
NERVE COMPLEXES OF CIRCULAR ARCS

MICHA L ADAMASZEK, HENRY ADAMS, FLORIAN FRICK, CHRIS PETERSON,

AND CORRINE PREVITE–JOHNSON

Abstract. We show that the nerve complex of n arcs in the circle is homotopy equivalent
to either a point, an odd-dimensional sphere, or a wedge sum of spheres of the same even
dimension. Moreover this homotopy type can be computed in time O(n log n). For the
particular case of the nerve complex of evenly-spaced arcs of the same length, we determine
the dihedral group action on homology, and we relate the complex to a cyclic polytope with
n vertices. We give three applications of our knowledge of the homotopy types of nerve
complexes of circular arcs. First, we use the connection to cyclic polytopes to give a novel
topological proof of a known upper bound on the distance between successive roots of a
homogeneous trigonometric polynomial. Second, we show that the Lovász bound on the
chromatic number of a circular complete graph is either sharp or off by one. Third, we show
that the Vietoris–Rips simplicial complex of n points in the circle is homotopy equivalent
to either a point, an odd-dimensional sphere, or a wedge sum of spheres of the same even
dimension, and furthermore this homotopy type can be computed in time O(n log n).
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1. Introduction

For U a collection of subsets of some topological space, the nerve simplicial complex N (U) contains a
k-simplex for every subcollection of k + 1 sets with nonempty intersection. The Nerve Theorem, which
holds in a variety of contexts, states that if the intersection of each subcollection of U is either empty or
contractible, then the nerve complex is homotopy equivalent to the union of the subsets [11, 10]. A coarser
representation of the incidences between sets in U is given by the clique complex N (U), which contains a
k-simplex for every collection of k + 1 sets with pairwise nonempty intersections. In this paper we study
nerve complexes and clique complexes of finite collections of arcs in the circle, which are known, respectively,
as ambient C̆ech complexes and Vietoris-Rips complexes when all arcs have the same length. We completely
classify their homotopy types.
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Main result (Theorem 9.4). The nerve complex and the clique complex of any finite collection of arcs in
the circle are homotopy equivalent to either a point, an odd-dimensional sphere, or a wedge sum of spheres
of the same even dimension.

The higher-dimensional spheres occur when the arcs are large enough so that the intersection of two arcs
need not be contractible.

We begin by studying the homotopy types and the combinatorics of the nerve complexes of evenly-spaced
circular arcs. For 0 ≤ k < n, letN (n, k) denote the nerve complex of n evenly-spaced arcs each occupying a k

n
fraction of the circumference of the circle. These are of fundamental interest since, as we shall see, the nerve
of any finite configuration of arcs deformation retracts to a complex isomorphic to some N (n, k). We prove
a recursive relation from which we derive the homotopy types of the N (n, k). We further provide explicit
generators of homology and cohomology of N (n, k) and describe the induced action of their automorphism
groups on homology. In the generic case, when N (n, k) is homotopy equivalent to an odd-dimensional sphere
S2l+1, we show that it contains the boundary complex of the n-vertex cyclic polytope C2l+2(n) as a homotopy
equivalent subcomplex.

Applications. We give two immediate applications of these calculations.
1. We show that the Lovász bound on the chromatic number of a circular complete graph is either sharp or

off by one (see Corollary 4.2).
2. We use the relation with cyclic polytopes to give a novel topological proof of a known upper bound on

the distance between successive roots of a homogeneous trigonometric polynomial (see Theorem 5.12).

In the last section we study arbitrary collections U of n arcs in S1. We show that each such nerve complex
N (U) has an explicit homotopy-preserving combinatorial reduction to one of the form N (n′, k) with n′ ≤ n.
We can compute the reduction in time O(n log n), and as a result we obtain an efficient algorithm for
determining the homotopy type of N (U), even though the worst-case size of N (U) is exponential in n. The
reductions are independent of any knowledge of the N (n, k), and they also carry over to the clique complexes
N (U).

When U is a collection of balls of fixed radius r in a Riemannian manifold M , the clique (or flag) complex
N (U) is called a Vietoris–Rips complex [31]. Such complexes arise in manifold reconstruction [14, 4] and in
topological data analysis [16, 12]. If the radius r is sufficiently small and if the balls are sufficiently dense, then
Hausmann and Latschev prove the Vietoris–Rips complex is homotopy equivalent to manifold M [21, 27].
However, Vietoris–Rips complexes with larger radii parameters r are not well understood, even for simple
spaces such as spheres. We show that the Vietoris–Rips complex of an arbitrary subset of n points in the
circle with arbitrary radius parameter r is homotopy equivalent to either a point, an odd-dimensional sphere,
or a wedge sum of spheres of the same even dimension. Moreover this homotopy type can be computed in
time O(n log n). We also prove a surprising relationship, different from the usual inclusion, between the C̆ech
and Vietoris–Rips complexes of evenly-spaced points on the circle.

2. Preliminaries

We assume the reader is familiar with basic concepts in topology and combinatorial topology, and refer
to Hatcher [20] and Kozlov [23].

Simplicial complexes. Let K be a simplicial complex, let V (K) be its vertex set, and let K(i) be its
i-skeleton. We will identify an abstract complex with its geometric realization and use the symbol ' to
denote homotopy equivalence and ∼= to denote isomorphism of simplicial complexes. For V ′ ⊆ V (K), let
K[V ′] be the induced subcomplex of K containing only those simplices with all vertices in V ′. We let
K \ {v} = K[V (K) \ {v}] be the simplicial complex obtained from K by removing all simplices containing
v. The link of vertex v is lkK(v) = {σ ∈ K | v /∈ σ and σ ∪ {v} ∈ K}.

Domination. We say vertex v is dominated by vertex v′ if each σ ∈ K containing v satisfies σ ∪ {v′} ∈ K,
i.e. if lkK(v) is a cone with apex v′. If vertex v ∈ K is dominated, then K ' K \{v} because we are removing
a vertex v whose link is contractible. In fact there is a deformation retraction K 7→ K \ {v} which sends v
to v′ and also simplicially collapses K to K \ {v}. These removals go by various names: folds, elementary
strong collapses, and LC reductions [6, 9, 29]. An analogous operation for graphs is known as dismantling.
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We say that simplicial complex K is minimal if it contains no dominated vertices.

Nerves and cliques. Let Y be a topological space, and let U = {Ui}i∈I with ∅ 6= Ui ⊆ Y be a collection
of subsets. We say U is a covering of Y if

⋃
i∈I Ui = Y .

Definition 2.1. Given a collection of subsets U = {Ui}i∈I in a topological space, the nerve simplicial

complex N (U) has vertex set I and contains k-simplex [i0, . . . , ik] if
⋂k
j=0 Uij 6= ∅.

The Nerve Theorem is generally attributed to Borsuk [11], and the version we use is due to Björner [10,
Theorem 10.6].

Theorem 2.2 (Nerve Theorem). Let K be a simplicial complex and let U be a covering by subcomplexes. If
every nonempty finite intersection of complexes in U is contractible, then N (U) ' K.

In Sections 8 and 9 we will consider clique complexes of nerves. For G a simple, loopless, undirected
graph, the clique simplicial complex Cl(G) has V (G) as its vertex set and a face for each clique (complete
subgraph) of G.

Definition 2.3. Given a collection of subsets U = {Ui}i∈I in a topological space, the clique simplicial
complex N (U) has vertex set I and contains k-simplex [i0, . . . , ik] if Uij ∩ Uij′ 6= ∅ for all 0 ≤ j, j′ ≤ k.

We note N (U) = Cl(N (U)(1)).

