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5 Packing convex bodies by cylinders ∗

K. Bezdek† A. E. Litvak†

Abstract

In [BL] in relation to the unsolved Bang’s plank problem (1951) we
obtained a lower bound for the sum of relevant measures of cylinders
covering a given d-dimensional convex body. In this paper we provide the
packing counterpart of these estimates. We also extend bounds to the case
of r-fold covering and packing and show a packing analog of Falconer’s
results ([Fa]).

1 Introduction

In the remarkable paper [Ba] Bang has given an elegant proof of the plank
conjecture of Tarski showing that if a convex body is covered by finitely many
planks in d-dimensional Euclidean space, then the sum of the widths of the
planks is at least as large as the minimal width of the body. We refer to [AKP]
for historical remarks and references. A celebrated extension of Bang’s theorem
to d-dimensional normed spaces has been given by Ball in [B2]. In his paper
Bang raises also the important related question whether the sum of the base
areas of finitely many cylinders covering a 3-dimensional convex body is at least
half of the minimum area of a 2-dimensional projection of the body. In the recent
paper [BL] the authors have investigated this problem of Bang in d-dimensional
Euclidean space. In particular, we proved Bang’s conjecture with constant one
third instead of one half. From the point of view of discrete geometry it is quite
surprising that so far there has not been any packing analogue of the above
theorems on coverings by planks and cylinders. In this paper we fill this gap.

2 Notation

We identify a d-dimensional affine space with R
d. By | · | and 〈·, ·〉 we denote the

canonical Euclidean norm and the canonical inner product on R
d. The canonical

Euclidean ball and sphere in R
d are denoted by Bd

2 and Sd−1. The volume of
Bd

2 is denoted by ωd.
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By a convex body K in R
d we always mean a compact convex set with non-

empty interior, which is denoted by int(K). The volume of a convex body K

in R
d is denoted by vol(K). When we would like to emphasize that we take

d-dimensional volume of a body in R
d we write vold(K).

The Banach-Mazur distance between two convex bodies K and L in R
d is

defined by

d(K,L) = inf {λ > 0 | a ∈ L, b ∈ K, L− a ⊂ T (K− b) ⊂ λ (L− a)},
where the infimum is taken over all (invertible) linear operators T : Rd → R

d.
We denote by dK the Banach-Mazur distance between K and the Euclidean ball
Bd

2. John’s Theorem ([J]) implies that for every convex body K in R
d, dK is

bounded by d, moreover if K is 0-symmetric, i.e., symmetric about the origin 0
in R

d, then dK ≤
√
d (see e.g. [B1]).

Given a (linear) subspace E ⊂ R
d we denote the orthogonal projection on E

by PE and the orthogonal complement of E by E⊥. We will use the following
theorem, proved by Rogers and Shephard ([RS], see also [C] and Lemma 8.8 in
[Pi]).

Theorem 2.1 Let 1 ≤ k ≤ d. Let K be a convex body in R
d and E be a

k-dimensional subspace of Rd. Then

max
x∈Rd

vold−k

(

K ∩
(

x+ E⊥
))

volk(PEK) ≤
(

d

k

)

vold(K).

Remark 2.2 Note that the reverse estimate

max
x∈Rd

vold−k

(

K ∩
(

x+ E⊥
))

volk(PEK) ≥ vold(K)

is a simple consequence of the Fubini Theorem and holds for every measurable
set K in R

d.

3 Preliminary results

Given 0 < k < d define a k-codimensional cylinder C as a set, which can be
presented in the form C = B+H , where H is a k-dimensional (linear) subspace
of Rd and B is a measurable set in E := H⊥. Given a convex body K and a
k-codimensional cylinder C = B+H denote the crossectional volume of C with
respect to K by

crvK(C) :=
vold−k(C ∩ E)

vold−k(PEK)
=

vold−k(PEC)

vold−k(PEK)
=

vold−k(B)

vold−k(PEK)
.

