THE EDIT DISTANCE FOR REEB GRAPHS OF SURFACES

B. DI FABIO AND C. LANDI

ABSTRACT. Reeb graphsare structural descriptors that capture shape properties of atopo-
logica space from the perspective of a chosen function. In this work we define a combi-
natorial metric for Reeb graphs of orientable surfaces in terms of the cost necessary to
transform one graph into another by edit operations. The main contributions of this paper
are the stability property and the optimality of this edit distance. More precisely, the sta-
bility result states that changes in the functions, measured by the maximum norm, imply
not greater changes in the corresponding Reeb graphs, measured by the edit distance. The
optimality result states that our edit distance discriminates Reeb graphs better than any
other metric for Reeb graphs of surfaces satisfying the stability property.

INTRODUCTION

In shape comparison, a widely used scheme is to measure the dissimilarity between
descriptors associated with each shape rather than to match shapes directly. Reeb graphs
describe shapes from topol ogical and geometrical perspectives. In this framework, a shape
ismodeled as atopological space X endowed with ascalar function f : X — R. Therole of
f isto explore geometrical properties of the space X. The Reeb graph of f is obtained by
shrinking each connected component of alevel set of f to asingle point [20]. Reeb graphs
have been used as an effective tool for shape analysis and description tasks since [24, 23].

One of the most important questions is whether Reeb graphs are robust against pertur-
bations that may occur because of noise and approximation errors in the data acquisition
process. Whereas in the past researchers dealt with this problem developing heuristics
so that Reeb graphs would be resistant to connectivity changes caused by simplification,
subdivision and remesh, and robust against noise and certain changes due to deformation
[11, 2], inthelast yearsthe question of Reeb graph stability has been investigated from the
theoretical point of view. In [7] an edit distance between Reeb graphs of curves endowed
with Morse functions is introduced and shown to yield stability. Importantly, despite the
combinatorial nature of thisdistance, it coincideswith the natural pseudo-distance between
shapes [8], thus showing the maximal discriminative power for this sort of distances. Very
recently a functional distortion distance between Reeb graphs has been proposed in [1],
with proven stable and discriminative properties. The functional distortion distance is
based on continuous maps between the topological spaces realizing the Reeb graphs, so
that it is not combinatorial in its definition. Noticeably, it allows for comparison of non-
homeomorphic spaces meaning that it can be used to deal aso with artifacts that change
the homotopy type of the space, although as a consequence it cannot fully discriminate
shapes and stability is not provenin that case.

In this paper we deal with the comparison problem for Reeb graphs of surfaces. Indeed
the case of surfaces seems to us the most interesting area of application of the Reeb graph
as ashape descriptor. Asatradeoff between generality and simplicity, we confine ourselves
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to the case of smooth compact orientabl e surfaces without boundary endowed with simple
Morse functions.

The basic properties we consider important for a metric between Reeb graphs are: the
robustness to perturbations of the input functions; the ability to discriminate functions on
the same manifold; the deployment of the combinatorial nature of graphs. For this reason,
we apply to the case of surfacesthe same underlyingideasasusedin[7] for curves. Starting
from Reeb graphs labeled on the vertices by the function values, the following steps are
carried out: first, a set of admissible edit operations is detected to transform a labeled
Reeb graph into another; then a suitable cost is associated to each edit operation; finally, a
combinatoria dissimilarity measure between labeled Reeb graphs, called an edit distance,
is defined in terms of the least cost necessary to transform one graph into another by edit
operations. However, the passage from curves to surfaces is not automatic since Reeb
graphs of surfaces are structurally different from those of curves. For example, the degree
of verticesis different for Reeb graphs of curves and surfaces. Therefore, the set of edit
operations as well as their costs cannot be directly imported from the case of curves but
need to be suitably defined. In conclusion, our edit distance between Reeb graphs belongs
to the family of Graph Edit Distances [10], widely used in pattern analysis.

Our first main result is that changes in the functions, measured by the maximum norm,
imply not greater changesin this edit distance, yielding the stability property under func-
tion perturbations. To prove this result, we track the changes in the Reeb graphs as the
function varies along alinear path avoiding degeneracies. From the stability property, we
deducethat the edit distance between the Reeb graphs of two functions f and g defined ona
surfaceisalower bound for the natural pseudo-distance between f and g obtained by min-
imizing the change in the functions due to the application of a self-diffeomorphism of the
manifold, with respect to the maximum norm. The natural pseudo-distance can be thought
asaway to compare f and g directly, while the edit distance provides an indirect compar-
ison between f and g through their Reeb graphs. Thus, by virtue of the stability result, the
edit distance provides a combinatorial tool to estimate the natural pseudo-distance.

Our second contribution is the proof that the edit distance between Reeb graphs of
surfaces actually coincides with the natural pseudo-distance. Thisis proved by showing
that for every edit operation on a Reeb graph there is a self-homeomorphism of the surface
whose cost is not greater than that of the considered edit operation. This result implies
that the edit distance is actually a metric and not only a pseudo-metric. Morever it shows
that the edit distance is an optimal distance for Reeb graphs of surfaces in that it has the
maximum discriminative power among al the distances between Reeb graphs of surfaces
with the stability property.

In conclusion, this paper shows that the results of [7] for curves also hold in the more
interesting case of surfaces.

The paper is organized as follows. In Section 1 we recall the basic properties of labeled
Reeb graphs of orientable surfaces. In Section 2 we define the edit deformations between
labeled Reeb graphs, and show that through afinite sequence of these deformationswe can
aways transform a Reeb graph into another. In Section 3 we define the cost associated
with each type of edit deformation and the edit distance in terms of this cost. Section 4
illustrates the robustness of Reeb graphs with respect to the edit distance. Eventually, Sec-
tion 5 providesrel ationships between our edit distance and other stable metrics: the natural
pseudo-distance, the bottleneck distance and the functional distortion distance.
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A number of questions remain open and are not treated in this paper. The most important
oneis how to compute the edit distance. Indeed, whereas in some particular cases we can
deduce the value of the edit distance from the lower bounds provided by the bottleneck
distance of persistence diagrams or the functional distortion distance of Reeb graphs, in
general we do not know how to compute it. A second open problem is to which extent
the theory developed in this paper for the smooth category can be transported into the
piecewise linear category. A third question that would deserve investigation is how to
generalize the edit distance to compare functions on non-homeomorphic surfaces as well,
and the relationship with the functional distortion distance in that case.

1. LABELED REEB GRAPHS OF ORIENTABLE SURFACES

Hereafter, .4 denotes a connected, closed (i.e. compact and without boundary), ori-
entable, smooth surface of genus g, and .7 (.#) the set of C* real functionson .Z .

For f € Z (), we denote by K; the set of its critical points. If p € K¢, then the real
number f(p) iscalled acritical valueof f, andtheset {qec .# :qec f ~1(f(p))} iscaled
acritical level of f. Moreover, a critical point p is called non-degenerate if the Hessian
matrix of f at p isnon-singular. The index of a non-degenerate critical point p of f isthe
dimension of the largest subspace of the tangent space to .# at p on which the Hessian
matrix is negative definite. In particular, the index of a point p € K¢ isequal to 0,1, or 2
depending on whether p isaminimum, asaddle, or a maximum point of f.

A function f € () is called a Morse function if al its critical points are non-
degenerate. Besides, a Morse function is said to be simple if each critical level contains
exactly one critical point. The set of simple Morse functions will be denoted by .% °(.#),
asareminder that it is a sub-manifold of .7 (.#') of co-dimension O (see also Section 4).

Definition 1.1. Let f € .#°(.#), and define on ./ the following equivalence relation:
for every p,q € ., p ~t q whenever p,q belong to the same connected component of
f~1(f(p)). The quotient space.# / ~ 1 isthe Reeb graph associated with f.

Our assumption that f is a simple Morse function alows us to consider the space
| ~+ as agraph whose vertices correspond bijectively to the critical points of f. For
thisreason, in the following, we will often identify vertices with the corresponding critical
points.

Proposition 1.2. ([20]) The Reeb graph I'¢ associated with f € .#°(.#) is a finite and
connected simplicial complex of dimension 1. A vertex of I's has degree equal to 1 if it
correspondsto a critical point of f of index O or 2, while it has degree equal to 2,3, or 4 if
it correspondsto a critical point of f of index 1.

Throughout this paper, Reeb graphs are regarded as combinatorial graphs and not as
topological spaces. The vertex set of T'+ will be denoted by V(I't), and its edge set by
E(T't). Moreover, if v1,vo € V(T'¢) are adjacent vertices, i.e., connected by an edge, we
will write e(vq,vo) € E(T'¢).

Our assumptionsthat ./ is orientable, compact and without boundary ensure that there
are no vertices of degree 2 or 4. Moreover, if p,q,r denote the number of minima, max-
ima, and saddle points of f, from the relationships between the Euler characteristic of .,
x(A), and p,q,r, i.e. x(.#)=p+qg—r, and between y(.#) and the genus g of .#,
i.e. x(#)=2-2g,itfollows that the cardinality of V(T'¢), whichis p+q+r, isaso
equal to 2(p+qg+g—1), i.e. isevenin number. The minimum number of vertices of a
Reeb graph is achieved whenever p = q = 1, and consequently r = 2g. In this case the
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cardinality of V(I't) isequal to 2g+ 2. In general, if .# has genus g then T'; has exactly
g linearly independent cycles. We will call a cycle of length m in the graph an m-cycle.
These observations motivate the following definition.

