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Two proofs for Shallow Packings∗

Kunal Dutta † Esther Ezra ‡ Arijit Ghosh ∗

August 8, 2016

Abstract

We refine the bound on the packing number, originally shown by Haussler, for shallow
geometric set systems. Specifically, let V be a finite set system defined over an n-point set X;
we view V as a set of indicator vectors over the n-dimensional unit cube. A δ-separated set of V
is a subcollection W, s.t. the Hamming distance between each pair u,v ∈W is greater than δ,
where δ > 0 is an integer parameter. The δ-packing number is then defined as the cardinality
of a largest δ-separated subcollection of V. Haussler showed an asymptotically tight bound of
Θ((n/δ)d) on the δ-packing number if V has VC-dimension (or primal shatter dimension) d.
We refine this bound for the scenario where, for any subset, X ′ ⊆ X of size m ≤ n and for
any parameter 1 ≤ k ≤ m, the number of vectors of length at most k in the restriction of V

to X ′ is only O(md1kd−d1), for a fixed integer d > 0 and a real parameter 1 ≤ d1 ≤ d (this
generalizes the standard notion of bounded primal shatter dimension when d1 = d). In this case
when V is “k-shallow” (all vector lengths are at most k), we show that its δ-packing number is
O(nd1kd−d1/δd), matching Haussler’s bound for the special cases where d1 = d or k = n. We
present two proofs, the first is an extension of Haussler’s approach, and the second extends the
proof of Chazelle, originally presented as a simplification for Haussler’s proof.

1 Introduction

Let V be a set system defined over an n-point set X. We follow the notation in [Hau95], and
view V as a set of indicator vectors in Rn, that is, V ⊆ {0, 1}n. Given a subsequence of indices
(coordinates) I = (i1, . . . , ik), 1 ≤ ij ≤ n, k ≤ n, the projection V|I of V onto I (also referred to as
the restriction of V to I) is defined as

V|I = {(vi1 , . . . ,vik) | v = (v1, . . . ,vn) ∈ V} .

With a slight abuse of notation we write I ⊆ [n] to state the fact that I is a subsequence of indices
as above. We now recall the definition of the primal shatter function of V:
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Definition 1 (Primal Shatter Function [HW87, Mat99]) The primal shatter function of V ⊆
{0, 1}n is a function, denoted by πV, whose value at m is defined by πV(m) = maxI⊆[n],|I|=m |V|I |.
In other words, πV(m) is the maximum possible number of distinct vectors of V when projected onto
a subsequence of m indices.

From now on we say that V ⊆ {0, 1}n has primal shatter dimension d if πV(m) ≤ Cmd, for
all m ≤ n, where d > 1 and C > 0 are constants. A notion closely related to the primal shatter
dimension is that of the VC-dimension:

Definition 2 (VC-dimension [Hau95, VC71]) An index sequence I = (i1, . . . , ik) is shattered
by V if V|I = {0, 1}k. The VC-dimension of V, denoted by d0 is the size of the longest sequence I

shattered by V. That is, d0 = max{k | ∃I = (i1, i2, . . . , ik), 1 ≤ ij ≤ n, with V|I = {0, 1}k}.

The notions of primal shatter dimension and VC-dimension are interrelated. By the Sauer-
Shelah Lemma (see [Sau72, She72] and the discussion below) the VC-dimension of a set system
V always bounds its primal shatter dimension, that is, d ≤ d0. On the other hand, when the
primal shatter dimension is bounded by d, the VC-dimension d0 does not exceed O(d log d) (which
is straightforward by definition, see, e.g., [HP11]).

A typical family of set systems that arise in geometry with bounded primal shatter (resp., VC-)
dimension consists of set systems defined over points in some low-dimensional space Rd, where V

represents a collection of certain simply-shaped regions, e.g., halfspaces, balls, or simplices in Rd.
In such cases, the primal shatter (and VC-) dimension is a function of d; see, e.g., [HP11] for more
details. When we flip the roles of points and regions, we obtain the so-called dual set systems
(where we refer to the former as primal set systems). In this case, the ground set is a collection S

of algebraic surfaces in Rd, and V corresponds to faces of all dimensions in the arrangement A(S)
of S, that is, this is the decomposition of Rd into connected open cells of dimensions 0, 1, . . . , d
induced by S. Each cell is a maximal connected region that is contained in the intersection of a
fixed number of the surfaces and avoids all other surfaces; in particular, the 0-dimensional cells of
A(S) are called “vertices”, and d-dimensional cells are simply referred to as “cells”; see [SA95] for
more details. The distinction between primal and dual set systems in geometry is essential, and
set systems of both kinds appear in numerous geometric applications, see, once again [HP11] and
the references therein.

1.1 δ-packing

The length ‖v‖ of a vector v ∈ V under the L1 norm is defined as
∑n

i=1 |vi|, where vi is the ith
coordinate of v, i = 1, . . . , n. The distance ρ(u,v) between a pair of vectors u,v ∈ V is defined
as the L1 norm of the difference u− v, that is, ρ(u,v) =

∑n
i=1 |ui − vi|. In other words, it is the

symmetric difference distance between the corresponding sets represented by u, v. 1

Let δ > 0 be an integer parameter. We say that a subset of vectors W ⊆ {0, 1}n is δ-separated
if for each pair u,v ∈ W, ρ(u,v) > δ. The δ-packing number for V, denote it by M(δ,V), is
then defined as the cardinality of a largest δ-separated subset W ⊆ V. A key property, originally

1The symmetric difference distance between two sets A, B is the cardinality of their symmetric difference.
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shown by Haussler [Hau95] (see also [Cha92, CW89, Dud78, Mat99, Wel92]), is that set systems of
bounded primal shatter dimension admit small δ-packing numbers. That is:

Theorem 3 (Packing Lemma [Hau95, Mat99]) Let V ⊆ {0, 1}n be a set of indicator vectors
of primal shatter dimension d, and let 1 ≤ δ ≤ n be an integer parameter. Then M(δ,V) =
O((n/δ)d), where the constant of proportionality depends on d.

We note that in the original formulation in [Hau95] the assumption is that the set system has
a finite VC-dimension. However, its formulation in [Mat99], which is based on a simplification
of the analysis of Haussler by Chazelle [Cha92], relies on the assumption that the primal shatter
dimension is d, which is the actual bound that we state in Theorem 3 (we comment though that
one component of the analysis uses the fact that the VC-dimension d0 is finite, but this follows from
the bound O(d log d) on d0). We also comment that a closer inspection of the analysis in [Hau95]
shows that this assumption can be replaced with that of having bounded primal shatter dimension
(independent of the analysis in [Cha92]). We describe these considerations in Section 2.1.

1.2 Previous work

In his seminal work, Dudley [Dud78] presented the first application of chaining, a proof technique
due to Kolmogorov, to empirical process theory, where he showed the bound O((n/δ)d0 logd0 (n/δ))
on M(δ,V), with a constant of proportionality depending on the VC-dimension d0 (see also previous
work by Haussler [Hau92] and Pollard [Pol84] for an alternative proof and a specification of the
constant of proportionality). This bound was later improved by Haussler [Hau95], who showed

M(δ,V) ≤ e(d0 + 1)
(

2en
δ

)d0 , where e is the base of the natural logarithm (see also Theorem 3),
and presented a matching lower bound, which leaves only a constant factor gap, which depends
exponentially in d0. In fact, the aforementioned bounds are more general, and can also be applied
to classes of real-valued functions of finite “pseudo-dimension” (the special case of set systems
corresponds to Boolean functions), see, e.g., [Hau92], however, we do not discuss this generalization
in this paper and focus merely on set systems V of finite primal shatter (resp., VC-) dimension.

The bound of Haussler [Hau95] (Theorem 3) is in fact a generalization of the so-called Sauer-
Shelah Lemma [Sau72, She72], asserting that |V| ≤ (en/d0)d0 , and thus this bound is O(nd0).
Indeed, when δ = 1, the corresponding δ-separated set should include all vectors in V, and then
the bound of Haussler [Hau95] becomes O(nd0), matching the Sauer-Shelah bound up to a constant
factor that depends on d0.

There have been several studies extending Haussler’s bound or improving it in some special
scenarios. We name only a few of them. Gottlieb et al. [GKM12] presented a sharpening of this
bound when δ is relatively large, i.e., δ is close to n/2, in which case the vectors are “nearly
orthogonal”. They also presented a tighter lower bound, which considerably simplifies the analysis
of Bshouty et al. [BLL09], who achieved the same bound.

A major application of packing is in obtaining improved bounds on the sample complexity in
machine learning. This was studied by Li et al. [LLS01] (see also [Hau92]), who presented an asymp-
totically tight bound on the sample complexity, in order to guarantee a small “relative error.” This
problem has been revisited by Har-Peled and Sharir [HPS11] in the context of geometric set sys-
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Figure 1: A grid of n
δ ×

n
δ axis-parallel rectangles, each of which with multiplicity δ/2. The multiplicity in the

figure is depicted only for the leftmost vertical and the top horizontal rectangles. The small shaded rectangle in
the figure is a δ-shallow cell of the arrangement.

tems, where they referred to a sample of the above kind as a “relative approximation”, and showed
how to integrate it into an approximate range counting machinery, which is a central application in
computational geometry. The packing number has also been used by Welzl [Wel92] in order to con-
struct spanning trees of low crossing number (see also [Mat99]) and by Matoušek [Mat95, Mat99]
in order to obtain asymptotically tight bounds in geometric discrepancy.

