagonal uv such that
each side contains faces with total weight at least dn/3e. Furthermore, because the faces inside corridors
have weight zero, we can ensure that if the separating edge uv is a corridor edge (i.e., corresponding to
an edge e of R) then u and v are copies of the same vertex. Indeed, if not, we can change the separating
edge so this property holds, and the new separating edge separates regions with the same weight, see
Figure 3.1 (I). We use this property in the following case analysis®.

(A) Consider the case¯ that u and v are both vertices of R. In this case, let R[u, v] be the portion of R
in between u and v, and let D2 be the disk having R[u, v] · uv as its outer boundary. Let D1 be the disk
D \ D2. Let M = R[s, u] · uv · R[v, t], see Figure 3.1 (II).

Clearly, the distance of any vertex of D1 from L is at most dL. By induction, there is a homotopy
of height b(‖L‖ + ‖M‖ , dL, b2n/3c) from L to M. Similarly, the distance of any vertex of D2 from uv
is at most its distance to L. Therefore, by induction, there is a homotopy between uv and R[u, v] of
height at most b(‖R[u, v]‖+ dL, dL, b2n/3c). Clearly, we can extend this to a homotopy of M to R of
height ‖R[s, u]‖ + b(‖R[u, v]‖+ dL, dL, b2n/3c) + ‖R[v, t]‖ which using induction hypothesis is at most
‖R‖+ dL + c0dL logb2n/3c ≤ ‖R‖+ c0dL log n, for sufficiently large c0.

Putting these two homotopies together results in the desired homotopy from L to R.

(B) Consider the case that v is a vertex of E and u is a vertex of R. So, v is an inner vertex of R (that
belongs to E) and u is an outer vertex of R. Recall that we can assume that v and u are inner and outer
copies of the same vertex of R. Let πv be the shortest path in D from v to L, and let v′ be its endpoint
on L.

Consider the disk D1 having the “left” boundary L1 = L[s, v′] · πv · vu and R1 = R[s, u] as its “right”
boundary, see Figure 3.1 (III). This disk contains at most b2n/3c triangles, and by induction, it has
a homotopy of height b(‖L1‖ + ‖R1‖ , dL, b2n/3c). To see why we can apply the recursion, observe that
u and v are copies of the same vertex of R. That is, all shortest paths of vertices inside D1 to L are

®Note, that the corridors were used only in generating this partition, and are an artifact that is not necessarily sent to
the recursive subproblems. In particular, one can describe this partition scheme without using the corridors, but it seems
somewhat messier and less intuitive.

¯Strictly speaking this case is not possible because of the corridor diagonals. Nevertheless, it provides a good warm-up
exercise for the followup cases which are more involved.
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Figure 3.2: (I–III) Illustration of case (C) in the proof Theorem 3.3. (IV-V) How the shortest path tree
get sent to the recursive subproblem.

completely inside D1. As such, the distance of all vertices in D1 to L1 are at most dL.
Similarly, the topological disk D2 with the left boundary L2 = uv ·πv ·L[v′, t] and the right boundary

R2 = R[u, t] has a homotopy of height b
(
‖L2‖+ ‖R2‖ , dL, b2n/3c

)
.

We combine these two homotopies as follows. Let L′ be the walk obtained by concatenating L1 and
L2. Note that L′ consists of a copy of L and two copies of πv. Clearly, there exists a homotopy between L
and L′ of height at most ‖L‖+2dL, which is obtained by a sequence of spike moves along πv. We compose
the resulting homotopy with the homotopy of D1 that moves L1 to R1, followed by the homotopy of D2

that moves L2 to R2. The result is a homotopy between L and R of height at most

max


‖L‖+ 2dL,

b
(
‖L1‖+ ‖R1‖ , dL, b2n/3c

)
+ ‖L2‖ ,

‖R1‖+ b
(
‖L2‖+ ‖R2‖ , dL, b2n/3c

)
.

If the first number is the maximum, we are done. Otherwise, using the induction hypothesis, the above
value is at most ‖L‖+ ‖R‖+ 2dL + c0dL logb2n/3c which is at most ‖L‖+ ‖R‖+ c0dL log n for sufficiently
large c0.

(C) Here we handle the case that u and v are both vertices of L∪E . Then as before, let u′ and v′ be the
closest points on L to u and v, respectively. Now, let πu (resp. πv) be the shortest path from u (resp.
v) to u′ (resp. v′). Note that we might have u′ = v′.

Consider the disk D1 having L1 = L[u′, v′] as left boundary, and R1 = πu · uv · πv as right boundary,
see Figure 3.2.. This disk contains between n/3 and 2n/3 triangles of the original surface. The distance
of any vertex of D1 to L1 (when restricted to D1) is at most dL, and therefore by induction, there
is a homotopy from L1 to R1 of height at most α = b(‖L1‖+ ‖R1‖ , dL, b2n/3c) ≤ ‖L[u′, v′]‖ + 3dL +
c0dL logb2n/3c. This yields a homotopy of height α1 = ‖L[s, u′]‖ + α + ‖L[v′, t]‖, from L to L2 =
L[s, u′] · πu · uv · πv · L[v′, t]. It is straightforward to check that α1 ≤ ‖L‖+ 3dL + c0dL logb2n/3c).

Next, let D2 be the disk with its left boundary being L2 and its right boundary being R2 = R.
Observe, that as before, the maximum distance of any vertex of D2 to L2 is at most dL. As before,
by induction, there is a homotopy from L2 to R2 of height α2 = b(‖L2‖ + ‖R2‖ , dL, b2n/3c). Since
‖L2‖ ≤ ‖L‖+ 3d, we have α2 ≤ b(‖L‖+ ‖R‖+ 3dL, dL, b2n/3c).
In all cases the length of the homotopy is at most

‖L‖+ ‖R‖+ 3dL + c0dL logb2n/3c ≤ ‖L‖+ ‖R‖+ c0dL log n,
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if we choose c0 sufficiently large. The final guarantee of approximation follows as dL ≤ hopt, by
Lemma 3.2.

We can compute the shortest path tree in linear time using the algorithm of Henzinger et al.
[HKRS97]. The separating edge can also be found in linear time using DFS. So, the running time
for a graph with n faces is T (n) = T (n1) + T (n2) + O(n), where n1 + n2 = n and n1, n2 ≤ (2/3)n. It
follows that T (n) = O(n log n).

Remark 3.4. (A) In the algorithm of Theorem 3.3, it is not necessary that we have the shortest paths
from L to all the vertices of D. Instead, it is sufficient if we have a tree structure that provides paths
from any vertex of D to L of distance at most dL in this tree, and we send the relevant portions of the tree
into the recursive subproblems. We will use this property in the continuous case, where recomputing
the shortest path tree is relatively expensive. This is demonstrated in Figure 3.2 (IV–V).

(B) A more careful analysis shows that the height of the homotopy generated by Theorem 3.3 is at
most max(‖L‖ , ‖R‖) +O(dL log n).

(C) Note, that if dL = O(max(‖L‖ , ‖R‖)/ log n) then Theorem 3.3 provides a constant factor ap-
proximation. This is the situation when L and R are close to each other compared to their relative
length.