Definition 1.3. We shall call minimal the Reeb graph I"; of afunction f having p=q=1.
Moreover, we say that I'; iscanonical if itisminimal and all its cycles, if any, are 2-cycles.

We underline that our definition of canonical Reeb graph is slightly different from the
onein [13]. This choice has been done to simplify the proof of Proposition 2.7.
Examples of minimal and canonical Reeb graphs are displayed in Figure 1.

FIGURE 1. Examples of minimal Reeb graphs. The graph on the right is also canonical.

In what follows, we label the vertices of "¢ by equipping each of them with the value
of f at the corresponding critical point. We denote such alabeled graph by (T ¢, ), where
ls:V(T't) — Ristherestrictionof f:.# — R toKs. Inalabeled Reeb graph, each vertex
v of degree 3 has at least two of its adjacent vertices, say vi, Vo, suchthat £+ (v1) < 41 (V) <
L5 (v2). An exampleis displayed in Figure 2.
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FIGURE 2. Leéft: the height function f :.# — R; center: the surface .# of genusg = 2;
right: the associated labeled Reeb graph (T, (¢ ).

Let us consider the realization problem, i.e. the problem of constructing a smooth sur-
face and a simple Morse function on it from a graph on an even number of vertices, al of
which are of degree 1 or 3, appropriately labeled. We need the following definition.

Definition 1.4. We shall say that two labeled Reeb graphs (I't, 4+ ), (T'y, £g) areisomorphic,
and we write (I't, £+) = (T'g, {g), if there exists a graph isomorphism @ : V(I't) — V(I'g)
suchthat, for every ve V(I't), £5(v) = £g(D(V)) (i.e. ® preservesedgesand vertex |abels).
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Proposition 1.5 (Realization Theorem). Let (T',¢) be a labeled graph, whereT" isa graph
with m linearly independent cycles, on an even number of vertices, all of which are of
degree 1 or 3, and ¢ : V(T') — R is an injective function such that, for any vertex v of
degree 3, at least two among its adjacent vertices, say w,w’, are such that £(w) < £(v) <
£(w'). Then an orientable closed surface .# of genus g = m, and a simple Morse function
f:.# — R exist suchthat (T's,¢¢) = (T, £).

Proof. Under our assumption on the degree of vertices of T', .# and f can be constructed
asin the proof of Thm. 2.1in[17]. |

We now deal with the uniqueness problem, up to isomorphism of |abeled Reeb graphs.
First of all we consider the following two equivalence relations on .7 (.#).

Definition 1.6. Let Z(.#') bethe set of self-diffeomorphismsof .#. Two functions f,g €
FO () are caled right-equivalent (briefly, R-equivalent) if there exists & € 2(.#) such
that f = go&. Moreover, f,g are called right-left equivalent (briefly, RL-equivalent) if
thereexist £ € (') and an orientation preserving self-diffeomorphismn of R such that
f=nogo&.

These equivalence relations on functions are mirrored by Reeb graphsisomorphisms.

Proposition 1.7 (Uniqueness Theorem). If f,g € .7 °(.#), then
(1) f andgareRL-equivalent if and only if their Reeb graphsT ¢ and I'g are isomor-
phic by an isomorphism® : V(I't) — V(I'g) that preserves the vertex order, i.e.,
for everyv,w e V (T't), £ (v) < £¢(w) if and only if £g(D(V)) < lg(DP(W));
(2) f and g are R-equivalent if and only if their labeled Reeb graphs (I"¢,¢¢) and
(g, {g) areisomorphic.

Proof. For the proof of statement (1) see [15, 22]. Asfor statement (2), we note that two
R-equivalent functions are, in particular, RL-equivalent. Hence, by statement (1), their
Reeb graphs are isomorphic by an isomorphism that preserves the vertex order. Since f

and g necessarily have the same critical values, this isomorphism also preserves labels.
Vice-versa, if (I't,¢¢) and (I'y,{g) are isomorphic, then f and g have the same critical
values. Moreover, by statement (1), there exist & € 2(.#') and an orientation preserving
self-diffeomorphism n of R suchthat f =nogoé. Letusset h=go&. Thefunction h
belongs to .7 %(.#) and has the same critical points with the same indexes as f, and the
same critical values as g and hence as f. Thus, we can apply [14, Lemma 1] to f and h
and deduce the existence of a self-diffeomorphism &’ of .# such that f =ho&’. Thus
f =go&o&’, yieldingthat f and g are R-equivalent. A direct proof of the R-equivalence
of functionswith isomorphic labeled Reeb graphsis also obtainable from Lemmab.3. [

2. EDIT DEFORMATIONS BETWEEN LABELED REEB GRAPHS

Inthissection welist the edit deformationsadmissible to transform label ed Reeb graphs
into one another when different simple M orse functions on the same surface are considered.
We introduce at first elementary deformations, then, by virtue of the Realization Theorem
(Proposition 1.5), the deformations obtained by their composition.

Elementary deformations allow us to insert or delete a vertex of degree 1 together with
an adjacent vertex of degree 3 (deformationsof birth type (B) and death type (D)), maintain
the same vertices and edges while changing the vertex labels (deformations of relabeling
type (R)), or change some vertices adjacencies and | abels (deformations of type (K 1), (K»),
(K3) introduced by Kudryavtsevain [13]). A sketch of these elementary deformations can
befoundin Table 1. The formal definition is as follows.
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Definition 2.1. With the convention of denoting the open interval with endpointsa,b € R
by |a, b, the elementary deformations of type (B), (D), (R), (Ki), i =1,2,3, are defined as
follows.

(B) T isanelementary deformation of (I't, /) of type (B) if, for afixed edge e(vy,vp) €
E(T¢), with £¢(v1) < £5(v2), T(T't,¢5) isalabeled graph (T, ¢) such that
- V{T)=V(T)U{ug,uy};
— E(I') = (E(T'r) — {e(vi, v2) }) U{e(v1,u1),€(us, Up), (ul,vz)}
= Ly(ry) = £r and £g(v1) < £(ui) < £(uj) < Lg(v2), with £~ YJe(u), e =0,
i,je{1,2},i#].

(D) T is an elementary deformation of (I't,¢¢) of type (D) if, for fixed edges e(v1,us),
e(ug,up), e(uy,v2) € E(T't), u being of degree 1, suchthat ¢ ¢ (vi) < £ (ui) < £ (uj) <
Cr(va), with €1 (105 (W), €5 (u))]) = 0,1, j € {1,2},i # j, T(T'¢,r) isalabeled graph
(T, £) such that

= V() =V(Tt) — {ug, uz};
— E(") = (E(T't) — {e(vy,u1),e(ug, Up),e(ug, v2) }) U{e(v,V2) };
~ =Ly —quu)

(R) T isan elementary deformation of (I's, ¢¢) of type (R) if T(I'¢,¢¢) isalabeled graph
(T, £) such that

- I'=T¥y;

— £:V(I') — R induces the same vertex-order as ¢+ except for at most two non-
adjacent vertices, say uy, Uy, with £ (up) < £¢(up) and 6;1(]& (U1), 2t (up)[) =0,
for which £(uy) > £(uz) and £=1(]¢(uz), £(up)[) = 0.

(K1) T isan elementary deformation of (I't, ) of type (Ky) if, for fixed edges e(vy,uy),
e(u1,Uy), e(u1,Va), €Uz, Vo), €(Uz,v3) € E(T't), with two among vy, v, v4 possibly co-
incident, £ (v1) < €5 (u1) < £s(u2) < €5 (V2),L5(Va), Lt (Va), andﬁ;l(]éf(ul),éf (u))) =
O (resp. £1(V), £5(Va), £ (Va) < £5(Up) < €5 (uy) < £ (ve),and €71 (10¢ (Up), £ (ur)[) =
0), T(T's,¢s) isalabeled graph (T, ¢) such that:

- V() =V(T1);
— E(T') = (E(T't) — {e(v1,u1),e(uz,V2) }) U{e(v, ), e(us, o) };
- 6‘\/( N {upp} = Cs and Cs(v1) < £(u) < l(ug) < L5 (Va), Li(va), C5(va), With
Ye(uz), (u1)[) = 0 (resp. £5(Va), €5 (Va), £ (Va) < £(uy) < £(Up) < L5(va),
W|th£ LJ6(up), £(up)]) = 0).

(K2) T isan elementary deformation of (I't, ) of type (K) if, for fixed edges e(vy,uy),
e(vz,u1), e(ug,Uz), e(uz,Vv3), e(uz,va) € E(T's), with ug, up of degree 3, v,v3 pos-
sibly coincident with vi,va, respectively, and £¢(vy),¢5(v2) < 5(u1) < £i(up) <
L5 (v3), L5 (Va), with E;l(]éf(ul),éf(uz)[) =0, T(I',¢s) isalabeled graph (T, ¢) such
that:

- V() =V (Ty);

— E(T) = (E(Tt) — {e(v1,u1),e(uz,v3)}) U{e(v, ), e(us, Va) };

= Oy —fupup} = Cr and £ (ve), Le(V2) < £(Up) < £(U1) < Lg(V3), Lt(Va), With
71(0(wp), £(uy)]) = 0.

(Kg) T isan elementary deformation of (T'¢,¢¢) of type (K3) if, for fixed edges e(vy, up),
e(ug,Up), e(va,up), €(u,Va), e(up,va) € E(T'¢), with up, up of degree 3, vy, v3 possibly

NN

coincident with vy, va, respectively, and £ (v1), €5 (V2) < €5 (U2) < £5(u1) < l5(v3),2(Va),

with £, 110+ (), ¢ (u1)[) = O, T(I's,/¢) isalabeled graph (T, ¢) such that:
— V() =V(y);
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E(T) = (E(Tr) — {e(vy, uz), (U1, v3)}) U {e(va,u1),e(uz,Va)};
f‘v( N {upp} = L and Ls(ve), Ci(v2) < (up) < £(Up) < Li(va), C5(va), With
CHe(un), () ) = 0.