1.3 Our Result

Shallow packing lemma. In the sequel, we refine the bound in the Packing Lemma (Theorem 3)
so that it becomes sensitive to the length of the vectors v ∈ V, based on an appropriate refinement
of the underlying primal shatter function. This refinement has several geometric applications. Our
ultimate goal is to show that when the set system is “shallow” (that is, the underlying vectors are
short), the packing number becomes much smaller than the bound in Theorem 3.

Nevertheless, we cannot always enforce such an improvement, as in some settings the worst-case
asymptotic bound on the packing number is Ω((n/δ)d) even when the set system is shallow. See
Figure 1 and the paragraph at the end of this section where we give a more detailed description of
this construction to the non-expert reader.

Therefore, in order to obtain an improvement on the packing number of shallow set systems,
we may need further assumptions on the primal shatter function. Such assumptions stem from the
random sampling technique of Clarkson and Shor [CS89], which we define as follows. Let V be our
set system. We assume that for any sequence I of m ≤ n indices, and for any parameter 1 ≤ k ≤ m,
the number of vectors in V|I of length at most k is only O(md1kd−d1), where d is the primal shatter

dimension and 1 ≤ d1 ≤ d is a real parameter.2 When k = m we obtain O(md) vectors in total,
in accordance with the assumption that the primal shatter dimension is d, but the above bound is
also sensitive to the length of the vectors as long as d1 < d. From now on, we say that a primal
shatter function of this kind has the (d, d1) Clarkson-Shor property.

Let us now denote by M(δ, k,V) the δ-packing number of V, where the vector length of each
element in V is at most k, for some integer parameter 1 ≤ k ≤ n. With this notation we can assume,
without loss of generality, that k ≥ δ/2, as otherwise the distance between any two elements in V

must be strictly less than δ, in which case the packing contains at most one element. In Sections 2– 3
we present two proofs for our main result, stated below:

Theorem 4 (Shallow Packing Lemma) Let V ⊆ {0, 1}n be a set of indicator vectors, whose
primal shatter function has a (d, d1) Clarkson-Shor property (where d is the primal shatter dimen-
sion and 1 ≤ d1 ≤ d is a real parameter). Let δ ≥ 1 be an integer parameter, and k an integer

2We ignore the cases where d1 < 1, as it does not seem to appear in natural set systems—see below.
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parameter between 1 and n, and suppose that k ≥ δ/2. Then:

M(δ, k,V) = O

(
nd1kd−d1

δd

)
,

where the constant of proportionality depends on d.

The actual dependence of the constant of proportionality on d is analyzed at end of Section 2
for the first proof, and end of Section 3 for the second proof.

This problem has initially been addressed by the second author in [Ezr16] as a major tool
to obtain size-sensitive discrepancy bounds in set systems of this kind, where it has been shown

M(δ, k,V) = O
(
nd1kd−d1 logd (n/δ)

δd

)
. The analysis in [Ezr16] is a refinement over the technique of

Dudley [Dud78] combined with the existence of small-size relative approximations (see [Ezr16] for
more details). In the current analysis we completely remove the extra logd (n/δ) factor appearing
in the previous bound. In particular, when d1 = d (where we just have the original assumption on
the primal shatter function) or k = n (in which case each vector in V has an arbitrary length), our
bound matches the tight bound of Haussler, and thus appears as a generalization of the Packing
Lemma (when replacing VC-dimension by primal shatter dimension). We present two proofs for
Theorem 4, the first is an extension of Haussler’s approach (Section 2), and the second is an
extension of Chazelle’s proof [Cha92] to the Packing Lemma (Section 3).

We note that after the submission of this paper we found a third proof by Mustafa [Mus16], based
on the simplification of Chazelle’s proof [Cha92] and combining Markov’s inequality. While we find
this proof simpler than ours, we emphasize the fact that the problem of shallow packings has initially
been posed by the second author in [Ezr16], and the preliminary version of this paper [DEG15]
is the first to resolve it (in the sense of Theorem 4). We thus believe the results in [Mus16] were
somewhat inspired by the preliminary version in [DEG15] .

Applications. Theorem 4 implies smaller packing numbers for several natural geometric set sys-
tems under the shallowness assumption. These set systems are described in detail in Section 4.1.
In Section 4.2 we show an application in geometric discrepancy, where the goal is to obtain discrep-
ancy bounds that are sensitive to the length of the vectors in V. Due to the bound in Theorem 4
we obtain an improvement over the one presented in [Ezr16].

An example of a shallow set system with large packing numbers Consider a ground set
that is a collection of axis-parallel rectangles, and the vectors V represent subsets of rectangles that
cover a point in the plane. For simplicity of exposition, we define these vectors to represent all
two-dimensional cells in the arrangement of the given rectangles. In this case, the (d, d1) Clarkson-
Shor property holds only for d = d1 = 2. Indeed, even when the arrangement is very shallow (say,
each point in the plane is covered by at most two rectangles), one can still have quadratically many
cells by just taking a grid of long and skinny rectangles, and thus in general we cannot obtain
size-sensitive bounds on |V|.

It is well known that the primal shatter function of V is quadratic (see, e.g., [HP11]), and
therefore, by Theorem 3, the packing number is O((n/δ)2). Nevertheless, we claim that even when
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the arrangement is shallow, the asymptotic bound on the packing number is not any better than
(n/δ)2. Indeed, fix a positive even parameter δ > 0, and suppose, without loss of generality,
that n/δ is an integer number. Consider now an n

δ ×
n
δ grid of long and skinny rectangles, where

each rectangle in the grid is duplicated δ/2 times (with a possibly infinitesimal perturbation), as
illustrated in Figure 1. Clearly, each (two-dimensional) cell in the arrangement is covered by at
most δ rectangles, and thus the set system is δ-shallow. Consider now only the cells at “depth” δ
(that is, they are covered by precisely δ rectangles), and let F ⊂ V be the set of their representative
vectors. It is easy to verify that, for each pair v, v′ ∈ F, the distance ρ(v, v′) is at least δ (see once
again Figure 1), and thus F is both δ-separated and δ-shallow. However, by construction, we have
|F| = Ω((n/δ)2), and thus the δ-shallowness assumption does not yield an improvement over the
general case.

2 First Proof: Refining Haussler’s Approach

2.1 Preliminaries

Relative approximations and ε-nets. We mentioned in the introduction the notion of relative
(ε, η)-approximations. We now define them formally: Following the definition from [HPS11], given
a set system V ⊆ {0, 1}n and two parameters, 0 < ε < 1 and 0 < η < 1, we say that a subsequence
I of indices is a relative (ε, η)-approximation if it satisfies, for each vector v ∈ V,∣∣∣∣‖v|I‖|I| − ‖v‖n

∣∣∣∣ ≤ η‖v‖n , if ‖v‖n ≥ ε, and

∣∣∣∣‖v|I‖|I| − ‖v‖n
∣∣∣∣ ≤ ηε, otherwise,

where v|I is the projection of v ∈ V onto I.

As observed by Har-Peled and Sharir [HPS11], the analysis of Li et al. [LLS01] implies that if V

has primal shatter dimension d, then a random sample of cd log (1/ε)
εη2

indices (each of which is drawn

independently) is a relative (ε, η)-approximation for V with constant probability, where c > 0 is
an absolute constant. More specifically, success with probability at least 1− q is guaranteed if one
samples c(d log (1/ε)+log (1/q))

εη2
indices.3

It was also observed in [HPS11] that ε-nets arise as a special case of relative (ε, η)-approximations.
Specifically, an ε-net is a subsequence of indices I with the property that any vector v ∈ V with
‖v‖ ≥ nε satisfies ‖v|I‖ ≥ 1. In other words, N is a hitting set for all the “long” vectors. In
this case, if we set η to be some constant fraction, say, 1/4, then a relative (ε, 1/4)-approximation

becomes an ε-net. Moreover, a random sample of O
(
d log (1/ε)+log (1/q)

ε

)
indices (with an appro-

priate choice of the constant of proportionality) is an ε-net for V, with probability at least 1 − q;
see [HPS11] for further details.

3We note that although in the original analysis for this bound d is the VC-dimension, this assumption can be
replaced by having just a primal shatter dimension d; see, e.g., [HP11] for the details of the analysis.
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Overview of Haussler’s approach. For the sake of completeness, we repeat some of the details
in the analysis of Haussler [Hau95] and use similar notation for ease of presentation.

Let V ⊆ {0, 1}n be a collection of indicator vectors of bounded primal shatter dimension d, and
denote its VC-dimension by d0. By the discussion above, d0 = O(d log d). From now on we assume
that V is δ-separated, and thus a bound on |V| is also a bound on the packing number of V. The
analysis in [Hau95] exploits the method of “conditional variance” in order to conclude

|V| ≤ (d0 + 1) ExpI
[
|V|I |

]
= O

(
d log dExpI

[
|V|I |

])
, (1)

where ExpI
[
|V|I |

]
is the expected size of V when projected onto a subset I = {i1, . . . , im−1} of

m− 1 indices chosen uniformly at random without replacements from [n], and

m :=

⌈
(2d0 + 2)(n+ 1)

δ + 2d0 + 2

⌉
= O

(
d0n

δ

)
= O

(
nd log d

δ

)
. (2)

We justify this choice in Appendix A, as well as the facts that m ≤ n and I consists of precisely
m− 1 indices.