C̆ech and Vietoris–Rips complexes. In the particular case when Y is a metric space and U is a collection
of balls, the nerve complex is also known as a C̆ech complex, and the clique complex is also known as a
Vietoris–Rips complex. For Y a metric space, we denote the closed ball of radius r ≥ 0 centered at y ∈ Y by
B(y, r) = {y′ ∈ Y | d(y, y′) ≤ r}. Fix some X ⊆ Y and let U(X, r) = {B(x, r) | x ∈ X}. Then N (U(X, r)) is

isomorphic to the ambient C̆ech complex C̆ech(X,Y ; r) with landmark set X and witness set Y , as defined
by Chazal, de Silva, & Oudot [13, Section 4.2.3]1. The Vietoris–Rips complex VR(X, r) is defined to be the
simplicial complex on vertex set X containing finite σ ⊆ X as a simplex if the distance between any two
points in σ is at most r. If Y is a geodesic space then VR(X, r) is isomorphic to N (U(X, r/2)).

Conventions regarding S1. In this paper we study the setting where U is a finite collection of arcs in
the circle S1. We identify S1 with R/Z, where the positive orientation on R corresponds to the clockwise
orientation on S1. For x, y ∈ R with x ≤ y we denote by [x, y]S1 the closed circular arc obtained as the
image of the interval [x, y] under the quotient map R → R/Z. Similarly, for a, b ∈ S1 we denote by [a, b]S1

the closed circular arc obtained by moving from a to b in a clockwise fashion. Open and half-open intervals
in S1 are obtained by removing endpoints from closed intervals. The intersection of k such arcs is either
empty, contractible, or homotopy equivalent to a disjoint union of at most k points; U is known as an acyclic
family [15].

We also equip the circle S1 of circumference 1 with the natural arc-length distance. Under this metric
the diameter of S1 is 1

2 . The choice of this particular metric does not influence the generality of our results.

Other conventions. We denote the topological space consisting of a single point by ∗. For a topological

space Y we let
∨i

Y denote the wedge sum of i copies of Y , where by convention
∨0

Y = ∗. The symbol Σ
denotes unreduced suspension.

All homology and cohomology is taken with integer coefficients.
If σ is an oriented d-simplex in K (an element of the standard basis of the chain group Cd(K)) then σ∨

denotes the dual d-cochain which assigns 1 to σ, −1 to the reverse oriented σ, and 0 to other d-simplices.

3. Nerve complexes of evenly-spaced arcs

We begin by giving a combinatorial model for nerve complexes of evenly-spaced circular arcs.

Definition 3.1. For n ≥ 1 and i, j ∈ Z with i ≤ j, let the discrete circular arc [i, j]n be the image of the set
{i, i+ 1, . . . , j} under the quotient map Z→ Z/n, z 7→ z mod n.

1Attali & Lieutier [3] refer to the ambient C̆ech complex as a restricted C̆ech complex.
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For most of this paper we will be studying the topology and combinatorics of the following family of
abstract simplicial complexes.

Definition 3.2. For n ≥ 1 and k ≥ 0, the nerve complex N (n, k) has vertex set {0, . . . , n− 1}, and its set
of maximal simplices is

{
[i, i+ k]n | i = 0, . . . , n− 1

}
.

If k ≤ n − 2 then N (n, k) has n maximal simplices given by the n rotations of [0, k]n, and if k ≥ n − 1
then N (n, k) is the (n− 1)-simplex.

To see the connection with evenly-spaced circular arcs, for 0 ≤ k < n consider the collection

(1) Un,k =
{[ i
n
,
i+ k

n

]
S1

∣∣∣ i = 0, . . . , n− 1
}

of n evenly-spaced arcs of length k
n . Also, let Xn ⊆ S1 be a set of n evenly-spaced points. It is an easy

exercise to verify the isomorphisms of simplicial complexes

(2) C̆ech
(
Xn, S

1; k
2n

) ∼= N (Un,k) ∼= N (n, k).

For k even, the complex N (n, k) can also be described as a distance-neighborhood complex of the cycle
graph Cn, as studied by the last author [30].

The following regimes are simple.

• Disconnected: N (n, 0) is the disjoint union of n points, i.e.
∨n−1

S0.
• Circle: For 1 ≤ k < n/2 we have N (n, k) ' S1 by the Nerve Theorem. Indeed, consider the

triangulation of S1 with vertices i
n and edges [ in ,

i+1
n ]S1 for i = 0, . . . , n− 1. Since 1 ≤ k < n/2, the

covering Un,k of S1 has all nonempty intersections contractible. We have N (n, k) ∼= N (Un,k), and
Theorem 2.2 gives N (Un,k) ' S1.

• Top-dimensional sphere: N (n, n− 2) is the boundary of the (n− 1)-simplex.
• Contractible: For k ≥ n− 1 the complex N (n, k) is the full (n− 1)-simplex.

Example 3.3. The nerve complex N (6, 3) is the nerve of the 6 equally-spaced closed arcs of length 3
6 = 1

2 ;

see Figure 1. The Nerve Theorem does not apply since [ i6 ,
i+3
6 ]S1 ∩ [ i+3

6 , i6 ]S1 ' S0 is not contractible. The

complex N (6, 3) has six maximal 3-simplices, and as we shall see N (6, 3) '
∨2

S2.

Figure 1. (Top) The six arcs of U6,3. (Bottom) The six maximal 3-simplices in N (6, 3)

We will now determine the homotopy types of the complexes N (n, k). For this we repeatedly use the
following lemma, which is a simple version of [10, Lemma 10.4.(ii)].

Lemma 3.4. If the simplicial complex K is the union of two contractible subcomplexes K1 and K2, then
K ' Σ (K1 ∩K2).

Proposition 3.5. For n/2 ≤ k < n we have N (n, k) ' Σ2N (k, 2k − n).

Proof. Denote the maximal simplices of N (n, k) by σi = [i, i+ k]n for i = 0, . . . , n− 1. Then we can write

N (n, k) =
( n−k−2⋃

i=0

σi

)
∪
( n−1⋃
j=n−k−1

σj

)
,
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where by a slight abuse of notation we write
⋃
t∈T σt for the subcomplex of N (n, k) with maximal simplices

{σt | t ∈ T}. Each σj contains n−1 and each σi contains k since n−k−2 ≤ k, hence both unions are cones.
Moreover, the simplices σi do not contain n − 1. By Lemma 3.4 we have N (n, k) ' ΣK, where K is the
complex with vertex set {0, . . . , n− 2} whose maximal simplices are the inclusion-wise maximal elements in
the family

{σi ∩ σj | i = 0, . . . , n− k − 2 and j = n− k − 1, . . . , n− 1}.
The intersections σi ∩ σj fall into three categories, see Figure 2.

a) If 0 ≤ i ≤ j + k − n ≤ i + k < j ≤ n − 1 then σi ∩ σj = {i, . . . , j + k − n}. We have σi ∩ σj ⊆
σ0 ∩ σn−1 = {0, . . . , k − 1}.

b) If 0 ≤ j + k − n < i ≤ j ≤ i + k ≤ n − 2 then σi ∩ σj = {j, . . . , i + k}. We have σi ∩ σj ⊆
σn−k−2 ∩ σn−k−1 = {n− k − 1, . . . , n− 2}.

c) If i ≤ j + k − n and j ≤ i + k then σi ∩ σj = {i, . . . , j + k − n} ∪ {j, . . . , i + k}. These are not
contained in any other set of the form σi′ ∩ σj′ .

We conclude that the maximal simplices of K are

τ = {0, . . . , k − 1}, τ ′ = {n− k − 1, . . . , n− 2}, and τi,j = {i, . . . , j + k − n} ∪ {j, . . . , i+ k},

subject to the conditions

0 ≤ i ≤ j + k − n and j ≤ i+ k ≤ n− 2.

0
i

j + k − n

i+ k

j

0
i+ k

j

i
j + k − n

0

i+ k

j

i

j + k − n

a) b) c)

Figure 2. The intersections σi ∩ σj in N (n, k).