7\ li(v2)
_®), £(uy)
o | Y

Ef(Vl) éf (Vl)

Ef V2 1 ff V2

TABLE 1. A schematization of the elementary deformations of a labeled Reeb graph
provided by Definition 2.1.

We underline that the definition of the deformations of type (B), (D) and (R) is essen-
tially different from the definition of analogous deformationsin the case of Reeb graphs of
curvesas givenin [7], even if the associated cost will be the same (see Section 3). Thisis
because the degree of theinvolved verticesis 2 for Reeb graphs of closed curves, whereas
itis1 or 3for Reeb graphs of surfaces.

Proposition2.2. Let f € Z%(.#) and (T',¢) = T (T, /+) for some elementary deformation
T. Thenthereexists g € .#%(.#) such that (T'g, £g) = (T, ).

Proof. The claim follows from Proposition 1.5. O

As a consequence of Proposition 2.2, we can apply elementary deformationsiteratively.
Thisfact is used in the next Definition 2.3. Given an elementary deformation T of (T ¢, ¢¢)
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and an elementary deformation Sof T(I'¢,¢¢), the juxtaposition ST means applying first
T and then S.

Definition 2.3. We shall call deformation of (I't,¢¢) any finite ordered sequence T =
(T2, To,..., Ty) of elementary deformations such that T; is an elementary deformation of
(Ts,45), To is an elementary deformation of T1(T's,¢+), ..., Ty is an elementary deforma-
tionof T_1Tr—2---Ta(T's,¢¢). We shall denoteby T(T'¢,¢+) the result of the deformation
TrTr_1--- Ty appliedto (¢, ¢).

In therest of the paper we write .7 ((I't,£+), (T'g, {g)) to denote the set of deformations
turning (¢, ¢+ ) into (I'g, £g) up to isomorphism:

We now introduce the concept of inverse deformation.

Definition 2.4. Let T € 7((T't,41),(T'g,4g)) and let @ be the labeled graph isomor-
phism between T(T't,4¢) and (I'g,¢q). We denote by T2, and call it the inverse of T
in 7 ((I'g,4g),(T't,£t)), the deformation that acts on the vertices, edges, and labels of
(g, £g) asfollows: identifying T (T's, ¢+) with (I'g, £g) Via®,
e if T isan elementary deformation of type (D) deleting two vertices, then T ~1 isof
type (B) inserting the same vertices, with the same labels, and viceversa;
e if T isan elementary deformation of type (R) relabeling vertices of V(T ¢), then
T-lisagain of type (R) relabeling these verticesin the inverse way;
e if T isan elementary deformation of type (K 1) relabeling two vertices, then T 1
isagain of type (K1) relabeling the same verticesin the inverse way;
e if T isan elementary deformation of type (K ») relabeling two vertices, then T 1
is of type (K3) relabeling the same vertices in the inverse way, and viceversa;
o if T=(Ty,....T), then T 1= (T, ,..., T, Y.

From the fact that T 1T (¢, 5) = (T's, 45 ) it follows that the set 7 ((T's,4¢), (Tg, 4g)),
when non-empty, always contains infinitely many deformations. We end the section prov-
ing that for f,g € .#°(.#) it is aways non-empty. We first need two lemmas which are
widely inspired by [13, Lemma 1 and Thm. 1], respectively.

Lemma2.5. Let (T's,¢s) bealabeled Reeb graph. The following statements hold:

(i) Foranyu,veV(T't) corresponding to two minimaor two maximaof f, thereexists
adeformation T such that u and v are adjacent to the same vertex win T (I ¢, ¢¢).

(ii) For any mcycle C in 'y, m > 2, there exists a deformation T such that C is a
2-cyclein T(Ts, 4¢).

Proof. Let us prove statement (i) assuming that in (T'¢,¢¢) there exist two vertices u,v
corresponding to two minimaof f. The case of maximais analogous.

Let usconsider apath yon ' having u, Vv as endpoints, whose lengthism > 2, and the
finite sequence of verticesthroughwhich it passesis (wg,ws, ..., Wn), withwp = u,wm =,
and w; # w;j fori # j. We aim at showing that there exists a deformation T such that in
T(Tt, ) the vertices u, v are adjacent to the same vertex w, withw € {wy,...,Wn_1}, and
thus the path y is transformed by T into a path y” which is of length 2 and passes through
the vertices u, w, v.

If m= 2, thenitissufficient totake T asthe deformation of type(R) suchthat T(I"¢,¢¢) =
(Tt,¢5) since y aready coincideswith 7. If m> 2, let w; = argmax{ ¢ (w;) : wj with 0 <
j <m}. It holds that w; # u,v because u,v are minima of f and is unique because f
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issmple. It is easy to observe that, in a neighborhood of w;, possibly after a finite se-

guence of deformations of type (R), the graph gets one of the configurations shown in
Figure3 (a) — (e) (left).

FIGURE 3. Possible configurations of asimple path on alabeled Reeb graph in aneigh-
borhood of its maximum point, and elementary deformations which reduce its length. To
facilitate the reader, f has been represented asthe height function, so that 4 (wa) < £ (W)
if and only if w, islower than w, in the pictures.

The same figure shows that a finite sequence of deformations of type (K 1), (K3), and,
possibly, (R) transformsthe simple path 7y, which has length m, into a simple path of length
m— 1. Iterating this procedure, we deduce the desired claim.

The proof of statement (ii) is analogous to that of statement (i), provided that y is
taken to be an m-cycle with u = v of degree 3, and u = argmin{/ ¢(w;) : wj with0 < j <
m—1}. O
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Lemma 2.6. Every labeled Reeb graph (I'¢, /) can be transformed into a canonical one
through a finite sequence of elementary deformations.

Proof. Our proof isin two steps. first we show how to transform an arbitrary Reeb graph
into aminimal one; then how to reduce a minimal Reeb graph to the canonical form.

Thefirst step isby induction on s= p+ g, with p and g denoting the number of minima
and maximaof f. If s=2, thenT'; isaready minimal (see Definition 1.3). Let us assume
that any Reeb graph with s > 2 vertices of degree 1 can be transformed into a minimal
one through a certain deformation. Let ' have s+ 1 vertices of degree 1. Thus, at least
one between p and q is greater than one. Let p > 1 (the case q > 1 is analogous). By
Lemma 2.5 (i), if u,v correspond to two minimaof f, we can construct a deformation T
suchthat in T(T'¢, ¢) these vertices are both adjacent to a certain vertex w of degree 3. Let
T(T¢,45) = (T,€), with £(u) < £(v) < £(w). If there exists avertex w' € £-1(J¢(v), £(w)]),
since v,w cannot be adjacent, we can apply a deformation of type (R) relabeling only
v, and get a new labeling ¢’ such that ¢/(w') is not contained in |¢'(v), ¢ (w)[. Possibly
repeating this procedure finitely many times, we get a new labeling, that for simplicity we
still denote by ¢, such that £=2(]¢(v), £(w)[) = 0. Hence, through a deformation of type (D)
deleting v, w, the resulting labeled Reeb graph has s vertices of degree 1. By the inductive
hypothesis, it can be transformed into aminimal Reeb graph.

Now we prove the second step. Let I's be aminimal Reeb Graph,i.e. p=q=1. The
total number of splitting saddles (i.e. vertices of degree 3 for which there are two higher
adjacent vertices) of I's isg. If g =0, thenT'; isaready canonical. Let us consider the
caseg > 1. LetveV(Tt) be asplitting saddle such that, for every cycle C containing v,
le(v) = weig{éf (w)}, and let C be one of these cycles. By Lemma 2.5 (ii), there exists a

deformation T that transforms C into a 2-cycle, till having v as the lowest vertex. Let v’
be the highest vertex in this 2-cycle. We observe that no other cyclesof T(T"¢,¢¢) contain
v and Vv, otherwise the initial assumption on ¢ (v) would be contradicted. Hencev, v/ and
the edges adjacent to them are not touched when applying again Lemma 2.5 (ii) to reduce
the length of another cycle. Therefore, iterating the same argument on a different splitting
saddle, after at most g iterations (actually at most g — 1 would suffice) I' ¢ is transformed
into a canonical Reeb graph. O

Proposition 2.7. Let f,g€ Z9(.#). Theset 7 ((T't,¢),(Tg,4g)) isnon-empty.

Proof. By Lemma 2.6 we can find two deformations T+ and Tgy transforming (I'¢, ¢+) and
(g, 4g), respectively, into canonical Reeb graphs. Apart from the labels, T+ and I'y are
isomorphic because associated with the same surface .#. Hence, T¢(I's,¢+) can be trans-
formed into a graph isomorphic to Tg(I'y, £g) through an elementary deformation of type
(R), say Tr. Thus (Tg, {g) = Ty Moy (T, £1), i.e Ty Ty € T((Ty, 1), (Tg lg)). O

A simple exampleillustrating the above proof is given in Figure 4.

3. EDIT DISTANCE BETWEEN LABELED REEB GRAPHS

In this section we introduce an edit distance between labeled Reeb graphs, in terms of
the cost necessary to transform one graph into another.

We begin by defining the cost of a deformation. For the sake of simplicity, in view of
Proposition 2.2, whenever (I'g,{g) = (T',¢), we identify V (I'q) with V(T'), and ¢4 with ¢.
For al the notation referring to the elementary deformations, see Definition 2.1.

