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Abstract

Let P be a finite set of points in general position in the plane. The structure of the
complete graph K(P ) as a geometric graph includes, for any pair [a, b], [c, d] of vertex-
disjoint edges, the information whether they cross or not.

The simple (i.e., non-crossing) spanning trees (SSTs) of K(P ) are the vertices of the
so-called Geometric Tree Graph of P , G(P ). Two such vertices are adjacent in G(P ) if they
differ in exactly two edges, i.e., if one can be obtained from the other by deleting an edge
and adding another edge.

In this paper we show how to reconstruct from G(P ) (regarded as an abstract graph)
the structure of K(P ) as a geometric graph. We first identify within G(P ) the vertices
that correspond to spanning stars. Then we regard each star S(z) with center z as the
representative in G(P ) of the vertex z of K(P ). (This correspondence is determined only
up to an automorphism of K(P ) as a geometric graph.) Finally we determine for any
four distinct stars S(a), S(b), S(c), and S(d), by looking at their relative positions in G(P ),
whether the corresponding segments cross.

1 Introduction

Graph reconstruction is an old and extensive research topic. It dates back to the Reconstruction
Conjecture raised by Kelly and Ulam in 1941 (see [8, 12]), which asserts that every graph on at
least three vertices is uniquely determined by its collection of vertex deleted subgraphs.

As a natural extension of the Reconstruction Conjecture, numerous papers considered either
reconstruction of structures other then graphs (a research topic proposed by Ulam in 1960), or
reconstructions of graphs from other information. In the first direction, reconstructed objects
include colored graphs, hypergraphs, matroids, relations, and other classes. In the second direc-
tion, the “information” may be k-vertex deleted subgraphs, edge-deleted subgraphs, elementary
contractions, spanning trees, etc. In addition, various papers considered reconstruction of pa-
rameters of the graph instead of its full structure. Such parameters include the order, the degree
sequence, planarity, the types of spanning trees, and many others (see the surveys [2, 10] for
references).

In this paper, we study the problem of reconstructing the geometric structure of a set of
points in the plane from its geometric tree graph.

Tree graphs were defined in 1966 by Cummins [3] in the context of listing all spanning trees
of a given connected graph effectively. The tree graph T (G) of a graph G has the spanning
trees of G as its vertices, and two spanning trees are adjacent if one can be obtained from the
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other by deleting an edge and adding another edge. These graphs were studied in a number of
papers and were shown to be Hamiltonian and to have the maximal possible connectivity (see,
e.g., [7, 9]).

In 1996, Avis and Fukuda [1] defined the geometric tree graph, as the counterpart of tree
graphs in the geometric graph setting.

Definition 1.1. Let P be a finite point set in general position in the plane. The geometric
tree graph G(P ) is defined as follows. The vertices of G(P ) are the simple (i.e., non-crossing)
spanning trees (SSTs) of K(P ). Two such vertices are adjacent in G(P ) if they differ in exactly
two edges, i.e., if one can be obtained from the other by deleting an edge and adding another
edge.

Geometric tree graphs were shown to be connected [1], and upper and lower bounds on their
diameter were established [1, 5].

We study a reconstruction problem for geometric graphs: Is the geometric tree graph G(P )
sufficient for “reconstructing” the structure of K(P )? In a sense, this question is a geometric
counterpart of the work of Sedláček [11], who studied the question whether a graph can be re-
constructed from its spanning trees. As we deal with a geometric setting, we seek to reconstruct
the geometric structure of the graph.

Definition 1.2. Let P be a finite set of points in general position in the plane. The geometric
structure of the complete graph K(P ) as a geometric graph includes, for any pair [a, b], [c, d] of
vertex-disjoint edges, the information whether they cross or not.

Our main result is the following:

Theorem 1.3. For any finite set P of points in general position in the plane, the geometric
structure of K(P ) can be reconstructed from the geometric tree graph G(P ).

While the proof of the theorem is elementary, it is rather complex, and consists of several
stages:

1. Maximal cliques in G(P ). We study thoroughly the structure of maximal cliques in
G(P ). We divide these cliques into two types, called “union max-cliques” and “intersection
max-cliques”, and show that given a maximal clique in G(P ), one can determine its type.
This study spans Section 2.

2. Stars and brushes in G(P ). We show how to identify the vertices of G(P ) that cor-
respond to spanning stars and spanning brushes (i.e., spanning trees of diameter 3 with
a single internal edge), by examining the max-cliques to which they belong. The stars
are determined only up to an automorphism of K(P ) (obviously, one cannot do better),
and once they are fixed, the brushes are determined uniquely. This part of the proof is
presented in Section 3.

3. The geometric structure of K(P ). We show how the geometric structure of K(P ) can
be derived from information on the brushes in G(P ). This part is presented in Section 4.

In the last part of the paper, Section 5, we consider abstract (i.e., non-geometric) graphs,
and show that a variant of the argument developed in Sections 2 and 3 can be used to prove
the following result:
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Theorem 1.4. For any n ∈ N, the automorphism group of the tree graph of Kn is isomorphic
to Aut(Kn) ∼= Sn.

Our treatment of the geometric reconstruction problem (i.e., K(P ) from G(P )) falls short of
this. It leaves open the (quite implausible) possibility that the geometric tree graph G(P ) has
an automorphism η, other than the identity, that fixes each star and each brush. This leaves
open, for further research, the following question.

Question 1.5. Is this true that for any finite set P of points in general position in the plane,
we have Aut(G(P )) ∼= Aut(K(P )), where G(P ) is treated as an abstract graph, whereas K(P )
is treated as a geometric graph?

2 Maximal Cliques in G(P )

In this section we study the structure of maximal (with respect to inclusion) cliques in the
geometric tree graph G(P ). We divide the maximal cliques into two types, called U-cliques and
I-cliques, and our ultimate goal is to determine, given a maximal clique in G(P ), what is its
type.

We start in Section 2.1 with a few definitions and notations, to be used throughout the
paper. In Sections 2.2 and 2.3 we describe a classification of the maximal cliques into two
types, presented originally in [13], and discuss basic properties of both types. In order to
distinguish between general combinatorial considerations and geometric arguments specific to
SSTs, we start in Section 2.2 with a general combinatorial framework, and leave the geometric
arguments to Section 2.3.

In Sections 2.4 and 2.5 we study degenerate maximal cliques, i.e., maximal cliques of size
2. In Section 2.4 we give a geometric characterization of the situation when a maximal clique
is degenerate, and in Section 2.5 we show how to identify whether a given degenerate maximal
clique is a U-clique or an I-clique. Finally, in Section 2.6 we show how to determine whether a
given non-degenerate maximal clique is a U-clique or an I-clique.

2.1 Definitions and Notations

Notation 2.1. The following notations and conventions are used throughout the paper. The
straight line that passes through points x, y is denoted by ℓ(x, y). The vertex and edge sets of a
graph G are denoted by V (G) and E(G), respectively. Since the set P is fixed, we shall always
identify a spanning subgraph of K(P ) (and, in particular, a spanning subtree) with its set of
edges.

In our study we shall extensively use maximal cliques of G(P ). These are defined as follows:

Definition 2.2. A max-clique in a graph G is a maximal (with respect to inclusion) clique
included in G. Since any max-clique is a complete graph on its vertex set, we shall identify a
max-clique with its set of vertices.

We shall use the following observation on the structure of G(P ), proved by Avis and
Fukuda [1].

Claim 2.3 ( [1], Lemma 3.15). For any set P of points in general position in the plane, G(P )
is connected and its diameter is ≤ 2|P | − 4.
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2.2 Types of Max-cliques in Tree Graphs

A generic combinatorial way to treat a tree graph is to consider a base set X and a graph
G whose vertices are q-subsets of X (not necessarily all the q-subsets), such that two vertices
A,B ∈ V (G) are adjacent if and only if |A△B| = 2. (In the case of the (geometric) tree graph
of a point set P , we have X = E(K(P )), q = |P |−1, and the vertices of G are the sets of edges
of (simple) spanning trees of K(P ).)

Let A,B be two adjacent vertices of G. Denote

I = A ∩B, D = A△B and U = A ∪B = I ∪D.

