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Abstract3

Let S be a set of n points in the plane and let R be a set of n pairwise non-crossing rays,4

each with an apex at a different point of S. Two sets of non-crossing rays R1 and R2 are5

considered to be different if the cyclic permutations they induce at infinity are different.6

In this paper, we study the number r(S) of different configurations of non-crossing rays7

that can be obtained from a given point set S. We define the extremal values8

r(n) = max
|S|=n

r(S) and r(n) = min
|S|=n

r(S),

and we prove that r(n) = Ω∗(2n), r(n) = O∗(3.516n) and that r(n) = Θ∗(4n).9

We also consider the number of different ways, rγ(S), in which a point set S can be10

connected to a simple curve γ using a set of non-crossing straight-line segments. We define11

and study12

rγ(n) = max
|S|=n

rγ(S) and rγ(n) = min
|S|=n

rγ(S),

and we find these values for the following cases: When γ is a line and the points of S are13

in one of the halfplanes defined by γ, then rγ(n) = Θ∗(2n) and rγ(n) = Θ∗(4n). When γ14

is a convex curve, then rγ(n) = O∗(16n). If all the points are on a convex curve γ, then15

rγ(n) = rγ(n) = Θ∗(5n).16

1 Introduction17

Let S = {p1, . . . , pn} be a set of n points in the plane in general position; i.e., no three of18

them belong to a line, and consider a set R = {r1, . . . , rn} of n pairwise non-crossing rays19

such that ray ri starts at point pi. Formally speaking, we say that two rays cross when they20

share exactly one common point in the relative interior of both of them. The situations in21

which their intersection contains infinitely many points or is exactly the apex of one of them22

are considered to be non-crossing, as an appropriate infinitesimal rotation around their apices23

makes them disjoint.24

∗A preliminary version of this work was presented at the XII Spanish Meeting on Computational Geometry
[13]. This full version improves on many of the results presented there.
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Any circle enclosing S is intersected by the rays in the set R in clockwise cyclic order25

rπ(1), . . ., rπ(n), where π is a permutation of 1, . . . , n. Given a set S of n points, we are26

interested in finding the number r(S) of different cyclic permutations in which a circle at27

infinity is intersected by shooting non-crossing rays from the points of S. We say that these28

cyclic permutations are feasible for S, that these permutations are induced at infinity by the29

rays, and also that the set of non-crossing rays enables a permutation.30

Figure 1 shows the six cyclic permutations that can be obtained for a particular set S of31

four points. As the number of cyclic permutations of four elements is precisely 6, we see that32

for the pictured set of points, r(S) = 6.33

Whenever possible, we group the issues of bounding, estimating or finding r(S) together34

under the name the non-crossing rays problem for S. In general, this proved to be a challeng-35

ing problem for us, even for relatively regular point configurations; e.g., point sets in convex36

position. For this reason, in this paper we have mainly focused on bounding r(S) and on look-37

ing for configurations of points achieving extremal values. Let us define r(n) = max|S|=n r(S)38

and r(n) = min|S|=n r(S). The main results we have obtained in this regard are39

r(n) = Ω∗(2n), r(n) = O∗(3.516n), and r(n) = Θ∗(4n),

where in the notations Ω∗(), Θ∗() and O∗(), we neglect polynomial factors and give only the40

dominating exponential term. In other words, neglecting polynomial factors, for any point set41

S there are at least 2n and at most 4n ways of shooting non-crossing rays generating different42

cyclic permutations. The upper bound is tight.43
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Figure 1: The six cyclic permutations induced by non-crossing rays.

A similar problem can be formulated when non-crossing segments and arbitrary simple44

curves are considered. More precisely, given a point set S in general position and a (possibly45

closed) simple curve γ, we are interested in the number of different (cyclic) permutations on46

γ, rγ(S) that can be obtained as a γ-matching : a connexion of the points of S to γ by means47

of pairwise non-crossing segments. Figure 2 shows two cyclic permutations on a closed curve48

γ induced by two sets of non-crossing segments. When the points from S are in the interior49

of the region bounded by the closed curve γ, one may think of this problem as a variation on50
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the non-crossing rays problem in which we stop the rays when they hit γ. In fact, if the curve51

is very far from the set of points, this problem is essentially the non-crossing rays problem.52

We call the problem of studying rγ(S) the γ-matching problem for S. Obviously, this53

problem depends on the position of the points and on the shape of γ. As before, we define54

the extremal values rγ(n) = max|S|=n rγ(S) and rγ(n) = min|S|=n rγ(S), for a given curve γ.55

The γ-matching problem is also quite difficult in general. In this paper we study the56

behavior of rγ(S) for two special cases; when γ is a line and the points of S are in one of the57

halfplanes defined by γ, and when γ is a convex curve enclosing S.58

When γ is a line l and the elements of S belong to one of the halfplanes defined by l, we59

have been able to prove that60

rl(n) = Θ∗(2n) and rl(n) = Θ∗(4n);

i.e., for any point set S, there are at least 2n and at most 4n ways of connecting the points to61

l generating different permutations, and there are sets of points for which these bounds are62

achieved.63
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Figure 2: Two cyclic permutations on the closed curve γ.

For the case in which γ is a convex curve enclosing S, we have proved that64

rγ(n) = O∗(16n);

i.e., for any point set S and for any convex curve γ enclosing S, there are at most 16n different65

ways of connecting the points to γ generating different cyclic permutations.66

Finally, we have proved that if the n points are on a convex curve γ, then67

rγ(n) = rγ(n) = Θ∗(5n);

i.e., for any set of n points on any convex curve γ, there are exactly 5n different ways of68

connecting the points to the curve generating different cyclic permutations.69

To the best of our knowledge these enumerative problems, which we consider to be quite70

natural, have not been previously studied, in spite of the fact that counting several types71

of non-crossing geometric graphs, such as polygons, trees, matchings or triangulations, has72

been a very active area of research for several years, and a motivation for our research:73
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In a pioneering paper [4], Ajtai et al. proved that the number of non-crossing geometric74

graphs that can be embedded over a set S of n points in the plane is O(cn), where c was a75

large constant. Since then, much effort has been expended to improve this constant and to76

estimate the number of simple polygons, triangulations or trees that a set of n points can77

admit (see for example [1, 2, 3, 6, 8, 10, 12, 14, 18, 22, 23, 24] and the references therein).78

The interested reader can visit the website [25] for a summary on the current state of the best79

known bounds for the number of several types of non-crossing geometric graphs. Furthermore,80

geometric matchings of point sets with geometric objects have also been studied in [5] from81

an algorithmic viewpoint.82

Arrangements of rays have also been studied as a tool for graph representation: a ray83

intersection graph is a graph that can be drawn using for node rays in the plane, which are84

adjacent when they cross [9, 11, 21]. Finally, it is worth mentioning on the more applied side85

that arrangements of rays have also been studied recently as sensor networks: every ray is a86

sensor, and an intruder is detected when it crosses a ray [19].87

The paper is organized as follows. We consider the γ-matching problem in Section 2 for88

the case in which γ is a line and all the points of S lie in one of the halfplanes defined by γ.89

In Section 3, we study the non-crossing rays problem. Section 4 is devoted to the analysis of90

the γ-matching problem when γ is a convex curve enclosing S. In Section 5 we provide some91

conclusions and open questions.92

2 The γ-matching problem for lines93

In this section, we study the γ-matching problem for the case in which γ is a line and all the94

points of S lie in one of the halfplanes defined by γ. We provide tight bounds for rγ(n) and95

rγ(n). Some of the results obtained here are used in the following section, where we study96

the non-crossing rays problem.97

Let γ = l be a line and let S = {p1, . . . , pn} be a set of points lying on a halfplane98

H bounded by l. Without loss of generality we can assume that l is the x-axis, that H99

is the upper halfplane x > 0, that points p1, . . . , pn are sorted in decreasing order of their100

y-coordinates, and that no two of the points have the same y-coordinate.101

An l-matching is defined as follows: each point pi ∈ S is joined to a distinct point qi on102

the line l with a segment ri in such a way that the segments are pairwise non-crossing (see103

Figure 3). Once such a matching is given, if we traverse l from left to right, we first find a104

point qi1 ∈ S matched to some pi1 ∈ S, then a point qi2 ∈ S matched to pi2 ∈ S, and so on.105

The sequence of indices i1, i2, . . . , in is the permutation induced by the l-matching on the line.106

Note that geometrically different l-matchings (i.e., different sets of segments) can induce the107

same permutation.108

We say that a permutation of the numbers 1, 2, . . . , n is a feasible permutation when it109

can be induced by some l-matching; we also say that the l-matching enables the permutation.110

Figure 3 shows the feasible permutation 321465 for a particular set of points. The number111

of feasible permutations for a given point set S is denoted by rl(S) and the extremal values112

max|S|=n rl(S) and min|S|=n rl(S) are denoted by rl(n) and rl(n), respectively. Notice that113

rl(1) = rl(1) = 1. We also define the value rl(0) by convention to be 1.114

The main theorem in this section is the following.115

Theorem 1. For every integer n ≥ 1, we have rl(n) = Θ∗(2n) and rl(n) = Θ∗(4n).116
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Figure 3: Feasible permutation 321465.