Definition 3.1. Let T € 7((I't,¢+),(T'g,{g)) be adeformation.



THE EDIT DISTANCE FOR REEB GRAPHS OF SURFACES 11

(Kg) (D) (Kp) 9 _(R) (Ko Ky (B)
K Y) K |) O

FIGURE 4. Using the procedure followed in the proof of Proposition 2.7, the leftmost
labeled Reeb graph is transformed into the rightmost one applying first the deformation
which reduces the former into its canonical form, then an elementary deformation of type
(R), and eventually theinverse of the deformation which reduces the latter into its canonical

form.

e For T elementary of type (B), inserting the vertices uy, up € V (I'y), the associated

costis
o(m) = o0~ L)
e For T elementary of type (D), deleting the verticesuq,u; € V(T't), the associated
costis .
o(m) = et —tita)]
e For T elementary of type (R), relabeling the verticesv € V(I') =V (T'g), the as-
sociated cost is

o(T) = Ve@(ag(”Iff (V) = £g(v)].

e For T elementary of type (K;), with i = 1,2, 3, relabeling the vertices uy,u, €
V(T'¢), the associated cost is
¢(T) = max{[£(u1) — £g(un)l, [ £1(uz) — Lg(U2)[}-
o ForT € 7((T't,45),(Ig,4g)), with T = (Tq,...,Ty), the associated cost is

c(T) = iic('l'.)

Proposition 3.2. For every deformation T € .7 ((T't,4¢),(Tg, £g)), (T 1) = ¢(T).

Proof. It is sufficient to observe that, for every deformation T = (Ty,...,T;) such that
T(T't,¢¢) = (Ig,{g), Definitions 3.1 and 2.4 imply the following equalities:
r r

o(T) = Ye(M) = Ye(l H=c(TH.

i=1 i=1

Theorem 3.3. For every f,gc .79(.#), we set

r Ty ly)) = inf ).
(b0 Mol = oo™, (rpey 1)

It holds that dg is a pseudo-metric on isomor phism classes of labeled Reeb graphs.

Proof. By Proposition 2.7, de is areal number. The coincidence property can be veri-
fied by observing that the deformation of type (R) such that T(I'¢,¢¢) = (I't,¢s) has a
cost equal to 0; the symmetry property is a consequence of Proposition 3.2; the triangle
inequality can be proved in the standard way. O
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In order to say that de is actually ametric, we need to provethat if de ((I't, ¢+ ), (I'y, £g))
vanishes then (I't,¢+) = (I'g,{g). Thiswill be done in Section 5. Nevertheless, for sim-
plicity, we already refer to de as to the edit distance.

The following proposition shows that when a labeled Reeb graph can be transformed
into another one through a finite sequence of deformations of type (D), the same trans-
formation can be realized also through a cheaper deformation which involves a relabeling
of vertices. Analogous propositions can be given for other types of deformations. These
results yield, in some cases, sharper estimates of the edit distance between labeled Reeb
graphs.

Proposition 34. For T € 7 ((T't,%¢),(Tg,4g)), if T = (T1,...,Ty) and T; is an elemen-
tary deformation of type (D) for each i = 1,...,n, then there exists a deformation S €
T ((Tt,44),(Tg,Lg)), with S= (S,S;...,Sh) such that S is an elementary deformation
of type (R), Sy,...,S, are elementary deformations of type (D), and c(S) = imlaxnc(Ti).

Hencec(S) < ¢(T) whenn> 1.

Proof. Let T = (T4,...,Ty), with each T; of type (D), and let vi,w; be the vertices of T’
deleted by T;. It is not restrictive to assume that ¢ (vi) < ¢;(w;). For n=1, it is suffi-
cient to take S as the elementary deformation of type (R) such that So(I'¢,¢5) = (T's,¢5)
and S, =T;. Forn> 1, foreveryi,j with1<i,j <n,letusset Ty < T; if and only if
(i), Ls(Wi)] € [€5(vj),2¢(wj)]. Letusdenoteby Ty, ,..., Ty, the maximal elements of
the poset ({Tla e 7Tn}a j)

We observethat, for 1 <i < n, thereexistsexactly onevauek, with 1 <k < m, for which
[0 (W), £r(Wh)] < [£5 (v ), £r (wh, )] Moreover, [£5(vi), Cr ()] N [€4 (Vi ), €1 (Wr, )] = O for
every h # k because T; is an elementary deformation of type (D).

14 -4
To define Sy, wetake £ : V(T's) — R asfollows. Let 0 < € < I(inl"nin M

e 2
14 14
For1<k<m weset/{(v,)= Cr W) + € () —gand {(wy, ) =

Next, for 1 <i < n, assuming [£¢(Vi), 2t (Wi)] € [£(Vr,), L5 (Wr, )], we let Aj, i € [0,1]
be the unique values for which £¢(vi) = (1 — 4i)ls(Vr, ) + Ails (Wr,) and £¢(w) = (1—
Mi)ls (Vr,) + pils (W, ), and we set £(vi) = (1 — Ai)0(Vr, ) + Ail(wy,) and £(wj) = (1—
Hi)l(Vr,) + uil(we, ). We observe that ¢ preserves the vertex order induced by ¢+ and,
therefore, S defined by setting So(T's,¢¢) = (T's,¢) is an elementary deformation of type
(R). By Definition 3.1, the cost of Sy is

A direct computation shows that £(vi) — (Vi) < £(Vr,) — £t (W, ) and £5(vi) — £(v;)
£¢(Wr) — €(Wr,). Analogously, £(wi) — £ (W) < £(ve,) — C5(ve,) and £5(wh) — £(wh)
Le(Wr, ) — £(Wr, ). Hence

IAIA

3.1 = max ——* —¢eg= max c¢(T;,)—¢€.
(3.1) =1,...m 2 k=1...., m(rk)

Now weset S, fori =1,...,n, to bethe elementary deformation of type (D) that deletes
the vertices vi,w; from So(T's, £¢). If [£¢(Vi), €1 (Wi)] C [€5(Vr, ), 5 (W, )], then
£(wi) —£(vi) K(er) _E(ka)

(32 c(S) = > < > =e.
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Setting S= (S,S1,...,S), we have Se 7 ((T's,4¢),(Ig,4q)), and by formulas (3.1)
and (3.2):

n
c(S 21 <kIn§§< c(Tr,) —€+n-&.

Therefore, mex c(Trk) —e< c(S) g max c(Trk) (n—1)e. By the arbitrariness of ¢,

O

4, STABILITY

This section is devoted to proving that Reeb graphs of orientable surfaces are stable
under function perturbations. More precisely, it will be shown that arbitrary changes in
simple Morse functions with respect to the C%-norm imply not greater changesin the edit
distance between the associated |abeled Reeb graphs. Formally:

Theorem 4.1. For every f,ge .Z9(.#), letting || f — g||co = max|f(p) —g(p)|, we have
pe

de((Tt,£1),(Tg,£g)) < |[f —llco-

We observethat such aresult is strictly related the way the cost of an elementary defor-
mation of type (R) was defined as the following Example 1 shows.

Examplel. Let f,g:.# — Rwith f,gc .#°(.#) asillustrated in Figure 5.

p

FIGURE 5. Thefunctions f,g € #°(.#) considered in Example 1.

Let f(q)— f(pi) =a,i=1,2,3. Uptore-parameterizationof .4, wehave|| f — g|| co =
8. The deformation T that deletes the three edges e(pi,q) € E(I't) has cost ¢(T) = 3- §,
implyingde ((T's,4+), (g, g)) <3| f —g]|co. Ontheother hand, applying Proposition 3.4
we see that actually de ((T't, ¢t ), (Tg,4g)) < ||f —gl|co. Indeed, for every 0 < & < §, we
can apply to (T's,¢+) adeformation of type (R), that relabels the vertices pi,qi, i = 1,2,3,
insuchaway that /¢ (p;) isincreased by § — e, and ¢+ (q;) is decreased by § — &, composed
with three deformations of type (D) that delete p;, g; and the edge e(p;, qi), fori =1,2,3
respectively.

In order to prove Theorem 4.1, we consider the set . (.#') of smooth real-valued func-
tionson .# endowed with the C? topology, which may be defined asfollows. Let {U,} be
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a coordinate covering of .# with coordinate maps ¢, : Uy — R2, and let {Cy} beacom-
pact refinement of {U,,}. For every positive constant & > 0 and every f € . (.#), define
N(f,8) asthe subset of .7 (.#') consisting of al maps g such that, denoting fo, = f o @t
and gy, = go ¢ %, it holds that irpja<x2 8_(3(%”0‘ —0o)| < 6 atal pointsof @q(Cy). TheC?
topology is the topology obtained by taking the sets N(f, &) as a base of neighborhoods.
Next we consider thestrata.# °(.#) and Z*(.#) of the natural stratification of .7 (.#),
as presented by Cerf in [4].
e Thestratum .Z(.#) isthe set of simple Morse functions.
e Thestraium 7 *(.#) isthedisjoint union of two sets 75 () and 75 (.4 ), where
— FL() isthe set of functions whose critical levels contain exactly one crit-
ical point, and the critical points are all non-degenerate, except exactly one.
- ﬁg(//) is the set of Morse functions whose critical levels contain at most
one critical point, except for onelevel containing exactly two critical points.
FY.A) is a sub-manifold of co-dimension 1 of .7 °(.#)U.Z(.«), and the comple-
ment of ZO(.#)U.FX () in F () is of co-dimension greater than 1. Hence, given
two functions f,g € .Z°(.#), we can aways find f,§ € .#°(.#) arbitrarily near to f,g,
respectively, for which
e f,§areRL-equivalentto f, g, respectively,
and the path h(A) = (1—A) f+ 1@, with A € [0,1], is such that
e h(1) belongsto FO(.#)u.ZY () for every A € [0,1];
e h()istransversal to Z1(.4).
Asaconsequence, h(1) belongsto . () for at most afinite collection of values A, and
does not traverse strata of co-dimension greater than 1 (see, e.g., [9]).