(D) Note, that the O(n log n) running time algorithm cannot explicitly output the list of paths in
the homotopy. Indeed, that list requires O(n2) space to be stored and so O(n2) time to output. The
output of the algorithm of the above lemma is a shortest path tree T together with an ordered list of
edges. Each edge e = (u, v) in the list represents an (s, t)-walk T [s, u] · (u, v) · T [v, t], where T [s, u] and
T [v, t] are the unique (s, u)-path and (v, t)-path in T , respectively.

4. Approximating the height – the continuous case

In this section we extend the algorithm from Section 3 to the continuous case. The continuous case is
somewhat similar to the solution to the problem of sweeping over the boundary of a convex polytope in
three dimensions from a base point. Since this is tangential for our main trust, we delegated describing
this algorithm to Appendix A, but the reader might still benefit from reading it first.

4.1. Preliminaries

We are given a piecewise linear triangulated topological disk, D, with n triangles, and we consider the
underlying metric to be the geodesic distance on this surface°. The boundary of D is composed of two
paths L and R with shared endpoints s and t, and the task at hand is to compute a morphing from L to
R that minimizes the distance traversed by each point of L during this motion. See Section 2.3 for the
formal definition.

Here, we build a homotopy of height at most ‖L‖+‖R‖+O(d log n), where d is the maximum distance
of any point in D from either L or R. We use the following observations (see Section 2.2.1 for details):
(A) The shortest path from a vertex to the whole surface can be computed in O(n2 log n) time.
(B) The shortest path from a set of O(n) edges to the whole surface can be computed in O(n3 log n)

time.
(C) A shortest path (i.e., a geodesic) intersects a face along a segment and it locally looks like a segment

if the adjacent faces are rotated to be coplanar.

°Formally, for two points p, q ∈ D, their geodesic distance is the length of the shortest path inside D connecting p with
q.
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See Section 2.2.1 for more details.

4.2. Homotopy height if edges are short

Similar to the discrete case, d1 is the maximum distance for any point of D from L, d2 is the maximum
length of any edge, and dL = max(d1, d2). Here, we assume d2 ≤ 2d1. In this case we can obtain the
desired approximation algorithm via an argument that is similar to the one used in the discrete case.

As in the discrete case, let E be the union of all the shortest paths from the vertices of D to L (as
before, we treat the edges and vertices of R as having infinitesimal thickness). For a vertex v of D, its
shortest path πv is a polygonal path that crosses between faces (usually) in the middle of edges (it might
also go to a vertex, merge with some other shortest paths and then follow a common shortest path back
to L). In particular, each such shortest path might intersect a face of D along a single segment. Thus,
the polygon resulting from cutting D along E , call it P , is a polygon that has complexity O(n2). A face
of P is a hexagon, a pentagon, a quadrilateral, or a triangle. However, each such face has at most three
edges that are portions of the edges of D. The degree of a face is i if it has i edges that are portions of
the edges of D. Observe that, each triangle of D is now decomposed into a set of faces. Obviously, each
triangle of D contains at most one face of degree 3 in P . Overall, there are O(n) faces of degree 3 in P .

Now consider C∗, the dual of the graph that is inside the polygon (ignore the edges on the boundary).
More precisely, C∗ has a vertex corresponding to each face inside the polygon P , let np be number of
vertices of C∗. Two vertices of C∗ are adjacent if and only if their corresponding faces share a portion
of an edge of D (this shared edge is a diagonal of P ). Note that because P is simply connected C∗

is a tree. Since the maximum degree of the tree C∗ is 3, there is an edge that is a good separator
(i.e., a separator that has at most 2/3 of the faces on one side)±. Since the length of the edge is at
most 2d1 it can be used in a similar fashion as the proof of Theorem 3.3. However, in the recursion of
the continuous case we avoid recomputing the shortest paths (i.e., we use the old shortest paths and
distances computed in the original disk), see Remark 3.4. So, we compute the shortest paths once in
the beginning in O(n3 log n) time. Then in each step we can find the separator in O(n2) time. Namely,
the total time spent on computing the separators is T (np) = T (n1) +T (n2) +O(n2), where n1 +n2 = np
and n1, n2 ≤ (2/3)(n1 + n2); since np = O(n2), T (n) = O(n2 log n). As such, the total running time
is dominated by the computation of the shortest paths. The output is a list of O(n2) paths each of
complexity O(n), and so it can be explicitly presented in O(n3) time and space. Note that, we need a
continuous deformation between any two consecutive paths in the list, which can be implicitly presented
by a collection of functions in linear time and space (this is similar to what we describe below in the
beginning of Section 4.3).

The proof of Theorem 3.3 then goes through literally in this case. Since all the edges have length at
most 2d1, by assumption, we obtain the following.

Lemma 4.1. Let D be a topological disk with n faces where every face is a triangle (here, the distance
between any two points on the triangle is their Euclidean distance). Furthermore, the boundary of D is
formed by two walks L and R (that share two endpoints s, t). Let d1 be the maximum distance of any
point of D from L. Finally, assume that all edges of D have length at most 2d1. Then one can compute,
in O(n3 log n) time, a continuous homotopy from L to R of height at most ‖L‖+ ‖R‖+O(d1 log n).

±The existence of such a tree edge separator is folklore – its proof is provided by Lewis et al. [LSH65].
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4.3. Homotopy height if there are long edges

4.3.1. Breaking the disk into strips, pockets and chunks

For any two points in D consider a shortest path π connecting them. The signature of π is the ordered
sequence of edges (crossed or used) and vertices used by π, see Section 2. For a point p ∈ R, let sg(p)
denote the signature of the shortest path from p to L. The signature sg(p) is well defined in R except
for a finite set of medial points, where there are two (or more) distinct shortest paths from L to p. In
particular, let ΠR be the set of all shortest paths from any medial point on R to L. Observe that, the
medial points are the only points (on R) where the signature of the shortest path from R to L changes
in any non-degenerate triangulation.

Cutting D along the paths of ΠR breaks D into corridors. If the intersection of a corridor with R is
a point (resp. segment) then it is a delta (resp. strip), see Figure 4.1 (I). In a strip C, all the shortest
paths to L from the points in the interior of the segment C ∩ R have the same signature. Intuitively,
strips have a natural way to morph from one side to the other. We further break each delta into chunks
and pockets, as follows.

Consider a delta C with an apex c (i.e., the point of R on the boundary of C). For a point x ∈ L∩C,
its signature (in relation to C), is the signature of the shortest path from x to c (restricted to lie inside
C). Again, we partition L ∩ C into maximum intervals that have the same signature, and let P be the
set of endpoints of these intervals. For each point p ∈ P , consider all the different shortest paths from
c to p inside the delta C, and cut C along these paths. This breaks C into regions. If a newly created
region has a single intersection point with both L and R, then it is a pocket , otherwise, it is a chunk .
Clearly, this process decomposes C into pockets and chunks. See Figure 4.1 (II).

Applying the above partition scheme to all the deltas results in a decomposition of D into strips,
chunks and pockets.

Analysis. Recall, that d1 is the maximum distance of any point of D to L, and let d3 be the maximum
distance of any point of D to R. Also, let

d = max(d1, d3). (4.1)

Now, consider a chunk C ′. Its intersection with L is a segment, and its intersection with R is a point
(i.e., the apex c of the delta).