This theorem is obtained by showing that 2n−1 ≤ rl(S) ≤ 4n for any point set S (Lemma117

1), constructing a set of points for which rl(S) ≈ 4n (Subsection 2.1), and constructing as118

well a set of points for which rl(S) ≈ 2n (Subsection 2.2).119

The upper bound in Lemma 1 was already proved by Sharir and Welzl (see [24]) in the120

context of counting non-crossing straight-line perfect matchings for points on the plane; we121

include the proof for the sake of completeness.122

Lemma 1. Let l be the x-axis, and let S be any set of n ≥ 1 points in the halfplane y > 0.123

Then124

2n−1 ≤ rl(S) ≤ Cn,

where Cn is the n-th Catalan number Cn = 1
n+1

(2n
n

)
= Θ(4nn−

3
2 ).125

Proof: Consider the point in S with maximum y-ordinate, p1. For every i, 0 ≤ i ≤ n − 1,126

the point p1 can be joined to some point q1 on the line l in such a way that i points of S lie127

to the left of the line p1q1 and the remaining n − 1 − i lie to its right. In any l-matching,128

the points to the left of p1q1 must be matched with points on the x-axis that precede q1, and129

those to the right of p1q1 must be matched with points on the x-axis that come after q1.130

Therefore we have rl(S) ≤ ∑n−1
i=0 r

l(i)rl(n − i − 1) and, as the set S is arbitrary, we131

also get the inequality rl(n) ≤ ∑n−1
i=0 r

l(i)rl(n − i − 1). Since the solution of the recurrence132

rl(n) =
∑n−1
i=0 r

l(i)rl(n−i−1), with initial conditions rl(0) = rl(1) = 1, is the Catalan number133

Cn (see for example [26]), the claimed upper bound follows. This was also the approach used134

in [24].135

To prove the lower bound, we proceed as follows: Let l be the horizontal line with equation136

y = 0, and suppose without loss of generality that all of the elements of S lie above l and137

have different y-coordinates. Suppose that the elements of S are labelled p1, . . . , pn such that138

if i < j then pi lies above the horizontal line through pj . It follows that we can now choose a139

(possibly small) positive slope m such that for every i, the points pi+1, . . . , pn lie below the140

lines with slope m and −m passing through pi, 1 ≤ i < n. Let S1 be any subset of S, and141

S2 = S \ S1. Now from all of the elements of S1, shoot a ray with slope m towards the left.142

From all the elements of S2 shoot a ray with slope −m to their right. For pn, we only have143

one combinatorial possibility left for shooting the ray, since rl({pn}) = 1. In this way, we144

obtain 2n−1 distinct feasible permutations, which can be enabled using segments that can be145

made arbitrarily close to the horizontal. �146

5



In the proof of Lemma 1 we have assumed, without loss of generality, that the line l has147

equation y = 0 and the points in S have positive y-coordinates. Observe then that if we148

translate the line l vertically downwards, starting from the x-axis, the number of feasible149

permutations for the translated line goes down as well.150

More precisely, if l1, l2, . . . is the set of lines y = y1, y = y2, . . ., with 0 ≥ y1 > y2 > . . .,151

then rl1(S) ≥ rl2(S) ≥ . . ., because any permutation enabled on lj by a set T of n segments152

joining the points in S with points in lj is also feasible for lj−1, taking the intersections of the153

segments in T with lj−1. The reverse is not true in general, because if we extend the segments154

in T downwards until they reach lj+1, some crossings may appear. If two segments cross, we155

may try to slide their endpoints on lj+1 in the opposite direction, aiming to achieve the same156

permutation that appeared on lj , yet a non-crossing configuration should be reached without157

sweeping any point in S, and this may not be possible.158

Now consider the arrangement R of
(n
2

)
rays with apices at pi and direction −−→pipj , for159

i = 1, . . . , n− 1 and i < j ≤ n. Let us assume, for the sake of simplicity, that no two of these160

rays are parallel. Then it is obvious from the preceding discussion that for any two horizontal161

lines l′ and l′′, both below all the intersection points in the arrangement R, the set of feasible162

permutations for the two lines are exactly the same.163

In addition, every feasible permutation on either of these lines, say l′, can be enabled as164

an l′-matching using proper segments or as intersection of l′ with a set of non-crossing rays165

shot from S.166

Thus we have the following result.167

Lemma 2. Given a set S of n points, and a line l having all the points from S in one of168

the open halfplanes bounded by l, the number of ways of shooting pairwise non-crossing rays169

that do not cross l and induce different permutations is greater than or equal to 2n−1 and less170

than or equal to Cn.171

2.1 The upper bound in Lemma 1: Tightness172

Let l be the x-axis, y = 0. In this section we construct a specific set of points for which173

rl(S) = Cn, hence achieving the upper bound given in Lemma 1.174

Lemma 3. There are sets S of n points such that rl(S) = Cn. Therefore rl(n) = Θ∗(4n).175

Proof: Consider the branch ϕ of the hyperbola with equation xy = 1, lying in the first176

quadrant. We place n + 2 points p0, p1, p2, . . . , pn, pn+1 on this curve in increasing order of177

their respective abscissae x0 < x1 < x2 < . . . < xn < xn+1, according to the following rules178

(see Figure 4):179

• p0 and p1 are two arbitrary points on ϕ (with x0 < x1).180

• Suppose that p0, . . . , pi have already been placed on ϕ. Let ri be the line tangent to ϕ181

at pi, let r′i be the line through p0 parallel to ri, and let ai+1 = (xi+1, 0) be the point182

where r′i cuts the x-axis. We define pi+1 to be the point (xi+1, 1/xi+1) on the hyperbola183

ϕ.184

Let e1 = (1, 0) be the vector in the direction of the positive x-axis. We consider the185

vectors v1 = −−→p0a2, v2 = −−→p0a3, . . . , vn = −−−−→p0an+1, and let αi be the angle from vi to e1. Then186

α1 > α2 > . . . > αn; see Figure 4. If we consider lines s1, . . . , sn through any point q in the187
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Figure 4: Configuration of points achieving the upper bound.

plane in the directions v1, . . . , vn, respectively, all of them have negative slope, and if i < j,188

line si is closer to the vertical than sj is. Observe that by construction, the set of parallel189

lines through p0, p1, . . . , pi−1 with direction vi crosses ϕ between pi and pi+1.190

We will now prove that the number of feasible permutations induced by l-matchings of191

S = {p1, p2, . . . , pn} with the line l, the x-axis, is precisely Cn, the n-th Catalan number.192

Let M be any matching of S with l. We show that we can construct a canonical matching193

M̂ – in the sense that all the segments in M̂ use only the directions v1, . . . , vn, in a very194

precise way – that induces the same permutation on l as M does.195

If a segment piqi ∈ M crosses ϕ between pj and pj+1, it is assigned to the arc of the196

hyperbola with endpoints pj and pj+1. If the segment piqi ∈ M does not cross ϕ, it is197

assigned to the arc of the hyperbola with endpoints pi and pi+1. Finally, if piqi ∈ M crosses198