With these preliminaries set, the stability theorem will be proven by considering a path
that connects f to g via f, h(1), and § as aforementioned. This path can be split into a
finite number of linear sub-paths whose endpoints are such that the stability theorem holds
on them, as will be shown in some preliminary lemmas. In conclusion, Theorem 4.1 will
be proven by applying the triangle inequality of the edit distance.

Inthefollowing preliminary lemmas, f andgbelongto.# °(.#) andh: [0,1] — .F (.#)
denotes their convex linear combination: h(A) = (1—-A)f 4+ Ag.

Lemma4.2. [h(A") —h(A")||co =|A = A"|- || f — g||co for every A/, 1" € [0,1].
Proof.
Ih(A") —=h(A")llco = [I(1=2A")f +2'g— (1-A")f —1"9]|co
= [[(A" =2 f = (A" =A)gllco = [2" = A" - [|f — 9| co.

U
Lemma4.3. Ifh(1) € FO(.«) for every A € [0,1], thendg ((T's, 4¢), (Tg, £g)) < || f — |co-
Proof. The statement can be proved in the same way as[7, Prop. 5.4]. O

Lemma 4.4. Let h(A) intersect .7 (.#) transversely at h(), 0 < A < 1, and nowhere
else. Then, for every constant value 6 > 0, there exist two real numbers A’,A" with 0 <
A < A < A" < 1, such that

de((Thar), har))s (Charys Enary)) < 6.
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Proof. Inthis proof we use the notion of universal deformation of afunction. More details
on universal deformations may be found in [16, 21]. In particular, we will consider two
different universal deformationsF and G of h= h(2). Firstly we show how F and G yield
the claim, and then construct them.

We use the fact that, being two universal deformations of h € .7 (%), F and G are
equivalent. Thismeansthat there exist adiffeomorphismn (s) of R with n(0) =0, andalo-
cal diffeomorphism ¢ (s, (x,y)), with ¢ (s, (x,y)) = (n(s), w(n(s), (x,y))) and ¢ (0, (x.y)) =
(0,(x,y)), suchthat F = (n*G) o ¢. Hence, apart from the labels, the Reeb graphsof F (s, )
and G(n(s),-) areisomorphic. Moreover, the difference the labels at corresponding ver-
tices in the Reeb graphs of F(s,-) and G(n(s),-) continuously dependson s, and is O for
s=0. Therefore, for every § > 0, taking |g| sufficiently small, it is possible to transform
the labeled Reeb graph of F(s,-) into that of G(n(s),-), or viceversa, by a deformation of
type (R) whose cost is not greater than 6/3. Moreover, as equality (4.3) will show, for
every 6 > 0, |s| can be taken sufficiently small that the distance between the labeled Reeb
graphs of G(n(s),-) and G(n(—s),-) is not greater that § /3. Thus, applying the triangle
inequality, we deduce that, for every 6 > 0, there exists a sufficiently small s > 0 such that
the distance between the labeled Reeb graphs of F(s,-) and F(—s,-) is not greater than 6.
Theclaim followstaking A’ = A —sand A” =1 +s.

We now construct the universal deformations F (s, p) and G(s, p), withse R and p €
. e define F by setting F (s, p) = h(p) +s- (g— f)(p). This deformation is universal
because h(A) intersects .# (. ) transversely at h(1). In order to construct G, let us con-
sider separately the two cases 75 (.#) and F5 (4 ).

Case he ZL(#): Let p be the sole degenerate critical point of h. Let (x,y) be
a suitable local coordinate system around p in which the canonical expression of his
h(x,y) = h(p) £ x> +y3. Let w : .# — R be asmooth function equal to 1 in a neighbor-

G(n,),n<0

G(n,-),n>0

(B)
®)

FIGURE 6. Center: A function h € Z1(.#); Ieft-right: The universal deformation
G(n,-) with the associated labeled Reeb graphsfor n < 0and n > 0.
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hood of p, which decreases moving from p, and whose support is contained in the chosen
coordinate chart around p. Finaly, let G(n, (x,y)) = h(x,y) — n - @(x,y) -y, where n € R.
For n < 0, G(n,-) has no critical pointsin the support of » and is equal to h everywhere
else, while, for n > 0, G(n, -) has exactly two critical pointsin the support of @, precisely

pL = (O,—\/g) and p, = (0, \/g) and is equal to h everywhere else (see Figure 6).
Therefore, for every n > 0 sufficiently small, the labeled Reeb graph of G(—n,-) can be
transformed into that of G(1, -) by an elementary deformation T of type (B). Obviously, in
thecasen < 0, the deformatlon we consider is of type (D).

By Definition 3.1 and Proposition 3.2, adirect computation shows that the cost of T is

(4.) o(T) = 2- <|;’|>3/2.

Casehe Z;(.#): Letpandgbethecritical pointsof hsuch that h(p) = h(q). Since p
is non-degenerate, there exists a suitable local coordinate system (x,y) around p'in which
the canonical expron of hish(x,y) = h(p) +x?+y? if pisaminimum, or h(x,y) =
h(p) — x2 — y? if pisamaximum, or h(x,y) = h(p) + x2 ¥ y? if pisasaddle point. Let
o .# — R be a smooth function equal to 1 in a neighborhood of p, which decreases
moving from p, and whose support is contained in the coordinate chart around prin which
h has one of the above expressions. Findly, let G(n, (x,y)) = h(x,y) +n - o(x,y), where
n =n(s), s€ R. For every n € R, with |n| sufficiently small, G(n,-) has the same critical
points, with the same indices, ash. Asfor critical values, they are the same as well, apart
from the value taken at p: G(17,p) = h(p) + 7.

We distinguish the following two situationsillustrated in Figures 7 and 8:

(1) the points p and g belong to two different connected components of ﬁfl(ﬁ(b));

OOODDD

FIGURE 7. Two critical points in different connected components of the same critical
level. The dark (resp. light) regions correspond to points below (resp. above) this critical
level. Possibly inverting the colors of one or both the components, we have al the possible

Ccases.

(2) the points p and g belong to the same connected component of ﬁ_l(ﬁ(b)).

In the situation (1), for every n > 0 sufficiently small, the labeled Reeb graphs of
G(—n,-) and G(n,-) can be obtained one from the other through an elementary defor-
mation T of type (R) (see, e.g., Figure 9).

In the situation (2), the following elementary deformations need to be considered:

e If pand g are as in Figure 8 (a), then, for every n > 0 sufficiently small, the
labeled Reeb graphs of G(—n,-) and G(n, ) can be obtained one from the other
through an elementary deformation T of type (K 1) (see, e.g., Figure 10).

e If pand g are asin Figure 8 (b), then, for every n > 0 sufficiently small, the
labeled Reeb graphs of G(—n,-) and G(n,-) can be obtained one from the other
through an elementary deformation T of type (K 3) or (K2) (see, e.g., Figure 11).
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(© (d)

FIGURE 8. Two critical points in the same connected component of the same critical
level. The dark (resp. light) regions correspond to points below (resp. above) this critical
level. Possibly inverting the colors of this component, we have all the possible cases.

G(na')7n>0 h:G(Oa) / G(n7)7n<0

(R)
(R)

FIGURE 9. Center: A functionh e 9&(//{) asin case (1); left-right: The universal
deformation G(n, -) with the associated |abeled Reeb graphsfor n < 0and n > 0.

e If pandgareasinFigure8 (c) or (d), then, for every n > 0 sufficiently small, the
labeled Reeb graphs of G(—n,-) and G(n,-) can be obtained one from the other
through an elementary deformation T of type (R) (see, e.g., Figures 12-13).

In al the cases, for every 1 > 0 sufficiently small, the cost of the considered deformation
Tis

(4.2) c(T) = [A(p) —n — (h(P) +n)| = 2n.
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In conclusion, from equalities (4.1) and (4.2), for every 1 > O sufficiently small, we get

n 3/2
de((Ce(—n,)»le=n,))s Tem,) tom.))) < max{Z- (5) ,211}-

Thus, for every 6 > 0, we can always take a value |s| sufficiently small that |n(s)| results
small enough to imply the following inequality:

(4.3) de(Ta(—n(s),):ba(-n(9.)): Tams).): lomes).)) < 6/3.

O

Lemma4.5. If h(1) belongsto .Z°(.#) for every A € [0, 1] apart fromonevalue0 < A <
1 at which h transversdly intersects 71 (.# ), then de (Tt £1), (Tg, £g)) < ||f — 9|co-

Proof. Let h=h(1). By Lemma4.4, for every real number § > O,we can find two values
0< A <A <A” < 1suchthat dE((Fh(l/),éhw)), (rh<k//),£h(l//))) <.
Applying the triangle inequality, we have:

de((T't,41),(Tg,€g)) < de((T't,4¢), (Thianyshary)) +Ae((Tharys bhary)s (Tharys €nary))
+de ((Thiary, baary)s (T, £g))-
Moreover, we get
de (T, £1), (Tharys bhary)) < IIf =h(A")[lco = A"+ || f — gl co,
and
de((Th(ary bhary), (Tgs bg)) < ML) = gllco = (1= A") - || f —gl|co,
where the inequalities follow from Lemma 4.3, and equalities from Lemma 4.2 with f =
h(0),g=h(1). Hence,
de((Tt,€¢), (Tg, lg)) < (L+A"—=2") - [[f —gllco+ 6.

