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Abstract Bárány, Katchalski and Pach (Proc Am Math Soc 86(1):109–114, 1982)1

(see also Bárány et al., Am Math Mon 91(6):362–365, 1984) proved the following2

quantitative form of Helly’s theorem. If the intersection of a family of convex sets in3

R
d is of volume one, then the intersection of some subfamily of at most 2d members4

is of volume at most some constant v(d). In Bárány et al. (Am Math Mon 91(6):362–5

365, 1984), the bound v(d) ≤ d2d2
was proved and v(d) ≤ dcd was conjectured. We6

confirm it.7

Keywords Helly’s theorem · Quantitative Helly theorem · Intersection of convex8

sets · Dvoretzky–Rogers lemma · John’s ellipsoid · Volume9

Mathematics Subject Classification 52A3510

1 Introduction and Preliminaries11

Theorem 1.1 Let F be a family of convex sets in R
d such that the volume of its12

intersection is vol (∩F) > 0. Then there is a subfamily G of F with |G| ≤ 2d and13

vol (∩G) ≤ ed+1d2d+ 1
2 vol (∩F).14

We recall the note from [2] (see also [3]) that the number 2d is optimal, as shown15

by the 2d half-spaces supporting the facets of the cube.16

Editor in Charge: János Pach

Márton Naszódi

marton.naszodi@math.elte.hu

1 ELTE, Department of Geometry, Lorand Eötvös University, Pázmány Péter Sétány 1/C, Budapest

1117, Hungary

123

Journal: 454 Article No.: 9753 TYPESET DISK LE CP Disp.:2015/11/21 Pages: 6 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-015-9753-3&domain=pdf
http://orcid.org/0000-0002-4194-0205


u
n
co

rr
ec

te
d

p
ro

o
f

Discrete Comput Geom

The order of magnitude dcd in the Theorem (and in the conjecture in [2]) is sharp17

as shown in Sect. 3.18

Recently, other quantitative Helly type results have been obtained by De Loera et19

al. [5].20

We introduce notations and tools that we will use in the proof. We denote the closed21

unit ball centered at the origin o in the d-dimensional Euclidean space R
d by B. For22

the scalar product of u, v ∈ R
d , we use 〈u, v〉, and the length of u is |u| =

√
〈u, u〉.23

The tensor product u ⊗ u is the rank one linear operator that maps any x ∈ R
d to24

the vector (u ⊗ u)x = 〈u, x〉 u ∈ R
d . For a set A ⊂ R

d , we denote its polar by25

A∗ = {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ A}. The volume of a set is denoted by vol (·).26

Definition 1.2 We say that a set of vectors w1, . . . , wm ∈ R
d with weights27

c1, . . . , cm > 0 form a John’s decomposition of the identity, if28

m
∑

i=1

ciwi = o and

m
∑

i=1

ciwi ⊗ wi = I, (1)29

where I is the identity operator on R
d .30

A convex body is a compact convex set in R
d with non-empty interior. We recall31

John’s theorem [8] (see also [1]).32

Lemma 1.3 (John’s theorem) For any convex body K in R
d , there is a unique ellipsoid33

of maximal volume in K . Furthermore, this ellipsoid is B if, and only if, there are34

points w1, . . . , wm ∈ bd B ∩ bd K (called contact points) and corresponding weights35

c1, . . . , cm > 0 that form a John’s decomposition of the identity.36

It is not difficult to see that if w1, . . . , wm ∈ bd B and corresponding weights37

c1, . . . , cm > 0 form a John’s decomposition of the identity, then {w1, . . . , wm}∗ ⊂38

dB, cf. [1] or [7, Thm. 5.1]. By polarity, we also obtain that 1
d

B ⊂ conv({w1, . . . , wm}).39

One can verify that if � is a regular simplex in R
d such that the ball B is the largest40

volume ellipsoid in �, then41

vol (�) =
dd/2(d + 1)(d+1)/2

d!
. (2)42

We will use the following form of the Dvoretzky–Rogers lemma [6].43

Lemma 1.4 (Dvoretzky–Rogers lemma) Assume that w1, . . . , wm ∈ bd B and44

c1, . . . , cm > 0 form a John’s decomposition of the identity. Then there is an ortho-45

normal basis z1, . . . , zd of R
d , and a subset {v1, . . . , vd} of {w1, . . . , wm} such that46

vi ∈ span{z1, . . . , zi } and

√

d − i + 1

d
≤ 〈vi , zi 〉 ≤ 1 for all i = 1, . . . , d.

(3)47

This lemma is usually stated in the setting of John’s theorem, that is, when the vectors48

are contact points of a convex body K with its maximal volume ellipsoid, which is B.49
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Fig. 1 .
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And often, it is assumed in the statement that K is symmetric about the origin, see for50

example [4]. Since we make no such assumption (in fact, we make no reference to K51

in the statement of Lemma 1.4), we give a proof in Sect. 4.52

2 Proof of Theorem 1.153

Without loss of generality, we may assume that F consists of closed half-spaces,54

and also that vol (∩F) < ∞, that is, ∩F is a convex body in R
d . As shown in [3],55

by continuity, we may also assume that F is a finite family, that is P = ∩F is a56

d-dimensional polyhedron.57

The problem is clearly affine invariant, so we may assume that B ⊂ P is the58

ellipsoid of maximal volume in P .59

By Lemma 1.3, there are contact points w1, . . . , wm ∈ bd B ∩ bd P (and weights60

c1, . . . , cm > 0) that form a John’s decomposition of the identity. We denote their61

convex hull by Q = conv{w1. . . . , wm}. Lemma 1.4 yields that there is an orthonormal62

basis z1, . . . , zd of R
d , and a subset {v1, . . . , vd} of the contact points {w1, . . . , wm}63

such that (3) holds.64

Let S1 = conv{o, v1, v2, . . . , vd} be the simplex spanned by these contact points,65

and let E1 be the largest volume ellipsoid contained in S1. We denote the center of66