We claim that the subcomplex T = τ ′ ∪ (
⋃
i,j τi,j) of K is contractible. Let Tl = T [{l, . . . , n − 2}] for

l = 0, . . . , n − k − 1. For l 6= n − k − 1 the maximal simplices of Tl containing l are of the form τl,j , since
a maximal simplex of T containing l is of the form τi,j for some i ≤ l ≤ j + k − n and τi,j ∩ V (Tl) ⊆ τl,j .
Since each τl,j contains l+ k, vertex l is dominated by l+ k in Tl, giving Tl ' Tl \ {l} = Tl+1. It follows that
T = T0 is homotopy equivalent to Tn−k−1 = τ ′, which is is contractible.

We write K = τ∪T as the union of two contractible subcomplexes, and by Lemma 3.4 there is a homotopy
equivalence K ' Σ (τ ∩ T ). Note the vertex set of τ ∩ T is {0, . . . , k − 1}, and its maximal simplices are the
inclusion-wise maximal elements in the family consisting of τ ∩ τ ′ and all τ ∩ τi,j . These maximal elements
are

τ ∩ τ ′ = {n− k − 1, . . . , k − 1}
τ ∩ τ0,j = {j, . . . , k − 1} ∪ {0, . . . , j + k − n}, n− k ≤ j ≤ k − 1

τ ∩ τi,i+k = {i, . . . , i+ 2k − n}, 0 ≤ i ≤ n− k − 2.

These are precisely all the cyclic intervals of the form [i, i + (2k − n)]k in {0, . . . , k − 1}, hence τ ∩ T =
N (k, 2k − n). By combining the two suspension steps we obtain

N (n, k) ' ΣK ' Σ2 (τ ∩ T ) = Σ2N (k, 2k − n).

�

The homotopy types of the nerve complexes N (n, k) follow.
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Theorem 3.6. Let 0 ≤ k ≤ n− 2. Then

N (n, k) '

{∨n−k−1
S2l if k

n = l
l+1

S2l+1 if l
l+1 <

k
n <

l+1
l+2

for some l ≥ 0.

Proof. We apply Proposition 3.5 repeatedly to the two initial conditions N (n, 0) ∼=
∨n−1

S0 and N (n, k) '
S1 for 1 ≤ k < n/2. For the induction step note that if l

l+1 <
k
n <

l+1
l+2 then l−1

l < 2k−n
k < l

l+1 , and k
n = l

l+1

implies 2k−n
k = l−1

l . �

k = 0 1 2 3 4 5 6 7 8 9 10 11 12

n = 2 S0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∨2S

0 S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 ∨3S

0 S1 S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
5 ∨4S

0 S1 S1 S3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∨5S

0 S1 S1 ∨2S
2 S4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 ∨6S
0 S1 S1 S1 S3 S5 ∗ ∗ ∗ ∗ ∗ ∗ ∗

8 ∨7S
0 S1 S1 S1 ∨3S

2 S3 S6 ∗ ∗ ∗ ∗ ∗ ∗
9 ∨8S

0 S1 S1 S1 S1 S3 ∨2S
4 S7 ∗ ∗ ∗ ∗ ∗

10 ∨9S
0 S1 S1 S1 S1 ∨4S

2 S3 S5 S8 ∗ ∗ ∗ ∗
11 ∨10S

0 S1 S1 S1 S1 S1 S3 S3 S5 S9 ∗ ∗ ∗
12 ∨11S

0 S1 S1 S1 S1 S1 ∨5S
2 S3 ∨3S

4 ∨2S
6 S10 ∗ ∗

13 ∨12S
0 S1 S1 S1 S1 S1 S1 S3 S3 S5 S7 S11 ∗

14 ∨13S
0 S1 S1 S1 S1 S1 S1 ∨6S

2 S3 S3 S5 S7 S12

15 ∨14S
0 S1 S1 S1 S1 S1 S1 S1 S3 S3 ∨4S

4 S5 ∨2S
8

16 ∨15S
0 S1 S1 S1 S1 S1 S1 S1 ∨7S

2 S3 S3 S5 ∨3S
6

17 ∨16S
0 S1 S1 S1 S1 S1 S1 S1 S1 S3 S3 S3 S5

18 ∨17S
0 S1 S1 S1 S1 S1 S1 S1 S1 ∨8S

2 S3 S3 ∨5S
4

Figure 3. The homotopy types of nerve complexes N (n, k).

Remark 3.7. Let the boundary of a pure d-dimensional simplicial complex be the subcomplex induced by
all (d− 1)-faces that are contained in exactly one maximal simplex. For k ≥ 2 and n ≥ 2k+ 1 the boundary

of N (n, k) (denoted Mk−1
k−2 (n) by Kühnel and Lassmann [26] and Xk−1

n (ψ0) by Bagchi and Datta [7]) is a

triangulation of the sphere product Sk−2×S1 if k is odd or if n is even and a triangulation of the analogous
“twisted sphere product” if k is even and n is odd. This fact is a combination of [26, Section 5, part (c) of
the Theorem] and [7, Lemma 3.3]. It can also be obtained by extending the argument of Kühnel [25] for the
case n = 2k + 1.

4. Application to the Lovász bound

Let G be a simple graph with vertex set V (G). The chromatic number χ(G) is the smallest number
of colors required to color the vertices of G so that no two adjacent vertices have the same color. The
neighborhood complex N(G) is the simplicial complex whose vertex set is V (G) and whose simplices are
those subsets of V (G) which have a common neighbor. For Y a topological space, we let conn(Y ) ≥ −1 be
the minimum k such that Y is k-connected, i.e. the first k homotopy groups of Y are trivial. The following
lower bound, due to Lovász, is now a classical result in topological combinatorics.

Theorem 4.1 (Lovász [28]). For G a graph we have χ(G) ≥ conn(N(G)) + 3.

We will use our understanding of the nerve complexes N (n, k) to exhibit a certain natural family of graphs
which attain equality in Theorem 4.1.

For n ≥ 2d, the circular complete graph Kn/d has vertex set {0, . . . , n− 1}, and two vertices i and j are
adjacent if and only if d ≤ |i− j| ≤ n− d. The circular chromatic number χc(G) is defined as

χc(G) = inf
{
n/d

∣∣ there exists a graph homomorphism G→ Kn/d

}
.
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We refer to the book by Hell & Nešetřil [22, Section 6.1] for a comprehensive theory of this invariant. One
can show that χc(Kn/d) = n/d and χ(G) = dχc(G)e for any graph G, see [22, Theorem 6.3, Corollary 6.11],
so in particular χ(Kn/d) = dn/de. As a corollary of Theorem 3.6, we show that χ(Kn/d) either achieves the
topological lower bound of Theorem 4.1 or is off by one.

Corollary 4.2. Let n ≥ 2d. Then

χ(Kn/d) =

{
conn(N(Kn/d)) + 3 if 0 ≤ ( n2d mod 1) ≤ 1

2

conn(N(Kn/d)) + 4 if 1
2 < ( n2d mod 1) < 1.

Proof. We have an isomorphism of simplicial complexes N(Kn/d) ∼= N (n, n− 2d). There are two cases. If

n = 2dq then n−2d
n = q−1

q and N (n, n− 2d) '
∨2d−1

S2(q−1) by Theorem 3.6. We have

χ(Kn/d) = dn/de = 2q = conn(N(Kn/d)) + 3.

If n = 2dq+ r with 0 < r < 2d then q−1
q < n−2d

n < q
q+1 and N (n, n− 2d) ' S2q−1 by Theorem 3.6. We have

χ(Kn/d) = dn/de = 2q + dr/de =

{
2q + 1 = conn(N(Kn/d)) + 3 if 0 < r ≤ d
2q + 2 = conn(N(Kn/d)) + 4 if d < r < 2d.