ϕ to the right of pn, it is assigned to the arc with endpoints pn and pn+1. We construct M̂199

by replacing each segment piqi assigned to an arc with endpoints pj and pj+1 by the segment200

piq̂i in the direction vj . From the construction, it is easy to check that for any two segments201

piqi, pjqj ∈ M , the corresponding segments piq̂i, pj q̂j ∈ M̂ do not cross, and that q̂i and q̂j202

appear on l in the same order that qi and qj did. Thus M and M̂ induce the same permutation203

on l.204

Therefore, to count rl(S), we need consider only canonical matchings as defined in the205

preceding paragraph. We do so by assigning a special direction to the segments in the match-206

ing according to the arc in which they cross ϕ, as well in the case they do not cross ϕ. Let207

us denote by h(n) the number of canonical matchings, and use the convention h(0) = 1. Ob-208

serve that in every canonical l-matching of {p1, p2, . . . , pn}, the matching for a subsequence209

of consecutive points {pi, pi+1, . . . , pj} is also canonical, following the same rules, and that210

canonical matchings account for all the l-matchings of this subset.211

Now, in any canonical l-matching, the segment p1q1 having p1 as endpoint might not212

cross ϕ, or might cross it between some points pi and pi+1 In either situation, S \ p1 is split213

by p1q1 into a left part with i − 1 points and a right part with n − 1 − i points, with both214

subsets being canonically matched to l. For this position of p1q1, the number of possible215

canonical matchings is therefore h(i− 1)h(n− 1− i), and hence h(n) satisfies the recurrence216

h(n) =
∑n−1
i=1 h(i − 1)h(n − 1 − i), which is precisely the recurrence formula for the Catalan217

number Cn, with the same initial values h(0) = C0 = h(1) = C1 = 1. �218

The segments used in Lemma 3 to construct canonical l-matchings clearly have the addi-219

tional property that they can be extended downwards becoming pairwise non-crossing rays.220

Therefore the following corollary holds.221

Corollary 1. There are sets of points S for which r(S) ≥ Cn.222
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2.2 The lower bound in Lemma 1: Near-tightness223

Let l be the horizontal coordinate axis. The lower bound given in Lemma 1 is not tight224

for n ≥ 3, because in the proof we are only counting permutations enabled by segments225

where all of them are nearly horizontal. We prove now that the bound given in Lemma 1 is226

asymptotically tight. We prove this by constructing a point set for which rl(S) ≈ 2n.227

p1
p2

p3

p4

p5

p0
x = 1x = 0

Figure 5: Configuration of points on the curve y = 1
x(1−x) achieving the lower bound.

Lemma 4. There are sets S of n points such that rl(S) = Θ(2n). Therefore rl(n) = Θ∗(2n).228

Proof: Consider the curve λ with equation y = 1/x(1− x), for x ∈ (0, 1). This curve has a229

minimum when x = 1/2. Let p0 be the minimum point of λ; that is, the point with coordinates230

(12 , 4). The point p0 splits λ into two curves which we call the left and right branches of λ. We231

now define a set S = {p1, . . . , pn} of points on λ, recursively placing the points alternatively232

to the left and to the right of p0 in increasing order of their y-coordinate according to the233

following rules (see Figure 5):234

• p1 is chosen to be any point on λ with abscissa x1 smaller than 1/2, p2 is chosen with235

an arbitrary abscissa x2 > 1− x1, and p3 is chosen with any abscissa x3 < 1− x2.236

• Suppose that p1, . . . , pi have already been placed on λ. Let r be the line connecting237

pi−1 and pi−3, let r′ be the line through pi parallel to r, and let p′ be the second point238

at which r′ cuts λ. To assign pi+1, take any point placed above p′ in the same branch239

of λ.240

Let lij be the line defined by points pi and pj , 1 ≤ i < j ≤ n. We take l to be any241

line parallel to the x-axis leaving on its upper halfplane all the intersection points in the242

arrangement L of lines lij , as well as all the points in which these lines intersect the vertical243

lines x = 0 and x = 1. We now prove that for the point set S = {p1, . . . , pn} and the line l,244

the number of feasible permutations is Θ∗(2n).245

Observe that the exact position of l does not matter as long as the upper halfplane defined246

by l contains all the crossings in L. As we explained in Section 2, the number of feasible247
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permutations for any line satisfying this condition is the same, and the feasible permutations248

can also be enabled using rays.249

Before counting the number of feasible permutations for S and l, we study two auxil-250

iary values, f(n) and f̂(n). Let f(n) be the number of feasible permutations enabled by251

l-matchings connecting the points of S to l, with the additional property that the segments252

do not cross the line x = 0. Observe that given the way in which l has been selected, the253

segments in the matching can be taken to be vertical or to have negative slope. Suppose that254

n is odd, in which case pn is placed on the left branch of λ. The following properties hold for255

l-matchings not crossing the line x = 0 and the permutations they induce:256

1. In any l-matching, the segments r2 = p2q2, r4 = p4q4, . . . , rn−1 = pn−1qn−1 (the even257

segments, with even endpoints) appear in this precise order on l, because if an even258

endpoint qj appeared before another even q′j , with j > j′, then rj would cross the curve259

and the line x = 0 as well.260

2. f(n+ 1) = f(n), because pn+1 is on the right branch of λ and rn+1 is always the last261

segment on l.262

3. The first values for f(n) are f(1) = 1, f(2) = 1 and f(3) = 3.263

4. Let r be the line passing through pn−2 and pn−4. By construction, all the points in S264

are below the line passing through pn parallel to r. Suppose that rn crosses the curve265

at a point with ordinate smaller than the ordinate of pn−1; in this situation the slope of266

rn is smaller than the slope of r. Take an odd point pj below rn. If rj crosses the curve,267

then its slope must be greater than the slope of r, and then rn and rj would cross above268

l (all the crossings among lines lij are contained in the upper halfplane defined by l).269

Therefore rj cannot cross λ.270

5. Let r′ be the line connecting pn and pn−2 and let m′ be its slope. Consider a line l′′271

such that all the points in S are in the right halfplane defined by l′′, its slope is less272

than or equal to m′, and l′′ crosses the curve at two points with ordinate greater than273

the ordinate of pn. Consider any l-matching and assume that rn does not cross the274

curve between pn and pn−2 (otherwise, we can rotate rn until it is vertical). Let rj be275

the first segment that crosses λ when we consider the segments in the order of their276

endpoints on l. The slopes of rj and all the segments to its right are necessarily greater277

than m′. Now slide all the endpoints qi of segments to the left of rj as far to the right as278

possible without producing any crossings. Some of the segments become parallel to rj279

and the rest become parallel to some lines lij . In this way, any l-matching not crossing280

x = 0 can be transformed into an l-matching that does not cross l′′, because the slopes281

of all the segments in their final position are greater than m′. Therefore the number of282

feasible permutations for l-matchings not crossing l′′ is also f(n).283

In any l-matching, the following possibilities arise for rn: It is the first segment that284

intersects l from left to right, it is the last segment that intersects l, or it intersects λ between285

two points pi and pi−2. In the first case, we can place rn vertically, obtaining a problem of286

the same type with n− 1 points (in fact, using the second property, this would be a problem287

with n− 2 points). In the second case, we can place rn nearly horizontally towards the right.288

Suppose now that rn crosses λ between pi and pi−2, with i odd. In this case, rn−2,289

rn−4, . . ., ri are the first segments cutting l and exactly in this order, because according to290
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the fourth property, none of these segments can cross the curve. Furthemore, the segments291

ri−1, ri+1, . . . , rn−1 must be the last set of segments with endpoints on l, and precisely in this292

order, because no other segment can cross λ above pi−1, and according to the first property293

they must appear in this order. Since these sets of segments are forced, according to the fifth294

property, we have a problem of the same type with i−2 points in which rn cannot be crossed;295

i.e., rn would play the role of the line x = 0 in the original setting.296

Finally, suppose that rn crosses λ between pi and pi−2, with i even. According to the first297

and fourth properties, there is only one way of placing the segments, namely rn−2, rn−4, . . .,298

r1, r2, r4, . . ., ri−2, rn, ri, ri+2, . . ., rn−1.299

Therefore the following recurrence relation holds for f(n):300

f(n) = 2f(n− 2) + f(1) + f(3) + · · ·+ f(n− 4) + (n− 1)/2 (1)

for every odd integer n > 3.301

Using the fact that f(n − 2) = 2f(n − 4) + f(1) + f(3) + · · · + f(n − 6) + (n − 3)/2, we302

see that fn satisfies, for odd integers n > 3, the linear recurrence303

f(n) = 3f(n− 2)− f(n− 4) + 1. (2)