Moreover, we refine Haussler’s analysis to include two natural extensions (see Appendix A for
details): (i) Obtain a refined bound on ExpI

[
|V|I |

]
: In the analysis of Haussler ExpI

[
|V|I |

]
is

replaced by its upper bound O(md), resulting from the fact that the primal shatter dimension of V
(and thus of V|I ) is d, from which we obtain that for any choice of I, |V|I | = O((m−1)d) = O(md),

with a constant of proportionality that depends on d, and thus the packing number is O((n/δ)d),
as asserted in Theorem 3.4 However, in our analysis we would like to have a more subtle bound
on the actual expected value of |V|I |. In fact, the scenario imposed by our assumptions on the set
system eventually yields a much smaller bound on the expectation of |V|I |, and thus on |V| due
to Inequality (1). We review this in more detail below. (ii) Relaxing the bound on m. We show
that Inequality (1) is still applicable when the sample I is slightly larger than the bound in (2),
as a stand alone relation, this may result in a suboptimal bound on |V|, however, this property
will assist us to obtain local improvements over the bound on |V|, eventually yielding the bound
in Theorem 4. Specifically, in our analysis we proceed in iterations, where at the first iteration we
obtain a preliminary bound on |V| (Corollary 6), and then, at each subsequent iteration j > 1, we
draw a sample Ij of mj − 1 indices where

mj := m log(j) (n/δ) = O

(
d0n log(j) (n/δ)

δ

)
, (3)

m is our choice in (2), and log(j)(·) is the jth iterated logarithm function. Then, by a straight-
forward generalization of Haussler’s analysis (described in Appendix A), we obtain, for each j =
2, . . . , log∗ (n/δ):

|V| ≤ (d0 + 1) ExpIj

[
|V|Ij |

]
. (4)

We note that since the bounds (1)–(4) involve a dependency on the VC-dimension d0, we will
sometimes need to explicitly refer to this parameter in addition to the primal shatter dimension
d. Nevertheless, throughout the analysis we exploit the relation d ≤ d0 = O(d log d), mentioned in
Section 1.

4We note, however, that the original analysis of Haussler [Hau95] does not rely on the primal shatter dimension,
and the bound on ExpI

[
|V|I |

]
is just O(md0) due to the Sauer-Shelah Lemma.
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2.2 Overview of our Approach

We next present the proof of Theorem 4. In what follows, we assume that V is δ-separated, and
denote by d its primal shatter dimension and by d0 its VC-dimension. We first recall the assumption
that the primal shatter function of V has a (d, d1) Clarkson-Shor property, and that the length of
each vector v ∈ V under the L1 norm is at most k. This implies that V consists of at most
O(nd1kd−d1) vectors.

Since the Clarkson-Shor property is hereditary, then this also applies to any projection of
V onto a subset of indices, implying that the bound on |V|I | is at most O(md1kd−d1), where I
is a subset of m − 1 indices as above. However, due to our sampling scheme we expect that
the length of each vector in V|I should be much smaller than k, (e.g., in expectation this value
should not exceed k(m − 1)/n), from which we may conclude that the actual bound on |V|I | is

smaller than the trivial bound of O(md1kd−d1). Ideally, we would like to show that this bound is
O(md1(km/n)d−d1) = O(nd1kd−d1/δd), which matches our asymptotic bound in Theorem 4 (recall
that m = O(n/δ)). However, this is likely to happen only in case where the length of each vector in
V|I does not exceed its expected value, or that there are only a few vectors whose length deviates
from its expected value by far, whereas, in the worst case there might be many leftover “long”
vectors in V|I . Nevertheless, our goal is to show that, with some care one can proceed in iterations,
where initially I is a slightly larger sample, and then at each iteration we reduce its size, until
eventually it becomes O(m) and we remain with only a few long vectors. At each such iteration V|I
is a random structure that depends on the choice of I and may thus contain long vectors, however,
in expectation they will be scarce!

Specifically, we proceed over at most log∗ (n/δ) iterations, where we perform local improvements
over the bound on |V|, as follows. Let |V|(j) be the bound on |V| after the jth iteration is completed,
1 ≤ j ≤ log∗ (n/δ). We first show in Corollary 6 that for the first iteration, |V| ≤ |V|(1) =

O
(
nd1kd−d1 logd (n/δ)

δd

)
, with a constant of proportionality that depends on d. Then, at each further

iteration j ≥ 2, we select a set Ij of mj − 1 = O(n log(j) (n/δ)/δ) indices uniformly at random

without replacements from [n] (see (3) for the bound on mj). Our goal is to bound ExpIj

[
|V|Ij |

]
using the bound |V|(j−1), obtained at the previous iteration, which, we assume by induction to be

O
(
nd1kd−d1 (log(j−1) (n/δ))d

δd

)
(see Lemma 8 for the recursive relation that we derive, as well as our

observation that the coefficient of the recursive term is at most 1), where the base case j = 2 is
shown in Corollary 6.

A key property in the analysis is to show that the probability that the length of a vector v ∈ V|Ij
(after the projection of V onto Ij) deviates from its expectation decays exponentially (Lemma 7).
Note that in our case this expectation is at most k(mj−1)/n. This, in particular, enables us to claim
that in expectation the overall majority of the vectors in V|Ij

have length at most O(k(mj − 1)/n),

whereas the remaining longer vectors are scarce. This is the key idea to derive a recursive inequality

for |V|(j) using the bound on ExpIj

[
|V|Ij |

]
(Lemma 8). Roughly speaking, since the Clarkson-Shor

property is hereditary, we apply it to V|Ij
and conclude that the number of its vectors of length

at most O(k(mj − 1)/n) is only O
(
nd1kd−d1 (log(j) (n/δ))d

δd

)
, with a constant of proportionality that

depends on d. On the other hand, due to Lemma 7 and our inductive hypothesis, the number
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of longer vectors does not exceed O
(
nd1kd−d1

δd

)
, which is dominated by the first bound. We thus

conclude ExpIj

[
|V|Ij |

]
= O

(
nd1kd−d1 (log(j) (n/δ))d

δd

)
. Then we apply Inequality (4) in order to

complete the inductive step, whence we obtain the bound on |V|(j), and thus on |V|. Note that
the full analysis is somewhat more subtle, as we need to show that the actual coefficient of the
recursive term |V|(j) is at most 1 (Lemma 8). We emphasize the fact that the sample Ij is always
chosen from the original ground set [n], and thus, at each iteration we construct a new sample from
scratch, and then exploit our observation in Inequality (4).

In what follows, we also assume that δ < n/2(d0+1) (where d0 is the VC-dim), as otherwise
the bound on the packing number is a constant that depends on d and d0 by the Packing Lemma
(Theorem 3). This assumption is crucial for the recursive analysis presented in this section—see
below.

2.3 The First Iteration

In order to show our bound on |V(1)|, we form a subset I1 = (i1, . . . , im1) of m1 = |I1| =

O
(
dn log (n/δ)

δ

)
indices5 with the following two properties: (i) each vector in V is mapped to a

distinct vector in V|I1 , and (ii) the length of each vector in V|I1 does not exceed O(k ·m1/n).

A set I1 as above exists by the considerations in [Ezr16]. Specifically:

Lemma 5 A sample I1 as above satisfies properties (i)–(ii), with probability at least 1/2.

Proof : We rely on the notions of “relative approximations” and “ε-nets”, defined in Section 2.1.

In order to show (i), we first form the set system corresponding to all symmetric difference pairs
induced by V. That is, we form the vector set D, where D = {(|u1−v1|, . . . , |un−vn|) | u,v ∈ V}.
Since we assume that V is δ-separated, we have ‖w‖ ≥ δ, for each w ∈ D. As observed in [Dud78]
(see also [HP11]), D has a finite VC-dimension.

We now construct an ε-net for D, with ε = δ/n. By our discussion above a sample I1 of
O(d(n/δ) log (n/δ)) indices has this property with probability greater than, say, 3/4 (for a suffi-
ciently large constant of proportionality).

Thus, by definition, any vector w ∈ D (recall that its length is at least δ) must satisfy |w|I1 | ≥ 1,
where w|I1 denotes the projection of w onto I1. But this implies that we must have u|I1 6= v|I1 , for
each pair u,v ∈ V, and thus u, v must be mapped to distinct vectors in the projection of V onto
I1, from which property (i) follows.