In [BL] (see Remark 2 following Theorem 3.1 there) we proved that if a convex
body K is covered by k-codimensional cylinders C1, . . . , CN , then

N
∑

i=1

crvK(Ci) ≥
1
(

d
k

) . (1)
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The case k = d − 1 corresponds to the affine plank problem of Bang ([Ba]),
because in this case one has the sum of the relative widths of the planks (i.e.,
(d − 1)-codimensional cylinders) on the left side of (1). Note that Ball ([B2])
proved that such sum should exceed 1 in the case of centrally symmetric convex
body K, while the general case is still open. The estimate (1) implies the lower
bound 1/d. Moreover, if K is an ellipsoid and k = 1 one has (see Theorem 3.1
in [BL])

N
∑

i=1

crvK(Ci) ≥ 1. (2)

Akopyan, Karasev and Petrov ([AKP]) have recently proved that (2) holds
for 2-codimensional cylinders as well. They have also conjectured that (2) holds
for k-codimensional cylinders for all 0 < k < d.

Before passing to packing, we would like to mention that methods devel-
oped in [BL] can be used to prove bounds for multiple coverings. The notion
of multiple covering (resp., packing) was introduced in a geometric setting in-
dependently by Harold Davenport and László Fejes Tóth [Fe]. Recall that that
sets L1, . . . , LN form an r-fold covering of K if every point in K belongs to at
least r of Li’s. Slightly modifying proofs of Theorem 1 and Remark 2 in [BL],
we obtain the following theorem.

Theorem 3.1 Let K be a convex body in R
d and 0 < k < d. Let C1, . . . , CN

be k-codimensional cylinders in R
d which form an r-fold covering of K. Then

N
∑

i=1

crvK(Ci) ≥
r
(

d
k

) .

Moreover, if k = 1 and K is an ellipsoid then

N
∑

i=1

crvK(Ci) ≥ r.

Remark 3.2 The following multiple covering version of Ball’s theorem ([B2])
seems to be an open problem: Let 1 < r ≤ N be integers. Let C1, . . . , CN

be planks (i.e., (d − 1)-codimensional cylinders) in R
d which form an r-fold

covering of the 0-symmetric convex body K. Then prove or disprove that the
sum of the relative widths of the planks is at least r, i.e.,

∑N
i=1 crvK(Ci) ≥ r. In

particular, does the above problem have a positive answer for r = 2? We note
that Falconer ([Fa]) asked for a multiple covering version of Bang’s theorem and
proved such a result for convex bodies whose minimal width is two times the
inradius (including 0-symmetric convex bodies) in R

2 and R
3.
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4 Packing by cylinders

In this section we provide estimates for packing by cylinders in terms of the
volumetric parameter, crvK(C), introduced in [BL]. Our proofs are close to the
proofs of corresponding covering results in Section 3 of [BL]. We provide all the
details for the sake of completeness. We start with a definition for a packing by
cylinders.

Definition 4.1 Let K be a convex body in R
d and Ci = Bi + Hi, i ≤ N , be

k-codimensional cylinders with 1 ≤ k < d. Denote C̄i = Ci ∩ K, i ≤ N , and
Ei = H⊥

i . We say that the Ci’s form a packing in K if Bi ⊂ PEi
K for every

i ≤ N and the interiors int(C̄i) of C̄i’s are pairwise disjoint. More generally, we
say that the Ci’s form an r-fold packing in K if Bi ⊂ PEi

K for every i ≤ N
and each point of K belongs to at most r of int(C̄i)’s. Clearly, a 1-fold packing
is just a packing.

First we provide estimates in the case of 1-codimensional cylinders. Recall
here that dK denotes the Banach-Mazur distance to the Euclidean ball and ωn

denotes the volume of Bn
2 .

Theorem 4.2 Let K be an ellipsoid in R
d. Let C1, . . . , CN be 1-codimensional

cylinders in R
d, which form an r-fold packing in K. Then

N
∑

i=1

crvK(Ci) ≤ r. (3)

Remark 4.3 This theorem can be used to get bounds in the general case as
well. Indeed, let K be a convex body in R

d and T be an invertible linear
transformation satisfying

d−1
K

TBd
2 ⊂ K ⊂ TBd

2.

Let C1, . . . , CN be 1-codimensional cylinders in R
d forming an r-fold packing in

TBd
2. Then, using definitions and Theorem 4.2, we observe

N
∑

i=1

crvK(Ci) =

N
∑

i=1

vold−1(Bi)

vold−1(PEi
K)

≤
N
∑

i=1

vold−1(Bi)

vold−1(PEi
d−1
K

TBd
2)

= dd−1
K

N
∑

i=1

crvTB
d

2

(Ci) ≤ rdd−1
K

.
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Proof: Every Ci can be presented as Ci = Bi+ ℓi, where ℓi is a line containing
0 in R

d and Bi is a body in Ei := ℓ⊥i such that Bi ⊂ PEi
K.