Let f̂(n) be the number of feasible permutations obtained by l-matchings that avoid304

crossing the line x = 1. When n is even, the problem is symmetric to the previous problem,305

and using the same arguments as before, we obtain that f̂(2) = 2, f̂(4) = 6, f̂(n+ 1) = f̂(n)306

and307

f̂(n) = 2f̂(n− 2) + f̂(2) + . . .+ f̂(n− 4) + n/2, (3)

for all even integers n > 4. Hence, f̂(n) satisfies, for even integers n > 4, the same recurrence308

relation309

f̂(n) = 3f̂(n− 2)− f̂(n− 4) + 1. (4)

Using standard techniques [7, 17, 26], we can solve the recurrences (2) and (4) and obtain310

the following solutions:311

f(n) =
2

5

√
5

�√
5 + 1

2

�n
+

2

5

√
5

�√
5− 1

2

�n
− 1, n = 1, 3, . . . (5)

f̂(n) =

�√
5 + 1

2

�n
+

�√
5− 1

2

�n
− 1, n = 2, 4, . . . (6)

Once we have obtained f(n) and f̂(n), we can count the number of feasible permutations312

induced by l-matchings from S. Let us denote by h′(n) the number of feasible permutations313

when n is odd, and let h′′(n) be the number of feasible permutations when n is even. It is314

easy to check that the first values for h′(n) and h′′(n) are h′(1) = 1, h′′(2) = 2, h′(3) = 5 and315

h′′(4) = 12.316

Assuming that n > 3 is odd, we can obtain a recurrence for h′(n) as before. Again,317

the segment rn can be the first one joined to l from left to right, it can be the last one, or318

it can cross λ between pi and pi−2, where i may be odd or even. The main difference is319

when rn crosses the curve between pi and pi−2, with i even. Now we have f̂(i − 2) ways of320

placing the segments instead of only one. Once rn is drawn, the segments ri, ri+2, . . . , rn−1 are321

necessarily the last segments – according to their endpoints – on l (and in this order), and the322
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segments rn−2, rn−4, . . . , ri−1 are the first segments on l (and in this order). Assuming that323

these segments are placed nearly horizontally (to the right or to the left), for the remaining324

i − 2 points (notice that there is an even number of them) we can place the corresponding325

segments without crossing rn in f̂(i − 2) different ways, where rn plays the role of the line326

x = 1. The reason for this is that using an argument along the lines of the reasoning in the327

fifth property, any l-matching not crossing rn for the set of i − 2 points can be transformed328

into an l-matching not crossing the line x = 1 simply by rotating the segments clockwise329

around its upper endpoint as much as possible.330

Therefore for h′(n) and odd n > 3 we have331

h′(n) = 2h′′(n− 1) + f̂(2) + f̂(4) + · · ·+ f̂(n− 3) + f(1) + f(3) + · · ·+ f(n− 4) + 1. (7)

Using a similar argument, for h′′(n) and even n > 4 we obtain332

h′′(n) = 2h′(n− 1) + f̂(2) + f̂(4) + · · ·+ f̂(n− 4) + f(1) + f(3) + · · ·+ f(n− 3) + 1. (8)

From (1), f(1) + f(3) + · · ·+ f(n− 4) = f(n)− 2f(n− 2)− (n− 1)/2, when n is odd, and333

from (3), f̂(2) + · · ·+ f̂(n− 3) = f̂(n+ 1)− 2f̂(n− 1)− (n+ 1)/2, when n+ 1 is even. Hence,334

h′(n) = 2h′′(n− 1) + f̂(n+ 1)− 2f̂(n− 1)− n+ 1

2
+ f(n)− 2f(n− 2)− n+ 1

2
+ 1. (9)

In the same way we obtain the following equation for h′′(n):335

h′′(n) = 2h′(n− 1) + f̂(n)− 2f̂(n− 2)− n

2
+ f(n+ 1)− 2f(n− 1)− n

2
+ 1. (10)

Now, replacing h′′(n− 1) in h′(n) and vice versa, and simplifying, we obtain336

h′(n) = 4h′(n− 2) + 3f(n)− 6f(n− 2) + f̂(n+ 1)− 4f̂(n− 3)− 3n+ 5, (11)

h′′(n) = 4h′′(n− 2) + 3f̂(n)− 6f̂(n− 2) + f(n+ 1)− 4f(n− 3)− 3n+ 5. (12)

Again, using standard techniques for recurrences and doing some calculations, we obtain337

h′(n) =
8

5
2n −

�
27−

√
5

10

��√
5 + 1

2

�n
+

�
27 +

√
5

10

��√
5− 1

2

�n
+ n− 1, (13)

h′′(n) =
8

5
2n −

�
6
√

5− 1

5

��√
5 + 1

2

�n
+

�
6
√

5 + 1

5

��√
5− 1

2

�n
+ n− 1. (14)

Since (
√

5− 1)/2 ≈ 0.618 and (
√

5 + 1)/2 ≈ 1.618, we obtain the claimed result. �338

3 The non-crossing rays problem339

We now study the problem of determining the number of feasible permutations that can be340

obtained by shooting n non-crossing rays, one from each point in a point set S in general341

position.342

We recall that r(S) denotes the number of feasible permutations for S, and that we have343

defined the extremal values r(n) = max|S|=n r(S) and r(n) = min|S|=n r(S) for point sets in344

general position. Then main result of this section is the following theorem.345
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Theorem 2. For every n ≥ 1 we have r(n) = Ω∗(2n), r(n) = O∗(3.516n) and r(n) = Θ∗(4n).346

The proof of the theorem is split into several subsections. First we prove that there is a347

polynomial P (n) such that 2n−2 ≤ r(S) ≤ P (n)4n for any point set S (Lemma 5 in Subsection348

3.1). We have already constructed a point set S with r(S) ≈ 4n (Corollary 1 in Subsection349

2.1). Finally, we construct another point set S with r(S) < 3.516n (Lemma 6 in Subsection350

3.2).351

p1p2
p3

p4p5
p6

p8

p7

p1p2
p3

p4p5
p6

p8

p7

Figure 6: The canonic configuration of the cyclic permutation 15327486.

3.1 Bounds for r(S)352

Before proving Lemma 5, we introduce the concepts of canonical configurations and separable353

configurations. Given a set S of n points in general position, we say that a ray with apex in354

S is fixed if it contains a second point of S. We say that a configuration of non-crossing rays355

is canonical when every ray is either fixed or cannot be rotated clockwise without crossing356

another ray. Observe that in a canonical configuration every ray is either fixed or is parallel to357

some fixed ray, both of them going in the same direction. Two possible ways of shooting rays358

to get the feasible permutation 15327486 for a particular set of points are shown in Figure 6.359

Observe that given a configuration of non-crossing rays, we can transform it into a canonical360

configuration enabling the same permutation by rotating its rays clockwise until each ray361

contains two elements of S or is parallel to another ray in the same direction containing two362

elements of S (right part of Figure 6).363

Henceforth, in a canonical configuration, a ray emanating from a point pi can have one of364

at most
(n
2

)
directions. Notice that in a canonical configuration a ray ri may contain another365

ray rj : an infinitesimal counterclockwise rotation of these two rays uniquely defines their366

contribution to the permutation on the circle.367

We say that a configuration of non-crossing rays is separable when there exists some line368

l that does not cross any ray. Otherwise, we say that the configuration is non-separable.369