In conclusion, giventhat 0 < A’ < A", theinequality de ((T't, 4t ), (Tg, g)) < ||f —gllco+ &
holds. Thisyieldsthe clam by the arbitrariness of 6. (|

We are now ready to prove the stability Theorem 4.1.

Proof of Theorem 4.1. Recall from [12] that . °(.#) isopenin .% (.#') endowed with the
C? topology. Thus, for every sufficiently small real number § > 0, the neighborhoods
N(f,8) and N(g,8) are contained in .Z°(.#). Take fe N(f,8) and § € N(g,0) such
that the path h: [0,1] — .Z(.#), with h(1) = (1— ) f + A, belongs to .Z°(.#) for
every A € [0,1], except for at most a finite number n of values, 1, U, ..., Un, @ which h
transversely intersects.# 1 (.#'). We begin by proving our statement for f and g, and then
show itsvalidity for f and g. We proceed by inductiononn. If n=0or n= 1, theinequality
de((T's, 0), (T, 4g)) < || f— gl|co holds because of Lemma 4.3 or 4.5, respectively. Let us
assumetheclaimistrueforn> 1, andproveitforn+1. LetO< i <A1 < p <o <...<
Un < An < tinp1 < 1, with h(0) = f, h(1) = §, h(w) € F(4), foreveryi=1,....n+
1, and h(1;) € F°(4), for every j = 1,...,n. We consider h as the concatenation of
the paths h,h? : [0,1] — .Z (.#), defined, respectively, as h1(1) = (1—A)f + Ah(An),
and h?(1) = (1— A)h(An) + A@. The path h' transversally intersect .71 (.#) at n values
Ha,..., k. Hence, by the inductive hypothesis, we have de((I'¢, £¢), (Thiay)s thian)) <

| f —h(An)|lco. Moreover, the path h? transversally intersect .#1(.#) only at the value



THE EDIT DISTANCE FOR REEB GRAPHS OF SURFACES

AG

© ©9

(m,"),n<0

%
v

Ah=

G(0
Ky
Ky

TR

AG(n,-),n >0
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FIGURE 10. Center: A functionh e ﬁl}(///

) asincase (2) withp,g asin Figure 8 (a);

left-right: The universal deformation G(n,-) with the associated labeled Reeb graphs for

n<0andn >0.

(Ks)

(K2)

)2

FIGURE 11. Center: Afunctionﬁeyl(ﬂ)asincase(Z)with‘pqasin Figure 8 (b);

left-right: The universal deformation G(n,

n<0andn >0.

-) with the associated labeled Reeb graphs for

19
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AT

FIGURE 12. Center: A functionh ¢ ﬂﬁl(//{) asin case (2) withp,g asin Figure 8 (c);
left-right: The universal deformation G(n,-) with the associated labeled Reeb graphs for
n<0andn >0.

G(n))an <0

(R)

— 7 5

R

FIGURE 13. Center: A functionhe fl}(//l) asin case (2) withp,g asin Figure 8 (d);
left-right: The universal deformation G(n,-) with the associated labeled Reeb graphs for
n<0andn>0.
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pn+1. Consequently, by Lemma4.5, we have de ((Tha,), fn(in))» (Tgs £g)) < [[h(An) — Gllco-
Using the triangle inequality and Lemma 4.2, we can conclude that:

de((Ts 45), (Tg b)) < de((Te£8)s (Than) s han))) + G ((Thian) thian)): (Tgs fg))
(4.4) < Al F=Gllco + (1= An)|| T = @llco = | T~ Gllco.

Let us now estimate de ((I't, 41 ), (I'g, £g) ). By the triangle inequality, we have:
dE((Ff7€f)7 (nggg)) < dE((Ff7€f)7 (FfA7€fA))+dE((Fan€fA)a (F@Eﬁ))_’_dE((F@Eﬁ)a (Fgaeg))-

Since f € N(f,8) ¢ .Z9(.#) and § € N(g,8) C .F°(.), the following facts hold: (a)
for every A € [0,1], (1—A)f + A f,(1—A)g+Ag e .Z(4); (b) |f— ﬂ\co <6 and
G- dllco < 6. Hence, from (a) and Lemma4.3, weget de ((I's, 4¢), (Fp, f¢)) < [|f — ﬂ\co,
and de ((I'g, £g), (T'g,45)) < |§—gl|co. Using inequality (4.4) and the triangle inequality of
[| - |co, we deduce that

de((T't,41), (Tg,bg)) < ||If — Fllco + || F = Gllco + |G- gllco
< ||f = gllco +2(||f = Fllco + 15— gllco)-

Hence, from (b), we havede ((I't, 41), (I'g, 4g)) < || f —9||co+46. Thisyieldsthe conclu-
sion by the arbitrariness of 6. O

5. RELATIONSHIPS WITH OTHER STABLE METRICS

In this section, we consider rel ationships between the edit distance and other metrics for
shape comparison: the natural pseudo-distance between functions [8], the functional dis-
tortion distance between Reeb graphs[1], and the bottleneck distance between persistence
diagrams [6]. More precisely, the main result we are going to show states that the natural
pseudo-distance between two simple Morse functions f and g and the edit distance be-
tween the corresponding Reeb graphs actually coincide (Theorem 5.6). As a conseguence,
we deduce that the edit distance is a metric (Corollary 5.7), and that it is more discrimi-
native than the bottleneck distance between persistence diagrams (Corollary 5.8) and the
functional distortion distance between Reeb graphs (Corollary 5.9).

The natural pseudo-distance is a dissimilarity measure between any two functions de-
fined on the same compact manifold obtained by minimizing the differencein the functions
via a re-parameterization of the manifold [8]. In genera, the natural pseudo-distance is
only a pseudo-metric. However it turns out to be a metric in some particular cases such as
the case of simple Morse functions on a smooth closed connected surface, considered up
to R-equivalence, as proved in [3]. We give the definition in this context.

Definition 5.1. The natural pseudo-distance between R-equivalence classes of simple
Morse functions f, g on the same surface ./ is defined as

ch([f].[g) =, inf |1t -l

where 2(.#) isthe set of self-diffeomorphismson .# .
In order to study dy, it is often useful to consider the following fact.

Proposition 5.2. Letting ¢ (.#') be the set of self-homeomorphisms on ., it holds that

n((TLlg) =, inf |t -go¢]co
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Proof. Letd=dn([f],[g])- Clearly\g ign(‘///)” f —go&||co < d. By contradiction, assuming
e (.

that inf |
gen (M)

d. On the other hand, by [25, Cor. 1.18], for every metric 6 on .# and for every n € N,
there exists a diffeomorphism &, : .7 — . such that §(&n(p),E(p)) < 1/n, for every
p € .#. Hence, by the continuity of g, and applying the reverse triangle inequality, we
deduce that

| f —go&||co < d, there exists ahomeomorphism & such that || f —go &||co <

lim ||| —go&flco— | f ~gonllco| < lim [lgo&n—go &llco = 0.

Therefore, for n sufficiently large, there exists a diffeomorphism &y, such that ||f —go
&nllco < d, yielding a contradiction. O

Thefollowing Lemmas5.3-5.5 state that the cost of each elementary deformation upper-
boundsthe natural pseudo-distance. Their proofs deploy the concepts of elementary cobor-
dism and rearrangement, whose detailed treatment can be found in [18].

Lemma 5.3. For every elementary deformation T € .7 ((I't,/¢),(I'g,{g)) of type (R),
c(T) = dn([f], [g])-

Proof. Since T is of type (R), there exists an edge preserving bijection @ : V(I'¢) —
V(I'y). Hence, f and g have the same number of critical points of the same type: Kt =
{P1,---,pn}, Kg={pL,.... Pn}, with®(p;) = pf, and pj, p{ both being of index 0,1, or 2.

Letci = f(pi) and ¢ = g(p) fori =1,...,n. We shall construct a homeomorphism

.....

tion 5.2, thiswill yield the claim.
Let us endow .7 with a Riemannian metric, and consider the smooth vector field X =

——vafsz on . \ K, and the smooth vector field Y = vaﬁ on .7 \ Kg. Let us denote by

¢ (p) and yi(p) the flow lines defined by X and Y, on . \ K¢ and . \ Kg, respectively.
We observe that f strictly decreases along X-trajectories, while g strictly increases along
Y-trgjectories. Moreover, no two X-trgjectories (resp. Y-trgjectories) pass through the
same p. Hence, ¢x(p) and y:(p) are injective functions of t and p, separately. By [19,
Prop. 1.3], ¢ and y are continuousint and p when restricted to compact submanifolds of
A\ Ky and 4 \ Kg, respectively.

Let usfix areal number & > 0 sufficiently small sothat, fori =1,...,n, f ~([ci —&,c +
e))NKs = {pi} andg~*([c| —&,¢{ +€]) NKg = {p{}-

In order to construct the desired homeomorphism & on .#, the main ideais to cut .#
into cobordisms and define suitable homeomorphisms on each of these cobordisms that
can be glued together to obtain . The fact that & is not required to be differentiable but
only continuous facilitates the gluing process.

Let us consider the cobordisms obtained cutting .# aong the level curves f ~1(c +¢)
andg Y(c/+¢) fori=1,...,n. According to whether these cobordisms contain points of
maximum, minimum, saddle points, or no critical points at all, we treat the cases differ-
ently.