Since crvK(C) = crvTK(TC) for every invertible affine map T : Rd → R
d,

we may assume that K = Bd
2. Then

crvK(Ci) =
vold−1(Bi)

ωd−1
.

Consider the following (density) function on R
d

p(x) = 1/
√

1− |x|2

for |x| < 1 and p(x) = 0 otherwise. The corresponding measure on R
d we denote

by µ, that is dµ(x) = p(x)dx. Let ℓ be a line containing 0 in R
d and E = ℓ⊥. It

follows from direct calculations that for every z ∈ E with |z| < 1
∫

ℓ+z

p(x) dx = π.

Thus we have

µ(Bd
2) =

∫

B
d

2

p(x) dx =

∫

B
d

2
∩E

∫

ℓ+z

p(x) dx dz = π ωd−1

and for every i ≤ N

µ(Ci) = µ
(

Ci ∩Bd
2

)

=

∫

Ci

p(x) dx =

∫

Bi

∫

ℓi+z

p(x) dx dz = π vold−1 (Bi) .

Since each point of K belongs to at most r of int(C̄i)’s, where C̄i = Ci ∩ Bd
2,

i ≤ N , we obtain that

rπ ωd−1 = rµ(Bd
2) ≥

N
∑

i=1

µ
(

C̄i

)

=

N
∑

i=1

π vold−1 (Bi) .

This implies
N
∑

i=1

crv
B

d

2

(Ci) =

N
∑

i=1

vold−1(Bi)

ωd−1
≤ r, (4)

which completes the proof. ✷

Now recall the following idea from [AKP]. Consider the density function
defined on R

d as follows: p(x) = 1 for |x| = 1 and p(x) = 0 otherwise. The
corresponding measure on R

d we denote by µ, that is dµ(x) = p(x)dλ(x), where
λ is the Lebesgue measure on Sd−1. Let H be a plane containing 0 in R

d and
E = H⊥. Then for every z ∈ E with |z| < 1

∫

H+z

p(x) dx = 2π.
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(Hint: Let ℓ be a line parallel to H and passing through 0 in R
d. Moreover, let

ℓ⊥ = Bd−1
2 . If y ∈ (H + z) ∩ Sd−1 and α denotes the angle between the line

passing through 0 and x = P
B

d−1

2

y and the hyperplane tangent to Sd−1 at y,

then cosα =
√

1− |x|2 and so, the density at x in Bd−1
2 is equal to 1√

1−|x|2
.)

Therefore repeating the proof of Theorem 4.2 with respect to the just introduced
density function p(x), we obtain the following theorem.

Theorem 4.4 Let K be an ellipsoid in R
d. Let C1, . . . , CN be 2-codimensional

cylinders in R
d, which form an r-fold packing in K. Then

N
∑

i=1

crvK(Ci) ≤ r. (5)

Remark 4.5 As in the case of 1-codimensional cylinders, this theorem can be
generalized in the following way. Let K be a convex body in R

d and T be
an invertible linear transformation T satisfying d−1

K
TBd

2 ⊂ K ⊂ TBd
2. Let

C1, . . . , CN be 2-codimensional cylinders in R
d forming an r-fold packing in

TBd
2. Then

N
∑

i=1

crvK(Ci) ≤ rdd−2
K

. (6)

The next theorem deals with k-codimensional convex cylinders.

Theorem 4.6 Let 0 < k < d and K be a convex body in R
d. Let Ci = Bi+Hi,

i ≤ N , be k-codimensional cylinders in R
d, which form an r-fold packing in K

and let C̄i = Ci ∩K. Assume that C̄i’s are convex bodies in R
d. Then

N
∑

i=1

crvK(Ci) ≤ r

(

d

k

)

max
i≤N

maxx∈Rd volk(K ∩ (x+Hi))

maxx∈Rd volk(C̄i ∩ (x+Hi)
.

Proof: As before denote Ei = H⊥
i and Bi = PEi

Ci. As C̄i’s form a packing
in K we have Bi ⊂ PEi

K and hence PEi
C̄i = Bi.