�

5. The odd-dimensional spheres: cyclic polytopes and trigonometric polynomials

Our computation of the homotopy types of the nerve complexes N (n, k) is based on Proposition 3.5, which
does not give much insight into the geometry of these complexes and does not lend itself to the study of the
natural action of the dihedral group. Given that the resulting homotopy types S2l+1 and

∨···
S2l are quite

simple it seems natural to ask if they are generated by explicit maps from spheres, or even by embedded
spheres. In this section we answer this question in the positive for the odd-dimensional case, that is when
N (n, k) ' S2l+1.

To this end we relate the nerve complexesN (n, k) to the cyclic polytopes. Consider first the case 1 ≤ k < n
2

and project N (n, k) to R2 by mapping vertices in cyclic order to those of a regular n-gon on the unit circle,
and by extending linearly to simplices. Since the maximal simplices of N (n, k) consist of vertices contained
in less than half the circle, the image of the projection does not contain the origin in R2. Thus the inclusion
of the bounding n-gon into R2 \ {0} is a homotopy equivalence that factors through N (n, k). It follows that
the circle [0, 1], [1, 2], . . . , [n − 1, 0] is homotopically non-trivial in N (n, k). Since for 1 ≤ k < n

2 we know

N (n, k) ' S1, we can conclude that [0, 1], [1, 2], . . . , [n− 1, 0] is a homotopy equivalent subcomplex.
In this section we generalize this reasoning to other homotopy types: if N (n, k) ' S2l+1 then we project

to R2l+2. The unit circle in R2 will be generalized by the trigonometric moment curve, and the regular
n-gons will be generalized by cyclic polytopes.

We begin by introducing cyclic polytopes; we refer the reader to Ziegler [32] for the basics of polytope
theory.

Definition 5.1. The moment curve γ : R → Rd is given by γ(t) = (t, t2, . . . , td). For n > d the cyclic
polytope Cd(n) is defined as the convex hull Cd(n) = conv {γ(0), γ(1), . . . , γ(n− 1)}.

Gale gave a combinatorial description of the maximal simplices of cyclic polytopes.

Theorem 5.2 (Gale’s evenness condition, Gale [17]). Let n > d ≥ 2. The cyclic polytope Cd(n) is simplicial,
and a subset σ ⊆ {0, . . . , n − 1} of size d is a maximal simplex of ∂Cd(n) if and only if for any x, y ∈
{0, . . . , n− 1} \ σ with x < y, the cardinality of [x, y] ∩ σ is even.

Note that if d is even then Gale’s condition can be reformulated as follows: σ is a maximal simplex of
Cd(n) if and only if σ is a disjoint union of d/2 sets of the form [i, i+1]n. Gale furthermore remarked that in
this case the cyclic polytope is combinatorially equivalent to the convex hull of points on the trigonometric
moment curve.

Definition 5.3. The trigonometric moment curve γ̃2d : R→ R2d is given by

γ̃2d(t) = (cos(2π · t), sin(2π · t), cos(2π · 2t), sin(2π · 2t), . . . , cos(2π · dt), sin(2π · dt)).
7



Proposition 5.4 (Gale [17]). For n ≥ 2d + 1, the cyclic polytope C2d(n) is combinatorially equivalent to
conv {γ̃2d(0), γ̃2d(

1
n ), . . . , γ̃2d(

n−1
n )}.

We will restrict attention to this representation of C2d(n) along the trigonometric moment curve.
To relate the cyclic polytopes to our N (n, k), we need to understand for which intervals I ⊆ R the convex

hull conv γ̃2d(I) avoids the origin. This is equivalent to the existence of a separating hyperplane, i.e. a linear
subspace H ⊆ R2d of codimension one that does not intersect γ̃2d(I). Such a hyperplane H is determined by
a normal vector z ∈ R2d with 〈z, γ̃2d(t)〉 > 0 for all t ∈ I, where 〈·, ·〉 denotes the Euclidean inner product.

Definition 5.5. The homogeneous trigonometric polynomial pz of degree d with coefficient vector z ∈
R2d \ {~0} is given by

pz(t) = 〈z, γ̃2d(t)〉 =

d∑
j=1

z2j−1 cos(2πjt) + z2j sin(2πjt).

Theorem 5.6 (Gilbert and Smyth [18, Corollary 1]). For any θ < d
d+1 there is a homogeneous trigonometric

polynomial of degree d that is positive on [0, θ]. Moreover, no homogeneous trigonometric polynomial of degree
d is positive on [0, d

d+1 ].

Corollary 5.7. Let I = [x, y] ⊆ R be any closed interval of length less than d
d+1 . Then there is a hyperplane

H ⊆ R2d such that γ̃2d(I) is strictly on one side of H.

Proof. Let θ = y − x < d
d+1 and let pz be a homogeneous trigonometric polynomial of degree d that is

positive on [0, θ]. The function t 7→ pz(t − x) is positive on [x, y] and can be expressed as a homogeneous
trigonometric polynomial of degree d since the space of these functions is shift invariant. Let z ∈ R2d \ {0}
with pz(t) = pz(t− x), and now define H = z⊥. �

The coefficient vector z in the proof above can be explicitly computed from z by applying a simple rotation
R : R2d → R2d to z that maps γ̃2d([0, θ]) to γ̃2d([x, y]).

The following lemma and theorem relate the cyclic polytopes to the nerve complexes N (n, k).

Lemma 5.8. Suppose l
l+1 < k

n and n ≥ 2l + 3. Then the inclusion ∂C2l+2(n) ⊆ N (n, k) holds for the
natural ordering of vertices.

Proof. Let σ be any maximal simplex of C2l+2(n), and write it as a disjoint union of l + 1 disjoint blocks
[i, i+ 1]n of size 2. Then there must be two consecutive (in the cyclic sense) blocks such that the number g
of elements in the gap between them satisfies

g ≥ n− 2(l + 1)

l + 1
=

n

l + 1
− 2 > n− k − 2,

where the second inequality is equivalent to l
l+1 < k

n . Then g ≥ n − k − 1, and so there is a segment of

n− k − 1 consecutive elements in Z/n disjoint from σ, meaning σ ∈ N (n, k). �

For example, if l = 0 then the boundary ∂C2(n) ⊆ N (n, k) is just the n-cycle passing through all the
vertices of N (n, k) in their natural ordering. If 1 ≤ k < n/2 then it is not difficult to describe a deformation
retraction from N (n, k) to this embedded circle. Guided by this intuition we will now prove that in general
the embedded ∂C2l+2(n) generates the homotopy type of N (n, k). Note that the proof relies on the prior
knowledge of N (n, k) ' S2l+1, i.e. it cannot be used as a replacement for the proof of Theorem 3.6.

Theorem 5.9. Suppose l
l+1 <

k
n < l+1

l+2 . Then the inclusion ∂C2l+2(n) ↪→ N (n, k) is a homotopy equiva-
lence.

Proof. The condition l
l+1 < k

n < l+1
l+2 implies n ≥ 2l + 3. Let f : N (n, k) → C2l+2(n) ⊆ R2l+2 be the

simplex-wise affine map with f(i) = γ̃2l+2( in ). For each i, the interval [ in ,
i+k
n ]S1 has length k

n < l+1
l+2 , and

so by Corollary 5.7 there is a hyperplane H with γ̃2l+2([ in ,
i+k
n ]S1) strictly on one side of H. Hence the set

conv {γ̃2l+2( in ), . . . , γ̃2l+2( i+kn )} does not contain the origin, and f maps to C2l+2(n) \ {~0}.
The inclusion ∂C2l+2(n)→ C2l+2(n)\{~0} is a homotopy equivalence between (2l+1)-spheres that factors

through N (n, k): the boundary ∂C2l+2(n) includes into N (n, k) by Lemma 5.8, and the map f : N (n, k)→
8



C2l+2(n) \ {~0} is the identity on ∂C2l+2(n). We know N (n, k) ' S2l+1 by Theorem 3.6, and it follows that
∂C2l+2(n) ↪→ N (n, k) induces isomorphisms of homotopy groups. By Whitehead’s theorem this inclusion is
a homotopy equivalence. �

Remark 5.10. As a consequence we have that for l
l+1 < k

n < l+1
l+2 the fundamental class [∂C2l+2(n)] of

the embedded sphere ∂C2l+2(n) generates H2l+1(N (n, k)). We will sketch another proof of this fact, which
exhibits a dual generator of H2l+1(N (n, k)).