Correspondingly, we say that a feasible permutation is separable when its corresponding370

canonical configuration is separable. Using these concepts, we give lower and upper bounds371

for r(S) in the following lemma.372

Lemma 5. Let S be a set of n points in general position. Then373

2n−2 ≤ r(S) ≤ P (n)Cn,

where P (n) is a polynomial in n with degree at most 9.374
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Proof: Let us first prove the upper bound. Canonical configurations can be classified into375

separable and non-separable. In a separable configuration, the separating line l leaves a k-376

set S1 of S (possibly empty) in H1, one of the halfplanes it bounds, along with all the rays377

emanating from S1, and in the opposite halfplane H2 the complementary (n−k)-set S2 and all378

the corresponding rays. Since there are
(n
2

)
+ 1 pairs of complementary k-sets S1 and S2, and379

the rays in each halfplane can be shot in at most C|S1| and C|S2| ways respectively, by Lemma380

2, we obtain an upper bound (
(n
2

)
+ 1)Cn for the number of separable feasible permutations.381

We show that for non-separable configurations a similar upper bound can be proved.382

In a non-separable configuration, the extension of any ray ri in the opposite direction383

always hits another ray rj , because otherwise we would have a separable configuration, since384

we could take the line supporting rj , infinitesimally translated, for a separator. Given a385

non-separable canonical configuration of rays of S, we can carry out the following procedure.386

Choose an arbitrary ray rj1 and extend it in the opposite direction until it hits another ray387

rj2 . Next, extend rj2 in the same way until it hits another ray rj3 and so on. We continue the388

process until the extension of some rjt hits one of the previous rays or its extension, which389

must always happen because the set of rays is finite. In this way we can obtain a sequence of390

rays ri1 , ri2 , . . . , rik such that the extension of rij , j = 1, 2, . . . , k − 1, hits the ray rij+1 at a391

point qij+1 , and the extension of rik hits either ri1 or its extension at a point qi1 (see Figure392

7).393

Let us denote by r′ij the ray obtained as the union of rij with its extension. The rays394

r′i1 , r
′
i2
, . . . , r′ik are pairwise non-crossing, and decompose the plane into exactly one bounded395

polygonal region and k unbounded regions. The bounded region must be a convex polygon,396

call it Q, with k sides, each a segment of one of the rays r′ij , including its apex, and in order:397

if the bounded region were a non-convex polygon, the two rays associated to sides adjacent to398

a concave vertex would either cross or contradict the construction procedure. Therefore the399

rays r′i1 , r
′
i2
, . . . , r′ik can be thought of as the result of extending each side of a convex polygon400

in one direction to become a ray. Obviously such extensions must be done all clockwise or401

all counterclockwise. Suppose without loss of generality that the sides of the polygon are402

extended in the counterclockwise direction; see Figure 7.403

pi1

pi2

pi3

pik

ri1 ri2

ri3

rik

qi2

qik

qi1

qi3

pi1

pi2

pi3

pik

ri1
ri2

ri3

rik

qi2

qik

qi1

qi3

α1

α2

Figure 7: The two cases for the extended rays in non-separable canonical configurations.

Consider the convex polygon Q with vertices qi1 , . . . , qik . By construction, Q contains no404

points of S in its interior, and the points pi2 , . . . , pik lie on the boundary of Q. Let αj be the405

clockwise angle formed by rays rij and rij+1 , with rik+1
= ri1 (see Figure 7, left). Clearly,406 ∑k

1 αj = 360 degrees. If we now consider rik , there must be two consecutive rays rij and407

rij+1 such that the three clockwise angles formed by the three ordered rays are less than 180408

degrees (see Figure 8). Note that if j 6= 1 or pi1 is on the boundary of Q, then the triangle409
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T formed by pij , pij+1 and pik is empty (left part of Figure 8). If j = 1 and pi1 is not on the410

boundary of Q, then T might not be empty, but in that case, the ray starting at any point411

pi inside T would necessarily cross the segment joining pi1 and pik (right part of Figure 8).412

Therefore any non-separable canonical configuration of rays can be reduced to one of the two413

types shown in Figure 8.414

pij

pij+1pik

rij rij+1

rik

pi1

pi2pik

ri1
ri2

rik

qi2

qi1

S1

S2

S3

S1

S2

S3

Figure 8: The two possible situations for the three selected rays.

Let us first count the number of non-separable feasible permutations corresponding to415

configurations belonging to the first type (when the triangle T is empty). The rays emanating416

from pij , pij+1 and pik split the remaining points from S into three sets S1, S2 and S3, as417

shown in Figure 8. The rays shot from points in S1 cannot cross either rij , rij+1 , or T .418

Therefore, according to Lemma 2, the number of ways of shooting non-crossing rays from S1419

and producing different permutations is bounded from above by C|S1|, because no ray can420

cross a line parallel to rij (or rij+1), leaving S1 in one of the halfplanes it bounds. The same421

is true for S2 and S3. As a consequence, we see that there are at most C|S1|C|S2|C|S3| ≤ Cn−3422

different ways we can shoot non-crossing rays avoiding T that yield non-separable canonic423

configurations. Since we can choose T in ≤
(n
3

)
ways, and each ray rij , rij+1 , and rik in at424

most
(n
2

)
ways, we obtain an upper bound P (n)Cn for the number of non-separable feasible425

permutations, where P (n) is a polynomial with degree at most 9.426

A similar argument applies when T is not empty, because the quadrilateral with vertices427

qi1 , qi2 , pi2 and pik is empty. Thus we have proved our upper bound.428

To prove our lower bound we proceed as follows. Suppose without loss of generality that no429

horizontal line contains two points in S. Take a subset S′ of S and from every element pi ∈ S′430

shoot a horizontal ray to its left. From every element pj ∈ S \S′ shoot a horizontal ray to its431

right. Since we can choose S′ in 2n different ways, we obtain at least 2n−2 different feasible432

permutations (the directions of the rays emanating from the lowest and highest elements of433

S are irrelevant). �434

For the non-crossing rays problem, we were able to construct a point set S for which the435

upper bound is tight. This is not the case for the lower bound. We believe that the upper436

bound proved in Lemma 5 is tight up to polynomial factors, but a proof remains elusive to437

us.438

3.2 An upper bound for r(n)439

In this section we construct a set of points S such that the number of feasible permutations440

of S is strictly smaller than 4n, namely O∗(3.516n).441
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p1
W1

pn

WnW ′
1 W ′

n

Figure 9: The basic set of points B.

Lemma 6. There are points sets S in general position such that r(S) = O∗(3.516n). Therefore442

r(n) = O∗(3.516n).443

Proof: As the proof of this lemma is somewhat long and requires some technicalities, we444

split it into several sections.445

Preliminaries: An auxiliary point set. Let C be a circle. An α-arc of C is an interval446

of C with endpoints a and b such that the measure of the angle determined by the points a, b447

and the center of C is α, and the arc is below the line ab. Our construction builds on a basic448

set of points B = {p1, . . . , pn} consisting of n evenly spaced points on an α-arc of a circle C449

(see Figure 9). The points are numbered from left to right. Let W1 be the wedge containing450

B and bounded by the two lines through p1 parallel to lines p1p2 and pn−1pn. Let W ′1 be the451

wedge opposite to W1, bounded by the same lines (see Figure 9). The wedges Wn and W ′n are452

defined in the same way by the lines through pn parallel to the lines p1p2 and pn−1pn. Notice453

that we can make these wedges arbitrarily narrow by decreasing the value of α, and that if a454

ray rj shot from pj crosses the α-arc with endpoints p1 and pn, then rj is either inside W1 or455

inside Wn.456

We construct a set of points S taking two copies of B, denoted B1 and B2, as shown in457

Figure 10. The first copy consists of γn points and the second of n points, where γ ≥ 1 is a458

constant to be chosen later. The two copies are very far from each other and B2 is a tiny copy459

of B. In addition, the two sets are rotated and placed in such a way that the corresponding460

wedges W 1
γn and W 2

n cross (where the superindices indicate which copy we refer to); see Figure461

10. We use the notation ôBi, i = 1, 2, to denote the circular arcs on which the sets Bi, i = 1, 2,462

are respectively placed.463

To prove that the number of feasible permutations for S is strictly less than 4n, we define464

and evaluate some auxiliary values. Let g(n) be the number of feasible permutations we can465

obtain by shooting rays from the point set B in such a way that the rays do not intersect a466

line l crossing W ′1 (see Figure 11 left). If p1 is the topmost point, let f(n) be the number of467

feasible permutations we can obtain shooting rays from the point set B in such a way that468

the rays do not intersect either a line l1 crossing W ′1 nor a horizontal line l2 placed above B469