A third vertex C ∈ V (G) is a common neighbor of A and B if and only if:

1. C ∩D = ∅ and I ⊂ C. In this case, C is obtained from I by adding a single element.

2. D ⊂ C and C ⊂ U . In this case, C is obtained from U by removing a single element.

(It is easy to see that in any other case, either |A△C| 6= 2 or |B△C| 6= 2.)
If C,C ′ are both common neighbors of A and B, such that C satisfies (1) and C ′ satisfies

(2), then clearly, |C△C ′| = 4. Hence, if two common neighbors of A and B are themselves
neighbors, then either both satisfy (1) or both satisfy (2). On the other hand, it is clear that
any two common neighbors satisfying (1) are themselves neighbors, and the same holds for (2).
Thus, any pair A,B of adjacent vertices of G is included in at most two max-cliques:

1. U(A,B) = {C ∈ V (G)|C ⊂ A ∪B}, and

2. I(A,B) = {C ∈ V (G)|C ⊃ A ∩B}.

For any two elements C,C ′ ∈ U(A,B), the union C∪C ′ is constant (and equal to U). Likewise,
for any two elements C,C ′ ∈ I(A,B), the intersection C ∩C ′ is constant (and equal to I). This
is the motivation behind the following definition.

Definition 2.4. A max-clique of the first type will be called a Union max-clique, or a U-clique,
and a max-clique of the second type will be called an Intersection max-clique or an I-clique.

Remark 2.5. It is clear that given two vertices A,B of a max-clique C, we cannot determine
whether C is a U-clique or an I-clique. However, if we are given a third vertex B′ ∈ C, we can
determine the type, according to which one of the equalities A ∩ B = A ∩ B′, A ∪ B = A ∪ B′

holds. Moreover, once we determine that C is, say, an I-clique, we know that C = I(A,B)
as this is the unique I-clique that includes A and B. Hence, three vertices of a max-clique
determine it uniquely.

Definition 2.6. If U(A,B) = {A,B}, we say that {A,B} is a degenerate U-clique. Similarly,
if I(A,B) = {A,B}, we say that {A,B} is a degenerate I-clique.

For a pair of adjacent vertices A,B, there are four possible situations:

1. |U(A,B)| ≥ 3 and |I(A,B)| ≥ 3. In this case, there are exactly two max-cliques that
contain A and B.

2. |U(A,B)| ≥ 3 and |I(A,B)| = 2. In this case, there is a unique max-clique that contains
A and B, namely U(A,B). (The I-clique that contains A and B is degenerate.)

3. The same as (2), with the roles of U(A,B) and I(A,B) interchanged.

4. U(A,B) = I(A,B) = {A,B}. In this case, the set {A,B} itself is a max-clique (that is,
both a U-clique and an I-clique). As we shall see in the sequel, this situation cannot occur
in our geometric setting.
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2.3 Types of Max-Cliques in G(P )

Now we turn to the geometric graph G(P ) and show additional properties of max-cliques that
follow from its geometric structure. In order to make our notation suggestive, we denote now
the two adjacent vertices of G(P ) by T1, T2, and the edges in their symmetric difference by
e1 ∈ T1 \ T2 and e2 ∈ T2 \ T1.

In G(P ), U-cliques and I-cliques have a geometric meaning.

1. U(T1, T2). Consider the graph T̄ = T1 ∪ T2 = T1 ∪ {e2}. Obviously, it is a connected
graph with a unique cycle. This cycle contains e1 and e2, and is simple if and only if e1
and e2 do not cross. (Note that e2 cannot cross another edge of T1, as both these edges
belong to the SST T2.) As shown above, U(A,B) consists of all vertices of G(P ) that
are obtained from T̄ by removing a single edge. Since the vertices of G(P ) are the edge
sets of SSTs, we can say that removing an edge (other than e1, e2) from T̄ results in an
element of U(T1, T2) if and only if the unique cycle of T̄ is simple, and the removed edge
belongs to that cycle. Note that if e1, e2 cross, then removal of any edge other than e1, e2
from T̄ results in a non-simple graph, and thus, the only elements of U(T1, T2) are T1 and
T2.

2. I(T1, T2). Consider the graph T̃ = T1 ∩ T2 = T1 \ {e1}. Obviously, it is a simple forest
with two connected components. As shown above, I(A,B) consists of all vertices of G(P )
that are obtained from T̃ by adding a single edge. Since the vertices of G(P ) are the edge
sets of SSTs, we can say that adding an edge to T̃ results in an element of I(A,B) if and
only if that edge makes the forest T̃ into a simple spanning tree of K(P ).

2.4 Geometric Characterization of Degenerate Cliques

The geometric interpretation allows us to characterize the cases when U-cliques and I-cliques
are degenerate.

Claim 2.7. Let T1, T2 be SSTs such that T1 \ T2 = {e1} and T2 \ T1 = {e2}. The U-clique
U(T1, T2) is degenerate if and only if e1 and e2 cross.

Proof. By the geometric interpretation, if e1 and e2 cross then the only vertices of U(T1, T2) are
T1 and T2, and thus, it is degenerate. If e1 and e2 do not cross, then T̄ is a simple connected
graph on n vertices with n edges. (Note that T̄ is simple since as T1, T2 are SSTs, the only edges
in T̄ that may cross each other are e1, e2.) Thus, T̄ has a cycle of order at least 3. Removal of
any edge from this cycle gives rise to a vertex in U(T1, T2). Therefore, in this case U(T1, T2) is
non-degenerate.

Proposition 2.8. Let P be a finite set of points in the plane, no three on a line, |P | ≥ 4. Let
T1, T2 be SSTs of K(P ) such that T1 \ T2 = {e1} and T2 \ T1 = {e2}. The I-clique I(T1, T2) is
degenerate only in the following case:

The convex polygon conv(P ) has three consecutive vertices x, v, y (i.e., [x, v] and [v, y] are
edges of conv(P )), such that:

1. The triangle conv(x, v, y) contains no other points of P .

2. e1 = [x, v] and e2 = [v, y].

3. [x, y] ∈ T1 ∩ T2.
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Figure 1: Illustration to the proof of Proposition 2.8.

Proof. Assume that (1)–(3) hold, and let T0 ∈ I(T1, T2). T0 is connected, and thus, has an
edge e that emanates from v. Note that as x, v, y are consecutive vertices of conv(P ) and the
triangle conv(x, v, y) contains no other points of P , any edge of K(P ) that emanates from v

(other than e1 and e2) must cross [x, y]. Thus, either e = e1, e = e2, or e crosses [x, y]. The
latter is impossible, since [x, y] ∈ T1∩T2, and as shown above, T1∩T2 is included in any element
of I(T1, T2). If e = e1, then T1 = ((T1 ∩ T2) ∪ {e1}) ⊂ T0, which implies T0 = T1 (as both have
the same number of edges). Similarly, if e = e2 then T0 = T2. Therefore, the only elements of
I(T1, T2) are T1 and T2, i.e., I(T1, T2) is degenerate.

In the other direction, assume that I(T1, T2) is degenerate. As mentioned above, the graph
T̃ = T1 ∩ T2 is a simple forest with two connected components. Color the vertices of one
component white and the vertices of the other component black, and call an edge colorful if its
endpoints are of different colors.

Since T̃ is planar, it can be extended to a triangulation T of conv(P ) with vertex set P .
As T is connected, it contains a colorful edge e. A triangle in T to which e belongs clearly
contains another colorful edge e′. Addition of either e or e′ to T̃ results in a simple tree, and
thus, gives rise to a vertex of I(T1, T2). (Note that e and e′ cannot cross edges of T̃ since they
belong to a triangulation that extends T̃ .) Since I(T1, T2) is degenerate, this implies that all
other edges of T are not colorful. We claim that this can happen only in the case described in
the statement of the proposition.

Consider the edges e, e′. If e is not a boundary edge of conv(P ) then it belongs to another
triangle in T . The other triangle must contain an additional colorful edge, contradicting the
assumption that only e and e′ are colorful. The same holds for e′, and thus, both e and e′ are
boundary edges of conv(P ). Denote their common vertex by v and their other endpoints by
x, y, respectively.

It is clear that Condition (1) above holds for x, v, y, since T is a triangulation of P and
conv(v, x, y) is one of its triangles. To see that Condition (2) holds, note that T̃ ∪ {e} and
T̃ ∪ {e′} are the only vertices of I(T1, T2), and thus, are equal to T1 and T2. As Ti = T̃ ∪ {ei}
for i = 1, 2, the edges e, e′ must coincide with e1 and e2.

Finally, since |P | ≥ 4, [x, y] is a diagonal of conv(P ), and thus, in the triangulation T
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it belongs to another triangle conv(x, y, w) (see Figure 1). This triangle is monochromatic
(as otherwise, there are at least four colorful edges in T ), hence w, v are of different colors.
We apply a flip to the triangulation T , replacing the triangles conv(x, y, v), conv(x, y, w) by
conv(x, v, w), conv(y, v, w). The resulting triangulation includes an additional colorful edge
[v,w] that does not cross any edge of T̃ , except possibly for [x, y]. Since by assumption, there
are only two colorful edges that do not cross edges of T̃ , we must have [x, y] ∈ T̃ , which means
that Condition (3) holds.