In order to have property (ii) we observe that the same sample I1 is a relative (δ/n, 1/4)-
approximation for V with probability at least 3/4 (for an appropriate choice of the constant of

5In this particular step we use a different machinery than that of Haussler [Hau95]; see the proof of Lemma 5 and
our remark after Corollary 6. Therefore, |I1| = m1, rather than m1−1. Furthermore, the constant of proportionality
in the bound on m1 depends just on the primal shatter dimension d instead of the VC-dimension d0 as in (3).
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proportionality). Given this property of I1, this implies that any vector v ∈ V satisfies∣∣∣∣∣‖v|I1‖m1
− ‖v‖

n

∣∣∣∣∣ ≤ 1

4
· ‖v‖
n
,

if ‖v‖/n ≥ δ/n, and ∣∣∣∣∣‖v|I1‖m1
− ‖v‖

n

∣∣∣∣∣ ≤ 1

4
· δ
n
,

otherwise. Since ‖v‖ ≤ k, and k ≥ δ/2 by assumption, it is easy to verify that we always have
‖v|I1‖ ≤ 3/2 · km1/n. In other words, ‖v|I1‖ = O(k ·m1/n), as asserted.

Combining the two roles of I1 (each with probability 3/4), it follows that it is both a (δ/n)-net
for D and a relative (δ/n, 1/4)-approximation for V, with probability at least 1/2, and thus it
satisfies properties (i)–(ii) with this probability. This completes the proof of the lemma. �

We next apply Lemma 5 in order to bound |V|I1 |. We first recall that the (d, d1) Clarkson-Shor
property of the primal shatter function of V is hereditary. Incorporating the bound on m1 and
property (ii), we conclude that

|V|I1 | = O

(
md1

1

(
km1

n

)d−d1)
= O

(
nd1kd−d1 logd (n/δ)

δd

)
,

with a constant of proportionality that depends on d. Now, due to property (i), |V| ≤ |V|I1 |, we
thus conclude:

Corollary 6 After the first iteration we have: |V| ≤ |V|(1) = O
(
nd1kd−d1 logd (n/δ)

δd

)
, with a constant

of proportionality that depends on d.

Remark: We note that the preliminary bound given in Corollary 6 is crucial for the analysis, as
it constitutes the base for the iterative process described in Section 2.4. In fact, this step of the
analysis alone bypasses our refinement to Haussler’s approach, and instead exploits the approach
of Dudley [Dud78].

2.4 The Subsequent Iterations: Applying the Inductive Step

Let us now fix an iteration j ≥ 2. As noted above, we assume by induction on j that the bound

|V|(j−1) on |V| after the (j − 1)th iteration is O
(
nd1kd−d1 (log(j−1) (n/δ))d

δd

)
. Let Ij be a subset of

mj − 1 indices, chosen uniformly at random without replacements from [n], with mj given by (3).
Let v ∈ V, and denote by v|Ij

its projection onto Ij . The expected length Exp[‖v|Ij ‖] of v|Ij
is at

most k(mj − 1)/n = O(d0k log(j) (n/δ)/δ). We next show:

Lemma 7 (Exponential Decay Lemma)

Prob

[
‖v|Ij ‖ ≥ t ·

k(mj − 1)

n

]
< 2−tk(mj−1)/n,

where t ≥ 2e is a real parameter and e is the base of the natural logarithm.
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Proof : We first observe that the length of v|Ij
is a random variable with a hypergeometric

distribution. Indeed, this is precisely the question of uniformly choosing mj−1 elements at random
(into our set Ij) from a given set of n elements without replacements, and then, for a given ‖v‖-
element subset of the full set (recall that the length of v corresponds to the cardinality of an
appropriate subset in the set system), we consider how many of its elements have been chosen into
Ij . Specifically, we have:

Prob
[
‖v|Ij ‖ = s

]
=

(‖v‖
s

)(
n−‖v‖
mj−1−s

)(
n

mj−1

) ,

for each non-negative integer s ≤ min{‖v‖,mj − 1}.

Our goal is to show a Chernoff-type bound over the probability that ‖v|Ij ‖ deviates from its

expectation. However, we face the difficulty that the corresponding indicator variables are not
independent, and thus we cannot apply a Chernoff bound directly (see, e.g. [AS08]). Nevertheless,
in our scenario a Chernoff bound is still applicable, this can be viewed by various approaches, see,
e.g., [AD11, Mulz, PS97]. For the sake of completeness we describe the proof in detail, and rely on
the analysis of Panconesi and Srinivasan [PS97], which implies that when the underlying indicator
variables are “negatively correlated”, one can still apply a Chernoff bound (see also [AD11]).

We enumerate all non-zero coordinates of v in an arbitrary order, let L = {l1, . . . l‖v‖} be this
set of indices (in this notation we ignore all the zero-coordinates), and attach an indicator variable
Xi to each index li ∈ L, which is defined to be one if and only if li ∈ Ij (in other words, the
corresponding element in the underlying set induced by v has been chosen to be included into
the sample of the mj − 1 elements). According to this notation, ‖v|Ij ‖ is represented by the sum

X =
∑‖v‖

i=1 Xi. It is now easy to verify that Prob[Xi = 1] = (mj − 1)/n, and by linearity of
expectation Exp[‖v|Ij ‖] = ‖v‖ · (mj − 1)/n.

However, the variables Xi are not independent due to our probabilistic model (that is, Ij is
chosen without replacements), nevertheless, they are negatively correlated. This implies that for
each subset K ⊆ {1, . . . , ‖v‖}

Prob[
∧
i∈K

Xi = 0] ≤
∏
i∈K

Prob[Xi = 0],

and
Prob[

∧
i∈K

Xi = 1] ≤
∏
i∈K

Prob[Xi = 1].

Indeed, following the considerations in [AD11], let us show first the latter inequality. Put LK =⋃
i∈K{li}. Then Prob[

∧
i∈K Xi = 1] = Prob[LK ⊆ Ij ], and since Ij is uniformly chosen, in order

to bound the latter we need to take the proportion between the number of subsets of size mj−1 that
contain LK and the entire number of subsets of size mj − 1 that can be chosen from an n-element
set. Hence

Prob[LK ⊆ Ij ] =

( n−|K|
mj−1−|K|

)(
n

mj−1

) =
(mj − 1)(mj − 2) · · · (mj − |K|)

n(n− 1) · · · (n− |K|+ 1)
,

and the latter is smaller than
(
mj−1
n

)|K|
, as is easily verified. Using similar arguments for the first

11



correlation inequality, we obtain

Prob[
∧
i∈K

Xi = 0] =

(
n−|K|
mj−1

)(
n

mj−1

) < (1− mj − 1

n

)|K|
.

We are now ready to apply [PS97, Theorem 3.4] stating that if the indicator variables Xi are

negatively correlated then (recall that X =
∑‖v‖

i=1 Xi)
6:

Prob[X > ρExp[X]] <

(
eρ−1

ρρ

)Exp[X]

,

for any ρ > 1. In particular, when ρ ≥ 2e (where e is the base of the natural logarithm), the latter
term is bounded by 2−ρExp[X]. Recall that we assumed ‖v‖ ≤ k, and thus Exp[X] = Exp[‖v|Ij ‖] ≤
k · (mj − 1)/n. Thus, for any t ≥ 2e, we obtain:

Prob
[
‖v|Ij ‖ > tk(mj − 1)/n

]
= Prob

[
‖v|Ij ‖ >

tk(mj − 1)/n

Exp[‖v|Ij ‖]
·Exp[‖v|Ij ‖]

]
,

observe that in this case ρ :=
tk(mj−1)/n
Exp[‖v|Ij

‖] ≥ 2e, due to our assumption on t and the fact that

k(mj−1)/n
Exp[‖v|Ij

‖] ≥ 1, and thus the latter term is bounded by:

2
−

tk(mj−1)/n

Exp[‖v|Ij
‖] Exp[‖v|Ij

‖]
= 2−tk(mj−1)/n,

as asserted. �

We now proceed as follows. Recall that we assume k ≥ δ/2, and by (3) we have mj =

O
(
d0n log(j) (n/δ)

δ

)
. Thus it follows from Lemma 7 that

Prob

[
‖v|Ij ‖ ≥ C ·

k(mj − 1)

n

]
<

1

(log(j−1) (n/δ))D
, (5)

where C ≥ 2e is a sufficiently large constant, and D > d0 is another constant whose choice depends
on C and d0, and can be made arbitrarily large. Since d0 ≥ d we obviously have D > d. We next
show:

Lemma 8 Under the assumption that k ≥ δ/2, we have, at any iteration j ≥ 2:

|V|(j) ≤ A(d0 + 1) · n
d1kd−d1(log(j) (n/δ))d

δd
+ (d0 + 1) · |V|(j−1)

(log(j−1) (n/δ))D
, (6)

where |V|(l) is the bound on |V| after the lth iteration, and A > 0 is a constant that depends on d
(and d0) and the constant of proportionality determined by the Clarkson-Shor property of V.

6We note that in the original formulation in [PS97], one needs to have a set of independent random variables

X̂i, i ∈ {1, . . . , ‖v‖} with X̂ =
∑‖v‖

i=1 X̂i, such that Exp[X] ≤ Exp[X̂]. In the scenario of our problem X̂i is
taken to be a Bernoulli indicator random variable, which takes value one with probability (mj − 1)/n, in which case
Exp[X] = Exp[X̂] = ‖v‖ · (mj − 1)/n.
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Proof : We in fact show:

ExpIj

[
|V|Ij |

]
≤ A · n

d1kd−d1(log(j) (n/δ))d

δd
+

|V|(j−1)

(log(j−1) (n/δ))D
,

and then exploit the relation |V| ≤ (d0 + 1) ExpIj

[
|V|Ij |

]
(Inequality (4)), in order to prove In-

equality (6).