Lemma 4.2. A strip C cannot have any vertex of D in its interior.
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Proof: Let eL = L∩C and eR = R∩C be two edges bounding a strip. For two points p, p′ in the interior
of eR, consider their corresponding shortest paths ζ and ζ ′ to L. By definition, these two paths have
the same signature sg(ζ) = sg(ζ ′). If not, then by a limit argument, there must be a point p′′ ∈ eR in
between these two points, which has two different shortest path with different signature arriving to it;
that is, p′′ is a medial point, implying that eR is broken into (at least) two edges, and it can not be the
right side of a strip.

Now, for i = 1, . . . ,m, let ei be the ith edge of D that intersect ζ, as we move from L to R along ζ.
Observe that for any i, the edges ei, ei+1 belong to some triangle 4i of D, which ζ and ζ ′ goes through.
In particular, being shortest paths, ζ and ζ ′ each intersect 4i along a segment. In particular, let Bi be
the region of 4i bounded by ζ and ζ ′. The region Bi does not contain any vertex of D in its interior,
and it thus follows that the region C enclosed between ζ and ζ ′ (i.e.,

⋃
iBi) does not contain any vertex

of D. Now, applying this argument to a sequence of points (p, p′) that converge to the endpoint of eR,
implies the claim.

Remark. Lemma 4.2 testifies that no vertex of D can be interior to a strip. However, strangely enough,
a strip might be pinched together by some middle vertices. To see that, visualize a terrain with saddle
points (i.e., passes high in the mountains), and the strip is made out of two triangle like shapes (with eL
and eR as their respective bases), connected by the unique path between the two extreme saddle points².

The somewhat more challenging case to handle is that of pockets. A pocket is a topological disk
such that its intersections with L and R are both single points, and the two boundary paths between
these intersections are of length at most 2d. The overall perimeter of a pocket is of length at most 4d,
see Figure 4.2 (I). Pockets are handled by using the recursive scheme developed for the discrete case.

4.3.2. The algorithm in detail

We use the algorithm of Section 4.3.1 to break the given disk D into strips, chunks and pockets (notice,
that we assume nothing on the length of the edges). Next, order the resulting regions according to their
order along L, and transform each one of them at time, such that starting with L we end up with R. In
each such chunk or strip, the homotopy has height (roughly) proportional to its perimeter, while for a
pocket the situation is more involved.

(A) Morphing a chunk/strip S: Let σL = L∩ S and σR = R∩ S, and let πt and πb be the top and
bottom paths forming the two sides of S. There is a natural homotopy from πt · σL to σR · πb.

The strip/chunk S has no vertex of D in its interior, and therefore it is formed by taking
planar quadrilaterals and gluing them together along common edges. Observe that by the triangle

²Thus, a strip might look like a dissected butterfly. Sad indeed.
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inequality, all such edges of any of these quadrilaterals are of length at most max(‖σL‖ , ‖σR‖)+4d.
It is now easy to check that we can collapse each such quadrilateral in turn to obtain the required
homotopy. Since each of πt and πb is composed of two shortest paths (Figure 4.2 demonstrates
why such a path can potentially be made of two shortest paths), there is a linear number of such
quadrilaterals. See Figure 4.2 (II) for an example.

(B) Morphing a pocket: We apply the algorithm of Lemma 4.1 recursively to a pocket.

Specifically, the above decomposes D into m chunk/strips/pockets: D1, . . . ,Dm ordered by their inter-
section with L. Each such disks Di has a left (resp. right) subcurve Li = L ∩ Di, (resp. Ri = L ∩ Di),
and similarly, it has a top curve Ti = Di−1 ∩ Di and a bottom curve Bi = Di ∩ Di+1, for i = 1, . . . ,m.
In the end of the ith iteration, of this morphing process, the current curve is going to be

Mi = R1 · . . . · Ri · Bi · Li+1 · · · · · Lm.

Specifically, at the ith iteration, the algorithm morph Mi−1 to Mi, as described above (depending on
what kind of region it is). In particular, initially M0 = L and in the end Mm = R. As such, this results
in the desired homotopy.

4.3.3. Analysis

Why can we apply Lemma 4.1 to a pocket. A pocket has perimeter at most 4d, and there is a
point on its boundary, such that the distance of any point in it to this base point is at most 2d. Indeed,
the boundary of d in the worst case, is made out of four shortest paths in the original disk, and as such,
its total length is at most 4d, see Eq. (4.1). Furthermore, the distance of any point in the pocket to the
apex on R, is at most 2d.

Now, by the triangle inequality, we have that if in a topological disk D all the points of D are in
distance at most 2d from some point c, then the longest edge in D has length at most 4d. Therefore, all
the edges inside a pocket cannot be longer than 4d.

Running time. The shortest paths from R to L can be computed in O(n3 log n) time. The shortest
paths inside a delta to its apex can be computed in O(n2 log n) time. Since there is a linear number of
deltas, the total running time for building the strips is O(n3 log n).

Lemma 4.3. The number of paths in ΠR is O
(
|V(D)|

)
, where V(D) is the set of vertices of D.

In particular, the total number of parts (i.e., strips, chunks, and pockets) generated by the above
decomposition is O

(
|V(D)|

)
.

Proof: Let {σ1, σ2, . . . , σk} be the paths in ΠR sorted by the order of their endpoints along R. Observe
that these paths are geodesics and so one can assume that they are interior disjoint, or share a suffix
(or a prefix). Now, if li ∈ L and ri ∈ R are the endpoints of σi, for i = 1, . . . , k, then these endpoints are
sorted along their respective curves. In particular, let Di be the disk with boundary L[s, li] ·σi+1 ·R[s, ri].
We have that D1 ⊆ D2 ⊆ · · · ⊆ Dk. The signatures of σi and σi+2 must be different as otherwise
they would be consecutive. Furthermore, because of the inclusion property, if an edge or a vertex of D
intersects σi but does not intersect σi+1 then it cannot intersect any later path. Therefore, every other
path in ΠR can be charged to vertices or edges that are added or removed from the signature of the
respective path. Since an edge or a vertex can be added at most once, and deleted at most once, this
implies the desired bound on the number of paths.

The second claim follows readily by the above.
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The following bounds the quality of the morphing for a pocket or a chunk.

Lemma 4.4. Consider a strip or a chunk S generated by the above partition of D. Let σL = L ∩ S and
σR = R ∩ S. Let πt and πb be the top and bottom paths forming the two sides of S that do not lie on R
or L.

(A) We have ‖πb‖ ≤ 2d and ‖πt‖ ≤ 2d.
(B) If ‖σL‖ > 0 or ‖σR‖ > 0 then there is no vertex of D in the interior of S.
(C) If ‖σL‖ > 0 or ‖σR‖ > 0 then there is a homotopy from πt·σL to σR·πb of height max(‖σL‖ , ‖σR‖)+

4d. We can compute such a homotopy in linear time.

Proof: (A) If the strip was generated by the first stage of partitioning then the claim is immediate.
Otherwise, consider a delta C with an apex c. For any point x ∈ L∩C we claim that there is a path

of length at most 2d to c. Indeed, consider the shortest path πx from x to R in D. If this path goes to c
the claim holds immediately. Otherwise, the shortest path (that has length at most d) must cross either
the top or bottom shortest path forming the boundary of C that are emanating from c. We can now
modify πx, so that after its intersection point with this shortest path, it follows it back to c. Clearly,
the resulting path has length at most 2d and lies inside the resulting chunk.