Corollary 2.9. Each edge of G(P ) is contained in at least one non-degenerate max-clique.

Proof. Let [T1, T2] ∈ G(P )1 and denote T1 \T2 = {e1} and T2 \T1 = {e2}. If e1, e2 do not cross
then U(T1, T2) is non-degenerate by Claim 2.7. If e1, e2 cross then I(T1, T2) is non-degenerate,
since by the proof of Proposition 2.8, if I(T1, T2) is degenerate, then the only edges that can
be added to T1 ∩ T2 to form a simple tree share a vertex, which is not the case for e1, e2 that
cross in an interior point.

2.5 Identification of the type of a Degenerate Clique in G(P )

Lemma 2.10. Let T be a SST of G(P ), and let D be an I-clique that contains T . Denote the
common intersection of pairs of elements of D by T̃ , and let {e} = T \ T̃ . If e is not a leaf edge
of T , then |V (D)| ≥ 4.

Proof. We begin the proof with the argument used in the proof of Proposition 2.8. Namely, we
consider the graph T̃ , which is a simple forest with two components. We color its components
black and white, and extend it to a triangulation T of P . The triangulation contains a colorful
edge [a, b], and consequently, another colorful edge [a, b′] in the same triangle. Assume w.l.o.g.
that a is black, b and b′ are white.

Now we would like to use the assumption that e is not a leaf edge of T . This assumption
implies that each connected component of T̃ has at least two vertices. Consequently, any vertex
v ∈ P is an endpoint of at least one monochromatic edge of T (as otherwise, v would be isolated
in T̃ ).

If both [a, b] and [a, b′] are boundary edges of conv(P ), then (since △a, b, b′ is a triangle in
T ) these are the only edges of T that emanate from a. This is impossible, as they are both
colorful. Hence, we can assume w.l.o.g. that [a, b] is a diagonal of conv(P ), and thus, belongs
to two triangles, △abc and △abd. (Note that either c or d is equal to the vertex b′ mentioned
above.) We consider several cases, according to the colors of c and d:

1. Case 1: c and d are white. (This case is illustrated in Figure 2.) Consider the neighbors
of a in T . Since T is a triangulation, all these vertices lie on a path in T . As stated
before, since a is black, at least one of its neighbors must be black. On the other hand,
some of its neighbors (including b, c, d) are white. Hence, at least one of the edges in
the path connecting the neighbors of a is colorful (see Figure 2). In addition, the edges
[a, b], [a, c], [a, d] are colorful. Thus, T contains at least four colorful edges, and each of
them gives rise to a vertex of D. Therefore, |V (D)| ≥ 4.

1For sake of clarity, we use here and in the sequel the notation [T, T ′] for edges of G(P ), like is commonly
used for geometric graphs, although G(P ) is treated as an abstract graph.
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Figure 2: Illustration to Case 1 of Lemma 2.10.

a
b

c

d

a

b

c

d
k

Figure 3: Illustrations to Case 3a of Lemma 2.10

2. Case 2: c and d are black. Since the black vertices a, c, d are all neighbors of the white
vertex b, the argument of Case 1 applies, with the roles of a with b, black and white,
interchanged.

3. Case 3: c and d have different colors. Assume w.l.o.g. that c is white and d is black.
In this case, the edges [a, b], [a, c], and [b, d] are colorful. We further divide this case into
three subcases, according to whether [a, c] and [b, d] are diagonals of conv(P ) or not, and
show that in each case, T contains at least one additional colorful edge.

(a) Case 3a: [b, d] is a diagonal of conv(P ). In this case, [b, d] belongs to an additional
triangle of T (i.e., other than △abd). If this triangle is △bdc, then the edge [c, d] is
colorful, implying |V (D)| ≥ 4 (see left part of Figure 3). If this triangle is △bdk for
some k 6= c, then, as b and d have different colors, one of the edges [b, k] and [d, k] is
colorful, again implying |V (D)| ≥ 4 (see right part of Figure 3).

(b) Case 3b: [a, c] is a diagonal of conv(P ). The argument of Case 3a applies, with
the roles of a and b, c and d, black and white, interchanged.

(c) Case 3c: Both [a, c] and [b, d] are boundary edges of conv(P ). In this case,
�abcd is a convex quadrilateral, and thus, its diagonal [c, d] lies inside it (see Fig-
ure 4). As both △abc and △abd are triangles in T , they do not contain points of P ,
hence [c, d] does not cross any edge of T̃ . (Note that [a, b] is not an edge of T̃ , since
it is colorful.) Since [c, d] is colorful, the graph T̃ ∪ {[c, d]} is an SST, hence belongs
to D. Therefore, |V (D)| ≥ 4, which completes the proof of the lemma.
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a

b

c

d

Figure 4: Illustration to Case 3c of Lemma 2.10.

Using the lemma, we can identify whether a given degenerate clique is a U-clique or an
I-clique.

Proposition 2.11. Let [S, T ] be an edge in G(P ) that constitutes a degenerate clique. (This
actually means that there is only one max-clique that includes {S, T}.) If [S, T ] is included in
a max-clique of 3 vertices, then the degenerate clique [S, T ] is an I-clique. If [S, T ] is included
in a max-clique of at least 4 vertices, then the degenerate clique [S, T ] is a U-clique.

Proof. By Corollary 2.9, each edge is included in at least one non-degenerate max-clique. Hence,
[S, T ] is included in a max-clique of size at least 3.

If the degenerate clique [S, T ] is an I-clique, then, by Proposition 2.8, S ∩ T is a forest with
two connected components. One of them is an isolated vertex v that lies on the boundary of
conv(P ), and the two neighbors of v on the boundary of conv(P ), x, y, are adjacent in S ∩ T .
In such a case, the unique cycle in the graph S ∪ T is the triangle △(x, v, y). By the geometric
characterization of Section 2.3, this implies that the size of the U-clique that includes [S, T ] is
3.

If the degenerate clique [S, T ] is a U-clique, then, by Claim 2.7, the unique cycle of S ∪ T

includes the edges s ∈ S \ T and t ∈ T \ S, and these edges cross. This implies that s is not a
leaf edge of S, and thus, by Lemma 2.10, the size of the I-clique that includes [S, T ] is at least
4.

2.6 Identification of the type of a Non-Degenerate Max-clique in G(P )

Our next goal is to identify whether a given non-degenerate max-clique is a U-clique or an
I-clique. This identification is somewhat more complex, and requires some preparations.

Definition 2.12. For any SST T ∈ G(P ), define a graph DT as follows: V (T ) is the set of
max-cliques that contain T (including degenerate cliques). Two max-cliques are adjacent in DT

if and only if their intersection is a single edge (that obviously has T as one of its endpoints).
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Note that by Remark 2.5, two non-identical max-cliques may intersect in at most two vertices
(since three mutually adjacent vertices determine a max-clique uniquely). As all vertices of DT

include T , it follows that any two non-adjacent vertices of DT intersect in T only.

Theorem 2.13. Assume that |P | ≥ 5. For any T ∈ G(P ), the graph DT is connected.

Before we present the proof of the theorem, we show how it can be used (along with several
of the previous lemmas) to identify the types of max-cliques in G(P ).

By the discussion in Section 2.2, each edge of G(P ) belongs to exactly one U-clique and
exactly one I-clique (one of them possibly degenerate). This implies that DT is 2-colorable.
Indeed, we can color all its vertices that are U-cliques white and all its vertices that are I-cliques
black. If two vertices are adjacent, both include the same edge [S, T ] ∈ G(P ), and thus, one is
a U-clique and the other is an I-clique, so they have different colors. Using Theorem 2.13, we
can conclude that DT is connected and 2-colorable, which implies that the 2-coloring is unique,
in the sense that fixing the color of any vertex determines the colors of all other vertices. This
will allow us to determine the types of all max-cliques, by the following four-step process:

1. Pick an SST T that belongs to a degenerate clique {S, T}. (It is easy to show that such
a T always exists. We show this in Lemma 2.14 below.) Using Proposition 2.11, identify
whether {S, T} is a U-clique or an I-clique.

2. Consider the vertices of DT and determine for each of them whether it is a U-clique or
an I-clique. (This is possible by the explanation above. Since we know the “color” of the
vertex {S, T} of DT , we can determine the colors of all other vertices.)

3. Consider a neighbor T ′ of T . Note that the edge [T, T ′] ∈ G(P ) belongs to a max-clique
C that is a vertex of both DT and DT ′ . Determine whether C is a U-clique or an I-clique.
(This is possible, as by the previous step we can determine the type for all max-cliques
that are vertices of DT .) Using this information about C ∈ V (DT ′), determine for each
vertex of DT ′ whether it is a U-clique or an I-clique.