Applying Theorem 2.1 and remark following it, we obtain for every 1 ≤ i ≤
N

crvK(Ci) =
vold−k(Bi)

vold−k(PEi
K)

=
vold−k(PEi

C̄i)

vold−k(PEi
K)

≤
(

d

k

)

vold(C̄i)

maxx∈Rd volk
(

C̄i ∩ (x+Hi)
)

maxx∈Rd volk (K ∩ (x+Hi))

vold(K)
.

Since the Ci’s form an r-fold packing in K, we observe that

N
∑

i=1

vold
(

C̄i

)

≤ r vold (K) ,
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which implies the desired result. ✷

Finally we show an example showing some restrictions on the upper bound.
We need the following simple lemma.

Lemma 4.7 For every δ ∈ (0, π/2) and every n ≥ 1 one has

δ (sin δ)n

e(n+ 1)
≤

∫ π/2

π/2−δ

(cos t)n dt ≤ δ (sin δ)n.

Proof: The upper estimate is trivial, as cos(·) is a decreasing function on
(0, π/2). For the lower bound note that sin(βδ) ≥ β sin δ for β ∈ (0, 1) and
therefore
∫ π/2

π/2−δ

(cos t)n dt ≥
∫ π/2−βδ

π/2−δ

(cos t)n dt ≥ (1−β)δ (sin(βδ))n ≥ (1−β)δβn(sin δ)n.

The choice β = n/(n+ 1) completes the proof. ✷

The next theorem shows that sum of crvK(Ci) cannot be too small in gen-
eral. The example is based on a packing of cylinders, whose bases are caps in
the Euclidean ball. We will use the following notation. Given m-dimensional
subspace E in R

d, δ ∈ (0, π/2) and x ∈ Sd−1 ∩ E we denote

S(x, δ, E) := {z ∈ Bd
2 ∩E | | 〈z, x〉 | ≥ cos δ}.

In other words, S(x, δ, E) is a (solid) cap in the Euclidean ball in E with the
center at x and the (geodesic) radius δ. We also denote

S(x, δ) := {z ∈ Sd−1 | | 〈z, x〉 | ≥ cos δ},

that is S(x, δ) is a (spherical) cap in the Euclidean ball in R
d.

Theorem 4.8 Let d > 3, 1 ≤ k < d and δ ∈ (0, π/4). There exist k-codimen-
sional cylinders C1, . . . , CN in R

d, which form a packing in Bd
2 and satisfy

N
∑

i=1

crv
B

d

2

(Ci) =
1

ωd−k

N
∑

i=1

vold−k(Bi) ≥
c
√
d (sin δ)2−k

2d−2 (d− k)3/2
,

where c is an absolute positive constant.

Remark 4.9 The proof of Theorem 4.8 below uses representations of caps
S(x, δ) as k-codimensional cylinders C(x) = S(x, δ, Ex) + E⊥

x , where Ex is a
(d − k)-dimensional subspace Ex containing x. Then C̄(x) = C(x) ∩ Bd

2 =
conv S(x, δ) and it is not difficult to see that the maximum over y ∈ R

d of
volk(C̄(x) ∩ (y + E⊥

x )) attains at y = cos(δ)x and equals

volk(y +
√

1− |y|2 Bd
2 ∩ E⊥

x )) = (sin δ)kωk.
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Thus, for such cylinders the upper bound from Theorem 4.6 becomes
(

d

k

)

(sin δ)−k.

Therefore, in this example, the ratio between the upper and lower bounds is of
the order C(d, k)(sin δ)−2.

Proof: Given x ∈ Sd−1 we construct a k-codimensional cylinder C(x) in
the following way. Fix a (d − k)-dimensional subspace Ex containing x. Let
C(x) = S(x, δ, Ex) + E⊥

x . Of course C(x) depends on the choice of Ex, so for
every x we fix one such Ex. With such a construction we have

C̄(x) = C(x) ∩Bd
2 = S(x, δ,Rd) = conv S(x, δ).

Note that using the Fubini theorem and substitution x = sin t, one has

vold−k(S(x, δ, E)) =

∫ 1

cos δ

(1− x2)
d−k−1

2 ωd−k−1 dx = ωd−k−1

∫ π/2

π/2−δ

(cos t)d−k dt

and similarly ωd = ωd−1

∫ π/2

−π/2(cos t)
d dt.