A set Q = {a1, . . . , a2(l+1)} will be called (n, k)-admissible if it satisfies the following conditions (for
convenience we also declare a0 = 0; it is not an element of Q):

0 = a0 < a1 < · · · < a2(l+1) < n,

ai+1 − ai < n− k for i = 0, 1, . . . , 2l + 1,

a2(i+1) − a2i ≥ n− k for i = 0, . . . , l,

a2(l+1) − a1 ≤ k.

Now consider the (2l + 1)-cochain in N (n, k) given by the formula β̃ =
∑
Q is (n,k)−admissibleQ

∨. A rather

tedious computation (omitted) shows that β̃ is in fact a cocycle. One also checks that the support of β̃ has

exactly one (2l+1)-simplex in common with the embedded ∂C2l+2(n); that simplex is
⋃l+1
i=1{i(n−k)−1, i(n−

k)}. It follows that 〈[β̃], [∂C2l+2(n)]〉 = ±1 and since we know H2l+1(N (n, k)) = Z and H2l+1(N (n, k)) = Z,

we conclude that [β̃] and [∂C2l+2(n)] are the generators of these respective groups.

We leave it as an open problem whether the embedded sphere is always a combinatorial deformation
retract of N (n, k).

Conjecture 5.11. For l
l+1 <

k
n <

l+1
l+2 the complex N (n, k) simplicially collapses to ∂C2l+2(n).

We now give an independent topological proof of the upper bound in Theorem 5.6 on the distance between
successive roots of a homogeneous trigonometric polynomial. This extremal problem was studied by Babenko
[5], who also showed that d

d+1 is an upper bound on the measure of the set where a homogeneous trigonometric
polynomial of degree d is positive. Some more general results for a further restricted set of frequencies were
shown by Kozma & Oravecz [24]. Our proof follows the argument given in the proof of Theorem 5.9 and
relies on the homotopy types of the N (n, k). In particular it does not resemble previously known proofs.

Theorem 5.12. The distance between any two successive roots in a homogeneous trigonometric polynomial
of degree d is at most d

d+1 .

Proof. Suppose for a contradiction there is some homogeneous trigonometric polynomial of degree d with
two successive roots more than d

d+1 apart. After translating and changing sign, if necessary, we can find a

z ∈ R2d \ {~0} and θ > d
d+1 such that pz(t) > 0 for all t ∈ [0, θ]. Given an arbitrary x ∈ R there is — by

appropriately shifting t 7→ pz(t − x) — a coefficient vector z(x) ∈ R2d \ {0} such that pz(x) is positive on
[x, x+ θ].

Choose integers n ≥ 2d+ 1 and k with d
d+1 <

k
n < θ. Let f : N (n, k)→ C2d(n) ⊆ R2d be the simplex-wise

affine map with f(i) = γ̃2d(
i
n ). For every face σ of N (n, k), some hyperplane z(x)⊥ separates f(σ) from the

origin, and thus f maps to C2d(n) \ {~0}. Since k
n >

d
d+1 >

d−1
d , Lemma 5.8 ensures that ∂C2d(n) ⊆ N (n, k)

with the natural ordering of the vertices. It follows that the inclusion ι : ∂C2d(n) → C2d(n) \ {~0} factors
through N (n, k). This is a contradiction, since ι is a homotopy equivalence between spaces homotopy
equivalent to S2d−1, but H2d−1(N (n, k)) is trivial for d

d+1 <
k
n . �

6. The even-dimensional spheres: minimal generators

In this section we consider the case when k
n = l

l+1 for some l ≥ 0, when N (n, k) is homotopy equivalent

to a wedge of 2l-spheres by Theorem 3.6. It turns out that a basis of the free abelian group H2l(N (n, k)) can
be specified using embedded spheres ∂∆2l+1 ⊆ N (n, k). It is well-known that this is the smallest possible
support a 2l-dimensional homology class in a simplicial complex can have.
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Consider the oriented (2l + 1)-simplex

∆ = [0, 1, n− k, n− k + 1, 2(n− k), 2(n− k) + 1, . . . , l(n− k), l(n− k) + 1].

Note that k
n = l

l+1 implies l(n − k) = k and (l + 1)(n − k) = n. The simplex ∆ is a minimal non-face of

N (n, k), and hence ∂∆ ⊆ N (n, k) is an embedded 2l-sphere whose fundamental cycle

∂∆ =

l∑
i=0

(
∆ \ {i(n− k)} −∆ \ {i(n− k) + 1}

)
is a 2l-cycle in N (n, k). Let α = [∂∆] ∈ H2l(N (n, k)) be its homology class. We will show that α 6= 0 by
constructing a cohomology class β ∈ H2l(N (n, k)) which pairs nontrivially with α.

For convenience we define Ii = {v | i(n − k) < v < (i + 1)(n − k)} for 0 ≤ i ≤ l. Let B be the set of all
oriented 2l-simplices B ∈ N (n, k) such that

B = [0, v0, n− k, v1, 2(n− k), v2, . . . , (l − 1)(n− k), vl−1, l(n− k)],

with vi ∈ Ii for all 0 ≤ i < l (we have B = {[0]} when l = 0). Consider the cochain

β̃ =
∑
B∈B

B∨.

We claim that β̃ is a cocycle. Suppose for a contradiction that some (2l + 1)-simplex σ ∈ N (n, k) satisfies

(δβ̃)(σ) = β̃(∂σ) 6= 0. Necessarily i(n − k) ∈ σ for 0 ≤ i ≤ l and |σ ∩ Ii| ≥ 1 for 0 ≤ i < l, for otherwise

every face in ∂σ is different from every simplex in the support of β̃. The condition σ ∈ N (n, k) now implies
σ ∩ Il = ∅. Since |σ| = 2l + 2, there exists an index 0 ≤ i′ < l with |σ ∩ Ii′ | = 2 and |σ ∩ Ii| = 1 for all

0 ≤ i < l with i 6= i′. Let σ ∩ Ii′ = {u, v}. In the sum β̃(∂σ) =
∑
B∈B,τ∈∂σ B

∨(τ) there are exactly two

nonzero terms, namely when B = τ = σ \ {u} and B = τ = σ \ {v}, and these terms appear with opposite

signs since σ \ {u} and σ \ {v} are consecutive faces of σ. So in fact β̃(∂σ) = 0, and β̃ is a cocycle.

We define the cohomology class β = [β̃] ∈ H2l(N (n, k)). Since the family B contains exactly one simplex

of the form ∆\{v}, namely for v = l(n−k)+1, the evaluation of β̃ on ∂∆ is −1. It follows that 〈β, α〉 = −1,
proving α 6= 0 and β 6= 0.

All generators of H2l(N (n, k)) can be obtained by rotations of α. For this, let g be the generator of Z/n
acting on N (n, k) via the vertex map i 7→ (i + 1) mod n. Define αi = [gi(∂∆)] and βi = [β̃g−i], and note
that gn−k∆ = ∆ holds at the level of chains, hence αi = αi mod (n−k) in homology. We can now prove the
following.

Proposition 6.1. Suppose k
n = l

l+1 for some l ≥ 0. Then the homology classes α0, . . . , αn−k−2 defined

above form a basis of the group H̃2l(N (n, k)) = Zn−k−1. Moreover
∑n−k−1
i=0 αi = 0.