In order to obtain the first term in the bound on ExpIj

[
|V|Ij |

]
, we consider all vectors of length

at most C · k(mj−1)
n (where C ≥ 2e is a sufficiently large constant as above) in the projection of V

onto a subset Ij of mj−1 indices (in this part of the analysis Ij can be arbitrary). Since the primal
shatter function of V has a (d, d1) Clarkson-Shor property, which is hereditary, we obtain at most

O(mj
d1(k(mj − 1)/n)d−d1) = O

(
nd1kd−d1(log(j) (n/δ))d

δd

)

vectors in V|Ij
of length smaller than C · k(mj−1)

n = O(k log(j) (n/δ)
δ ). It is easy to verify that the

constant of proportionality A in the bound just obtained depends on d, d0, and the constant of
proportionality determined by the (d, d1) Clarkson-Shor property of V (observe that the latter one
is at most (2(d0 + 1))d, since mj depends linearly in d0).

Next, in order to obtain the second term, we consider the vectors v ∈ V that are mapped to

vectors v|Ij
∈ V|Ij

with ‖v|Ij ‖ > C · k(mj−1)
n . By Inequality (5):

Exp

[∣∣∣∣{v ∈ V | ‖v|Ij ‖ > C · k(mj − 1)

n

}∣∣∣∣] < |V|
(log(j−1) (n/δ))D

,

and recall that |V|(j−1) is the bound on |V| after the previous iteration j − 1. This completes the
proof of the lemma.

�

Remark: We note that the bound on ExpIj

[
|V|Ij |

]
consists of the worst-case bound on the

number of short vectors of length at most C · k(mj − 1)/n, obtained by the (d, d1) Clarkson-Shor
property, plus the expected number of long vectors.

Wrapping up. We now complete the analysis and solve Inequality (6). Our initial assumption
that δ < n/2(d0+1), and the fact that D > d is sufficiently large, imply that the coefficient of the
recursive term is smaller than 1, for any 2 ≤ j ≤ log∗ (n/δ)− log∗ (d0 + 1).7 Then, using induction
on j, one can verify that the solution is

|V|(j) ≤ 2A(d0 + 1)
nd1kd−d1(log(j) (n/δ))d

δd
, (7)

7We observe that 2 ≤ log∗ (n/δ)− log∗ (d0 + 1) ≤ log∗ (n/δ), due to our assumption that δ < n/2(d0+1), and the
fact that d0 ≥ 1.
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for any 2 ≤ j ≤ log∗ (n/δ)− log∗ (d0 + 1).

We thus conclude |V|(j) = O
(
nd1kd−d1 (log(j) (n/δ))d

δd

)
. In particular, at the termination of the last

iteration j∗ = log∗ (n/δ)− log∗ (d0 + 1), we obtain:

|V| ≤ |V|(j∗) = O

(
nd1kd−d1

δd

)
,

with a constant of proportionality that depends exponentially on d (and d0). Specifically, it is easy
to verify that due to our choice of j∗ and the fact that A is at most (2(d0 + 1))d, the resulting
constant of proportionality in the bound on |V| is at most (d0 + 1)O(d). This at last completes the
proof of Theorem 4.

3 Second Proof: Refining Chazelle’s Approach

In this section, we shall prove a size-sensitive version of Haussler’s upper bound for δ-separated
set of vectors, having bounded primal shatter dimension, building on Chazelle’s presentation of
Haussler’s proof as explained in [Mat99]. By Haussler’s result [Hau95], we know that

M(δ, k,V) = gd ·
(n
δ

)d1 (k
δ

)d−d1
,

where g := g(n, k, δ) is such that gd = O
((

n
k

)d−d1). We shall show that the optimal (up to

constants) upper bound for g, is in fact c∗, where c∗ is independent of n, k and δ.

3.1 Overview of the second approach

Consider a preliminary attempt to extend Chazelle’s proof to shallow packings. Like Chazelle,
one chooses a random subsequence of indices I of size roughly n/δ, and estimates the number of
projections on I caused by δ-separated vectors of size bounded by k. Suppose that the projection
of every vector in the δ-separated system V onto I, were nearly equal to its expected value k/δ. By
the definition of the (d, d1) Clarkson-Shor property, the number of projections on the subsequence

I would then be bounded by c
(
n
δ

)d1(
k
δ

)d−d1
= c
(
nd1kd−d1

δd

)
, for some constant c, and Chazelle’s

proof would go through in a straightforward manner. However, for a given vector, its projection on
I can be much larger than expected. To handle this, we shall choose I in a way that the number of
such “bad” vectors, is at most a constant times their expected number. Also, we treat the unknown
“extra” factor g (at most the Haussler packing bound, divided by nd1kd−d1

δd
) as a function of n, k, δ,

whose value we show to be bounded by a constant independent of n, k, and δ (see Inequality (12)
and succeeding paragraph). This allows us to get the final bound in a single iteration.

3.2 Details of the Proof

Before we give the details of the second proof, we will need the definition of the unit distance graph
of a family of vectors which will play a central role in the proof of the theorem.
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Definition 9 (Unit Distance Graph) For a family V ⊆ {0, 1}n of indicator vectors, the unit
distance graph UD(V) = (V, E) is a graph with vertex set V and {v1, v2} is an edge, i.e. {v1, v2} ∈
E, if ρ(v1,v2) = 1.

Proof : Consider a random subsequence of indices I = (i1, . . . , is) obtained by selecting each
i ∈ [n] with probability p = 11d0K

δ , and then taking a random permutation of the selected indices.
Here K = K(n, k, δ) ≥ 4 is a parameter to be fixed later. Define V1 := V|I . Consider the unit
distance graph UD(V1). For each vector v1 ∈ V1, define the weight of v1 as:

w(v1) :=
∣∣{v ∈ V : v|I = v1

}∣∣ .
Observe that ∑

v1∈V1

w(v1) = M(δ, k,V).

Now define the weight of an edge {v1,v
′
1} ∈ E as w ({v1,v

′
1}) := min{w(v1), w(v′1)}. Let

W :=
∑
{v1,v′1}∈E w ({v1,v

′
1}). We now need the following lemma, whose proof we include from

Matoušek’s book [Mat99], in order to make the exposition self-contained.

Lemma 10 W ≤ 2d0
∑

v1∈V1
w(v1) = 2d0M(δ, k,V).

Proof : The proof is based on the following lemma, proved by Haussler [Hau95] for set systems
with bounded VC-dimension. The following version appears in [Mat99]:

Lemma 11 ([Hau95]) Let V ⊆ {0, 1}n be a set of indicator vectors with VC-dimension d0. Then
the unit-distance graph UD(V) has at most d0|V| edges.

Since the VC-dimension of V1 is bounded by d0 from the hereditary property of VC-dimension, the
lemma implies that there exists a vertex v1 ∈ V1, whose degree is at most 2d0. Removing v1, the
total vertex weight will be reduce by w(v1), and the total edge weight will be reduce by at most
2d0w(v1). By continuing the process and the argument until all vertices are removed, we get the
lemma. �

Next, we shall prove a lower bound on the expectation Exp[W ]. Set I ′ := (i1, i2, . . . , is−1), and
let V2 := V|I′ . Let E1 ⊆ E be those edges {v1,v

′
1} of E where vectors v1 and v′1 differ in the

coordinate is, and let

W1 :=
∑

{v1,v′1}∈E1

w
({

v1,v
′
1

})
.

We need to lower bound Exp[W1]. Given I ′, let

Y = Y (I ′) :=
∣∣{v ∈ V : ‖v|I′‖ > ekp

}∣∣ ,
i.e., the number of vectors in V, each of whose length after projecting onto I ′ is more than ekp,
(where e is the base of the natural logarithm function).
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Let NY and NS denote the events (Y ≤ 8 Exp[Y ]) and
(
np
2 ≤ s ≤

3np
2

)
respectively. Also, let

Nice denote the event NY ∩NS . Conditioning W on Nice, we get:

Exp[W ] = Prob [Nice] Exp[W |Nice] + Prob
[
Nice

]
Exp[W |Nice]

≥ Prob [Nice] Exp[W |Nice].

By Markov’s Inequality, we have

Prob
[
NY

]
= Prob [Y ≥ 8 Exp[Y ]] ≤ 1/8,

and using Chernoff Bounds, (see [AS08, App. A]), with the fact that n/δ ≥ 1, we get

Prob
[
NS

]
= Prob

[
|s− np| > np

2

]
≤ 2 exp

(
−11d0Kn

3 · 22δ

)
≤ 2 exp (−11K/12)� 1/8,

since d0 ≥ 1 and K ≥ 4. This implies that

Prob [Nice] = Prob [NY ∩NS ] = Prob
[
NY ∪NS

]
= 1−Prob

[
NY ∪NS

]
≥ 1−Prob

[
NS

]
−Prob

[
NY

]
≥ 1− 1

8
− 1

8
=

3

4
,

where the last inequality follows from the bounds on Prob [NS ] and Prob [NY ]. Hence,

Exp[W ] ≥ 3

4
Exp[W |Nice] =

3

4
s ·Exp[W1|Nice] ≥

(
3np

8

)
Exp[W1|Nice], (8)

where the equality follows by symmetry of the choice of is from the indices in I, and the last
inequality comes from the lower bound on s under the condition Nice.