(see Figure 11, right). If pn is instead the topmost point, then we define f̂(n) symmetrically.470

Observe that when pn is the topmost point, the ray with apex pn must be the first ray we471

encounter clockwise in any set of non-crossing rays, starting from the direction of the positive472

x-axis. Hence, f̂(n) = f(n− 1).473

Let us give a recurrence formula for g(n). The ray starting at p1 can be the first ray474

we find, the last one, or it can intersect the circular arc between pj and pj+1, splitting the475

15



W 2
n

W 1
γn

B1

B2

B2

Figure 10: The set S with at most 3.516n feasible permutations.

l l1

l2
W ′

1

Figure 11: Shooting rays without crossing lines l, l1 and l2.

original problem into two subproblems: one of the same type with n− j points and another476

of type f̂ with j−1 points. Thus, in general, g(n) = 2g(n−1)+
∑n−1
j=2 f̂(j−1)g(n− j). Using477

the fact that f̂(j − 1) = f(j − 2) and defining g(0) = g(1) = 1, we see that g(n) satisfies the478

recurrence relation479

g(n) = 2g(n− 1) +
n−2∑
j=0

f(j)g(n− j − 2) (15)

for n ≥ 2.480

Using a similar argument and defining f(0) = f(1) = 1, it is easy to see that f(n) satisfies481

the recurrence relation482

f(n) = f(n− 2) +

bn
2
c∑

j=2

f(j − 2)f(n− 2j) +
n∑

bn
2
c+1

f(j − 2) (16)

for n ≥ 2.483

For example, if r1 crosses the circular arc between pj and pj+1, with j < bn2 c, then the484

rays rn, . . . , rn−2j+1 must appear as the first rays and in this order in any set of non-crossing485

rays. Therefore in this case, the problem is split into two subproblems: one of type f̂ with486

j − 1 points, and another of type f , with n− 2j points.487

Let G(z) =
∑
n≥0 g(n)zn and F (z) =

∑
n≥0 f(n)zn be the generating functions of g(n)488

and f(n) respectively. From (15), we obtain the following expression for G(z):489

G(z) =
z

1− 2z − z2F (z)
.
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It is well known (see for example [16, 20, 27]) that the asymptotic behavior of g(n) only490

depends on the inverse of the singularity of the analytic function G(z) closest to zero, and491

since the sequences f(n) and g(n) are formed by nonnegative numbers, the singularity closest492

to zero is a positive real number. In our case, the singularities of G(z) are either the values493

of z for which the denominator 1 − 2z − z2F (z) is zero, or the singularities of F (z). Using494

(16), one can easily check by induction that f(n) < 2n. This implies that every singularity495

of F (z) has module ≥ 1/2.496

Furthermore, again using that f(n) < 2n, for real numbers z in the interval [0, 1/2), we497

get498

F (z) <
k∑

n=0

f(n)zn +
∑
n>k

2nzn =
k∑

n=0

f(n)zn +
(2z)k+1

1− 2z
.

Taking, for example, k = 20, and using (16) to calculate f(2), f(3), . . . , f(20), we obtain that499

F (z) < ÒF (z) = 1 + z + 2z2 + 3z3 + 6z4 + · · ·+ 136708z20 +
(2z)21

1− 2z

for any z ∈ [0, 1/2). Solving 1 − 2z − z2ÒF (z) = 0, we obtain ẑ0 = 0.36297129 for the root500

closest to zero. Therefore, since F (z) < ÒF (z), the root of the equation 1 − 2z − z2F (z) = 0501

closest to zero is a positive real number z0, satisfying z0 > ẑ0, and thus we have asymptotically502

g(n) <
�

1
0.36297129

�n
< 2.756n. We use the notation c = 2.756 hereafter.503

With this, we conclude the preliminaries. We can now proceed to bound the number of504

feasible permutations for S.505

Case 1. We first analyze the different ways of shooting rays in such a way that no ray from506

B1 crosses ôB2 and no ray from B2 crosses ôB1. In this case all the rays coming from B1 appear507

consecutively in the configuration induced at infinity, and the same obviously is true for those508

coming from B2. We can therefore consider independently the number of different ways to509

shoot rays from each Bi in this situation and take their product as an upper bound, since the510

different ways of inserting the rays from B2 between two consecutive rays from B1 add only511

a factor γn which we can neglect.512

subcase 1.1. If some ray r with apex in a point in B1 is inside W 1
γn and crosses ôB1, there are513

at most cn ways of shooting the rays corresponding to B2, because r crosses W 2
n . Since there514

are at most 4γn ways of shooting rays from B1, omitting polynomial factors, we therefore515

have an upper bound of U1 = 4γn · cn =
(
4

γ
γ+1 · c

1
γ+1

)(γ+1)n
for this subcase.516

subcase 1.2. If no ray r from B1 inside W 1
γn crosses ôB1, observe that the rays inside W 1

γn517

can be rotated until they go outside W 1
γn without changing the induced global permutation.518

Therefore counting the different ways of shooting rays from B1 in this case is equivalent to519

counting the different ways of shooting rays from B1 without intersecting a line crossing W 1
1
′
.520

For each of these ways of shooting rays from B1, there are at most 4n ways of shooting rays521

from B2. Therefore an upper bound U2 = cγn · 4n =
(
c

γ
γ+1 · 4

1
γ+1

)(γ+1)n
is achieved in this522

case.523

Case 2. Let us now bound from above the number of different ways of shooting rays in which524 ôB1 or ôB2 or both are intersected by rays from the other set.525

subcase 2.1. Let M be the number of different ways of shooting rays with some ray from526

B2 intersecting ôB1, but with no ray from B1 intersecting ôB2. For k = 1, . . . , n, let us suppose527
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that k rays from B2 intersect ôB1. We can choose these k rays in
(n
k

)
different ways. Note528

that for a choice of rays rl1 , . . . , rlk , with l1 < . . . < lk, these rays must appear in this precise529

order. If rl1 intersects ôB1 between the points pi and pi+1 and rlk intersects ôB1 between the530

points pi+j and pi+j+1, then the number of different ways in which these k rays can be shot531

is
(j+k−2
k−2

)
<
(j+k
k

)
, using the j + 1 consecutive arcs of ôB1 between pi and pi+j+1. Observe532

that the j + 1 consecutive arcs can be chosen in γn− j − 1 ways. The other n− k rays from533

B2 can be shot in at most 4n−k different ways. For the rays from B1, observe that all the534

rays starting at points pi+1, . . . , pi+j must be shot vertically upwards. The other rays from535

B1 can be shot in at most cγn−j ways. Therefore for M we get the inequality536

M <
n∑
k=1

�
n

k

�
4n−k

�
γn−2∑
j=0

(γn− j − 1)

�
j + k

k

�
cγn−j

�
.

Neglecting polynomial factors, the asymptotic behavior of M is bounded by the behavior537

of the biggest term in the sum. Therefore for a fixed value of γ, we have to look for the values538

of k and j that maximize the value of
(n
k

)
4n−k

(j+k
k

)
cγn−j .539

Let H(x) = −x log(x) − (1 − x) log(1 − x), the standard binary entropy function, where540

log stands for the logarithm in base 2. Using Stirling’s formula for the factorial, it is well541

known that
( n
αn

)
= Θ

(
n−

1
2 2H(α)n

)
, where α is a constant in the interval 0 ≤ α ≤ 1.542

Let us take k = αn and j = βγn, where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are constants to be543

chosen later. Using the binary entropy function, we have544 �
j + k

k

�
c(γn−j) =

�
(α+ βγ)n

αn

�
cγ(1−β)n = Θ∗

��
2
H
(

α
α+γβ

)
(α+γβ)

cγ(1−β)
�n�

.

For fixed values of α and γ, the amount N(β) = 2
H
(

α
α+γβ

)
(α+γβ)

cγ(1−β) is maximized when545

β = α
γ(c−1) . Using the binary entropy function again, we obtain546 �

n

k

�
4n−k

�
j + k

k

�
cγn−j <

�
n

αn

�
4(1−α)nN

�
α

γ(c− 1)

�n
= Θ∗

�[
2H(α)+2(1−α)+H( c−1

c ) cα
c−1 · cγ−

α
c−1

]n�
.