4. Repeat Step 3 with a “new” vertex of G(P ) every time until the types of all max-cliques
are determined. (Since G(P ) is connected by Claim 2.3, we indeed reach all vertices of
G(P ) in this way.)

Therefore, in order to determine the types of all max-cliques we have to prove a simple
lemma on the existence of degenerate max-cliques, and to prove Theorem 2.13. We provide
these two items now.

Lemma 2.14. For any set P , |P | ≥ 5, of points in general position in the plane, there exists
an SST that belongs to a degenerate U-clique in G(P ).

Proof. By the Erdős-Szekeres theorem [4], there exist four points in P in convex position. De-
note these points a, b, c, d, such that [a, b, c, d] is a convex quadrilateral (in this order). Consider
the tree T that includes the edges [a, b], [b, d], [d, c], all edges that connect a to each p ∈ P that
lies above the straight line ℓ(b, d) and all edges that connect c to each p ∈ P that lies below
ℓ(b, d), as shown in Figure 5. Clearly, T is an SST of K(P ). Addition of the edge [a, c] to T

creates a self-crossing cycle, and thus, by the discussion in Section 2.3, T ∈ V (G) belongs to a
degenerate U-clique.
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Figure 5: An illustration for the proof of Lemma 2.14.

Proof of Theorem 2.13. Suppose C,C ′ ∈ V (DT ). Choose edges [T, S] ∈ C, [T, S′] ∈ C ′. In
order to prove that C is connected to C ′ by a path in DT , it suffices to find a sequence
S0, S1, . . . , Sℓ of SST’s, such that S0 = S, Sℓ = S′, and for each 0 ≤ i < ℓ, there is a max-clique
Ci of G(P ) that includes both [T, Si] and [T, Si+1]. This will be done in four steps.

1. Step 1. Extend the SST T to a triangulation T of conv(P ). Recall that T is a 2-connected
graph.

2. Step 2. If S ⊂ T , leave S as it is. If not, T contains the graph T̃ = T ∩ S = T \ {e}.
Since T is 2-connected, there is another edge e∗ in T that connects the two components
of T̃ . Define S∗ = T̃ ∪ {e∗}. S∗ is an SST of K(P ). Note that S∗ is included in the
I-clique I(T, S) (since T ∩ S∗ = T ∩ S = T̃ ).

Do the same for S′: leave it, if S′ ⊂ T , or replace it by some S
′∗ ⊂ T , such that

S
′∗ ∈ I(T, S′).

Step 2 allows us to restrict our attention to the case where both S and S′ are included in
T (and all intermediate SST’s will be included in T , as well).

3. Step 3. Assume T ∩ S = T \ {e}, T ∩ S′ = T \ {e′}. If e = e′, then [T, S] and [T, S′]
belong to the same I-clique. Suppose e 6= e′. Since T is a simple tree, there is a unique
simple path in T whose edges are (in this order) e1, e2, . . . , em, with e1 = e and em = e′.
For 1 < i < m, choose an edge e∗

i
of T other than ei that connects the two components

of T \ {ei}, and define Si = T \ {ei} ∪ {e∗
i
}. In addition, let S1 = S and Sm = S′. Now

we only have to connect Si−1 with Si for i = 2, 3, . . . ,m. (Note that the desired sequence
S0, S1, . . . , Sℓ will be the concatenation of the sequences connecting S1 to S2, S2 to S3

etc., and ℓ will be the sum of their lengths.)

4. Step 4. Suppose T is a triangulation of conv(P ) with vertex set P . Let T, S, S′ be
SST’s of K(P ) that are included in T . Assume that both S and S′ are adjacent to T

in G(P ), S ∩ T = T \ {e}, S′ ∩ T = T \ {e′}, e 6= e′, and e, e′ share a vertex. Suppose
e = [x, y], e′ = [x′, y], and let k = deg(y) − 2. Denote the edges of T that emanate from
y by e, e′, f1, f2, . . . , fk. Removal of all edges that emanate from y divides T into k + 3

11



connected components: D that includes x, D′ that includes x′, Fs (1 ≤ s ≤ k) that
includes the second endpoint of fs, and Fk+1 that consists of the isolated vertex y. Since
T is 2-connected, we can extend the forest B = D ∪ D′ ∪ F1 ∪ . . . ∪ Fk into an SST of
K(P \ {y}) by adding k + 1 edges of T .

Let S̄ be such an extension. S̄ includes a unique simple path π from x to x′. This
path starts in the component D of B, and ends in D′. It visits some of the intermediate
components Fi in a particular order (see Figure 6). By appropriately labelling these
components, we may assume that π visits D,F1, F2, . . . , Fl,D

′ in this order (0 ≤ l ≤ k).
Let g0 be the edge of π that passes from D to F1, gi (1 ≤ i ≤ l − 1) the edge that passes
from Fi to Fi+1, and gl be the edge that passes from Fl to D′. (If l = 0, then there is
only one edge g = g0 that passes directly from D to D′.)

Now we can describe the passage from [T, S] to [T, S′]. Let us start with the simple case
l = 0. Put S1 = T \{e}∪{g}, S2 = T \{e′}∪{g}. Then T ∩S = T ∩S1, T ∪S1 = T ∪S2,
and T ∩ S2 = T ∩ S′. Thus, {T, S, S1} and {T, S2, S

′} are included in I-cliques, while
{T, S1, S2} is included in a U-clique. Hence, (S, S1, S2, S

′) is the required sequence.

When l > 0, define

S1 = T \ {e} ∪ {g0}, S2 = T \ {f1} ∪ {g0},

S3 = T \ {f1} ∪ {g1}, S4 = T \ {f2} ∪ {g1},

. . .

S2l−1 = T \ {fl−1} ∪ {gl−1}, S2l = T \ {fl} ∪ {gl−1},

S2l+1 = T \ {fl} ∪ {gl}, S2l+2 = T \ {e′} ∪ {gl}.

Then each of the triples {T, S, S1}, {T, S2i, S2i+1} (for 1 ≤ i ≤ l), and {T, S2l+2, S
′} is

included in an I-clique, and each of the triples {T, S2i−1, S2i} (for 1 ≤ i ≤ l + 1) is
included in a U-clique. Therefore, (S, S1, S2, . . . , S2l+1, S2l+2, S

′) is the required sequence.
This completes the proof of the theorem.

As explained after the statement of Theorem 2.13, the Theorem and Lemma 2.14 imply the
following corollary.

Corollary 2.15. Assume |P | ≥ 5. Given G(P ), we can determine for each max-clique in it
whether it is a U-clique or an I-clique.

3 Identification of Stars and Brushes

In this section we use the results of Section 2 to identify the vertices of G(P ) that represent
stars (i.e., SSTs of diameter 2) and brushes (i.e., SSTs of diameter 3). The stars, considered in
Section 3.1, are determined only up to an automorphism of K(P ) as a geometric graph. The
brushes, considered in Section 3.2, are determined uniquely given a determination of the stars.

3.1 Identification of Stars

Definition 3.1. A star is a tree of diameter 2.
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Figure 6: An illustration for the proof of Theorem 2.13.

Notation 3.2. For x ∈ P , we call the spanning star whose center is x an x-star, and denote
it by S(x).

Theorem 3.3. A vertex T ∈ G(P ) is a star if and only if all U-cliques that include T are of
size 3.

Proof. Recall that by the geometric interpretation of max-cliques presented in Section 2.3, if
U(S, T ) is a non-degenerate U-clique then all its elements are obtained from the graph S ∪ T

by removing an edge from its unique cycle. In particular, |U(S, T )| is the length of the unique
cycle of S ∪ T . If the unique cycle of S ∪ T is self-crossing (which can occur only if its length
is ≥ 4) then U(S, T ) is degenerate.

Assume that T ∈ G(P ) is an x-star, and let U(S, T ) be a U-clique that includes T . Since
T is a star, S ∪ T is obtained from T by adding an edge that connects two leaves v,w of T .
Hence, the unique cycle of S ∪ T , ([x, v], [v,w], [w, x]), is of length 3. Thus, |U(S, T )| = 3, as
asserted.

On the other hand, we show that if T ∈ G(P ) is an SST of diameter ≥ 3, then T belongs
to a U-clique of size 6= 3. Since diam(T ) ≥ 3, T contains an internal edge [a, b] (i.e., both a

and b are not leaves of T ). Consider the graph T \ {[a, b]}, that is obviously a forest with two
connected components. Color the vertices of the connected component that includes a black
and the vertices of the component that includes b white.