Proof. First of all, for 0 ≤ i ≤ n− k − 1 we have

〈β0, αi〉 =


−1 for i = 0

1 for i = n− k − 1

0 otherwise.

We checked 〈β0, α0〉 = 〈β, α〉 = −1 previously. If i 6= 0, n− k− 1 then gi∆ avoids the vertex 0, hence gi(∂∆)
pairs trivially with all simplices in B. If i = n − k − 1 then the oriented simplex gn−k−1(∆ \ {l(n − k)}),
which appears in gn−k−1(∂∆) with positive sign, matches with one oriented simplex in B.

In general we have 〈βi, αj〉 = 〈β0, αi−j〉. Let γi = −
∑i
s=0 βs for i = 0, . . . , n−k− 2. Then the evaluation

matrix 〈γi, αj〉i,j=0,...,n−k−2 is the identity matrix, hence invertible over Z. Since the rank of H̃2l(N (n, k))
is n− k− 1, this means that the αi for 0, . . . , n− k− 2 form a generating set for homology, and the γi form
a dual generating set for cohomology. It follows that

αn−k−1 =

n−k−2∑
i=0

〈γi, αn−k−1〉αi = −
n−k−2∑
i=0

i∑
s=0

〈βs, αn−k−1〉αi = −
n−k−2∑
i=0

〈β0, αn−k−1〉αi = −
n−k−2∑
i=0

αi.

�
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Remark 6.2. Also here we can make a relation to cyclic polytopes, albeit it is not as direct as in the case
of odd-dimensional spheres from the previous section. The proof of Lemma 5.8 carries over to show that
N (n, k) contains all maximal faces of ∂C2l+2(n) except for ∆, g∆, . . . , gn−k−1∆. Thus N (n, k) ∩ ∂C2l+2(n)
can be obtained from ∂C2l+2(n) ∼= S2l+1 by deleting n− k maximal simplices, giving N (n, k)∩ ∂C2l+2(n) '∨n−k−1

S2l.
Part of the Mayer–Vietoris sequence for N (n, k) ∪ ∂C2l+2(n) is

H̃2l

(
N (n, k) ∩ ∂C2l+2(n)

)
→ H̃2l

(
N (n, k)

)
⊕ H̃2l

(
∂C2l+2(n)

)
→ H̃2l

(
N (n, k) ∪ ∂C2l+2(n)

)
.

The last arrow is induced by the inclusion ι : N (n, k)→ N (n, k) ∪ ∂C2l+2(n). We proved that H̃2l(N (n, k))
is generated by the classes of ∂∆, g(∂∆), . . . , gn−k−2(∂∆) and these cycles are boundaries in ∂C2l+2(n), thus
ι∗ = 0. Hence the first arrow is a surjection Zn−k−1 → Zn−k−1, which impliesN (n, k)∩∂C2l+2(n) ↪→ N (n, k)
is a homotopy equivalence (again, we need to know the homotopy types of N (n, k) in advance).

7. Induced representation in homology

We are now in position to describe the equivariant structure of N (n, k). If k ∈ {0, n−2, n−1} then N (n, k)
carries the permutation action of the full symmetric group Σn. In the remaining cases all the automorphisms
of N (n, k) are generated by the symmetries of the regular n-gon:

Lemma 7.1. If 1 ≤ k ≤ n− 3 then the automorphism group of N (n, k) is isomorphic to the dihedral group
D2n.

Proof. Let h : {0, . . . , n − 1} → {0, . . . , n − 1} be a bijection which induces an automorphism of N (n, k).
Then there exists some h′ defined by the condition that h([i, . . . , i + k]n) = [h′(i), . . . , h′(i) + k]n for all i.
For each i the symmetric difference of h([i, . . . , i+k]n) and h([i+ 1, . . . , i+ 1 +k]n) consists of two elements,
namely h(i) and h(i+ k + 1). If 1 ≤ k ≤ n− 3 this is possible if and only if h′(i+ 1) = h′(i)± 1 mod n. It
follows that h′ is an automorphism of the cycle graph Cn. Clearly any automorphism of Cn extends to an
automorphism of N (n, k). �

The action of D2n on N (n, k) induces an action on homology, which we now describe. Let

D2n = 〈g, ε | gn = 1, ε2 = 1, εgε = g−1〉

with the action on {0, . . . , n− 1} given by g(i) = (i+ 1) mod n and ε(i) = −i mod n.

Proposition 7.2. Suppose that k
n = l

l+1 for some l ≥ 0. Then the action of D2n on the elements αi in

H2l(N (n, k)) is given by

gαi = αi+1, εαi = (−1)l+1α−i−1.

Proof. The first equality holds by definition. For the second one, we first verify the following equation on
the level of chains (note that (l + 1)(n− k) = n):

ε∆ = ε[0, 1, n− k, n− k + 1, . . . , l(n− k), l(n− k) + 1]

= [0,−1, l(n− k), l(n− k)− 1, . . . , n− k, (n− k)− 1]

= (−1)l+1g−1∆.

The sign is introduced by changing the order in each pair of elements of the form a(n − k), a(n − k) − 1,
followed by reordering the pairs. Reordering pairs does not change sign.

It immediately follows that

εα0 = (−1)l+1α−1

and then we obtain

εαi = εgiα0 = g−iεα0 = (−1)l+1g−iα−1 = (−1)l+1α−i−1.

�

Proposition 7.3. If l
l+1 <

k
n <

l+1
l+2 then the action of D2n on H2l+1(N (n, k)) = Z is given by

g = id, ε = (−1)l+1 · id.
11



Proof. We will use the notation and results of Section 5.
The action of D2n on N (n, k) preserves the homotopy equivalent subsphere ∂C2l+2(n), so it suffices to

compute the degree of the maps g and ε acting on ∂C2l+2(n). Recall that the cyclic polytope C2l+2(n) =
conv {γ̃2l+2(0), γ̃2l+2( 1

n ), . . . , γ̃2l+2(n−1n )} ⊆ R2l+2.

Let ωj,n : R2 → R2 be the rotation by an angle 2πj/n around the origin and define R : (R2)l+1 → (R2)l+1

by R = ω1,n⊕· · ·⊕ωl+1,n. Then one has R(γ̃2l+2( in )) = γ̃2l+2( i+1
n ), so R|∂C2l+2(n) = g. Since R is a rotation,

its degree is 1.
Next, if E : R2l+2 → R2l+2 is given by E(x1, x2, . . . , x2l+1, x2l+2) = (x1,−x2, . . . , x2l+1,−x2l+2) then we

easily check E(γ̃2l+2( in )) = γ̃2l+2(−in ), which implies E|∂C2l+2(n) = ε. Since E is a composition of l + 1

hyperplane reflections, its degree is (−1)l+1. �

8. Clique complexes of evenly-spaced arcs

In this section we relate the nerve complexes of circular arcs to the clique complexes of their 1-skeletons.

Definition 8.1. For n ≥ 1 and k ≥ 0, we define the clique complex N (n, k) as N (n, k) = Cl(N (n, k)(1)),
i.e. the maximal simplicial complex with 1-skeleton N (n, k)(1).

If Un,k is a collection of evenly-spaced arcs defined as in (1) and Xn ⊆ S1 is a set of n equally-spaced

points, then analogous to the sequence of isomorphisms C̆ech(Xn, S
1; k

2n ) ∼= N (Un,k) ∼= N (n, k) in (2) we
have

(3) VR
(
Xn,

k
n

) ∼= N (Un,k) ∼= N (n, k).

Note that N (n, k) is a full simplex when k ≥ bn/2c.
The 1-skeleton N (n, k)(1) = N (n, k)(1) is the graph commonly denoted as Ckn, the k-th distance power of

the cycle Cn. In this graph the neighborhood of vertex i is [i − k, i − 1]n ∪ [i + 1, i + k]n. The homotopy
types of Cl(Ckn) = N (n, k) were determined by the first author.