So to lower bound Exp[W ], it suffices to lower bound Exp[W1|Nice]. Let W2 denote W1|Nice.
We shall lower bound Exp[W2|I ′], that is, the expected weight contributed by is, under the event
Nice, for a fixed choice of I ′.

By definition, W1 =
∑
{v1,v′1}∈E1

w ({v1,v
′
1}). Partition V into equivalence classes V′1, . . . , V

′
r

according to their projection onto I ′:

V = V′1 t . . . t V′r,

where r ≤ c(3np/2)d = O((n/δ)d). Here, c is the constant independent of n, δ, occuring in the
definition of primal shatter dimension. Define B ⊂ [r] as follows:

B := {j ∈ [r] : v ∈ V′j ⇔ ‖v|I′‖ > ekp}.

Further, let G be [r] \B. Since Nice holds, we have:∑
j∈B
|V′j | ≤ 8 Exp[Y ]. (9)
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We will estimate the contribution of the classes in G to the expected weight Exp[W2|I ′], that is,
the contribution of the edges of UD(V1) which have both of their endpoints in G. Consider a class
V′i such that i ∈ G. Let V′′1 ⊂ V′i be those vectors in V′i with 1 in the is-th coordinate, and let
V′′2 = V′i \ V′′1. Let b = |V′i|, b1 = |V′′1| and b2 = |V′′2|. Then the edge {v,v′} ∈ E1 formed by the
projection of V′i onto I, has weight

w
({

v,v′
})

= min(b1, b2) ≥ b1b2
b
. (10)

Observe that in Inequality (10), b depends only on the subset I ′. Also, since I ′ is fixed, the product
b1 ·b2 depends on the choice of is. The product b1b2 is the number of ordered pairs of vectors (v,v′),
with v and v′ in V′i, such that v and v′ differs only in the is-th coordinate. Observe that under the
event Nice, for a fixed I ′, the probability that any given element i ∈ [n] is the chosen element is, is

1
n−|I′| = 1

n−s+1 ≥
1
n

8. Since for a given ordered pair (v,v′) of distinct vectors v,v′ ∈ V′i, v and v′

differ in ρ(v,v′) > δ coordinates, the probability that (v,v′) differ in the chosen is-th coordinate is

Prob
[
|vis − v′is | = 1

]
=

ρ(v,v′)

n− s+ 1
≥ δ

n
.

Therefore, the expected contribution of (v,v′) to b1b2 is at least δ
n and this implies

Exp[w
({

v,v′
})
|Nice] ≥ Exp

[
(b1b2/b)|Nice

]
≥ b(b− 1)δ

bn
=

δ(b− 1)

n
=
δ(|V′i| − 1)

n
,

where the inequality in the second line comes from Inequality (10).

Hence, the expected contribution of G to the weight W2 is:

Exp[W2|I ′] ≥
∑

{v,v′}∈G

Exp[w
({

v,v′
})
|Nice] ≥

∑
i∈G

(|V′i| − 1)
δ

n
. (11)

Observe that by the (d, d1) Clarkson-Shor property and the fact that |I ′| < 3np
2 , we have

|G| ≤ C|I ′|d1 (ekp)d−d1 < C (3np/2)d1 (ekp)d−d1 ,

where C is a constant. Substituting the bound of |G| in Inequality (11) and the fact that
∑

j∈B |V′j | ≤
8For any p ∈ (0, 1), the binomial distribution with parameter p on a finite set X, under the conditions that only

one element is selected and that it does not belong to a fixed subset I ′ ⊂ X, is just the uniform distribution on X \I ′.
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8 Exp[Y ] (see Inequality (9)) we get:

Exp[W2|I ′] ≥

((∑
i∈G
|V′i|

)
− |G|

)
δ

n

≥

((∑
i∈G
|V′i|

)
− C(3np/2)d1(ekp)d−d1

)
δ

n

=

(
|V| −

(∑
i∈B
|V′i|

)
− C(3np/2)d1(ekp)d−d1

)
δ

n

≥

(
|V| − 8 Exp[Y ]− C(11d0K)d.(3/2)d1ed−d1

(n
δ

)d1 (k
δ

)d−d1) δ

n

≥

(
M(δ, k,V)− 8 Exp[Y ]− C1K

d
(n
δ

)d1 (k
δ

)d−d1) δ

n
,

where C1 = C · (11d0)d(3/2)d1ed−d1 .

Since the above holds for each I ′ which satisfies Nice, we get that

Exp[W2] ≥

(
M(δ, k,V)− 8 Exp[Y ]− C1K

d
(n
δ

)d1 (k
δ

)d−d1) δ

n
,

Using Inequality (8), and comparing with the upper bound on W ,

(3np/8) Exp[W2] ≤ Exp[W ] ≤ 2d0M(δ, k,V),

and substituting the lower bound on Exp[W2] and solving for M(δ, k,V), we get

M(δ, k,V) ≤
33K

(
8 Exp[Y ] + C1K

d
(
n
δ

)d1 (k
δ

)d−d1)
33K − 16

.

Next, the following lemma connects the parameters K and g:

Lemma 12 For K = max
{

4, 2d log g
11d0

}
, Exp[Y ] ≤ nd1kd−d1

δd
.

Substituting the choice of K and the value of Exp[Y ] from Lemma 12, we get that

gd
(n
δ

)d1 (k
δ

)d−d1
= M(δ, k,V) ≤

C1K
d
(
n
δ

)d1 · (kδ )d−d1 + 8
(
n
δ

)d1 · (kδ )d−d1
1− 16/33K

≤ C2K
d
(n
δ

)d1
·
(
k

δ

)d−d1
≤ C2

(
max

{
4,

2d log g

11d0

})d
·
(n
δ

)d1
·
(
k

δ

)d−d1
,

(where in the second step we used that 1− 16/33K ≥ 1/2, and hence C2 is a positive constant.)

18



The last inequality above implies that gd ≤ C2

(
max{4, 2d log g

11d0
}
)d

, or with C3 = C
1/d
2 :

g ≤ C3 max

{
4,

2d log g

11d0

}
. (12)

We claim that the above implies that g, and hence K, must be bounded from above by a constant
independent of n, k, δ. If g is not increasing with n, k, and δ, then g is bounded, and we are done.
Otherwise, for any g = g(n, k, δ) growing with n, k, or δ, we have g � C4 log g (where C4 = 2dC3

11d0
)

for sufficiently large n, k or δ. This inequality can only be satisfied when g is bounded by a constant
function of n, k and δ, i.e., g(n, k, δ) ≤ c∗, where c∗ is independent of n, k and δ. Thus in either
case, g = g(n, k, δ) is a function bounded by an absolute constant. Therefore, it suffices to take
K ≥ 2d log c∗

11d0
, where c∗ is the greatest positive value satisfying Inequality (12).

The constants C1, C2 are of the order of dd0. Therefore C3 is O(d0), and C4 is O(d). Hence,
c∗ = O(d log d), and therefore gd = O((d log d)d). Thus the constant of proportionality in the bound,
in the proof based on Chazelle’s approach, can be upper bounded by O((d log d)d) = O(2d log d). �

It only remains to prove Claim 12:

Proof of Lemma 12: The proof follows easily from Chernoff Bounds. Fix v ∈ V, and let Z = ‖v|I′‖
and Z ′ = ‖v|I‖. Observe that Z ′ ≥ Z. Since ‖v‖ ≤ k, we have Exp[Z ′] ≤ kp. The probability that
Z ≥ ekp is upper bounded using Chernoff bounds, see [AS08, Theorem A.1.12], as follows:

Prob [Z > ekp] ≤ Prob
[
Z ′ −Exp[Z ′] >

(
β − 1

)
Exp[Z ′]

]
, where β =

ekp

Exp[Z ′]
,

≤ exp
(
−Exp[Z ′](β log β − β + 1)

)
≤ exp

(
−ekp(log β − 1 +

1

β
)

)
≤ exp(−kp)

≤ exp

(
−11d0Kk

δ

)
,

since β = ekp
Exp[Z′] ≥ e, and as can be verified by elementary calculus, for any β ≥ e, log β−1+1/β ≥

1/e. Hence the expected number Exp[Y ] of vectors whose projections on I ′ have norm at least
(11ed0Kk/δ), is at most:

Exp[Y ] ≤M(δ, k,V) exp

(
−11d0Kk

δ

)
≤M(δ, k,V) exp (−11d0K/2) ,

since k ≥ δ/2. Substituting the value of M(δ, k,V) in terms of g, we have

Exp[Y ] ≤ gd
(n
δ

)d1
·
(
k

δ

)d−d1
· exp(−11d0K/2)

≤
(n
δ

)d1
·
(
k

δ

)d−d1
· exp

(
d log g − 11d0K

2

)
≤

(n
δ

)d1
·
(
k

δ

)d−d1
,
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for K ≥ 2d log g
11d0