We would like to show that there exists a colorful edge e that uses neither a nor b and does
not cross any edge of T \ {[a, b]} (see Figure 7). This will conclude the proof, since in such a
case, denoting S = T ∪ {e} \ {[a, b]}, we find that S is an SST, [S, T ] ∈ G(P ), and the unique
cycle of the graph S ∪ T = T ∪ {e} is of length ≥ 4. Then, by the geometric interpretation
above, if e crosses [a, b] then U(S, T ) is a degenerate U-clique, and otherwise, |U(S, T )| is equal
to the length of the unique cycle of S ∪ T , that is ≥ 4. Hence, in any case, T lies in a U-clique
of size 6= 3.

We extend T to a triangulation T of conv(P ), and consider three cases:
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Figure 7: An illustration for the proof of Theorem 3.3 – beginning.

a

b

c

d1

d2

Figure 8: An illustration for the proof of Theorem 3.3 – case 1.

1. Case 1: [a, b] is a boundary edge of conv(P ). The edge [a, b], being colorful, is
contained in a colorful triangle △abc ∈ T . The other colorful edge of △abc is not a
boundary edge of conv(P ), as otherwise, one of the two connected components of T\{[a, b]}
consists of a single vertex, which contradicts the assumption that [a, b] is an internal
edge of T . Denote that colorful edge [a, c]. The neighbors of a in T constitute a path
[b, c, d1, d2, . . .]. Since the connected component of a in the graph T \ {[a, b]} (i.e., the
“black” component) includes more than one vertex, at least one of the di’s is black. Thus,
the path contains a colorful edge e that uses neither a nor b (see Figure 8). Furthermore,
as e belongs to T , it does not cross any edge of T . Hence, e is the edge whose existence
was claimed.

2. Case 2: b is an internal vertex of conv(P ). In this case, [a, b] is an internal edge of
T , and thus, it is contained in two triangles △abc,△abd ∈ T . We further divide this case
into two sub-cases:

(a) Case 2a: Either c or d (or both) are black. Assume w.l.o.g. that c is black.
Since b is an internal vertex of conv(P ), the neighbors of b in T constitute a cycle
[d, a, c, d1, d2, . . . , dk, d]. Since the connected component of b in the graph T \{[a, b]}
contains more than one vertex, at least one of the di’s or d is white. Since a, c are
black, this implies that the cycle includes at least two colorful edges, and at least
one of them uses neither a nor b (see left part of Figure 9). As in Case 1, this is the
desired edge e.

(b) Case 2b: Both c and d are white. By the same argument as above, a has a black
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Figure 9: An illustration for the proof of Theorem 3.3 – case 2.
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Figure 10: An illustration for the proof of Theorem 3.3 – Case 3.

neighbor in T . As the neighbors of a in T form a (possibly closed) path, at least
one edge of this path is colorful (see right part of Figure 9). This edge uses neither
a nor b (as both edges that use b in this path, [b, c] and [b, d], are not colorful). As
in the previous cases, this is the desired edge e.

3. Case 3: Both a and b are boundary vertices of conv(P ), and [a, b] is a diagonal
of conv(P ). As in Case 2, [a, b] lies in two triangles △abc,△abd ∈ T . We further divide
this case to two sub-cases:

(a) Case 3a: c and d are of the same color. W.l.o.g., c and d are white. By the
same arguments as above, a has a black neighbor, and thus, the path of a’s neighbors
includes a colorful edge (see left part of Figure 10). This edge does not use b, as
both edges that use b (that are [b, c], [b, d]) are not colorful, and it clearly does not
use a.

(b) Case 3b: c and d are of different colors. In this case, the edge [c, d] is as desired,
since it is colorful, does not use a, b, and does not cross edges of T \{[a, b]} (see right
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p q

Figure 11: A pq-brush.

part of Figure 10). Note that since [c, d] crosses [a, b], the U-clique that includes T
in this case is degenerate. This completes the proof of the theorem.

Remark 3.4. It may happen that T ∈ G(P ) is not a star, but all U-cliques that contain T are
either degenerate or of size 3.

3.2 Identification of Brushes in G(P )

Definition 3.5. Let P be a set of points in general position in the plane, and let p, q ∈ P . A
pq-brush is an SST of diameter 3 whose only internal edge is [p, q].

Figure 11 shows an example of a pq-brush.
In this subsection we aim at identifying the vertices of G(P ) that represent brushes. The

identification uses distances in the graph G(P ), defined (as usual) as the length of the shortest
path between two vertices, and denoted by dG(P )(S, T ). Note that by the structure of G(P ), it
is clear that for any pair of vertices S, T ∈ G(P ), we have

dG(P )(S, T ) ≥
1

2
|∆(S, T )|,

where ∆(S, T ) is the symmetric difference between the edge sets of the graphs S and T .

Theorem 3.6. An SST T ∈ G(P ) is a pq-brush if and only if it is not a star and

dG(P )(T, S(p)) + dG(P )(T, S(q)) = n− 2. (1)

For sake of convenience, we divide the theorem into two propositions.

Proposition 3.7. Assume that T ∈ G(P ) satisfies

dG(P )(T, S(p)) + dG(P )(T, S(q)) = n− 2.

Then T is a pq-brush, or T = S(p), or T = S(q).
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Proof. First, we note that

dG(P )(S(p), S(q)) ≥
1

2
|∆(S(p), S(q))| = n− 2,

and thus, by the triangle inequality,

dG(P )(T, S(p)) + dG(P )(T, S(q)) ≥ n− 2

for any T ∈ G(P ).

Assume that T satisfies (1). Let k, ℓ be the numbers of edges of T that emanate from q, p

(respectively), and let r be the number of edges of T that use neither p nor q. We consider two
cases:

1. [p, q] 6∈ T . In this case, we have

k + ℓ+ r = n− 1, dG(P )(T, S(p)) ≥
1

2
|∆(T, S(p))| = k + r, and

dG(P )(T, S(q)) ≥
1

2
|∆(T, S(q))| = ℓ+ r.

Hence,

dG(P )(T, S(p)) + dG(P )(T, S(q)) ≥ k + ℓ+ 2r = (n− 1) + r > n− 2.

2. [p, q] ∈ T . In this case,

k + ℓ+ r = n, dG(P )(T, S(p)) ≥
1

2
|∆(T, S(p))| = k + r − 1, and

DG(P )(T, S(q))| ≥
1

2
|∆(T, S(q)) = ℓ+ r − 1.

Hence,

dG(P )(T, S(p)) + dG(P )(T, S(q)) ≥ k + ℓ+ 2r − 2 = n+ r − 2 ≥ n− 2,

and equality can hold only if r = 0, which means that all edges of T emanate either from
p or from q and [p, q] ∈ T , i.e., T is a pq-brush, or T = S(p) or T = S(q).

Proposition 3.8. Let T ∈ G(P ) be a pq-brush. Then

dG(P )(T, S(p)) + dG(P )(T, S(q)) = n− 2.

In order to prove Proposition 3.8, we need a lemma.

Definition 3.9. Let T be a pq-brush (or T = S(p) or T = S(q)). We say that T is of type
(k, ℓ) if val(T, p) = k + 1 and val(T, q) = ℓ + 1 (i.e., the numbers of edges of T that emanate
from p, q are k + 1, ℓ+ 1, respectively).

Lemma 3.10. If T is a pq-brush (or a star) of type (k, ℓ), k < n − 2, then it is adjacent in
G(P ) to some pq-brush (or star) T ′ of type (k + 1, ℓ − 1). (By symmetry, if ℓ < n − 2 then T

is adjacent in G(P ) to some pq-brush (or star) T ′′ of type (k − 1, ℓ+ 1).)
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Figure 12: An illustration to the proof of Lemma 3.10.

Proof of the Lemma. Assume w.l.o.g. that [p, q] is placed horizontally, and consider the half-
plane above it. Let [p, x] be an edge such that the angle α between [p, q] and [p, x] is minimal
amongst all edges of T that emanate from p (see Figure 12). Let T ′ = (T \ {[p, x]}) ∪ {[q, x]}.
Due to the minimality of the angle α, [q, x] does not cross any of the edges of T that emanate
from p. Thus, T ′ is a pq-brush of type (k+1, ℓ− 1) (or T ′ = S(q), if ℓ = 1), and [T, T ′] ∈ G(P )
since |∆(T, T ′)| = 2.

Proof of Proposition 3.8. Let T ∈ G(P ) be a pq-brush. Assume w.l.o.g. that T is of type (k, ℓ).
Repeated use of Lemma 3.10 enables us to construct a path 〈T0, T1, . . . , Tn−2〉 in G(P ) such that
T0 = S(q), Tk = T , and Tn−2 = S(p). This implies dG(P )(T, S(p)) ≤ ℓ and dG(P )(T, S(q)) ≤ k,
hence, dG(P )(T, S(p)) + dG(P )(T, S(q)) ≤ ℓ + k = n − 2. Since we have shown above that
dG(P )(T, S(p)) + dG(P )(T, S(q)) ≥ n− 2 for any T , this completes the proof.