(B) Follows readily from the argument of Lemma 4.2.
(C) Immediate from the algorithm description.

4.4. The result

Theorem 4.5. Suppose that we are given a triangulated piecewise linear surface with the topology of
a disk, such that its boundary is formed by two walks L and R. Then there is a continuous homotopy
from L to R of height at most ‖L‖+ ‖R‖+O(d log n), where d is the maximum geodesic distance of any
point of D from either L or R. This homotopy can be computed in O(n3 log n) time, and it is a O(log n)
approximation to the optimal minimum height homotopy.

Proof: The algorithm is described above. The quality of approximation (i.e., O(log n)) follows from
plugging in the above into the analysis of Theorem 3.3. Indeed, the intermediate curves M0, . . . ,Mm

have length at most ‖L‖+ ‖R‖+ 2d. The intermediate morphing of a strip or a chunk might result in a
curve of length ‖L‖ + ‖R‖ + 4d, as can be verified easily. As such, any further expansion in the length
needed is a result of the recursive morphing of a pocket, thus accounting for the additional O(d log n)
term.

Note, that max(d/2, L,R) is a lower bound on the height of the optimal homotopy.

5. Approximating the homotopic Fréchet distance

In this section, fix D to be a triangulated topological disk with n faces. Let the boundary of D be
composed of T, R, B, and L, four internally disjoint walks appearing in clockwise order along the
boundary. Also, let tl = L ∩ T, bl = L ∩ B, tr = R ∩ T, and br = R ∩ B³. See Figure 5.1.

³We use the same notation to argue about the discrete and continuous problems.

17



T

B

L

R

tl

bl br

tr

D

Figure 5.1

5.1. Approximating the regular Fréchet distance

5.1.1. The continuous case

Let dF(T,B) (resp. dH(T,B)) be the regular (resp. homotopic) Fréchet distance between T and B.
Clearly, dF(T,B) ≤ dH(T,B). The following lemma implies that the Fréchet distance can be approxi-
mated within a constant factor.

Lemma 5.1. Let D, n, L, T, R, and B be as above. Then, for the continuous case, one can compute,
in O(n3 log n) time, reparametrizations of T and B of width at most 2δ, where δ = dF(T,B).

Proof: In the following, consider D to be the region bounded by these four curves L, T, R, and B. We
decompose D into strips, chunks and pockets using the algorithm of Section 4.3.1. Let Π be the set of
shortest paths from all points of T to the curve B. As in the algorithm of Section 4.3.1, let ΠT be the
set of all shortest paths from medial points on T to B. Arguing as in Lemma 4.3, we have that the set
ΠT is composed of a linear number of paths. The paths in ΠT do not cross and so partition D into a
set of regions. Each region is bounded by a portion of T, a portion of B and two paths in ΠT. A region
is a delta if the two paths of ΠT in its boundary share a single endpoint (on T), it is a pocket if they
share two endpoints (one on T and one on B), and it is strip if they share no endpoints.

Obviously, the (endpoints of the) paths in Π cover all of the vertices of T. The paths in Π also cover
all of B except for the bases of deltas. Now, for each delta we compute the set of all shortest paths from
the vertices of its base to its apex inside the delta. Let ΠB be the set of all such paths in all deltas.
Clearly, the union of ΠB and ΠT is a set of non-crossing paths whose endpoints cover all the vertices of
T and B.

The shortest path from any point of T to B is at most δ. So, all paths in Π have length at most δ.
Similarly, the shortest path from a point of B to T is at most δ. Now, consider a delta C with apex c.
Let b be a point on the base of C (and so on B). The shortest path πb from b to T has length at most δ.
Let x be the first point that πb intersects a boundary path of C, πC . Now, πb[b, x] · πC [x, c] has length
at most 2δ and it is inside C. We conclude that all paths in ΠB have length at most 2δ.

The paths in ΠB ∪ ΠT decompose D into strips and corridors. The left and right portions of a strip
is of length at most 2δ, and its top and bottom sides have as such Fréchet distance at most 2δ from each
other. Similarly, the leash can jump over a pocket from the left leash to the right leash. Doing this to
all corridors and pockets, results in reparametrizations of L and R such that their maximum length of a
leash for these reparametrizations are at most 2δ. This implies that the Fréchet distance is at most 2δ,
and we have an explicit reparametrization that realizes this distance.

As for the running time, in O(n3 log n) time, one can compute all shortest paths from T to the whole
surface. Then one can, in O(n2 log n) time, compute the shortest paths inside each of the linear number
of deltas. It follows that the total running time is O(n3 log n).
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5.1.2. The discrete case

We can use a similar idea to the decomposition into deltas, pockets and strips as done in the proof of
Lemma 5.1.

Lemma 5.2. Let D be a triangulated topological disk with n faces, and T and B be two internally
disjoint walks on the boundary of D. Then, for the discrete case, one can compute, in O(n) time,
reparametrizations of T and B that approximate the discrete Fréchet distance between T and B. The
computed reparametrizations have width at most 3δ, where δ is the maximum of the Fréchet distance
between T and B, and the maximum length of an edge on

Proof: First, compute the set of shortest paths, ΠT = {ζ1, ζ2, · · · , ζk}, from vertices of T to the path
B. To this end, we (conceptually) collapse all the vertices of B into a single vertex, and compute the
shortest path from this meta vertex to all the vertices in T. Let T be the resulting shortest path tree.

Next, for i = 1, . . . , k − 1, let ei = titi+1 be the ith edge of T, and let let ζi be the shortest
path from ti to B, with bi being its endpoint on B, and consider the region Di bounded by the curve
ζi · ei · ζi+1 · B[bi+1, bi]. Now, compute the shortest path tree Ti inside Di, from the two vertices of ei to
all the other vertices of Di. For each internal vertex v of B[bi+1, bi], the shortest path to either ti or ti+1

inside Di can be retrieved from Ti. Let Πi be the set of all such shortest paths for internal vertices of
B[bi+1, bi], and let Π = ΠT ∪

⋃
i Πi.

As for the length of the paths in Π, observe that the shortest path ψ, in D, from such a vertex v to
T has length at most δ. If ψ wanders outside Di then one can modify it to lie in Di. Specifically, if this
path intersect, say, ζi then we can modify it into a path from v to ti, and the modified path has length
≤ ‖ψ‖+ ‖ζi‖ ≤ 2δ.

Now, every edge of T or B must be used by a valid leash sequence, see Definition 2.3. As such, the
height of any leash sequence is at least the length of the longest such edge. Note, that two consecutive
paths in Π might be either share an endpoint or adjacent, in either the top or bottom curve. As such,
the set Π can be turned into a valid leash sequence by adding at most two moves, in the worst case
both a person and a dog move, between two such consecutive paths. Let Π′ denote the resulting leash
sequence. Now, every path in Π′ has length at most 2δ + δ, as the modified added paths are longer by
at most the length of a single edge of T or B, Thus, the leash sequence Π′ has height at most 3δ.

Using the algorithm of Henzinger et al. [HKRS97] to compute the shortest paths from B takes linear
time. Since all the regions are disjoint, and every edge appears on the boundary of at most two regions,
we can compute all the shortest paths inside all these regions to T in O(n) time overall (this step requires
careful implementation to achieve this running time).