Case 1: Let pj, pj be points of maximum or minimumof f and g, respectively. Let D =D
(resp. D' = D!, ) bethe connected component of f ~1([ci — ¢,¢i +¢]) (resp. g ([c] — ¢, +
g])) that contains p; (resp. p}). D and D’ are topolological disks. Let 6P : 9D — 9D’ bea
given homeomorphism between the boundariesof D and D’.

Claim 1. There exists a homeomorphism P : D — D’ such that:
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(ag) &°lop =0
(ba) max|f(p) —~gosP(p)l =& —c.

Proof of Claim 1. We first prove Claim 1 for maxima. We set £ P (i) = pf, and, for every
peD\{pi}, £°(p) = P, where p’ = Yi(p)_g+e © 07 © Pt () g1 (P). In plain words, for
each p € D we follow the X-flow downwards until the intersection with f ~1(c; — ¢); then
we apply the homeomorphism o ® to go from f ~(c; — ) to g~1(c] — ¢); finally, we follow
the Y-flow upwards.

Thefunction &P isinjective as can be seen using the aforementioned injectivity property
of ¢ and y. Moreover, &P is surjective because, for every p € D\ {pi}, there exists aflow
line passing for p. Furthermore, &P is continuous on D\ {p;} because composition of
continuous functions. The continuity can be extended to the whole D as can be seen taking
asequence (q;) inD\ {pi} convergingto p;. Sincelim; f(q;) = ci, by construction of £P it
holdsthat lim; g(£P(qj)) = ¢/. We seethat lim; £P(q;j) = p{ because p/ isthe only point of
D’ whereg takesvalueequal to c/,. Therefore &P iscontinuouson D. Moreover, since &P is
a continuous bijection from a compact space to a Hausdorff space, it is ahomeomorphism.
Finally, property (a1) holds by construction and property (b1) holds because, for every
peD,g(&°(p)) = f(p)+¢ —ci

To prove Claim 1 when p;, p{ are minimum points of f and g, it is sufficient to replace
?t(p)—c+e(P) ad Wi (p) ¢ 1e(P) BY Ot(p)—¢—e(P) and we(p) ¢ (P), respectively.

Case 2. Let pj, p| be two splitting saddle points or two joining saddle points of f and
g, respectively, and let P and P’ be the connected component of f ~1([¢ — &,¢ +¢]) and
g Y([c] — &,¢ +€]), respectively, that contain p; and p/. Let 6 : 9P — 9~ P’ be agiven
homeomorphism between the lower boundaries of P and P’.

Claim 2. There exists ahomeomorphism &P : P — P’ such that:

(a2) &P|p-p=0";
(b2) max|f(p)—go&™(p)| = e — il

Proof of Claim 2. Let us consider the case p;, pi are two splitting saddle points of f and
g respectively, so that P and P’ are two upside-down pairs of pants. We let pa, pp be the
only two points of intersection of f ~1(c; — £/2) with the trajectories of the gradient vector
field X coming from p;. Analogously, we let p, pj, be the only two points of intersection
of g~1(c/ — &/2) with the trgjectories of the gradient vector field Y leading to p!.

The pair of pants P can be decomposed into P=MUNUO withM ={peP: f(p) €
ci—e,ci—€/2]},N={peP:f(p)elci—e/2,c]}andO={pecP: f(p) € [ci,Ci+¢€]}.
Analogously, the pair of pants P’ can be decomposed into P’ = M’ UN' U Q' with M’ =
{peP:g(p)elc—ec—e/2}N={peP:g(p)elg-¢/2¢]},and0 ={p €
P :g(p) € [d.¢ +e]}.

The construction of &P is based on gluing three homeomorphisms EM : M — M/, EN
N — N/, £9:0— O together.

First, we observe that, M and M’ being cylinders, it is possible to construct a homeo-
morphism &M that extends o to M in such away that £M(pa) = p, and EM(py,) = p, also
sending the level-sets of f into those of g. In thisway rpea'\>/<||f(p)—go§""(p)\ =lc—dc.

Next, we define EN by setting EN(pi) = pf, and, for every p # pi, EN(p) = p', where
= l//f(P)fciJrs/ZoéM © Pt (p)—q+e/2(P). It agreeswith &M on 9M N oN and rpgzl(”(p) -

goEN(p)| = |ci — ¢/|. Moreover, £N is bijective and continuouson N \ {p;} by arguments
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similar to those used in the proof of Claim 1. To see that continuity extends to pj, let
(j) be a sequence converging to pi. The sequence (¢ (p)—¢ +¢/2(dj)) has at most two
accumul ating points, precisely the points pa, and pp. By the constructionof M, EM(p,) =
p, and EM(py,) = p}, hence the sequence (EN(q;)) convergesto pj. In conclusion, EN is
bijective and continuous, thereforeit is a homeomorphism.

Finally, we construct £© by using again the trajectories of X and Y: for each p € O
we follow the flow of X downwards until the intersection with f ~2(g;). If the intersection
point q is different from p;j, we set £°(p) equal to the point p’ on the trajectory of EN(q)
suchthat p’ = Vi(p)—c (EN(q)). Otherwise, if q= pj, we consider asequence (r;) of points
in the same connected component of O\ {p;} as p and converging to p. The intersection
of f~1(cj) with the downward flow through r i, ] €N, givesasequence (q;j) converging to
pi and belonging to one and the same component of f ~(¢;)\ {pi} as p. By the continuity
of &N the sequence (£N(q;j)) convergesto p] and its points belong to one and the same
componentof g~1(c/)\ {p/}. Hence the sequence (s (rj)—a (& N(qj))) convergesto apoint
p'. We set £9(p) = p'. By the continuity of ¢ and v, this definition does not depend on
the choice of the sequence (rj). By construction, &© is continuous and the proof that it is
ahomeomorphism can be handled by arguments similar to those used for & N. Moreover, it
agreeswith EN on NN 9O and ngqu(p) —goé&N(p)| =c—C.

In conclusion, &P can be constructed by gluing the homeomorphisms EM, EN| £© to-
gether and the properties (a2) and (b2) hold by construction.

The case when p;, p/ are two joining saddle points of f and g, respectively, can be
treated analogously. We have only to take into account that P is now a pairs of pants, and
henceM = {pe P: f(p) € [ci—¢&,¢ —¢&/2]} isapair of cylinders each containing one
point of intersection between f ~1(¢; — £/2) and the trajectories of the gradient vector field
X coming from pj. Similarly for P'.

Case3: Let p;, pj (resp. pi, p’j) be critical points connected by an edge in the Reeb graph
of f (resp. g), and assumec; < ¢j (resp. ¢ < ¢j). LetC={pe . :[p| € &(pi, p;), Ci+€ <
f(p)<cj—e}andC' ={pe.#:[p €e(p,pj), ¢i+e<g(p) <Cj—¢}. CandC’ are
two topological cylinders. Let 6€ : 9~ C — 9~ C' be agiven homeomorphism between the
lower boundariesof C and C'.

Claim 3. There exists a homeomorphism &€ : C — C’ such that:

(ag) &C|y-c =05
(bs) rggglf(p)—goéc(p)l = max{|ci — /|, |cj — c]|}.

Proof of Claim 3. To prove Claim 3, for every p € C, we set A, equal to the only value
in [0,1] for which f(p) = (1— Ap)(Ci + €) + Ap(cj — €), and define EC(p) = p, with p' =
Wip(c; ——2¢) © %0 Pry(ci—c—2¢) (P)-

By the same arguments as used to prove the previous Claims 1 and 2, £ € is a home-
omorphism. It satisfies property (az) by construction. To prove (bs), it is sufficient to
observethat, for every p € C,

I(
I(

1£(P) —9(EE(P))| = 1(1—Ap)(Ci+&) + Ap(cj — &) — (¢ + &+ Ap(C| — ¢ — 2¢)))|
1-2

p)(Ci —¢f) +Ap(cj —cj).
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Let us now construct the desired homeomorphismé& : .# — .#. Let {p1,...,ps} C K,
s< n, bethe set of critical pointsof f of index0or 2, and, fori =1,...,s, let Di,D] beas
inClaim 1.

ThespacesW = .7 \ |-, Di andW' = .# \ | J}_, D] can be decomposed into the union
of cobordisms containing either no critical points or exactly one critical point of index 1.
By Claims 2 and 3, it is possible to extend a given homeomorphismc¥ : 9-W — 9~ W/
defined between the lower boundaries of W and W’ to a homeomorphism EW : W — W/
by gluing all the homeomorphismson cobordisms aong their boundary componentsin the
direction of the increasing of the functions f and g. Next, by Claim 1, we can glue this
homeomorphism EW along each boundary component of W to a homeomorphism & Di :
Di — Df, fori=1,...,s. Asaresult, we get the desired self-homeomorphism & of .#
suchthatg;azlf(p)—goé(p)\:iﬁllax |ci —cil. O

..... n

Lemma 5.4. For every elementary deformation T € .7 ((T's,4¢), (I'g, £g)) Of type (B) or
(D), c(T) = dn([f], [g])-

Proof. We prove the assertion only for the case when T is of type (D), because the other
case will then follow from ¢(T 1) = ¢(T) and the symmetry property of dy.