For a fixed value of γ, the amount ÒN(α) = 2H(α)+2(1−α)+H( c−1
c ) cα

c−1 · cγ−
α
c−1 is maximized547

when α = c
5c−4 . Therefore we have a bound U3 =

� ÒN( c
5c−4)

�n
=

�� ÒN( c
5c−4)

� 1
γ+1

�(γ+1)n

for548

the different ways of shooting rays with some ray from B2 intersecting ôB1, but with no ray549

from B1 intersecting ôB2.550

Replacing c and α by the values c = 2.756 and α = 2.756
5·2.756−4 respectively in the expressions551

2H(α)+2(1−α)+H( c−1
c ) cα

c−1 and c−
α
c−1 , we obtain552

2H( 2.756
5·2.756−4

)+2(1− 2.756
5·2.756−4

)+H( 2.756−1
2.756 )

2.756 2.756
5·2.756−4

2.756−1 · 2.756−
2.756

5·2.756−4
2.756−1 = 5.569476.

Hence for the bound U3, we get553

U3 =

� ÒN(
c

5c− 4
)

1
γ+1

�(γ+1)n

=
[
5.569476

1
γ+1 2.756

γ
γ+1

](γ+1)n
.
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subcase 2.2. For the last case, to bound the number of different ways of shooting rays in554

which a ray coming from B1 crosses ôB2, observe that it is not possible to have two of these555

rays, because B2 is a small copy of B and two rays from B1 intersecting ôB2 would cross. Once556

the intersecting ray is chosen (in n(n − 1) possible ways), the number of different ways to557

shoot the rest of the rays is again bounded by U3, using the same argument to bound M as558

in the preceding subcase.559

Discussion. Observe that when γ increases, the value 4
γ
γ+1 · 2.756

1
γ+1 that appears in U1560

also increases, while the value 5.569476
1

γ+1 2.756
γ
γ+1 that appears in U3 decreases. If we set561

γ = 1.888575, then 4
1.888575

1.888575+1 · 2.756
1

1.888575+1 = 5.569476
1

1.888575+1 · 2.756
1.888575

1.888575+1 = 3.516.562

Therefore if γ = 1.888575, then U1 = U3 = 3.516(1+γ)n. Since U2 = 3.135(1+γ)n for γ =563

1.888575, the upper bound 3.516(1+γ)n holds in all cases.564

Finally, notice that for ease of exposition, we have taken B1 and B2 to consist of γn and565

n points respectively, and hence their union has cardinality (1 + γ)n. If we instead take B1566

and B2 to consist of γm and m points respectively, with (1 + γ)m = n, we obtain the claim567

in the theorem. �568

4 The γ-matching problem for convex regions569

In this section, we study the number of γ-matchings for the special case of a convex closed570

Jordan curve γ enclosing the point set S. We also study the particular case in which the571

points from S themselves belong to the curve.572

Let C be a closed Jordan curve bounding a convex closed region RC , and let S =573

{p1, . . . , pn} be a set of points in general position in RC . In a C-matching, the n points574

in S are connected to C by means of n pairwise non-crossing segments r1 = p1q1, r2 =575

p2q2, . . . , rn = pnqn (see Figure 12). This set of segments induces a (clockwise) cyclic permu-576

tation on C of the numbers 1, 2, . . . , n, a feasible permutation enabled by the C-matching.577

Figure 12 shows the feasible permutation 12687435 for a set of points and a convex curve. If578

rC(S) is the number of feasible permutations for S, then the main result of this section is the579

following.580

Theorem 3. If n ≥ 1, then rC(S) ≤ 4nCn. Moreover, if the n points of S are on the convex581

curve C, then rC(S) = Θ∗(5n).582

The case of points in convex position will be analyzed in Subsection 4.2, and the first583

result of the theorem will be proved in Lemma 7.584

4.1 Point sets in convex regions585

Before we prove Lemma 7, observe that if we take a sequence of nested convex regions,586

RC = RC0 ⊂ RC1 ⊂ RC2 ⊂ · · · , then rC0(S) ≥ rC1(S) ≥ rC2(S) ≥ · · · . In addition, notice587

that if all the intersection points between pairs of lines defined by two points from S are in588

the interior of the region bounded by Ci, then rCi(S) = r(S), where r(S) is the number of589

feasible permutations generated by non-crossing rays from S. Therefore for any point set S590

and any convex curve C for which rC(S) is minimized, we have that rC(S) = r(S).591

Moreover, since rC(S) increases the more C tightens around S, we see that rC(S) is592

maximized when C is precisely the boundary of convex hull of S.593
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Figure 12: The feasible permutation 12687435.

Unfortunately, we have not obtained sharp bounds for this problem. Even when C is the594

boundary of the convex hull of S, we only have been able to prove the following rough upper595

bound for rC(S).596

p1

p2

p3

p4

p5

p6

p7

p1

p2

p3

p4

p5

p6

p7

q1 q2

q6

q7

q4

q3

q5
q1 q2

q6

q7

q4
q3

q5

Figure 13: The feasible permutations 1257634 and 1275643 obtained with the segments r3, r6
and r7 going downwards, the segments r1, r2, r4 and r5 going upwards, and enabling the
suborders 763 and 1254.

Lemma 7. Let C be a closed Jordan curve bounding a convex region RC and let S =597

{p1, . . . , pn} be a set of points in RC . Then598

rC(S) ≤ 4nCn.

599

Proof: Let us assume, without loss of generality, that every feasible C-matching is enabled600

with no horizontal segment. Then, given a configuration, S can be partitioned into two sets601
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S1 and S2 such that if pi ∈ S1 (pi ∈ S2), the segment starting at pi goes downwards (upwards)602

in the sense that the vector −−→piqi points down (up).603

Suppose a set S1 of points is given. As in Lemma 1, the segment with apex at the point604

with greatest y divides the remaining points of S1 into two parts, left and right, with i and605

|S1|−1−i points respectively, and the iteration of the argument yields the recurrence relation606

for the Catalan numbers. Therefore the number of different ways to shoot the segments from607

S1 downwards is at most C|S1| and for the same reason, the segments of S2 = S \ S1 can be608

shot upwards in at most C|S2| ways.609

Now, given an order for the segments of S1 and an order for the segments corresponding610

to S2, observe that the segments from S2 can be placed among segments of S1 in many ways611

that still enable the two suborders and give different feasible permutations (see Figure 13 for612

an example of this). Since S1 can be chosen in 2n ways, and merging segments of S1 from613

S2 can be done in at most
(|S1|+|S2|−1
|S1|−1

)
≤ 2n different ways, we obtain the claimed upper614

bound. �615

4.2 Points in convex position616

Since rC(S) is maximized when C is the boundary of the convex hull of S, an especially617

interesting case arises when all the points of S are on a convex curve C. In this case, each618

point pi of S is matched to a point qi on C. We are interested in counting the possible orders619

for the points q1, . . . , qn.620

Throughout this subsection, the points p1, . . . , pn of S are assumed to be on a convex621

curve C, appearing clockwise in this order starting at p1. Observe that the number of feasible622

permutations does not change if we replace C by any other convex curve γ as long as the623

n points appear on γ in the same order, and hence rC(S) does not depends on the exact624

geometric position of the points or on the shape of C. In particular, we could take C to be625

the convex hull of S, whose set of vertices is precisely S. However, for ease of description and626

clarity of figures, we prefer to assume that C is a smooth rounded curve.627

x1

x2

y1

y2

x3

y3

xm

ym

xm−1

a1

a2

a3

am

a1

a2

a3
x1 x2

y1

y2

x3

y3

C C

C ′

C ′

Figure 14: A curve of jump 1 (left) and a curve of jump different from 1 (right).
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Let C be a convex curve, let C ′ be a closed Jordan curve that intersects C a finite number628

of times (see Figure 14), and let RC be the convex region bounded by C. Then C ′ \ RC629

is a set of open arcs {a1, . . . , am}, each of them joining two points xi, yi on C. The labels630

are chosen in such a way that when we traverse C ′ clockwise we meet the arcs a1, . . . , am631

in this order, and that when we reach ai we meet first xi and then yi. Note that yi can632

coincide with xi+1. We say that C ′ is a curve of jump 1 with respect to C if the points633

x1, . . . xm, y1, . . . , ym appear in the order x1, y1, x2, y2, . . . , xm, ym in a clockwise traversal of634