Now we construct a packing of caps in Sd−1 and estimate its cardinality
using standard volumetric argument. Let {xi}i≤N be a maximal (in the sense
of inclusion) (2δ)-separated set, that is the geodesic distance between xi and xj

is larger than 2δ whenever i 6= j. Then clearly the caps S(xi, δ) are pairwise
disjoint, hence so are S(xi, δ,R

d)’s. Therefore, the cylinders C(xi) form a pack-
ing of Bd

2. On the other hand, due to the maximality of the set {xi}i≤N , the
caps S(xi, 2δ) cover S

d−1. Therefore

1 ≤
N
∑

i=1

σ(S(xi, 2δ)) = Nσ(S(x1, 2δ)),

where σ is the normalized Lebesgue measure of the sphere Sd−1. Thus N ≥
(σ(S(x1, 2δ)))

−1. The measure of a spherical cap can be directly calculated as
(see e.g. Chapter 2 of [MS])

σ(S(x1, 2δ)) =

∫ π/2

π/2−2δ
(cos t)d−2 dt

∫ π/2

−π/2
(cos t)d−2 dt

=
ωd−3

ωd−2

∫ π/2

π/2−2δ

(cos t)d−2 dt.

Finally we obtain that there are N cylinders C(xi), which form packing and

A :=

N
∑

i=1

crv
B

d

2

(Ci) = N
vold−k(S(x, δ, E))

ωd−k
≥ ωd−k−1

ωd−k

ωd−2

ωd−3

∫ π/2

π/2−δ(cos t)
d−k dt

∫ π/2

π/2−2δ(cos t)
d−2 dt

.

Using Lemma 4.7 and estimates for the volume of the Euclidean ball, we observe
for an absolute positive constant c,

A ≥ c
√
d

(d− k)3/2
(sin δ)d−k

(sin(2δ))d−2
≥ c

√
d (sin δ)2−k

2d−2 (d− k)3/2
.

✷
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5 More on packing by cylinders

In this section we estimate the total volume of bases of 1-codimensional cylinders
forming a multiple packing in a given convex body.

Theorem 5.1 Let K be a convex body in R
d. For i ≤ N let Ci = Bi +Hi be

1-codimensional cylinders in R
d, which form an r-fold packing in K. Then

N
∑

i=1

vold−1(Bi) ≤ cd r max
dimL=d−1

vold−1(PLK), (7)

where cd = dωd/(2ωd−1) ∼
√

π d/2 (as d grows to infinity).

Proof: We use Cauchy formula for the surface area of K:

s(K) =
1

ωd−1

∫

Sd−1

vold−1 (Pu⊥K) dλ(u),

where dλ(·) is the Lebesgue measure on Sd−1.
For i ≤ N denote C̄i = Ci ∩ K. As Ci’s form an r-fold packing in K we

have that (C̄i ∩ bdK)’s form an r-fold packing on the boundary bdK of K and
therefore

N
∑

i=1

s(C̄i ∩ bdK) ≤ r · s(K).

Using that vold−1(Bi) ≤ 1
2 s(C̄i ∩ bdK) and that λ(Sd−1) = dωd, we obtain

2

N
∑

i=1

vold−1(Bi) ≤ r · s(K) =
r

ωd−1

∫

Sd−1

vold−1 (Pu⊥K) dλ(u)

≤ r
d ωd

ωd−1
max

dimL=d−1
vold−1(PLK),

finishing the proof of Theorem 5.1. ✷

Remark 5.2 It would be interesting to find the best possible value of cd (as
a function of d) in Theorem 5.1. Note that Theorem 4.2 implies that when K

is an ellipsoid one can take cd = 1. This leads to another natural problem:
Provide a characterization of convex bodies in R

d that satisfy Theorem 5.1 with
cd bounded by an absolute constant.