. �

4 Applications

4.1 Realization to Geometric Set Systems

We now incorporate the random sampling technique of Clarkson and Shor [CS89] with Theorem 4
in order to conclude that small shallow packings exist in several useful scenarios. This includes
the case where V represents: (i) A collection of halfspaces defined over an n-point set in d-space
(that is, each set in the set system is the subset of points contained in a halfspace). In this case,
for any integer parameter 0 ≤ k ≤ n, the number of halfspaces that contain at most k points
is O(nbd/2ckdd/2e), and thus the primal shatter function has a (d, bd/2c) Clarkson-Shor property.
(ii) A collection of balls defined over an n-point set in d-space. Here, the number of balls that
contain at most k points is O(nb(d+1)/2ckd(d+1)/2e), and therefore the primal shatter function has
a (d + 1, b(d+ 1)/2c) Clarkson-Shor property. (iii) A collection of parallel slabs (that is, each of
these regions is enclosed between two parallel hyperplanes and has an arbitrary width), defined
over an n-point set in d-space. The number of slabs, which contains at most k points is O(ndk).
(iv) A dual set system of points in d-space and a collection F of n (d− 1)-variate (not necessarily
continuous or totally defined) functions of constant description complexity. Specifically, the graph
of each function is a semi-algebraic set in Rd defined by a constant number of polynomial equalities
and inequalities of constant maximum degree (see [SA95, Chapter 7] for a detailed description of
these properties, which we omit here).9 In this case, V is represented by the cells (of all dimensions)
in the arrangement of the graphs of the functions in F (see Section 1 for the definition) that lie
below at most k function graphs. This portion of the arrangement is also referred to as the at
most k-level, and its combinatorial complexity is O(nd−1+εk1−ε), for any ε > 0, where the constant
of proportionality depends on d and ε. Thus the primal shatter function has a (d, d − 1 + ε)
Clarkson-Shor property.

All bounds presented in (i)–(iv) are well known in the field of computational geometry; we refer
the reader to [CS89, Mat02, SA95] for further details. We thus conclude:

Corollary 13 Let V ⊆ {0, 1}n be a set of indicator vectors representing a set system of halfspaces
defined over an n-point set in d-space, and let δ, k be two integer parameters as in Theorem 4.
Then:

M(δ, k,V) = O

(
nbd/2ckdd/2e

δd

)
,

where the constant of proportionality depends on d.

Corollary 14 Let V ⊆ {0, 1}n be a set of indicator vectors representing a set system of balls defined
over an n-point set in d-space, and let δ, k be two integer parameters as in Theorem 4. Then:

M(δ, k,V) = O

(
nb(d+1)/2ckd(d+1)/2e

δd+1

)
,

9In [SA95] it is also required that the projection of each function onto the plane xd = 0 has a constant description
complexity.
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where the constant of proportionality depends on d.

Corollary 15 Let V ⊆ {0, 1}n be a set of indicator vectors representing a set system of parallel
slabs defined over an n-point set in d-space, and let δ, k be two integer parameters as in Theorem 4.
Then:

M(δ, k,V) = O

(
ndk

δd+1

)
,

where the constant of proportionality depends on d.

Corollary 16 Let V ⊆ {0, 1}n be a set of indicator vectors representing a dual set system of n
(d − 1)-variate (not necessarily continuous or totally defined) functions of constant description
complexity and points in d-space. Let δ, k be two integer parameters as in Theorem 4. Then:

M(δ, k,V) = O

(
nd−1+εk1−ε

δd

)
,

where the constant of proportionality depends on d and on ε.

4.2 Size-Sensitive Discrepancy Bounds

Suppose we are given a set system Σ defined over an n-point set X (for simplicity of exposition, we
refer to Σ as a collection of subsets of X rather than a collection of vectors defined over the unit
cube). We now wish to color the points of X by two colors, such that in each set of Σ the deviation
from an even split is as small as possible.

Formally, a two-coloring of X is a mapping χ : X → {−1,+1}. For a set S ∈ Σ we define
χ(S) :=

∑
x∈S χ(x). The discrepancy of Σ is then defined as disc(Σ) := minχ maxS∈Σ |χ(S)|.

In a previous work [Ezr16], the second author presented size-sensitive discrepancy bounds for set
systems of halfspaces defined over n points in d-space. These bounds were achieved by combining
the entropy method [LM12] with δ-packings, and, as observed in [Ezr16], they are optimal up to
a poly-logarithmic factor. Incorporating our bound in Theorem 4 into the analysis in [Ezr16], the
bounds on χ(S) improve by a logarithmic factor. Specifically, we obtain (see Appendix B for the
proof):

Theorem 17 Let Σ be a set system, defined over an n-point set, whose primal shatter function
has a (d, d1) Clarkson-Shor property. Then, there is a two-coloring χ, such that for each S ∈ Σ:

χ(S) =


O
(
|S|1/2−d1/(2d)n(d1−1)/(2d) log1/(2d) n

)
, if d1 > 1

O
(
|S|1/2−1/(2d) log1+1/2d n

)
, if d1 = 1

Such a two-coloring χ can be computed in expected polynomial time.
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Concluding Remarks. The analogy between shallow packings for dual set systems and shallow
cuttings [Mat92] may cause one to interpret shallow packings as the “primal version” of shallow
cuttings. For an example of getting shallow packing, though now explicitly stated as such, for dual
set systems with small union complexity via shallow cuttings refer to Mustafa and Ray’s paper on
Mnets [MR14]. In this paper we presented discrepancy applications for shallow packings. We hope
to find additional applications in geometry and beyond.
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A Overview of Haussler’s Approach

Let V ⊆ {0, 1}n be a collection of indicator vectors of primal shatter dimension d. We denote its
VC-dimension by d0; as discussed in Section 1 d0 = O(d log d).

We first form a probability distribution P over V, implying that V can be viewed10 as an
n-dimensional random variable taking values in {0, 1}n. Thus its components Vi, i = 1, . . . , n,
represent n correlated indicator random variables (Bernoulli random variables), and each of their
values is determined by randomly selecting a vector v ∈ V, and letting Vi be the ith component
of v. The variance of a Bernoulli random variable B is known to be Prob[B = 1] Prob[B = 0],
and then, for a sequence B1, . . . , Bm of Bernoulli random variables, the conditional variance of Bm
given B1, . . . , Bm−1 is defined as

Var(Bm|B1, . . . , Bm−1) =
∑

v∈{0,1}m−1

Prob(v) Prob(Bm = 1|v) (1−Prob(Bm = 1|v)) ,

where Prob(v) = Prob(B1 = v1, B2 = v2, . . . , Bm−1 = vm−1), and Prob(Bm = 1|v) =
Prob(Bm = 1|B1 = v1, B2 = v2, . . . , Bm−1 = vm−1).

A key property in the analysis of Haussler [Hau95] lies in the density of a unit distance graph
G = (V, E), defined over V, whose edges correspond to all pairs u,v ∈ V, whose symmetric difference
distance is (precisely) 1. In other words, u, v appear as neighbors on the unit cube {0, 1}n. It has
been shown by Haussler et al. [HLW94] that the density of G is bounded by the VC-dimension of V,
that is, |E|/|V| ≤ d0; see also [Hau95] for an alternative proof using the technique of “shifting”.11

Then, this low density property is exploited in order to show that once we have chosen (n − 1)

10For the time being, P is an arbitrary distribution, but later on (Lemma 19) it is taken to be the uniform
distribution in the obvious way, where each vector in V is equally likely to be chosen. This distribution, however,
may not remain uniform after the projection of V onto a proper subsequence I ′ = (i1, . . . , im) of m < n indices, as
several vectors in V may be projected onto the same vector in V|I′ .

11We cannot guarantee such a relation when the VC-dimension d0 is replaced by the primal shatter dimension d,
and therefore we proceed with the analysis using this ratio.
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coordinates of the random variable V, the variance in the choice of the remaining coordinate is
relatively small. That is:

Lemma 18 ( [Hau95]) For any distribution P on V,

n∑
i=1

Var(Vi|V1, . . . ,Vi−1,Vi+1, . . . ,Vn) ≤ d0.

As observed in [Hau95], Lemma 18 continues to hold on any restriction of V to a sequence I ′ =
{ii, . . . , im} of m ≤ n indices. Indeed, when projecting V onto I ′ the VC-dimension in the resulting
set system remains d0. Furthermore, the conditional variance is now defined w.r.t. the induced
probability distribution on V|I′ in the obvious way, where the probability to obtain a sequence
of m values corresponds to an appropriate marginal distribution, that is, Prob|I′ (u1, . . . , um) =
Prob(v ∈ V | vij = uj , 1 ≤ j ≤ m). With this observation, we can rewrite the inequality stated in
Lemma 18 as

m∑
i=1

Var(Vij |Vi1 , . . . ,Vij−1 ,Vij+1 , . . . ,Vim) ≤ d0.