4 Identification of the Geometric Structure of K(P )

In this section we achieve a complete reconstruction of the geometric structure of K(P ), based
on the identification of stars and brushes presented in Section 3. Most of the effort is devoted
to obtaining a complete identification of the brushes, in the sense that given a pq-brush T and
a vertex x 6= p, q, we determine whether [x, p] ∈ T or [x, q] ∈ T . This step is presented in
Section 4.1. The finalization of the proof of Theorem 1.3, presented in Section 4.2, is easy.

4.1 Further Information on Brushes in G(P )

So far, we know which vertices of G(P ) are brushes. Furthermore, if we identify the points of
P with the stars in G(P ) (an identification that is determined only up to an automorphism of
K(P )), we can say for each brush T , what are the vertices p, q that are its “centers”, and how
many edges of T emanate from each of the central vertices p, q.

Our goal now is to gain full information on the brushes. Namely, for a pq-brush T and a
vertex x 6= p, q, we would like to determine whether [p, x] ∈ T or [q, x] ∈ T .

As an intermediate step, we would like to determine, for given x, y 6= p, q, whether both x

and y are connected in T to the same vertex (either p or q), or one of them is connected to p

and the other to q.
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Proposition 4.1. Let T be a pq-brush, and let x, y ∈ P be different from each other and from
p and q. The leaf edges of T whose endpoints are x and y emanate from the same internal
vertex of T if and only if for any xy-brush S, we have dG(P )(T, S) ≥ n− 2.

One direction of the proposition is immediate. If the leaf edges emanate from the same
vertex, e.g., [p, x], [p, y], then at most one (and actually, exactly one) of these edges can belong
to an xy-brush (as ([x, y], [y, p], [p, x]) form a cycle). Since every edge of an xy-brush S emanates
from either x or y, we have 1

2 |∆(S, T )| ≥ n−2 (as these trees have exactly one edge in common).
Hence,

dG(P )(T, S) ≥
1

2
|∆(S, T )| = n− 2

for any xy-brush S.
On the other hand, if the leaf edges emanate from different vertices, e.g., [p, x], [q, y], it

is possible that an xy-brush S include both these edges, and then 1
2 |∆(S, T )| = n − 3. We

will construct an xy-brush that satisfies this condition, and furthermore, satisfies the stronger
condition dG(P )(S, T ) = n− 3. Before we show this construction, we need a few preparations.

Definition 4.2. Let G be a geometric graph, and let O be a point in the plane. We say that O
sees a point P if the open segment (O,P ) does not meet any edge or vertex of G. We say that
O sees an edge e ∈ E(G) if it sees every point X ∈ e, including the endpoints.

Lemma 4.3. Let G = (V,E) be a crossing-free geometric graph, with no isolated vertices.
Suppose V is a disjoint union V = V0 ∪W , where |V0| = 2 (say, V0 = {p, q}), and each edge of
G connects a vertex of V0 with a vertex of W . Suppose O ∈ R

2 \
⋃
{aff(e) : e ∈ E(G)}. Then

O sees some vertex w ∈ W .

We note that a similar lemma was proved in [6]. The assumption on O in [6] is O 6∈
conv(V (G)), and the assertion is the same as in our lemma.

Proof. Draw a ray R that emanates from O, crosses some edge of G, and does not meet any
vertex of G. (It is clear that such rays exist.) Denote by C the first crossing point of R with an
edge of G. Then C is an interior point of an edge, say [p,w], of G, and O sees C. Now rotate R
around O towards w, until it hits w. If the triangle △OCw does not contain any vertex of G,
except w, then O sees w. Otherwise, there is a first position R′ of the rotated ray that meets
V . Let v be the point of R′ ∩ V closest to O. Then O sees v. If v ∈ W , we are done. Assume,
therefore, that v ∈ V0. Clearly, v 6= p since 0 < ∠vOp < ∠wOp < π. Hence, v = q.

Among the edges that emanate from q, let [q, w′] be the edge such that ∠Oqw′ is minimal.
As before, rotate R′ around O towards w′, until it hits w′. If the triangle △Oqw′ does not
contain any vertex of G, except q and w′, then O sees w′. Otherwise, there is a first position
R′′ of the rotated ray that meets V . Let v′ be the point of R′′∩V closest to O. Then O sees v′.
Now, we observe that v′ 6∈ V0. Indeed, v

′ 6= q since 0 < ∠v′Oq < ∠qOw′ < π, and v′ 6= p since
0 < ∠v′Op = ∠v′Oq + ∠qOp < ∠w′Oq +∠wOp < 2π. Therefore, v′ ∈ W , which completes the
proof.

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. We already proved above that if the two leaf edges of T whose end-
points are x, y emanate from the same vertex, then for any xy-brush S, dG(P )(T, S) ≥ n − 2.
Assume now that these leaf edges emanate from different vertices. W.l.o.g., these edges are
[p, x], [q, y]. We consider two cases, according to the placement of p, q, x, y in the plane. In each
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Figure 13: An illustration to the proof of Proposition 4.1: Case 1. The regions are numbered by
the order of their consideration, where the missing number 3 corresponds to Phase 3 in which
[p, q] is replaced by [x, y]. The notation (i)− (v) where i ∈ {1, 2, 4} and v ∈ {x, y} means that
we are going to connect all points in Region i to v.

case, we show that we can pass from T to a suitable xy-brush S in n− 3 steps, where in each
step we remove one edge and add another edge, while maintaining the simplicity. This will
show that dG(P )(T, S) = n − 3, and thus complete the proof of the proposition. Note that in
all the steps of the path connecting T to S, the edges [p, x], [q, y] remain untouched.

Case 1: x, y are on the same side of ℓ(p, q).
In this case, at least one of the edges [p, x], [q, y] is included in a line that supports the set

{p, x, q, y} (which means that all points in the set are on the same side of the line). We assume
w.l.o.g. that [p, x] has this property.

The passage from T to an appropriate S is performed by a 4-phase procedure, illustrated in
Figure 13. In each phase (except for phase 3 that will be described below), we consider one of
the regions of the plane denoted in the figure: 1, 2, 4, and deal with all points of P that belong
to that region.

1. Region 1 (Reg1). This region is the open half-plane to the left of the line ℓ(p, x).
Assume that |P ∩ Reg1| = k1. We are going to perform k1 steps: in each step, we take
one of these points, remove the edge that connects it to either p or q, and add an edge
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that connects it to x. Of course, we must maintain the simplicity during all steps, and
this is achieved using Lemma 4.3.

Let G0 be the geometric graph whose edges are all edges of T of the form [p,w] or [q, w],
where w lies in Reg1. The graph G0 and the point O = x satisfy the assumptions
of Lemma 4.3, and thus, by the Lemma, x sees one of its vertices w ∈ Reg1, say w1.
Assume, for example, that [q, w1] ∈ E(G0). Define T1 = T \ {[q, w1]} ∪ {[x,w1]}. Since
x sees w1, the edge [x,w1] does not cross any other edge of T . Thus, T1 is an SST and
|T△T1| = 2, which implies that [T, T1] ∈ G(P ).

Now, we repeat the first step with the SST T1 in place of T . That is, we define G1 whose
edges are all edges of T of the form [p,w] or [q, w] where w lies in Reg1, except for [q, w1].
As before, we apply Lemma 4.3 with G1 and O = x and obtain a vertex w2 that is seen
from x. Then, we define T2 by removing from T1 the edge that connects w2 to either p

or q and adding the edge [x,w2]. Note that the edge [x,w1] that was not included in G2

cannot cross [x,w2], as they both emanate from x.

By continuing in the same fashion, we obtain a sequence T0, T1, . . . , Tk1 such that T0 = T ,
[Ti, Ti+1] ∈ G(P ) for all i, and in Tk1 , all points in P ∩Reg1 are connected to x.

It should be noted that the parts of Ti that are not included in the auxiliary graph Gi,
i.e., the edge [p, q] and the edges [p,w], [q, w], w ∈ R

2 \ Reg1, are all disjoint from the
convex set Reg1, and thus cannot cross the new edge [x,wi+1] (as x ∈ bdry(Reg1)).

2. Region 2 (Reg2). This region contains all points that lie above ℓ(p, q) and on the right
side of ℓ(p, x). Assume that |P ∩Reg2| = k2. We start with Tk1 and perform k2 steps: in
each step, we consider one of these points, remove the edge that connects it to either p or
q, and add an edge that connects it to y. As before, the simplicity is maintained during
all steps, by using Lemma 4.3.