By definition of elementary deformation of type (D), T transforms (T'¢,¢;) into ala-
beled Reeb graph that differsfrom (', ¢ ) in that two vertices, say p1, p2 € K¢, have been
deleted together with their connecting edges. Otherwise vertices, adjacencies and labels
are the same. Assuming f(p1) = ¢1, f(p2) = Cp, with ¢1 < ¢, we have ¢(T) = 252,
We recall that f~1([cy,co]) NKs = {p1, p2}. By Proposition 3.4, there exists a deforma-
tion S=($,S1) € 7 ((I't,44),(T'g,4g)), So being of type (R), S; of type (D), such that
c(S) =c(T). In particular, as shown in the proof of the same proposition (formulas (3.1)
and (3.2)), for every & > O sufficiently small, Sp and S; can bebuilt sothat ¢(Sp) = 5% —¢
andc(S;) =e.

For any h, for which So(T's,4¢) = (I'h,, ¢, ), by Lemma 5.3 we have dn([f], [he]) <
c(S) = &2 —¢. Thus,

dn ([f],[g]) < dn([f],[he]) +dn([he], [g]) < — e+ dn([he], [g]).

Therefore, proving that dn([he], [g]) < 4e will yield the claim, by the arbitrariness of € > 0.

Let W; be the connected component of h, 1([95%2 — 2e, 952 + 2¢]) containing p1, p2,
and let us assume that ¢ is so small that h;1([95%2 — 2¢, 952 + 2¢]) does not contain
other critical points of h.. By the Cancellation Theoremin [18, Sect. 5], it is possible to
define anew simple Morse function hl, : .# — R which coincideswith h, on .# \ W, and
has no critical pointsinWe. In particular, (I, £y ) = (I'y, £g), implying that h. and g are
R-equivalent. It necessarily holds that

dn([he] [e]) < max [he(p) - he(p)| = mex Ihe(p) — he(p)| < 4e.

C—C

Moreover, by the R-equivalenceof h/, and g, we havedn([h,],[g]) = 0, so that dn([he], [g]) <
4¢ by the triangle inequality property of dy. O

Lemma 5.5. For every elementary deformation T € .7 ((T's,¢¢),(I'g,{g)) of type (Kj),
1 =1,2,3,¢(T) = dn([f], [d])-

Proof. For an elementary deformation T of type (Ki), i = 1,2,3, the sets K¢ and Kg have
the same cardinality, and all but at most two of the critical values of f and g coincide.

Let Ki = {p1,...,pn} and Kg = {p},..., pn}, with f(px) = cx, 9(py) = ¢ for every k =
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1,...,n. Assuming that the points p1, p» correspond to the vertices uq,u, of I't shown in
Table 1, rows 3-4, it holds that ¢; < ¢, ¢; > ¢, and ¢ = ¢ for k= 3,...,n. Moreover,
K N f71(fer,¢2]) = {p1, p2} and Kgng1([ch,ci]) = {p;, p,}. Since f,g e F0(#),
there exist a,b € R, with a < b, such that c4,¢, and c/,c, are the sole critical values of
f and g, respectively, that belong to the interval [a,b]. Let us denote by W the connected
component of f~%([a,b]) containing py, p2. Under our assumptions, we can apply the
Preliminary Rearrangement Theorem [18, Thm 4.1], and deduce that, for some choice
of a gradient-like vector field X for f, there exists a Morse function h: W — R that has
the same gradient-like vector field as f, coincides with fy near W and is equal to f
plus a constant in some nei ghborhood of p; and in some neighborhood of p,. Moreover,
Kn = Kf‘W, h(p1) = ¢}, h(p2) = ¢,. We can extend h to the whole surface by defining

N f(p), ifpe.Z\W,
h(p)_{ h  ifpew.

Hence, he FO() and ( I b)) = T(Tt,4), implyingthatﬁisR—equivalentto g. There-
fore, by Definition 1.6, dN([f] [9]) = dn([f], [h})

Let us prove that dn([f ],[ ) < ¢(T). We observe that, by the definitions of dy and h,
we get:

62 on([f]. ) < I ~Bllco = max|f(p) ~(p)| = max|(p) ().

To estimate the value of mav>v<| f(p) — h(p)|, we review the construction of the function h,
pe

asgivenin[18]. Let u : W — [a, b] be asmooth function that is constant on each trajectory
of X, zero near the set of points on trgjectories going to or from p1, and one near the
set of points on trajectories going to or from p,. Then the function h can be defined as
h(p) = G(f(p),u(p)), where G : [a,b] x [0,1] — [a,b] is a smooth function defined as
G(x,t) = (1—1)-G(x,0) +t-G(x,1), with the following properties (see also Figure 14):
° %—‘_j(x, O).: 1 for x in aneighborhood of ¢4 (in particular G(x,0) = x+ ¢} — ¢z for
X in aneighborhood of ¢1),
%—‘j(x, 1) = 1for x in aneighborhood of ¢ (in particular G(x,1) = x+ ¢, —c; for
X in aneighborhood of ¢,);
e For all xandt, G(x,t) monotonically increases from a to b as x increases from a
tob;
e G(x,t) =xforxneartoaorbandforeveryt € [0,1].
By the construction of h and the inequality (5.1), we have:
dn([f],[]) < max|(p)—G(f(p),u(p))| = max{|f(p) - G(F(p),0)l,|f(p)— G(F(p), 1)}

peW
= max{|c1 — ¢y, [c2 — Gl } = ¢(T).

]
Theorem 5.6. Let f,g € #0(.#), and (T't,¢s), (Tg,{g) be the associated labeled Reeb
graphs. Then dE((rf ;gf)a (rgaeg)) = dN([f]a [g])

Proof. Theinequality de((I't,¢t), (I'g
mation T € 7 ((T't,4s),(Tg,4g)), c(T )
and set Ti--- Ty (T, £5) = (Tpay, i), |

LQ

Ly)) > dn([f],[g]) holds because, for every defor-
dn([f],[9]). To seethis, let T = (Tq,...,Tn),
£, g= f(™. From Lemmas 5.3-5.5 and the

IV
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FIGURE 14. Thefunction G introduced in [18] and used in the proof of Lemma5.5.

triangle inequality property of dy, we get

e(T) = SeT) > Seh([F0 ] 110]) > du([1]. [g).

i=1 i=1

Conversely, by Theorem 4.1, de((I't,¢f), (Fgeg £gez)) < [|f —go&lco, for every & €

(M ). Therefore de((T'r,4r), (Tg, (g)) < éeiﬂf}f%)llf —go&|ico = dn([f][g]) because

de((T's,¢1), (Tg:lg)) = de((T's,l1), (Tgoe s Lgog))- O

Corollary 5.7. For every f,ge .Z°%(.#), the edit distance between the associated labeled
Reeb graphsis a metric on isomor phism classes of labeled Reeb graphs.

Proof. The claim is an immediate consequence of Theorem 5.6 together with [3, Thm.
4.2], which statesthat the natural pseudo-distanceis actually ametric on the space .7 °(.#).
]

Corollary 5.8. For every f,ge 7%(#), de((T't,¢s),(Tg,4g)) > dg(Dt,Dg), Where dg
denotes the bottleneck distance between the persistence diagrams D ¢ and Dg of f and g.
In some cases this inequality is strict.

Proof. The inequality dg((I's,%t),(I'g,¢g)) > dg(D¢,Dg) holds because of Theorem 5.6
and the fact that the bottleneck distance is alower bound for the natural pseudo-distance
(cf. [3]).

As for the second statement, an example showing that the edit distance between the
labeled Reeb graphs of two functions f,g € .7 %(.#) can be strictly greater than the bot-
tleneck distance between the persistence diagrams of f and g is displayed in Figure 15.
Indeed, f and g have the same persistence diagrams for any homology degree implying
that dg(D+,Dg) = 0, whereas the labeled Reeb graphs are not isomorphic, implying that
de((T's,¢1). (Tg, lg)) > O. O
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f (T, 45)

7

FIGURE 15. The example used in the proof of Corollary 5.8 to show that the edit dis-
tance between |abeled Reeb graphs can be more discriminative than the bottleneck distance
between persistence diagrams whenever the same functions are considered.

Corollary 5.9. For every f,ge .Z°(#), de((T't,2¢),(Tg,4g)) > dep(Rs, Ry), where dep
denotes the functional distortion distance between the spaces Rt = .#/ ~+ and Ry =
A | ~g. In some cases thisinequality is strict.

Proof. Theinequality de((T't,¢f),(I'y,¢q)) > drp (R, Ry) isaconsequenceof the stability
of Reeb graphswith respect to dgp [1, Thm. 4.1], and can be seen in the same way as the
second inequality shown in the proof of Theorem 5.6.

Asfor the second statement, an example showing that, for two functions f,g € .7 9(.#),
de((T's,4¢),(I'g,£g)) can be strictly greater than drp (R¢, Ry) is displayed in Figure 16. In

(T's,4x) q

Cr+a

(Ta.ty)

)

C1+af---

b

FIGURE 16. The example used in the proof of Corollary 5.9 to show that the edit
distance between labeled Reeb graphs can be more discriminative than the functional dis-
torsion distance between Reeb graphs whenever the same functions are considered.

thiscase, de((T't, ¢+ ), (T'g, £g)) = @, because ais both the cost of the deformation T of type
(R) that changes the vertex label ¢; into ¢j +a, i = 1,2, and the value of the bottleneck
distance between the 1st homology degree (ordinary) persistence diagrams of f and g. On
the other hand, drp(Rf,Rg) < (c2 —¢1)/4 as can be seen by considering any continuous
map @ : Rt — Ry that takes each point of Rt to apoint of Ry with the same function value,
together with any continuousmap ¥ : Rg — Ry that takes each point of Ry to apoint of Rt
with the same function value. O
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