If I ′ is a sequence chosen uniformly at random (over all such m-tuples), then when averaging over
all choices of I ′ we clearly obtain:

Exp

[
m∑
i=1

Var(Vij |Vi1 , . . . ,Vij−1 ,Vij+1 , . . . ,Vim)

]
≤ d0,

or
m∑
i=1

Exp
[
Var(Vij |Vi1 , . . . ,Vij−1 ,Vij+1 , . . . ,Vim)

]
≤ d0,

by linearity of expectation. In fact, by symmetry of the random variables Vij (recall that I ′ is a
random m-tuple) each of the summands in the above inequality has an equal contribution, and thus,
in particular (recall once again that the expectation is taken over all choices of I ′ = {ii, . . . , im}):

ExpI′
[
Var(Vim |Vi1 , . . . ,Vim−1)

]
≤ d0

m
, (13)

where we write ExpI′ [·] to emphasize the fact that the expectation is taken over all choices of I ′.
The above bound is now integrated with the next key property:

Lemma 19 ( [Hau95]) Let V be δ-separated subset of {0, 1}n, for some 1 ≤ δ ≤ n integer, and
form a uniform distribution P on V. Let I = (i1, . . . , im−1) be a sequence of m− 1 distinct indices
between 1 and n, where m is any integer between 1 and n. Suppose now that another index im is
drawn uniformly at random from the remaining n−m+ 1 indices. Then

Exp
[
Var

(
Vim |Vi1 . . . ,Vim−1

)]
≥ δ

2(n−m+ 1)

(
1−
|V|I |
|V|

)
,

where the conditional variance is taken w.r.t. the distribution P , and the expectation is taken w.r.t.
the random choice of im.
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We now observe that when the entire sequence I ′ = (i1, . . . , im) is chosen uniformly at random,
then the bound in Lemma 19 continues to hold when averaging on the entire sequence I ′ (rather
than just on im), that is, we have:

ExpI′
[
Var

(
Vim |Vi1 . . . ,Vim−1

)]
≥ ExpI′

[
δ

2(n−m+ 1)

(
1−
|V|I |
|V|

)]
(14)

=
δ

2(n−m+ 1)

(
1−

ExpI [|V|I |]
|V|

)
.

Note that under this formulation, |V|I | (the number of sets in the projection of V onto I) is a
random variable that depends on the choice of I = (i1, . . . , im−1), in particular, since it does not
depend on the choice of im, we have ExpI′ [|V|I |] = ExpI [|V|I |].

The analysis of Haussler [Hau95] then proceeds as follows. We assume that V is δ-separated as
in Lemma 19 (then a bound on |V| is the actual bound on the packing number), and then choose

m :=

⌈
(2d0 + 2)(n+ 1)

δ + 2d0 + 2

⌉
,

indices i1, . . . , im uniformly at random without replacements from [n] (without loss of generality,
we can assume that δ ≥ 3 as, otherwise, we set the bound on the packing to be O(nd1kd−d1),
as asserted by the (d, d1) Clarkson-Shor property of V. Moreover, we can assume, without loss
of generality, n ≥ d0, δ, and thus we have m ≤ n). Put I ′ = {i1, . . . , im}, I = I ′ \ {im}. Then
the analysis in [Hau95] combines the two bounds in Inequalities (13) and (14) in order to derive
an upper bound on |V|, from which the bound in the Packing Lemma (Theorem 3) is obtained.
Specifically, using simple algebraic manipulations, we obtain:

|V| ≤
ExpI

[
|V|I |

]
1− 2d0(n−m+1)

mδ

(15)

It has been shown in [Hau95] that due to our choice of m, we have:

2d0(n−m+ 1)

mδ
≤ d0

d0 + 1
, (16)

from which we obtain Inequality (1), as asserted. This completes the description of our first
extension of Haussler’s analysis, as described in Section 2.1.

In order to apply our second extension, we observe that one only needs to assume m ≤ n
when obtaining Inequalities (13) and (14). In addition, the choice of m in Inequality (15) can be

made slightly larger (but still smaller than n), since the term 2d0(n−m+1)
mδ in Inequality (16) is a

decreasing function of m, as can easily be verified. Recall that in our analysis we replace m by mj :=

m log(j) (n/δ), where 2 ≤ j ≤ log∗ (n/δ), in which case we still obtain |V| ≤ (d0 + 1) ExpIj

[
|V|Ij |

]
,

where Ij is a set of mj − 1 indices chosen uniformly at random without replacements from [n].
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B Proof of Theorem 17.

We use the framework of Ezra [Ezr16], together with the Shallow Packing Lemma (Theorem 4), to
show Theorem 17. To this end, we use the machinery and notation in [Ezr16] and only revise the
proof of [Ezr16, Theorem 3.5], where we now plug into the analysis the new bound in (Theorem 4).
In particular, we use the same notation and definitions for Fij (representing an appropriate collection

of “canonical sets”) and ∆i
j (representing a desired discrepancy bound on the canonical sets),

and then bound an appropriate entropy function in order to apply the mechanism of Lovett and
Meka [LM12]. We do not repeat these details here, and instead refer the reader for the notation
and machinery presented in [Ezr16]. In the sequel we only show the derivation of the bound for
∆i
j , then the derivation of the discrepancy bound for the original sets S ∈ Σ is straightforward by

the analysis in [Ezr16], in which S is represented by the disjoint union of the symmetric difference
of pairs of canonical sets.

Assume without loss of generality that log n is an integer, and let k := log n. By Theorem 4
and the analysis in [Ezr16], we have that for each i = 1, . . . , k and j = i− 1, . . . , k,

|Fij | ≤ C ·
2jd

2(i−1)(d−d1)
,

where C > 0 is an appropriate constant as stated in Theorem 4. By the construction in [Ezr16],
each set F ij ∈ Fij satisfies |F ij | = O(n/2i−1), for a fixed index i, and any j = i− 1, . . . , k.

Our discrepancy parameter ∆i
j is chosen as follows:

∆i
j := A · 1

(1 + |j − j0|)2

(
n1/2−1/(2d)

2(i−1)·(1/2−d1/(2d))

)
log1/2d n, (17)

where
j0 := (1/d) log n+ (1− d1/d)(i− 1)− (1/d) log log n−B,

for an appropriate constant B > 5 + logC, and for a sufficiently large constant of proportionality
A > 0, whose choice depends on B, and will be determined shortly (note that all the three constants
A, B, and C depend on d).

In order to apply the constructive discrepancy minimization technique of Lovett and Meka [LM12],
we need to show:

Lemma 20 Put sj := n/2j−1. The choice in (17), for A > 0 sufficiently large (whose choice
depends on C and thus on d), satisfies

k∑
i=1

k∑
j=i−1

C · 2jd

2(d−d1)(i−1)
exp

(
−

(∆i
j)

2

16sj

)
≤ n

16
. (18)

We next proceed almost verbatim as in [Ezr16].

We first note that at j = j0 the above exponent becomes a constant, whereas the bound
C · 2jd

2(d−d1)(i−1) (representing an appropriate packing number) becomes roughly n/ log n (for a fixed
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index i). Indeed, applying our choice in (17), we have

exp

(
−

(∆i
j)

2

16sj

)
= exp

(
− A2 · 2j−1 log1/d n

16(1 + |j − j0|)4n1/d2(1−d1/d)·(i−1)

)
,

which is exp
(
− A2

16·2B+1

)
at j = j0 = (1/d) log n+(1−d1/d)(i−1)− (1/d) log log n−B. Concerning

the bound C · 2jd

2(d−d1)(i−1) , at j = j0 we obtain:

C · n2(d−d1)(i−1)

2(d−d1)(i−1)2dB log n
= C · n

2dB log n
,

as asserted.

We now fix an index i, split the summation into the two parts j ≥ j0 and i − 1 ≤ j < j0, and
then bound each part in turn. In the first part, the exponent will “take over” the summation in the
sense that it decreases superexponentially, making the other factors (with j > j0) insignificant, and
in the second part, the packing size will decrease geometrically. Thus the “peak” of this summation
is obtained at j = j0, and is decreasing as we go beyond or below j.

For the first part, put j := j0 + l, for an integer l ≥ 0, and then

k∑
i=1

k∑
j=j0

C · 2jd

2(d−d1)(i−1)
exp

(
−

(∆i
j)

2

16sj

)

≤
k∑
i=1

k−j0∑
l=0

C · n2ld

2dB log n
exp

(
−A

2

16
· 2l−(B+1)

(1 + l)4

)

≤ C · n2−dB
k−j0∑
l=0

2ld exp

(
−A

2

16
· 2l−(B+1)

(1 + l)4

)
,

where the logarithmic factor is now eliminated due to the summation over i. The exponents in the
above sum decrease superexponentially. Choosing A sufficiently large (say, A > 26+(B+1)+log d) and
having B > 5 + logC as above, we can guarantee that the latter sum is strictly smaller than n/32.

When j < j0, put j := j0 − l, l > 0 as above. We now obtain, by just bounding the exponent
from above by 1, and using similar considerations as above:

k∑
i=1

j0−1∑
j=i−1

C · 2jd

2(d−d1)(i−1)
exp

(
−

∆i
j
2

16sj

)
≤

k∑
i=1

j0−1∑
j=i−1

C · n

log n2d(l+B)
≤
j0−(i−1)∑
l=1

C · n

2d(l+B)
.

Once again, our choice for B guarantees that the above (geometrically decreasing) sum is strictly
smaller than n/32. Thus the entire summation is bounded by n/16, as asserted.

This completes the proof of Theorem 17.
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