Let Gk1 be the geometric graph whose edges are all edges of Tk1 of the form [p,w] or
[q, w], where w lies in Reg2. The graph Gk1 and the point O = y satisfy the assumptions
of Lemma 4.3, and thus, by the Lemma, y sees one of the vertices w ∈ Reg2, call it wk1+1.
Without loss of generality, [p,wk1+1] ∈ Gk1 . Define Tk1+1 = Tk1\{[p,wk1+1]}∪{[y,wk1+1]}.
Since y sees wk1+1, the edge [y,wk1+1] does not cross any other edge of Tk1 . Thus,
[Tk1 , Tk1+1] ∈ G(P ).

By continuing in the same fashion, we obtain a sequence Tk1+1, Tk1+2, . . . , Tk1+k2 such
that [Ti, Ti+1] ∈ G(P ) for all i, and in Tk1+k2 , all points in P ∩Reg1 are connected to x

and all points in P ∩Reg2 are connected to y.

3. Phase 3. In this phase, we add the edge [x, y] and remove the edge [p, q] (that otherwise
closes a cycle ([x, y], [y, q], [q, p], [p, x])). Formally, we define Tk1+k2+1 = Tk1+k2 \ {[p, q]} ∪
{[x, y]}. Note that the edge [x, y] does not cross any edge of Tk1+k2 , as in Tk1+k2 , all
points of P ∩Reg2 are connected to y.

4. Region 4 (Reg4). This region contains all points that lie below ℓ(p, q) and on the right of
ℓ(p, x). Assume |P ∩Reg4| = k3. As all points of P except for p, q, x, y belong to one of the
regions: Reg1, Reg2, Reg4, we have k1+k2+k3 = n−4. We construct a sequence of SSTs
Tk1+k2+2, . . . , Tk1+k2+k3+1 such that in Tk1+k2+k3+1, all points in P ∩Reg1 are connected
to x and all points in P ∩ (Reg2 ∪Reg4) are connected to y. Hence, Tk1+k2+k3+1 = Tn−3

is an xy-brush that satisfies dG(P )(T, Tn−3) = n− 3, as desired.
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Figure 14: An illustration to the proof of Proposition 4.1: Case 2. The notation (i)− (v) where
i ∈ {1, 2} and v ∈ {x, y} means that the points in Region i are connected to v.

Let Gk1+k2+1 be the geometric graph whose edges are all edges of Tk1+k2+1 of the form
[p,w] or [q, w], where w lies in Reg4. The graph Gk1+k2+1 and the point O = y satisfy
the assumptions of Lemma 4.3, and thus, by the Lemma, y sees one of the vertices
w ∈ Reg4, say wk1+k2+1. Without loss of generality, [p,wk1+k2+1] ∈ Gk1+k2+1. Define
Tk1+k2+2 = Tk1+k2+1 \ {[p,wk1+k2+1]} ∪ {[y,wk1+k2+1]}. Since y sees wk1+k2+1, the edge
[y,wk1+k2+1] does not cross any other edge of Tk1 . (It should be noted that the fact
that y lies outside Reg4 does not disturb us, as all points in Region 2 (that is the region
y sees Reg4 through) are already connected to y, and P is in general position.) Thus,
[Tk1+k2+1, Tk1+k2+2] ∈ G(P ).

By continuing in the same fashion, we obtain a sequence Tk1+k2+2, Tk1+k2+3, . . . , Tk1+k2+k3+1

such that [Ti, Ti+1] ∈ G(P ) and Tk1+k2+k3+1 = Tn−3 is the desired xy-brush.

Case 2: x, y are on different sides of ℓ(p, q).
This case is treated in a fashion similar to Case 1. We divide all points of P \ {p, q} into

two regions, where Region 1 (Reg1) consists of the points above ℓ(p, q) and Region 2 (Reg2)
consists of the points below ℓ(p, q) (see Figure 14). In the first phase, we consider the points of
Reg1 (excluding x), disconnect them from p or q and connect them to x instead. The procedure
is identical to the procedure of the first phase of Case 1. In the second phase, we consider the
points of Reg2 (excluding y), disconnect them from p or q and connect them to y instead. The
procedure is, again, similar. Finally, in the third phase we remove the edge [p, q] and insert the
edge [x, y] instead. (As at this stage, all points in P \ {p, q, x, y} are connected to either x or y,
this step does not create crossings.) As a result, we obtain a sequence T = T0, T1, T2, . . . , Tn−3,
such that [Ti, Ti+1] ∈ G(P ) for all i and Tn−3 is an xy-brush, as desired.

As Cases 1,2 include all possible placements of x, y, p, q, the proof is complete.

Now we are ready to identify every brush completely.

Corollary 4.4. Let T ∈ V (G(P )) be a pq-brush and let x ∈ P , x 6= p, q. Given G(P ), we can
determine whether [p, x] ∈ T or [q, x] ∈ T .

Proof. It follows from the proof of Proposition 3.8 that T belongs to a path

〈S(p) = T0, T1, T2, . . . , Tn−3, Tn−2 = S(q)〉
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Figure 15: An illustration to the proof of Proposition 4.5.

in G(P ) such that in Ti, deg(p) = n− 1− i and deg(q) = i+ 1. Consider T1. Since it has only
one vertex x1 6= p, q that is connected to q, we can use Proposition 4.1 to determine it. (Here
we use the assumption that n ≥ 5.) We can then move to T2 and use Proposition 4.1 again to
determine the additional vertex x2 connected to q in T2. (Note that [x1, q] ∈ E(T2), and thus,
x2 is identified as the unique vertex x such that the leaf edge of T2 that emanates from it has
the same second endpoint as the leaf edge that emanates from x1.) We can continue in the
same fashion and get a complete identification of T1, T2, . . . , Tn−3, including T .

4.2 Completing the Proof of Theorem 1.3

Our last step toward the identification of the geometric structure of K(P ) is the following easy
proposition.

Proposition 4.5. Let p, q, x, y be four different points in P . The segments [p, x] and [q, y] do
not cross if and only if there exists a pq-brush that includes the edges [p, x] and [q, y].

Proof. It is clear that if [p, x] and [q, y] cross then no pq-brush can contain both edges [p, x]
and [q, y], as a brush is a simple tree. If [p, x] and [q, y] do not cross, then they are strictly
separated by some line ℓ. In such a case, we can define a pq-brush in which all vertices that
lie on the same side of ℓ as p are connected to p, and all other vertices are connected to q (see
Figure 15). This pq-brush includes both [p, x] and [q, y].

Now we are ready to prove our main theorem.

Proof of the Main Theorem. Consider the geometric tree graph G(P ). The vertices x, y, p, q

are identified with the stars S(x), S(y), S(p), S(q) ∈ G(P ). By Theorem 3.6, we can identify all
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pq-brushes in G(P ). By Corollary 4.4, we can check for each of them whether it includes both
[p, x] and [q, y] or not. By Proposition 4.5, if none of the pq-brushes contains both [p, x] and
[q, y], then these segments cross, and otherwise, they do not cross. This completes the proof of
the theorem.

5 The Automorphism Group of the Tree Graph of Kn

In this section we consider the abstract (i.e., non-geometric) graph Kn. Recall that, as defined
in the introduction, the vertices of the tree graph G(Kn) are all the spanning trees of Kn, and
two spanning trees are adjacent if they differ in exactly two edges. We prove Theorem 1.4,
stating that the automorphism group of G(Kn) is isomorphic to Aut(Kn) = Sn.

It turns out that the theorem can be proved by roughly the same methodology as the
proof of Theorem 1.3, as shown below. Altogether, the proof in the abstract setting turns out
considerably simpler than its geometric counterpart.

Identification of stars in G(Kn). Denote G = G(Kn), and let V (Kn) = {v1, . . . , vn}. As
in the geometric case, our first step is identification of the vertices of G that represent stars.
Unlike the geometric case, here the identification is immediate.

Claim 5.1. Let T ∈ V (G). Then T represents a star if and only if for any T ′ ∈ V (G),
dG(T, T

′) ≤ n− 2.

Proof. We observe that in the abstract case, dG(S1, S2) =
1
2 |∆(S1, S2)| for any S1, S2 ∈ V (G).

(In the geometric case, we could only say that dG(P )(S1, S2) ≥
1
2 |∆(S1, S2)|.)

Assume that T is a star. Since any spanning tree T ′ of Kn shares at least one edge with T ,
we have dG(T, T

′) = 1
2 |∆(T, T ′)| ≤ n− 2.

On the other hand, if T is not a star then it is easy to see that the graph T c = Kn \ T

is connected, and thus, there exists T ′ ∈ V (G) that does not share an edge with T . Hence,
dG(T, T

′) = 1
2 |∆(T, T ′)| = n− 1.

We note that since the distance in G between any pair of stars in n− 2, it follows that the
quantity max{T ′∈V (G):T ′ 6=T} dG(T, T

′) equals n − 2 if T represents a star and n − 1 otherwise.
Consequently, the set of vertices that represent stars is exactly the center of the graph G.