E1 by u. Let ℓ be the ray emanating from the origin in the direction of the vector −u.67

Clearly, the origin is in the interior of Q. In fact, by the remark following Lemma 1.3,68

1
d

B ⊂ Q. Let w be the point of intersection of the ray ℓ with bd Q. Then |w| ≥ 1/d.69

Let S2 denote the simplex S2 = conv{w, v1, v2, . . . , vd}. See Fig. 1. 170

We apply a contraction with center w and ratio λ = |w|
|w−u| on E1 to obtain the71

ellipsoid E2. Clearly, E2 is centered at the origin and is contained in S2. Furthermore,72

λ =
|w|

|u| + |w|
≥

|w|
1 + |w|

≥
1

d + 1
. (4)73

Since w is on bd Q, by Caratheodory’s theorem, w is in the convex hull of some74

set of at most d vertices of Q. By re-indexing the vertices, we may assume that75

w ∈ conv{w1, . . . , wk} with k ≤ d. Now,76
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E2 ⊂ S2 ⊂ conv{w1, . . . , wk, v1, . . . , vd}. (5)77

Let X = {w1, . . . , wk, v1, . . . , vd} be the set of these unit vectors, and let G denote78

the family of those half-spaces which support B at the points of X . Clearly, |G| ≤ 2d.79

Since the points of X are contact points of P and B, we have that G ⊆ F . By (5),80

∩ G = X∗ ⊂ E∗
2 . (6)81

By (3),82

vol (S1) ≥
1

d!
·

√
d!

dd/2
=

1
√

d!dd/2
. (7)83

Since B ⊂ ∩F , by (6) and (4), (2), (7) we have84

vol (∩G)

vol (∩F)
≤

vol
(

E∗
2

)

vol (B)
=

vol (B)

vol (E2)
≤ (d + 1)d vol (B)

vol (E1)
= (d + 1)d vol (�)

vol (S1)
85

=
dd/2(d + 1)(3d+1)/2

d! vol (S1)
=

ddd3d/2e3/2(d + 1)1/2

(d!)1/2
≤ ed+1d2d+ 1

2 , (8)86

where � is as defined above (2). This completes the proof of Theorem 1.1.87

Remark 2.1 In the proof, in place of the Dvoretzky–Rogers lemma, we could select88

the d vectors v1, . . . , vd from the contact points randomly: picking wi with probability89

ci/d for i = 1, . . . , m, and repeating this picking independently d times. Pivovarov90

proved (cf. [9, Lem. 3]) that the expected volume of the random simplex S1 obtained91

this way is the same as the right hand side in (7).92

3 A Simple Lower Bound for v(d)93

We outline a simple proof that one cannot hope a better bound in Theorem 1.1 than94

dd/2 in place of d2d+1/2. Indeed, consider the Euclidean ball B, and a family F of95

(very many) supporting closed half space of B whose intersection is very close to B.96

Suppose that G is a subfamily of F of 2d members. Denote by σ the Haar probability97

measure on the sphere RS
d−1, where R = (d/(2 ln d))

1
2 . Let H ∈ G be one of the98

half spaces. Then99

σ(RS
d−1 \ H) ≤ exp

(

−d

2R2

)

≤ 1/(4d).100

It follows that101

vol (∩G) ≥ Rd vol (B) σ (RS
d−1 \ (∪G)) ≥

1

2
Rd vol (B) ≥ d

d
2 −ε vol (∩F)102

for any ε > 0 if d is large enough.103
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4 Proof of Lemma 1.4104

We follow the proof in [4].105

Claim 4.1 Assume that w1, . . . , wm ∈ bd B and c1, . . . , cm > 0 form a John’s106

decomposition of the identity. Then for any linear map T : R
d → R

d there is an107

ℓ ∈ {1, . . . , m} such that108

〈wℓ, T wℓ〉 ≥
tr T

d
, (9)109

where tr T denotes the trace of T .110

For matrices A, B ∈ ℜd×d we use 〈A, B〉 = tr
(

ABT
)

to denote their Frobenius111

product.112

To prove the claim, we observe that113

tr T

d
=

1

d
〈T, I 〉 =

1

d

m
∑

i=1

ci 〈T, wi ⊗ wi 〉 =
1

d

m
∑

i=1

ci 〈T wi , wi 〉 .114

Since
∑m

i=1 ci = d, the right hand side is a weighted average of the values115

〈T wi , wi 〉. Clearly, some value is at least the average, yielding Claim 4.1.116

We define zi and vi inductively. First, let z1 = v1 = w1. Assume that, for some117

k < d, we have found zi and vi for all i = 1, . . . , k. Let F = span{z1, . . . , zk}, and118

let T be the orthogonal projection onto the orthogonal complement F⊥ of F . Clearly,119

tr T = dim F⊥ = d − k. By Claim 4.1, for some ℓ ∈ {1, . . . , m} we have120

|T wℓ|2 = 〈T wℓ, wℓ〉 ≥
d − k

d
.121

Let vk+1 = wℓ and zk+1 = T wℓ

|T wℓ| . Clearly, vk+1 ∈ span{z1, . . . , zk+1}. Moreover,122

〈vk+1, zk+1〉 =
〈T wℓ, wℓ〉

|T wℓ|
=

|T wℓ|2

|T wℓ|
= |T wℓ| ≥

√

d − k

d
,123

finishing the proof of Lemma 1.4.124

Note that in this proof, we did not use the fact that, in a John’s decomposition of125

the identity, the vectors are balanced, that is
∑m

i=1 ciwi = o.126
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