Theorem 8.2 (Adamaszek, [1, Corollary 6.7]). Let 0 ≤ k < n/2. Then

N (n, k) '

{∨n−2k−1
S2l if k

n = l
2l+1

S2l+1 if l
2l+1 <

k
n <

l+1
2l+3

for some l ≥ 0.

Example 8.3. The clique complex N (9, 3) is homotopy equivalent to
∨2

S2. To visualize this, note that
N (9, 3) has nine maximal 3-simplices and three maximal 2-simplices. Let Y ' S1 be the union of the
nine maximal 3-simplices. The three maximal 2-simplices are glued along their boundaries to Y by maps
homotopic to the identity of S1, giving N (9, 3) '

∨2
S2.

Figure 4. The three maximal 2-simplices of N (9, 3).

Remark 8.4. Note that for 0 ≤ k < n/2 the clique complexes N (n, k) go through their entire range of
homotopy types, while the nerve complexes N (n, k) remain homotopy equivalent to S1. By the time when
the N (n, k) attain interesting homotopy types, that is when k ≥ n/2, the clique complexes N (n, k) have
already become contractible.

A careful comparison of Theorem 8.2 and Theorem 3.6 reveals that there is a homotopy equivalence
N (n+ k, k) ' N (n, k). In the next theorem we show that this equivalence is realized by a rather surprising
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map. The proof of Theorem 8.5 is independent of the knowledge of the homotopy types of N (n, k) and
N (n+ k, k), so combining it with Theorem 3.6 gives an alternate proof of Theorem 8.2, which we regard as
simpler and more self-contained.

Theorem 8.5. Let n ≥ 1 and k ≥ 0. The assignment f : {0, . . . , n + k − 1} → {0, . . . , n − 1} via f(i) =
i mod n determines a simplicial, surjective homotopy equivalence

f : N (n+ k, k)
'−→ N (n, k).

Proof. If k ≥ n − 1, then both N (n+ k, k) and N (n, k) are simplices, and hence it suffices to consider the
case k ≤ n− 2. We recall that if σ ∈ N (n+ k, k) and t ∈ σ is an arbitrary vertex then σ ⊆ [t− k, t+ k]n+k.

We first verify that f is a simplicial map. Let σ be any simplex in N (n+ k, k) and set t = min(σ). If
t ≥ k then σ ⊆ [t, t+ k]n+k, because σ ∩ [t− k, t− 1]n+k ⊆ σ ∩ [0, t− 1]n+k = ∅. After applying f we have
f(σ) ⊆ [t, t+ k]n. If t < k, then we have

σ ⊆ [t, t+ k]n+k ∪ [t− k mod (n+ k), n+ k − 1]n+k

= [t, t+ k]n+k ∪ [t+ n, n+ k − 1]n+k.

Applying map f gives

f(σ) ⊆ [t, t+ k]n ∪ [t, k − 1]n ⊆ [t, t+ k]n.

In each case we have that f(σ) is a face of N (n, k). To verify surjectivity, note that for 0 ≤ i < n we have
f([i, i+ k]n+k) = [i, i+ k]n, and so each maximal simplex of N (n, k) is in the image of f .

It remains to show that f is a homotopy equivalence. We use a simplicial variant of Quillen’s Theorem A
due to Barmak [8, Theorem 4.2], which states that if f is a simplicial map such that the preimage of every
simplex is contractible, then f is a (simple) homotopy equivalence. Consider an arbitrary simplex

τ = {i1, . . . , is} ∪ {j1, . . . , jt}

in N (n, k), with

0 ≤ i1 < · · · < is < k ≤ j1 < · · · < jt ≤ n− 1.

The preimage f−1(τ) is the subcomplex of N (n+ k, k) induced by the vertex set

V (f−1(τ)) = {i1, . . . , is} ∪ {j1, . . . , jt} ∪ {i1 + n, . . . , is + n}.

We will show the slightly stronger statement that f−1(τ) is a cone. For this it suffices to find a vertex
w ∈ f−1(τ) such that f−1(τ) ⊆ [w − k,w + k]n+k, since then w is adjacent, in the 1-skeleton, to all vertices
of f−1(τ).

0

k

i1

i2

i3

v = j1

j2

≤ k

0

kn

i1

i2
i3

j1j2

i1 + n

i2 + n
w = i3 + n

≤ k

= k

Figure 5. The vertex set of the simplex τ (left, on a cycle of length n) and the vertex set
of f−1(τ) (right, on a cycle of length n + k). The arcs form a graphical representation of
the proof in case (iii). The remaining parts are similar.

Choose any vertex v ∈ τ such that τ ⊆ [v, v + k]n. We have the following cases (see Figure 5).

(i) If v = iq for some 1 ≤ q ≤ s, then take w = iq. We have

{iq + n, . . . , is + n} ∪ {i1, . . . , iq} ⊆ [iq − k, iq]n+k
{iq, . . . , is} ∪ {j1, . . . , jt} ∪ {i1 + n, . . . , iq−1 + n} ⊆ [iq, iq + k]n+k.

(ii) If v = j1 and s = 0, then take w = j1. We have {j1, . . . , jt} ⊆ [j1, j1 + k]n+k.
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(iii) If v = j1 and s > 0, then take w = is + n. We have

{j1, . . . , jt} ∪ {i1 + n, . . . , is + n} ⊆ [is + n− k, is + n]n+k

{i1, . . . , is} ⊆ [is + n, is + n+ k]n+k.

(iv) The remaining case, v = jq with q ≥ 2, is impossible, as jq−1 6∈ [jq, jq + k]n.

This completes the proof. �

Remark 8.6. The typical nesting between C̆ech and Vietoris–Rips complexes, for example in Carlsson [12,
Proposition 2.6], here takes the form

C̆ech
(
Xn, S

1; k
2n

)
⊆

=

N (n, k)

VR
(
Xn,

k
n

)

=

N (n, k)

⊆ C̆ech
(
Xn, S

1; kn
)
.

=

N (n, 2k)

These inclusions relate C̆ech and Vietoris–Rips complexes on the same vertex set. The map giving the
homotopy equivalence in Theorem 8.5 is not an inclusion of this form: in particular it relates Vietoris–Rips
complex VR(Xn+k,

k
n+k ) and ambient C̆ech complex C̆ech(Xn, S

1; k
2n ) on vertex sets of different sizes.

9. Nerve and clique complexes of arbitrary circular arcs

So far we analyzed the spaces N (U) and N (U) when U = Un,k is an evenly-spaced configuration of arcs
in (1). In this section we prove that for an arbitrary finite collection of arcs U in S1, complexes N (U) and
N (U) are homotopy equivalent to a point, an odd-dimensional sphere, or a wedge sum of spheres of the same

even dimension. This applies, in particular, to the ambient C̆ech complex C̆ech(X,S1; r) and Vietoris–Rips
complex VR(X, r) of any finite subset X ⊆ S1. We achieve this by showing that successively removing
dominated vertices from any complex N (U) (resp. N (U)) produces a complex isomorphic to some N (n, k)
(resp. N (n, k)), at which point the homotopy type can be read off from Theorem 3.6 or 8.2. If U has n arcs,
then this reduction procedure, and therefore the computation of the homotopy type of N (U) or N (U), can
be computed in time O(n log n), or in time O(n) if the endpoints of the arcs are given in cyclic order. It

follows that for X ⊆ S1 of size n, the homotopy type of C̆ech(X,S1; r) or VR(X, r) can be computed in time
O(n log n).

First we introduce additional notation. For x1, . . . , xk ∈ S1, we write (x1 � · · · � xk � x1) if the points
x1, . . . , xk are ordered in a clockwise fashion (allowing equality). We replace “xi � xi+1” with “xi ≺ xi+1”
if furthermore xi 6= xi+1. Given two closed arcs U = [a, b]S1 and U ′ = [a′, b′]S1 with a, b, a′, b′ ∈ S1, we write
U � U ′ if (a � a′ � b � b′ ≺ a).