These vertices can be identified with the vertices of Kn in an arbitrary way (as any auto-
morphism of Kn clearly induces an automorphism of G). So, we call the n vertices in G that
represent stars S(v1), . . . , S(vn) (in some arbitrary order).

Valences of vertices in G(Kn). The next simple step is identifying, for any T ∈ V (G) and
any vertex v, what is the valence of v in T . Note that we were not able to obtain such an
identification in the geometric setting.

Claim 5.2. Let T ∈ V (G) and v ∈ V (Kn). The valence δT (v) of v in T is n− 1− dG(T, S(v)).

Proof. Since all edges in S(v) emanate from v, it is clear that 1
2 |∆(T, S(v))| = n − 1 − δT (v).

As dG(T, S(v)) =
1
2 |∆(T, S(v))|, the assertion follows.

Max-cliques in G(Kn). Our next step is examination of max-cliques in G. As in the geometric
case, we would like to determine whether a given max-clique is a U -clique or an I-clique.

Proposition 5.3. Given a max-clique C of G, we can determine whether it is a U -clique or an
I-clique.
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Proof. As the discussion in Section 2.2 is purely combinatorial, it applies without change to
the abstract setting. In particular, all vertices in a U -clique U(S, T ) are obtained from S ∪ T

by removing an edge from its unique cycle, and all vertices in an I-clique I(S, T ) are obtained
from the two-component forest S ∩ T by adding an edge that connects its two components. As
there are no geometric restrictions in our case, it follows that |U(S, T )| is equal to the size of the
unique cycle in S ∪ T (and, in particular, is between 3 and n), and |I(S, T )| = k(n− k), where
k is the number of vertices in one of the connected components of S ∩T . Hence, determination
whether C is a U -clique or an I-clique is non-trivial only if |C| = n− 1.

A U -clique U(S, T ) is of size n−1 if the unique cycle C of S∪T is of size n−1, which means
that S ∪ T consists of C plus a single additional edge. Each element of U(S, T ) is obtained
from S ∪ T by removing one edge from C. Assume w.l.o.g. that C = 〈v1, v2, . . . , vn−1, v1〉, and
the additional edge is [vn, v1]. It is clear that v1 is never a leaf in a tree of U(S, T ), vn is a leaf
in all n− 1 trees of U(S, T ), and each of the vertices v2, . . . , vn−1 is a leaf in exactly two trees
of U(S, T ). In addition, U(S, T ) has two trees that are paths. (These are the trees obtained
by removing [v1, v2] and [vn−1, v1].) These two trees can be recognized by checking that their
sequence of valences is 1, 2, 2, . . . , 2, 1.

An I-clique I(S, T ) is of size n − 1 if in the two-component forest S ∩ T , one component
consists of a single vertex x. Assume, in addition, that I(S, T ) has two elements that are paths.
(Otherwise, we can determine that I(S, T ) is an I-clique by the previous paragraph.) This is
possible only if the second component of S ∩ T is a path P . In such a case, each endpoint of
P is a leaf in n − 2 (of the n − 1) trees of I(S, T ). As in U(S, T ), all vertices except one are
leaves in at most two trees of U(S, T ), this property allows to determine that I(S, T ) is indeed
an I-clique.

The automorphism group of G(Kn). Our last step is to show that the information on
G obtained so far is sufficient for determining uniquely the spanning tree represented by each
vertex of G. Namely, given T ∈ V (G) and two vertices p, q ∈ V (Kn), we would like to determine
whether [p, q] ∈ E(T ) or not. If this is possible, it implies that Aut(G) ∼= Aut(Kn) ∼= Sn, since
our determination is unique up to the arbitrary identification of the vertices of G that represent
stars with the vertices of Kn. Hence, this will complete the proof of Theorem 1.4.

First, we consider the case when neither p nor q is a leaf in T .

Claim 5.4. Let T ∈ V (G) and suppose p, q ∈ V (Kn), p 6= q, δT (p), δT (q) ≥ 2. Then [p, q] ∈
E(T ) if and only if T has a neighbor T ′ in G in which the valences of both p and q are smaller
by 1 than in T .

Proof. If [p, q] 6∈ E(T ) then no removal of an edge from E(T ) can reduce the valences of both p

and q, and thus, T ′ as described in the claim does not exist. On the other hand, if [p, q] ∈ E(T )
then the graph T̃ = T \ {[p, q]} is a two-component forest in which both components are of size
≥ 2. Hence, there exists an edge [p′, q′] that connects the two components of T̃ and uses neither
p nor q. The tree T ′ = T \ {[p, q]} ∪ {[p′, q′]} is a neighbor of T as described in the claim.

Now we can assume w.l.o.g. that p is a leaf in T . We perform a four-step procedure:

1. Find a leaf p′ of T such that dT (p, p
′) > 2.

2. Find a neighbor T ′ of T in G(Kn) such that δT ′(p), δT ′(p′) ≥ 2.

3. Consider the U -clique U(T, T ′), and find a tree S ∈ U(T, T ′) such that δS(p) = 1 and
δS(p

′) = 2.
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4. We find a vertex p′′ such that δS(p
′′) = δT (p

′′) − 1. We claim that if p′′ = q then
[p, q] ∈ E(T ), and otherwise, [p, q] 6∈ E(T ).

We show below that the four steps can indeed be performed, and that they allow to determine
whether [p, q] ∈ E(T ) or not, as claimed.

Step 1. First, we note that if dT (p, p
′) = 2 for all leaves p′ of T , then T is a star, and thus,

[p, q] ∈ E(T ) for the unique q whose valence in T is greater than 1 and [p, q] 6∈ E(T ) for any
other q. Hence, we may assume that there exists a leaf p′ such that dT (p, p

′) > 2, and we only
have to detect it.

Consider the set of leaves of T other than p: A = {pi ∈ V (Kn) : pi 6= p, δT (pi) = 1}.
(Note that we can recognize this set, as we are able to determine valences of vertices.) We
claim that dT (p, p

′) > 2 if and only if there exists a neighbor T ′ of T in G(Kn) such that
δT ′(p) = δT ′(p′) = 2. This allows to detect the desired p′ by going over the elements of A, and
for each of them, going over the neighbors of T in G(Kn) and checking whether the claimed
neighbor exists.

To see that the claim holds, note that a neighbor T ′ of T satisfies δT ′(p) = δT ′(p′) = 2, if
and only if it is of the form T ′ = T \ ∪{[p, p′]} \ {e}, for an edge e that belongs to the unique
cycle C of T ∪ {[p, p′]} and uses neither p nor p′. If d(p, p′) = 2, then C is of length 3, and
thus, it has no edges that use neither p nor p′. Thus, no such neighbor T ′ exists. If d(p, p′) > 2,
then C is of length > 3, and thus, it includes an edge e that uses neither p nor p′. The tree
T ′ = T \ {e} ∪ {[p, p′]} is the desired neighbor of T .

Step 2. This step is immediate, as the required neighbor T ′ was already found in Step 1.

Step 3. The required neighbor S is the tree obtained from T ∪ {[p, p′]} by removing the
unique edge of the cycle C that uses p but not p′ (call it [p, p′′]). The U -clique U(T, T ′) can be
recognized using Proposition 5.3, since there exist only two max-cliques of G(Kn) that include
both T and T ′ – a U -clique and an I-clique – and Proposition 5.3 allows us to determine, which
of them is the U -clique. Then, S can be recognized as the unique element of U(T, T ′) in which
the valences of p, p′ are 1 and 2, respectively.

Step 4. It is clear that the unique vertex whose valence in S is smaller by one than its valence
in T is p′′, as defined in Step 3. By the construction of C, [p, p′′] is the unique edge of E(T )
that emanates from p, i.e., p′′ is the unique neighbor of p in T . Hence, [p, q] ∈ E(T ) if and only
if q = p′′, as asserted. The vertex p′′ is detected by comparing the valences of the vertices in S

with their respective valences in T .
This completes the proof of Theorem 1.4.
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Thesis, Universitat Politéctnica de Catalunya, 1999 (in Spanish). Available online at:
http://www.tdx.cat/TDX-0402108-120036/

[7] C. A. Holzmann and F. Harary, On the tree graph of a matroid, SIAM J. Appl. Math. 22
(1972), pp. 187–193.

[8] P. J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957), pp. 961-968.

[9] G. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988), pp. 453–459.

[10] S. Ramachandran, Graph reconstruction – some new developments, AKCE J. Graphs.
Combin., 1(1) (2004), pp. 51–61.

[11] J. Sedláček, The reconstruction of a connected graph from its spanning trees, Mat. Časopis
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