6 Packing counterpart of Falconer’s bounds

In this section we provide a packing counterpart of Falconer’s bounds. Recall
that Falconer ([Fa]) gave an elegant analytic proof of the following multiple
covering version of Bang’s theorem in R

2 and R
3. Let K be a convex body

9



in R
2 or R

3 (i.e., a convex domain) whose minimal width w(K) is equal to
the diameter of its incircle (note that any 0-symmetric convex domain has this
property). If finitely many planks form an r-fold covering of K, then the sum
of the widths of the planks is at least rw(K). Here we provide the packing
counterpart of Falconer’s estimate in R

2. Following Hadwiger ([H]) we say,
that a finite family of closed circular disks form a separable arrangement in
R

2 if there exists a line in R
2 that is disjoint from all the disks and divides

the plane into two open half-planes each containing at least one disk. In the
opposite case we shall call the family a non-separable arrangement (in short,
an NS-family) in R

2. In other words, a finite family of closed circular disks
form a non-separable arrangement (i.e., an NS-family) in R

2 if no line of R2

divides the disks into two non-empty sets without touching or intersecting at
least one disk. We call the convex hull (resp., the sum of the diameters) of
an NS-family of disks an NS-domain (NS-diameter). The following theorem
improves Theorem 5.1 (with c2 = 1) for NS-domains K whose NS-diameter
diamNS(K) satisfies diamNS(K) = 2RK = diam(K), where RK denotes the
radius of the smallest circular disk containing K (also called the circumradius
of K) and diam(K) denotes the Euclidean diameter of K.

Theorem 6.1 Let K be an arbitrary NS-domain in R
2. If finitely many planks

form an r-fold packing in K, then the sum of the widths of the planks is at most
rdiamNS(K). Here, 2RK ≤ diamNS(K) with equality if and only if 2RK =
diamNS(K) = diam(K).

Our proof is a packing analogue of Falconer’s analytic method introduced
for coverings by planks in [Fa]. The core part of the discussions that follow is
in R

d and might be of independent interest. Let K be a convex body in R
d and

let

L+(K) = {f : K → R
+ | f ≥ 0 and Lebesgue integrable over K}.

Moreover, let H(s, u) = {x ∈ R
d | 〈x, u〉 = s} denote the hyperplane in R

d with
normal vector u ∈ Sd−1 lying at distance s ≥ 0 from the origin 0. Furthermore,
let the sectional integral of f over H(s, u) ∩ int(K) be denoted by

F (f, s, u) =

∫

H(s,u)∩int(K)

f(x) dH(s,u)x

for any H(s, u) with H(s, u)∩ int(K) 6= ∅ and with respect to the corresponding
(d− 1)-dimensional Lebesgue measure over H(s, u). Moreover, for ∆ > 0 let

L+
∆(K) = {f ∈ L+(K) | F (f, s, u) ≥ ∆ for all H(s, u) withH(s, u)∩int(K) 6= ∅}.

Finally, let

m(L+
∆(K)) = inf

{
∫

K

f(x)dx | f ∈ L+
∆(K)

}

.

If g is a Lebesgue integrable function on R then g(〈x, u〉), x ∈ R
d, is called a

ridge function in the direction u ∈ Sd−1.

10



Lemma 6.2 Let K be a convex body in R
d and let ui ∈ Sd−1, 1 ≤ i ≤ N . Let

gi(〈x, ui〉), 1 ≤ i ≤ N , be ridge functions such that the support of gi is contained
in [ai, bi], where

ai = min{〈x, ui〉 | x ∈ K} and bi = max{〈x, ui〉 | x ∈ K}.

Assume that for every x ∈ K,

N
∑

i=1

gi(〈x, ui〉) ≤ 1.

Then
N
∑

i=1

∫ +∞

−∞

gi(t)dt ≤ m(L+
1 (K)).

Proof: For every f ∈ L+
1 (K) one has

N
∑

i=1

∫ +∞

−∞

gi(t)dt ≤
N
∑

i=1

∫ +∞

−∞

gi(t)F (f, t, ui)dt

=

∫

K

f(x)

N
∑

i=1

gi(〈x, ui〉)dx ≤
∫

K

f(x)dx,

which implies the desired result. ✷

Let K be a convex body in R
d and let B(K) = xK + RKBd

2 denote the
circumscribed ball of K, i.e. the smallest Euclidean ball containing K with
center at xK and radius RK, called the circumradius of K. Recall that the
support function of K is defined by

hK(x) = sup{〈x, k〉 | k ∈ K}

for x ∈ R
d.

Lemma 6.3 If K is a convex body with circumradius RK in R
d, then

m(L+
∆(K)) ≥ 2∆RK.