Lemma 9.1. Let U = {Ui = [ai, bi]S1 | i = 0, . . . , n− 1 and ai, bi ∈ S1} be a collection of n closed circular
arcs. If some i 6= j satisfies

(a) Ui ⊆ Uj,
(b) Ui � Uj and bk /∈ [ai, aj)S1 for all k, or
(c) Uj � Ui and ak /∈ (bj , bi]S1 for all k,

then vertex i is dominated by vertex j in N (U).

Proof. Suppose σ ∈ lkN (U)(i) and let Uσ =
⋂
k∈σ Uk, so that Uσ ∩Ui 6= ∅. We claim Uσ ∩Ui ∩Uj 6= ∅. Case

(a) is clear. In case (b), suppose for a contradiction that Uσ ∩ Ui ⊆ [ai, aj)S1 . But then bk /∈ [ai, aj)S1 for
all k ∈ σ ∪ {i} gives aj ∈ Uσ ∩ Ui, a contradiction. Case (c) follows by symmetry. �

Recall that a simplicial complex is minimal if it contains no dominated vertices.

Proposition 9.2. Let U be a nonempty finite collection of arcs in S1. If N (U) is minimal, then there is an
isomorphism N (U) ∼= N (n, k) for some 0 ≤ k < n.

Proof. We claim that we may restrict to the case where U = {Ui = [ai, bi]S1 | i = 0, . . . , n−1 and ai, bi ∈ S1}
is a collection of n closed circular arcs with all endpoints distinct, meaning ai 6= aj , bi 6= bj , and ai 6= bj
for all i 6= j, and also ai 6= bi for all i. This is because for any collection U ′ of possibly open, half-open, or
closed arcs, there exists a collection U of closed arcs with distinct endpoints such that N (U) ∼= N (U ′).
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1

2

4

5

3

6

Figure 6. Example: a collection of six arcs. In the nerve 1 is dominated by 2 as per
Lemma 9.1(a) and 4 is dominated by 5 as per Lemma 9.1(b). The nerve of the subcollection
{2, 3, 5, 6} is isomorphic to N (4, 1).

Without loss of generality, order the arcs of U so that (a0 ≺ · · · ≺ an−1 ≺ a0). No arc contains another
by Lemma 9.1(a), and it follows that (b0 ≺ · · · ≺ bn−1 ≺ b0). We refer to the ai as opening endpoints and to
the bi as closing endpoints. We claim that when cyclically ordered, the set of all endpoints must alternate
between opening endpoints and closing endpoints. Suppose for a contradiction that there were no closing
endpoint between ai and ai+1 mod n. Then by Lemma 9.1(b), vertex i+ 1 mod n would dominate vertex i,
a contradiction. Since the number of opening endpoints is equal to the number of closing endpoints, there
must also be an opening endpoint between each bi and bi+1 mod n. It follows that there is some constant
0 ≤ k < n with

(a0 ≺ b−k mod n ≺ a1 ≺ . . . ≺ ai ≺ bi−k mod n ≺ ai+1 ≺ . . . ≺ an−1 ≺ bn−1−k mod n ≺ a0).

The maximal simplices of N (U) are given by the nonempty intersections Ui ∩ . . . ∩ Ui+k mod n for i =
0, . . . , n− 1, and hence N (U) ∼= N (n, k). �

The following lemma allows us to extend the result to clique complexes.

Lemma 9.3. If v is dominated by v′ in K, then v is dominated by v′ in Cl(K(1)).

Proof. Suppose σ ∈ lkCl(K(1))(v), hence the complete graph on vertex set σ ∪ {v} is in K. Since lkK(v) is a

cone with apex v′, the complete graph on vertex set σ∪{v, v′} is also in K, giving σ∪{v′} ∈ lkCl(K(1))(v). �

Now we can prove the main result of this section.

Theorem 9.4. Let U be a nonempty finite collection of arcs in S1. Then there exist integers n ≥ 1, k ≥ 0
such that N (U) ' N (n, k) and N (U) ' N (n, k).

In particular, N (U) and N (U) have the homotopy type of a point, an odd-dimensional sphere, or a wedge
sum of spheres of the same even dimension.

Proof. We sequentially remove dominated vertices from N (U) until we obtain a subcollection U ′ such that
N (U ′) is minimal. By Proposition 9.2, there exists some 0 ≤ k < n with N (U) ' N (U ′) ∼= N (n, k).

By Lemma 9.3 the sequence of dominated vertices for N (U) is also a sequence of dominated vertices for
N (U), hence N (U) ' N (U ′). This implies

N (U) ' N (U ′) = Cl
(
N (U ′)(1)

) ∼= Cl
(
N (n, k)(1)

)
= N (n, k).

�

Remark 9.5. The sequence of reductions from N (U) to N (n, k) was also obtained by Golumbic & Hammer
[19] in the context of circular arc graphs.

The following corollary is a special case of Theorem 9.4 when all arcs have the same length.

Corollary 9.6. If X ⊆ S1 is nonempty and finite and 0 ≤ r < 1
2 , then the ambient C̆ech complex

C̆ech(X,S1; r) and the Vietoris–Rips complex VR(X, r) have the homotopy type of a point, an odd-di-
mensional sphere, or a wedge sum of spheres of the same even dimension.

Proof. Let U(X, r) = {B(x, r) | x ∈ X}. Then N (U(X, r)) = C̆ech(X,S1; r) and N (U(X, r/2)) = VR(X, r)
and we apply Theorem 9.4. �
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The first two authors [2] use Corollary 9.6 to show that the ambient C̆ech complex C̆ech(S1, S1; r)
and the Vietoris–Rips complex VR(S1, r) built on the infinite vertex set S1 obtain the homotopy types
S1, S3, S5, S7, . . . as r increases.

We conclude with the observation that the removals of dominated vertices in N (U) can be carried out
efficiently.

Theorem 9.7. Given a collection U of n circular arcs, one can compute in time O(n log n) a subcollection
U ′ ⊆ U such that N (U ′) ∼= N (|U ′|, k) for some k and the inclusion N (U ′) ↪→ N (U) is a homotopy equivalence.

Proof. Without loss of generality we may restrict to the case when U = {Ui = [ai, bi]S1 | i = 1, . . . , n} is
a collection of closed arcs with all endpoints distinct. Let L be a cyclic list of the 2n points ai, bi in the
clockwise cyclic order. The intervals Ui such that Ui ⊆ Uj for some j 6= i can now be eliminated in O(n)
time using a standard sweep line algorithm, maintaining at each point a list of active intervals ordered by
their starting points (two sweeps around the circle are sufficient to detect all inclusions). We can therefore
assume that Ui 6⊆ Uj for i 6= j.

Initialize S as the set of all starting points ai such that the immediate successor of ai in L is some other
starting point aj . As long as S 6= ∅ we repeat the following: remove a point ai from S, delete ai and the
corresponding bi from L and, if the two neighbours of bi in L were aj ≺ bi ≺ aj′ (necessarily j, j′ 6= i), we
add aj to S. Each starting point is added to S at most once, so the procedure takes O(n) steps. After
termination, L is an alternating list of starting and ending points for some subcollection U ′ ⊆ U . Since U ′
does not contain nested intervals, we conclude that N (U ′) ∼= N (|U ′|, k) as in the proof of Proposition 9.2.
The homotopy equivalence is a consequence of Lemma 9.1. �

Remark 9.8. The running time of the algorithm is dominated by sorting, i.e. computing the list L. The
remaining operations take only O(n) time.

Corollary 9.9. Given a set X ⊆ S1 of cardinality n and 0 ≤ r < 1
2 , the homotopy type of the complexes

C̆ech(X,S1; r) and VR(X, r) can be determined in time O(n log n), or in time O(n) if X is given in cyclic
order.
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