C starting at x1. Therefore the arcs a1, . . . , am are not nested. A curve of jump 1 (left part)635

and a curve of jump different from 1 (right part) are shown in Figure 14.636

Let S = {p1, p2, . . . , pn} be a set of n points on a convex curve C. Given a curve C ′ of637

jump 1 visiting the points in S, the points p1, p2, . . . , pn appear clockwise on C ′ in some order638

pi1 , pi2 , . . . , pin . We say that an order π is 1-feasible when there is a simple curve C ′ of jump639

1 such that the clockwise order in which the points of S appear on C ′ is π. For example, the640

curve shown in the right part of Figure 15 goes through the points p1, p2, . . . , p7 in the order641

1754326. Although feasible permutations for C-matchings and 1-feasible orders for curves642

of jump 1 seem to be different concepts at first glance, in fact, they are equivalent, as the643

following lemma shows.644

p1

p2

p3

p4

p5

p6

p7
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q6

q5

q3

q4

p1

p2
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p4
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p7

q1

q2

q7

q6

q5

q3
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Figure 15: Transforming a configuration of non-crossing segments to a curve of jump 1.

Lemma 8. Given a set S of n points on a convex curve C, a permutation π is feasible for a645

C-matching if and only if π is a 1-feasible order for some curve of jump 1.646

Proof: We first show that given the order i1, . . . , in induced by a configuration of non-crossing647

segments, there is a curve of jump 1 visiting the points in that order and vice versa.648

Given a configuration of non-crossing segments r1 = p1q1, . . . , rn = pnqn, let qi1qi2 . . . qin649

be the clockwise order in which the endpoints of the segments appear on C. We can build650

a simple closed curve ÒC ′ connecting the points qi1 , qi2 , . . . , qin (in which we assume the con-651

vention qin+1 = qi1) by joining qij to qij+1 , j = 1, . . . , n using a clockwise arc outside RC (left652

part of Figure 15).653

We next modify ÒC ′ to visit all the points pi. Consider the union of ÒC ′ with all the segments654

piqi (Figure 15, left). Slightly modify the arc of ÒC ′ hitting C at qij to hit C at a point yij655

slightly before qij (counterclockwise), and finally add the n segments pijyij (Figure 15, right),656
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obtaining a simple closed curve C ′. By construction, this curve C ′ of jump 1 visits all the657

points pi in the order pi1 , pi2 , . . . , pin , and this order i1, . . . , in is the same as the order induced658

by the set of segments in the matching.659

Conversely, let C ′ be a curve of jump 1 with respect to C that visits the points of S660

clockwise in the order pi1 , pi2 , . . . , pin . Let ai, i = 1, . . . , l, be the external arcs of C ′, each661

arc linking point xi ∈ C to yi ∈ C clockwise. If we remove all these open arcs, we obtain662

l disjoint paths γ1, . . . , γl, each of them connecting some point yi to some point xi+1 inside663

RC (with the convention xl+1 = x1). Observe that if the points yj and xj+1 are the same,664

then the path γj consists of only one isolated point on C (as is the case with point pm in665

Figure 16). Stretching these paths, we can assume that the l paths are either polygonal lines666

or isolated points. One of these paths is shown in Figure 16.667

pj
yi

xi+1

pj+1

ph−1

Rj
i

Rh−1
i

Rh
iγi

Ci

pm

Figure 16: Building non-crossing segments from a curve of jump 1.

For a polygonal path γi, let Ci be the clockwise part of C between yi and xi+1. If668

pj , pj+1 . . . , ph−1 are the points from S on Ci, then all of them must be visited in C ′ using669

γi, because C ′ is a curve of jump 1. Let us consider the sequence of points vj−1 = yi, vj =670

pj , vj+1 = pj+1, . . . , vh−1 = ph−1, vh = xi+1 (upper part of Figure 16). For every two con-671

secutive points vk−1 and vk, k = j, . . . , h, let Rki be the convex region defined by the path672

from vk−1 to vk on γi and the arc from vk−1 to vk on Ci. Note that the boundary of some673

of these regions (for example Rh−1i in Figure 16) can consist of a segment and the part of Ci674

connecting the endpoints of the segment.675

For each region Rki , and from each point pt of S belonging to Rki , we can join pt across Rki676

with a point qt on Ci in such a way that the order on C of the endpoints qt of the segments677

ptqt (dashed lines in Figure 16) is the same as the order of the endpoints pt on γi. As a point678

pk from S on Ci belongs to both Rki and Rk+1
i , either of these two regions can be chosen for679

placing the endpoint qk of the segment corresponding to pk.680

Finally, if the path γi consists of only one point pm of S, then we can join pm with a point681

qm placed either on the arc (pm, pm+1) of C or in the arc (pm−1, pm).682

Since this construction can be carried out for all the paths γi, and the extremes yi and683

xi+1 of each path are placed consecutively on C, we see that when the points from S are684

joined with C in this way, the order induced on C in the resulting C-matching is the same as685

the order in which the points in S are visited by C ′. �686

Curves of jump 1 visiting n points in convex position were studied by Garćıa and Tejel687

in the context of analyzing the possible orders in which the points of the second convex hull688
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of a set S of points can be visited in a simple polygon having as vertices the points from S689

[15]. In that paper, the authors characterized all the possible orders in which n points in690

convex position can be visited using curves of jump 1, and they gave recurrence formulas,691

the generating function, and the asymptotic value for the number of feasible orders. These692

results are summarized in the following lemma.693

Lemma 9 ([15]). A permutation π is a feasible order for curves of jump 1 if and only if694

any five indices i1 < i2 < i3 < i4 < i5 appear neither in cyclic order i1i3i5i2i4 nor in cyclic695

order i1i4i2i5i3, and any six indices i1 < i2 < i3 < i4 < i5 < i6 appear neither in cyclic order696

i1i4i5i2i3i6 nor in cyclic order i1i2i5i6i3i4. Asymptotically, the number of feasible orders is697

125
√

5

54
√
π
n−3/25n.

As a consequence of Lemmas 8 and 9 we immediately obtain the following result.698

Lemma 10. Given a set S of n points on a convex curve C, rC(S) = Θ∗(5n); i.e., there699

are 5n different ways of connecting the n points to the curve using segments and generating700

different cyclic permutations.701

5 Summary and final remarks702

For the non-crossing rays problem, we have proved that r(n) = Ω∗(2n), r(n) = O∗(3.516n),703

and r(n) = Θ∗(4n). While the upper bound is tight because there are sets of points for which704

r(S) ≈ 4n, we do not know whether the lower bound is also tight. We have tried different705

sets of points for which the number of feasible permutations is close to 2n, but we have not706

obtained any properly tight result. For one of these sets, namely the vertices of a regular707

n-gon, we can show that r(S) ≥ 2.31n, using a long and tedious computation. We think that708

2.31n is the right value for a regular n-gon, but we have not been able to prove this to date.709

In any case, we believe that the lower bound 2n is tight up to polynomial factors. Hence, we710

conjecture the following.711

Conjecture 1. There are sets S of n points in general position such that r(S) = Θ∗(2n).712

For the γ-matching problem, we have proved that rC(S) ≤ 4nCn when C is a convex curve713

enclosing the set of points. Note that for a given set S, the value rC(S) reaches a maximum714

when C is the boundary of the convex hull of S, and that rC(S) = Θ∗(5n) when the n points715

of S are on a convex curve C. Therefore, given the convex curve C, the case of S being n716

points on C appears to be the case for which rC(S) is maximal. As a consequence, for a given717

convex curve C, we tend to believe that 16n is a quite rough upper bound for rC(S), and that718

the real value of rC(S) is much closer to 5n than to 16n, for any S inside the region bounded719

by C.720
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[13] A. Garćıa, F. Hurtado, J. Tejel and J. Urrutia, On the number of non-crossing rays751

configurations in Proc. XII Spanish Meeting on Computational Geometry (2007), pp.752

129–134.753
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