Remark 5.3. (A) The paths realizing the Fréchet distance computed by Lemma 5.2 are stored using an
implicit data-structure (essentially shortest path trees that are intertwined). This is why the space
used is linear and why it can be constructed in linear time. Of course, an explicit representation of the
sequence of walks realizing the Fréchet distance might require quadratic space in the worst case.

(B) We emphasize that two consecutive paths of Π′, from the proof of Lemma 5.2, might enclose a
region that have (potentially) many interior vertices. Thus, the leash might “jump” over obstacles – the
remainder of this section deals with removing this drawback.

5.2. Minimum reparameterization width if there are no mountains

The following lemma implies a O(log n)-approximation algorithm for the case that all vertices in D are
sufficiently close to both of the two curves.
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Lemma 5.4. Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint
walks on the boundary of D. Further, assume for all p ∈ D, the distance between p and T is at most x,
and the distance between p and B is at most x. Then one can compute reparametrization of B of width
O(x log n). The running time is O(n4 log n) (resp. O(n2)) in the continuous (resp. discrete) case.

In particular, if x = O(dH(T,B)) then this is an O(log n)-approximation to the optimal homotopic
Fréchet distance.

Proof: Consider the continuous case. Using the algorithm of Lemma 5.1 we compute a reparametrization
of B of width δ, realizing approximately the regular Fréchet distance, where δ = O(x). Let `(t) denote the
leash at time t that we obtain from the reparametrization mentioned above. Note that the leash `(·) is not
required to deform continuously in t. In particular, for a given time t ∈ [0, 1], let `−(t) = limt′→t− `(t

′) and
`+(t) = limt′→t+ `(t

′), where limt′→t− and limt′→t+ are the left-sided and right-sided limits, respectively.
By definition, the leash is discontinuous at t if and only if `−(t) 6= `+(t).

Naturally, the above reparameterization can be used as long as it is continuous. Whenever the leash
jumps over a gap (i.e., the leash is discontinuous at this point in time), say at time t, we are going to
replace this jump by a (`−(t), `+(t))-homotopy between the two leashes. Clearly, this would result in
the desired continuous homotopy.

To this end, observe that all the vertices inside the disk with boundary `−(t) · `+(t) have distance
O(x) to T and B, and thus also to `−(t) and `+(t). Hence, using the algorithm of Theorem 4.5, compute
an (`−(t), `+(t))-homotopy with height O(x log n). Since a gap must contain a vertex there are O(n)
gaps, so this filling in is done at most O(n) times. Computing the initial reparameterization takes
O(n3 log n) time. Each gap can be filled in O(n3 log n) time.

The discrete case is similar. The Fréchet distance here can be computed in linear time using the
algorithm of Lemma 5.2 (see also Remark 5.3). However, we can only obtain the value of the Fréchet
distance as well as an implicit representation of the actual deformation in linear time. Indeed we can
compute an explicit listing of the paths in O(n2) time. Each path in the list can be charged to a single
face or edge of D. It immediately follows that the number of paths is linear. For any two consecutive
paths, πi and πi+1 in the list, we can fill in the possible gap and compute the explicit solution in O(n2

i )
time, where ni is the number of faces between πi and πi+1, see Theorem 3.3 and Remark 3.4 (D). Since∑
ni = O(n) the total running time of the algorithm is O(n2).

The above lemma demonstrates that if the starting and ending leashes are known (i.e., the region of
the disk D swept over by the morph) then an approximation algorithm can be obtained. The challenge
is that a priori, we do not know these two leashes, as the input is a topological disk D with the two
curves T and B on its boundary, and the start/end leashes might be curves that lie somewhere in the
interior of D.

5.3. A Decision Procedure for the Homotopic Fréchet distance in the pres-
ence of mountains

Here, we are handling both the discrete and continuous cases together.
For a parameter τ ≥ 0, a vertex v ∈ V(D) is τ-tall if its distance to T or B is larger than τ

(intuitively τ is a guess for the value of dH(T,B)). Here, we consider the case where there are τ -tall
vertices. Intuitively, one can think about tall vertices as insurmountable mountains. Thus, to find a
good homotopy between T and B, we have to choose which “valleys” to use (i.e., what homotopy class
the solution we compute belongs to if we think about tall vertices as punctures in the disk). As a
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concrete example, consider Figure 5.2 (I), where there are three tall vertices, and two possible solutions
are being shown.

In the discrete case, we subdivide each edge in the beginning so that if an edge has length > 2τ ,
then the vertex inserted in the middle of it is τ -tall. Observe that, if τ > dH(T,B) then no leash of the
optimum homotopic motion can afford to contain a τ -tall vertex. We use Mτ to denote the set of all
τ -tall vertices in V(D).

Now, let ω and ω′ be two walks connecting points on T and B. The walks ω and ω′ are homotopic
in D\Mτ if and only if they are homotopic in D\Mτ after contracting T and B (each to a single point).
Two non-crossing walks ω and ω′ are homotopic if and only if T · B · ω · ω′ contains no tall vertices. It
is straightforward to check that homotopy is an equivalence relation. So it partitions (T,B)-paths into
homotopy classes ; we call each class a τ -homotopy class or simply a homotopy class (given that τ is
fixed).

For a homotopy class h, let πL,h (resp. πR,h) be the left geodesic (resp. right geodesic); that is,
πL,h denotes the shortest path in h from tl to bl (resp. from tr to br).

Let ω be any walk in h from b ∈ B to t ∈ T. The left tall set of h, denoted by Ml(h) = Ml(ω), is
the set of all τ -tall vertices to the left of ω. Namely, Ml(h) is the set of tall vertices inside the disk with
boundary L · T[tl, t] · ω · B[bl, b]. where L is the “left” portion of the boundary of D, having endpoints tl
and bl. We similarly define the right tall set of h, Mr(h) = Mr(ω), to be the set of all τ -tall vertices
to the right of ω. See Figure 5.2 (II).

Note that the sets Ml(h) and Mr(h) do not depend on the particular choice of ω, since all paths in
h are homotopic and so have the same set of τ -tall vertices to their left and right side. However, we
emphasize that the left and right tall sets do not identify homotopy classes. Figure 5.2 (III) demonstrates
two non-homotopic paths with identical left and right tall sets.

The set h is τ-extendable from the left if and only if ‖πL,h‖ ≤ τ and there is a homotopy class h′,
such that ‖πL,h′‖ ≤ τ and Ml(h) ⊂ Ml(h′). In particular, h is τ-saturated if it is not τ -extendable and
‖πL,h‖ ≤ τ .

5.3.1. On the left and right geodesics

Lemma 5.5. Let h be a τ -saturated homotopy class, where τ ≥ dH(T,B). Then ‖πR,h‖ ≤ 4τ .

Proof: Let hopt be the homotopy class of the leashes in the optimum solution. Of course, no leash in the
optimum solution contains a τ -tall vertex. Further, all leashes in the optimal solution are homotopic
because there is a homotopy that contains all of them by definition.