Proof: Let f ∈ L+
∆(K). As

∫

K
f(x)dx > 0, K weighted by f has a centroid,

i.e., a point c such that
∫

K

f(x)(x− c)dx = 0,

which lies inside K. Passing to the body Kc = K− c, without loss of generality
we may assume that c is the origin 0. Let hK be the support function of K and
R be the smallest number such that K ⊂ RBd

2. Then R ≥ RK and there exists
u ∈ Sd−1 with

hK(u) = R ≥ RK. (8)
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Taking moments perpendicular to u yield

∫ hK(u)

−hK(−u)

tF (f, t, u)dt = 0. (9)

Using F (f, t, u) ≥ ∆ and (8) we observe

∫ hK(u)

0

tF (f, t, u)dt ≥ 1

2
∆R2

K
. (10)

Then (9) and (10) yield that

∫ hK(−u)

0

tF (f, t, u)dt ≥ 1

2
∆R2

K
. (11)

One can check that

inf

{

∫ A

0

F (t)dt | A > 0, F (t) ≥ ∆ and

∫ +∞

0

tF (t)dt ≥ M

}

= (2M∆)
1

2 (12)

with the infimum being attained if and only if F (t) = ∆ for (almost) all t ≤ A

and A = (2M∆ )
1

2 . Thus (10), (11), and (12) yield

∫

K

f(x)dx =

∫ hK(u)

−hK(−u)

F (f, t, u)dt ≥ 2

(

2

(

1

2
∆R2

K

)

∆

)
1

2

= 2∆RK,

finishing the proof of Lemma 6.3. ✷

Proof of Theorem 6.1: Let K be an NS-domain in R
2 with NS-diameter

diamNS(K) and let C1, . . . , CN be planks that form an r-fold packing in K. For
every 1 ≤ i ≤ N , choose ui ∈ Sd−1 which is orthogonal Ci and let

ai = min{〈x, ui〉 | x ∈ Ci} and bi = max{〈x, ui〉 | x ∈ Ci}.

Clearly, the Euclidean width w(Ci) of the plank Ci satisfies w(Ci) = bi − ai.
Consider the ridge functions

gi(〈x, ui〉) =
1

r
χ[ai,bi](〈x, ui〉),

where χ[ai,bi] is the characteristic function of the segment [ai, bi]. On the one
hand, Lemma 6.2 applied to gi’s implies that

N
∑

i=1

w(Ci) ≤ rm(L+
1 (K)). (13)

On the other hand, recall the following well-known fact (Theorem 1.2 in [Fa]):
m(L+

1 (RBd
2)) = 2R and this value is attained uniquely by the function f(x) =

12



1
πR (R2 − |x|2)− 1

2 if |x| < R and f(x) = 0 if |x| ≥ R. By taking the sum of the
analogue functions over the generating circular disks of the NS-domain K we
get that

m(L+
1 (K)) ≤ diamNS(K). (14)

This and (13) yield
∑N

i=1 w(Ci) ≤ rdiamNS(K). Moreover, Lemma 6.3 and
(14) imply that

2RK ≤ diamNS(K). (15)

For a completely different proof of (15) we refer the interested reader to Good-
man and Goodman ([GG]). As the case of equality is rather straightforward to
show, this completes the proof of Theorem 6.1. ✷

Acknowledgement. The authors would like to thank R. Karasev for comments
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[Fe] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum,
Grundlehren Math. Wiss. 65, Springer, Berlin, 1953.

[GG] A. W. Goodman and R. E. Goodman, A circle covering theorem, Amer.
Math. Monthly 52 (1945), 494–498.

[H] H. Hadwiger, Nonseparable convex systems, Amer. Math. Monthly 54
(1947), 583–585.

13



[J] F. John, Extremum problems with inequalities as subsidiary conditions,
Studies and Essays Presented to R. Courant on his 60th Birthday, Jan-
uary 8, 1948, 187–204. Interscience Publishers, Inc., New York, N. Y.,
1948.

[MS] V. D. Milman, G. Schechtman, Asymptotic theory of finite-dimensional
normed spaces. With an appendix by M. Gromov, Lect. Notes in Math.,
1200. Springer-Verlag, Berlin, 1986.

[Pi] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry,
Cambridge University Press 1989.

[RS] C. A. Rogers, G. C. Shephard, Convex bodies associated with a given
convex body, J. London Math. Soc. 33 (1958), 270–281.
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