Since h is saturated the set Ml(h) is not a proper subset of Ml(hopt). It follows that either Ml(h) =
Ml(hopt) or Ml(h) intersects Mτ\Ml(hopt) = Mr(hopt)
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If Ml(h) = Ml(hopt) then either h = hopt, and in particular ‖πR,h‖ =
∥∥πR,hopt∥∥ ≤ τ , or πL,h crosses

πR,hopt .
Otherwise, the set Ml(h) ∩Mr(hopt) is not empty. Again, it follows that πL,h crosses πR,hopt .
Therefore, we only need to address the case that πL,h crosses πR,hopt .
Let x be the first intersection point between πL,h and πR,hopt , as one traverses πL,h from tl to bl. Let x′

be the last intersection point of πL,h[tl, x] with πL,hopt . Similarly, y is the last intersection point between
πL,h and πR,hopt , and y′ is the first intersection of πL,h[y, bl] and πL,hopt . Observe that the interiors of
πL,h[x

′, x] and πL,h[y, y
′] do not intersect the curves πL,hopt and πR,hopt . See Figure 5.3 (I).

As the curves πL,h and πR,h are homotopic (by definition), the disk with the boundary T ·πL,h ·B ·πR,h
does not contain any tall vertex, and T · πL,h · B is homotopic to πR,h.

Consider the walk T′ = πR,hopt [tr, x] · πL,h[x, x′] · πL,hopt [x′, tl], see Figure 5.3 (II). The walk T′ is
homotopic to T. Similarly, B′ = πL,hopt [bl, y

′] · πL,h[y′, y] · πR,hopt [y, br] is homotopic to B. It follows that
πR,h is homotopic to T′ ·πL,h ·B′. As πR,h is the shortest path in its homotopy class with these endpoints,
it follows that

‖πR,h‖ ≤ ‖T′ · πL,h · B′‖ ≤ ‖πL,h‖+
(∥∥πL,hopt∥∥+ ‖πL,h‖+

∥∥πR,hopt∥∥) ≤ 4τ,

as T′ and B′ are disjoint, and T′ ∪ B′ ⊆ πR,hopt ∪ πL,hopt ∪ πL,h.

A region that contains no τ -tall vertices can still, potentially, contain τ -tall points (that are not
vertices) on its edges or faces. We next prove that this does not happen in our setting.

Lemma 5.6. For any τ ≥ 0, let h be a τ -homotopy class, such that max(‖πL,h‖ , ‖πR,h‖) ≤ x, where
x ≥ τ ≥ dH(T,B). Let D′ be the disk with boundary T · πR,h · B · πL,h. Then all the points inside D′ are
within distance O(x) to both T and B in D′.

Proof: We first consider the continuous case. By the definition of τ -homotopy, the disk D′ has no τ -tall
vertices. Furthermore, by the definition of x, we have that the distance of any point on T to B, restricted
to paths in D′ is at most δ1, where δ1 = x + dF(T,B) ≤ 2x. Indeed, the shortest path from any point
on T to B in D, either stays inside D′, or alternatively intersects either πL,h or πR,h.

We can now deploy the decomposition of D′ into strips, pockets and chunks as done in Section 4.3.1.
Every strip (or a chunk) is being swept by a leash of length at most δ2 = 2δ1 ≤ 4x (the factor two is
because a strip might rise out of a delta), and therefore the claim trivially holds for points inside such
regions.

Every pocket P has perimeter of length at most ‖∂P‖ ≤ δ3 = 2δ2 = 8x (the perimeter also contains
two points of T and B and they are in distance at most δ2 from each other in either direction along the
perimeter). So, consider such a pocket P. Since D′ contains no τ -tall vertices, P does not contain any
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tall vertex. Let e be an edge in P (or a subedge if it intersects the boundary of P). The two endpoints of
e are in P, and such an endpoint is either a (not tall) vertex or it is contained in ∂P. In either case, these
endpoints are in distance at most x from ∂P, and so they are in distance at most δ4 = 2x + ‖∂P‖ /2 =
2x+δ2 ≤ 6x from each other even if the geodesic distance is restricted to P . We conclude that ‖e‖ ≤ δ4,
and consequently, any point in e is in distance at most δ5 = ‖e‖ /2 + x+ δ2 ≤ 3x + x + 8x ≤ 12x from
T and B.

Now, consider any point p in P, and consider the face F that contains it. Since the surface is
triangulated, F is a triangle. Clipping F to P results in a planar region F ′ that has perimeter at most
δ6 = 3δ4 + ‖∂P‖ ≤ 3 · 6x + δ3 ≤ (18 + 8)x ≤ 26x (note, that an edge might be fragmented into several
subedges, but the distance between the furthest two points along a single edge is at most δ4 using
the same argument as above). Thus, the furthest a point of P can be from an edge of P is at most
δ7 = δ6/2π ≤ 5x. Hence, the maximum distance of a point of P from either T or B (inside D′) is at
most δ5 + δ7 ≤ 12x+ 5x = 17x.

The discrete case is easy. Any edge of length ≥ 2τ was split, by introducing a middle vertex, which
must be τ -tall. So the claim immediately holds.

5.3.2. The decision algorithm

Lemma 5.7. Let D, n,T, L,B,R, tl, bl as in the first paragraph of Section 5 and τ as in the previous
subsection, and let X ⊆ V(D) be a set of τ -tall vertices. Consider the shortest path σl (between tl and
bl) that belongs to any homotopy class h such that X ⊆ Ml(h). Then the path σl can be computed in
O(n4 log n) (resp. O(n log n)) time in the continuous (resp. discrete) case.

Proof: For each vertex of v ∈ X, compute its shortest path ψv to L in D. Cut the disk D along these
paths. The result is a topological disk D′. Compute the shortest path ζ in D′ between tl and bl.

We claim that ζ = σl. To this end, consider σl and any path ψv computed by the algorithm. We
claim that σl and ψv do not cross in their interior. Indeed, if σl cross ψv an odd number of times, then
v is inside the disk σl ·T ·R ·B, which contradicts the condition that v ∈ X ⊆ Ml(h). Clearly, σl and ψv
cannot cross in their interiors more than once, because otherwise, one can shorten one of them, which
is a contradiction as they are both shortest paths. Thus, σl is a path in D′ connecting tl to bl, thus
implying that ζ is σl.

As for the running time, each shortest path computation takes time O(n2 log n), in the continuous
(resp. discrete) case. The resulting disk has complexity O(n2), and computing a shortest path in it
takes O(n4 log n) time in the continuous case. In the discrete case, computing the paths can be done by
collapsing L to a vertex, forbid the shortest path tree edges, and run a shortest path algorithm in the
remaining graph. Clearly, this takes O(n log n) time.

Lemma 5.8. Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint
walks on D’s boundary. Given τ > 0, one can compute a τ -saturated homotopy class, in O(n5 log n)
(resp. O(n2 log n)) time, in the continuous (resp. discrete) case.

Proof: Start with an empty initial set X = ∅. At each iteration, try adding one of the τ -tall vertices
v ∈ Mτ of D to X, by using Lemma 5.7. The algorithm of Lemma 5.7 outputs a path σ between tl and
bl and a set X ′ ⊃ X ∪ {v}.

If σ is of length at most τ update X to be the new set X ′, otherwise reject v. If v is rejected then the
left geodesic of any superset of X ∪{v} has length larger than τ . It follows that v cannot be accepted in
any later iteration, so we do not need to reinspect it. Clearly, after trying all the vertices of Mτ , the set
X defines the desired saturated class, which can be computed by using the algorithm of Lemma 5.7.
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Lemma 5.9. Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint
walks on the boundary of D. Given a real number x > 0, one can either:

(A) Compute a homotopy from T to B of width O(x log n), or
(B) Return that x < dH(T,B).

The running time of this procedure is O(n5 log n) (resp. O(n2 log n)) in the continuous (resp. discrete)
case.

Proof: Assume x ≥ δH = dH(T,B), and we use x as a guess for this value δH . Using Lemma 5.8, one
can compute a x-saturated homotopy class, h. Lemma 5.5 implies that both πL,h and πR,h are at most
4x. Let D′ ⊆ D be the disk with boundary T · πL,h · B · πR,h. By Lemma 5.6, all the vertices in D′ are
in distance O(x) from T and B (this holds for all points in D′ in the continuous case). That is, there
are no O(x)-tall vertices in D′. Finally, Lemma 5.4 implies that a continuous leash sequence of height
≤ Z = O(x log n) between T and B, inside D′, can be computed.

Thus, if x is larger than dH(T,B) then this algorithm returns the desired approximation; that is, a
homotopy of width ≤ Z. If the width of the generated homotopy is however larger than Z (a value that
can be computed directly from x), then the value of x was too small. That is, the algorithm fails in this
case only if x < dH(T,B). In the case of such failure, return that x is too small.

5.4. A strongly polynomial approximation algorithm

For a vertex v ∈ V(D), define cost(v) to be the length of the shortest path between tl and bl that has
v on its left side. Similarly, for a set of vertices X ⊆ V(D), let Cost(X) be the length of the shortest
path between tl and bl that has X on its left side. For a specific v or X, one can compute cost(v) and
Cost(X) by invoking the algorithm of Lemma 5.7 once.

5.4.1. The algorithm

(I) Identifying the tall vertices. Observe that using the algorithm of Lemma 5.9, we can decide
given a candidate value δH for dH(T,B) if it is too large, too small, or leads to the desired
approximation. Indeed, if the algorithm returns an approximation of values O(δH log n) but fails
for δH/2, we know it is the desired approximation.
For each vertex v ∈ V(D) let αv be the maximum distance of v to either T or B. Note that v
cannot be a-tall for any a ≥ αv. Sort these values, and using binary search, compute the vertex
w, with the minimum value αw, such that Lemma 5.9 returns a parameterization with homotopic
Fréchet distance O(αw log n). If the algorithm of Lemma 5.9 returns that αw/n is too small of a
guess, then [αw/n, αw log n] contains δH . In this case, we can use binary search to find an interval
[γ/2, γ] that contains δH and use Lemma 5.9 to obtain the desired approximation. Similarly, if v
is the tallest vertex shorter than w, then we can assume that αvn is too small of a guess, otherwise
we are again done as [αv, αvn] contains δH .
Therefore, in the following, we know that the desired distance δH lies in the interval [x, y] where
x = αvn and y = αw/n, and for every vertex u of D it holds that (i) αu ≤ x/n, or (ii) αu ≥ yn.
Naturally, we consider all the vertices that satisfy (ii) as tall vertices, by setting τ = 2x/n. In the
following, let M denote the set of these τ -tall vertices.

(II) Computing candidate homotopy classes. Start with X0 = ∅. In the ith iteration, the
algorithm computes the vertex vi ∈ M \Xi−1, such that Cost(Xi−1 ∪ {vi}) is minimized, and set
Xi = Xi−1 ∪ {vi}. Let hi be the homotopy class having Xi on its left side, and M \Xi on its right
side.
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(III) Binary search over candidates. We approximate the homotopic Fréchet width of each one of
the classes h1, . . . , hn. Let x be the minimum homotopic Fréchet width computed among these n
candidates.
Next, do a binary search in the interval [x/n2, x] for the homotopic Fréchet distance. We return
the smallest width reparametrization computed as the desired approximation.

5.4.2. Analysis

Lemma 5.10. (i) For any X ′ ⊆ X ⊆ V(D), we have Cost(X ′) ≤ Cost(X).
(ii) For any x ∈ X ⊆ V(D), we have cost(x) ≤ Cost(X).
(iii) For X, Y ⊆ V(D), we have that Cost(X ∪ Y ) ≤ Cost(X) + Cost(Y ).

Proof: (i) Observe that the path realizing Cost(X ′) is less constrained than the path realizing Cost(X),
therefore it might only be shorter.

(ii) Follows immediately from (i).

(iii) Consider the disk D and the two paths σX and σY realizing Cost(X) and Cost(Y ), respectively.
The close curves σx · L and σY · L encloses two topological disks. Consider the union of these two disks,
and its connected outer boundary σX∪Y ∪ L. Clearly, σX∪Y connects tl and bl, and it has all the points
of X and Y on one side of it, and finally ‖σX∪Y ‖ ≤ ‖σX‖+ ‖σY ‖ as σX∪Y ⊆ σX ∪ σY . See Figure 5.4.

Lemma 5.11. The cheapest homotopic Fréchet parameterization computed among h1, . . . , hn has width
O(dH(T,B)n log n).

Proof: Consider the set Y that is the subset of tall vertices on the left side of the optimal solution.
Let i be the first index such that Y ⊆ Xi and Y 6⊆ Xi−1. Let v be any vertex in Y \ Xi−1. By
construction, we have that Cost(Xi) ≤ Cost(Xi−1 ∪ {v}), and furthermore, for all j ≤ i, we have that
Cost(Xj) ≤ Cost(Xj−1 ∪ {v}), by the greediness in the construction of X1, . . . , Xi. Now, we have

Cost(Xi) ≤ Cost(Xi−1 ∪ {v}) (by construction of Xi)

≤ Cost(Xi−1) + cost(v) (by Lemma 5.10 (iii))

≤ Cost(Xi−1) + Cost(Y ) (by Lemma 5.10 (ii))

≤ (Cost(Xi−2) + Cost(Y )) + Cost(Y ) (applying same argument to Xi−1)

= Cost(Xi−2) + 2Cost(Y )

≤ · · · ≤ iCost(Y ) ≤ nCost(Y ).

Now, setting τ = Cost(Xi), it follows that Xi is τ -saturated. Applying Lemma 5.5, implies that
‖πR,hi‖ ≤ 4τ . Observe, that the disk defined by T, πL,hi , B, πR,hi cannot contain any tall vertex (by
construction).
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Now, plugging this into Lemma 5.4 implies the homotopic Fréchet width of hi (starting with πL,hi
and ending up with πR,hi , so D in Lemma 5.4 is bounded by T,B, πL,hi , πR,hi) is O(τ log n), which implies
the claim since Cost(Xi) ≤ nCost(Y ) ≤ ndH(T,B).

5.4.3. The algorithm

Theorem 5.12. Let D be a triangulated topological disk with n faces, and T and B be two internally
disjoint walks on the boundary of D. One can compute a homotopic Fréchet parameterization of T and
B of width O(dH(T,B) log n), where dH(T,B) is the homotopic Fréchet distance between T and B in D.

The running time of this procedure is O(n6 log n) (resp. O(n3 log n)) in the continuous (resp. dis-
crete) case.

Proof: Consider the algorithm described in the previous subsection. For correctness, observe that the
algorithm either found the desired value, or identified correctly the tall vertices. Next, by Lemma 5.11,
the range the algorithm searches over contains the desired value.

The algorithm requires O(n2) calls to Lemma 5.7, which takes O(n6 log n) (resp. O(n3 log n)) time in
the continuous (resp. discrete) case. Then the algorithm requires the method of Lemma 5.4 to compute
the homotopic Fréchet distance of the classes h1, . . . , hn. The algorithm also performs O(log n) calls to
the algorithm of Lemma 5.9.

6. Conclusions

We presented a O(log n) approximation algorithm for approximating the homotopy height and the
homotopic Fréchet distance between curves on piecewise linear surfaces. It seems quite believable that
the approximation quality can be further improved, and we leave this as the main open problem. Since
our algorithm works both for the continuous and discrete cases, it seems natural to conjecture that this
algorithm should also work for more general surfaces and metrics.

Another problem for further research is to solve our main problem without the restriction that the
two curves lie on the boundary of the disk.

Connection to planar separator. Our basic algorithm (Theorem 3.3) is inspired to some extent by
the proof of the planar separator theorem [LT79]. In particular, our result implies sufficient conditions
to having a separator that can continuously deform from enclosing nothing in a planar graph, till it
encloses the whole graph, without being too long at any point in time. As a result, our work can be
viewed as extending the planar separator theorem. A natural open problem is to extend our work to
graphs with higher genus.
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tance between folded polygons. In Proc. 12th Workshop Algorithms Data Struct. (WADS),
pages 267–278, 2011.

[CL09] E. W. Chambers and D. Letscher. On the height of a homotopy. In Proc. 21st Canad. Conf.
Comput. Geom. (CCCG), 2009.

[CL10] E. W. Chambers and D. Letscher. Erratum for on the height of a homotopy. http:

//mathcs.slu.edu/~chambers/papers/hherratum.pdf, 2010.

[CLJL11] E. W. Chambers, D. Letscher, T. Ju, and L. Liu. Isotopic Fréchet distance. In Proc. 23rd
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the discrete Fréchet distance. In Proc. 12th Int. Sym. Spatial Data Handling, pages 383–400,
2006.

[MMP87] J. S.B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem.
SIAM J. Comput., 16:647–668, 1987.

28

http://www.cs.duke.edu/~wys/
http://doi.acm.org/10.1145/2462356.2462375
http://doi.acm.org/10.1145/2462356.2462375
http://sarielhp.org
http://www.cs.utsa.edu/~carola/
http://link.springer.com/journal/454
http://www.cs.arizona.edu/~alon/
http://geometry.stanford.edu/member/guibas/
http://sarielhp.org
http://link.springer.com/journal/454
http://link.springer.com/journal/454
http://portal.acm.org/citation.cfm?id=261540.261541
http://portal.acm.org/citation.cfm?id=261540.261541
http://sarielhp.org
http://sarielhp.org
http://sarielhp.org/papers/10/frechet3d/
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1109/FOCS.1965.14
http://www.cs.umd.edu/~mount/


[Pap13] P. Papasoglu. Contracting thin disks. ArXiv e-prints, September 2013.

[PB00] D. Piponi and G. Borshukov. Seamless texture mapping of subdivision surfaces by model
pelting and texture blending. In Proc. SIGGRAPH 2000, pages 471–478, August 2000.

[SdS00] A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangulation flat-
tening. In Proc. 9th International Meshing Roundtable, pages 161–172, 2000.
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A. Sweeping a convex polytope, star unfolding, and banana

peels

Consider a convex polytope P in three dimensions, a base point b on its boundary, and the problem of
finding the minimum length leash needed for a guard that walks on the polytope such that the leash
sweeps over all the points on the surface of the polytope. Specifically, at any point in time, the guard
maintains a connection to the base point b via a path (i.e., the leash) connecting it to the base point,
and the leash has to move continuously as the guard moves around.

For a point p on the boundary of P , let dP(p) be the geodesic distance from b to p (i.e., the length
shortest path ζ that lies on the boundary of P connecting b to p). Let M be the medial axis of this
distance – formally, a point p is on the medial axis if there are two distinct shortest paths ζ and ψ from
b to p, such that ‖ζ‖ = ‖ψ‖ = dP(p). It is known that M is a tree in this case [AAOS97].

Now, let Π be the union of all the shortest paths from b to the vertices of P (we assume that no
vertex is on the medial axis, which holds under general position assumption). The set Π is also a tree.
Surprisingly, if you cut ∂P along Π, then the resulting polygon can be flattened on the plane. Maybe
even more surprisingly, this even holds if one cuts ∂P along M . This is known as star unfolding of a
polytope, see Agarwal et al. [AAOS97] for details.

Consider cutting ∂P along both M and Π. This breaks P into a collection of polygons Q, where
each polygon Q ∈ Q, has no vertices of P in its interior, and has b as a vertex. As such, one can unfold
this Q into the plane. Here, the two paths of Π adjacent to b that belong to the boundary of Q maps
in this unfolding to two straight edges. The rest of the boundary Q is a closed connected portion of
M . One can think about Q as being a “leaf” in a decomposition of ∂P (i.e., think about the sides of a
banana peel). Here, shortest paths from b to any point on p ∈ ∂P that belongs to Q results in a straight
segment in (the planar embedded version of) the polygon Q. As such, the polygons of Q completely
capture the structure of all the shortest paths on ∂P to b.

Back to the problem of sweeping ∂P . For the points of MQ = M ∩ ∂Q, we can sweep the region of
∂Q that corresponds to Q, by walking along the curve MQ (say counterclockwise), and the leash being
the shortest path in ∂P (that lies inside Q). This completely sweeps over the region of Q. We then
continue this sweeping in the next polygon of Q adjacent to Q around b. We continue in this fashion till
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all the boundary of the polytope is swept over. Note, that the leash is moving continuously, and during
this motion, the maximum length of the leash is the distance to the furthest point on ∂P from b. We
conclude that this is an optimal solution and using the known algorithms for computing shortest paths
[AAOS97].

Let us recap the algorithm: We compute the medial axis M of b on ∂P , under the shortest path
distance on the boundary of the polytope. Next, the parameterize a point p(t) to move continuously
around the tree M (i.e., traversing along each edge twice, in both direction). At each point in time, the
leash is connected via the shortest path to the base point b.

Lemma A.1. Given a convex polytope P in three dimensions, and a base point p ∈ ∂P, one can
compute in polynomial time, a continuous motion of a point p(t), t ∈ [0, 1], and an associated leash
`(t) connecting p(t) with b, such that (i) the leash sweeps over all the points of ∂P, (ii) the leash moves
continuously, (iii) a point of ∂P get swept over only once during this motion, and (iv) the maximum
length of the leash is maxp∈∂P dP(p), which is optimal.

The above is in sharp contrast to our original problem of computing the homotopy height, as the two
ends of the leash must move along two prespecified curves L and R. Furthermore, because of that we
no longer have the property that the leashes do not jump, as the leash head no longer moves along the
medial axis, as the resulting paths might be too long (compared to the optimal morph). Nevertheless,
the above captures our basic strategy of breaking the input disk into smaller slivers, induced by shortest
paths, and solving the problem in each sliver separately, and gluing the solutions together.
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