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Abstract
A point visibility graph is a graph induced by a set of points in the plane, where every vertex
corresponds to a point, and two vertices are adjacent whenever the two corresponding points are
visible from each other, that is, the open segment between them does not contain any other point
of the set.

We study the recognition problem for point visibility graphs: given a simple undirected
graph, decide whether it is the visibility graph of some point set in the plane. We show that
the problem is complete for the existential theory of the reals. Hence the problem is as hard as
deciding the existence of a real solution to a system of polynomial inequalities. The proof involves
simple substructures forcing collinearities in all realizations of some visibility graphs, which are
applied to the algebraic universality constructions of Mnëv and Richter-Gebert. This solves a
longstanding open question and paves the way for the analysis of other classes of visibility graphs.

Furthermore, as a corollary of one of our construction, we show that there exist point visibility
graphs that do not admit any geometric realization with points having integer coordinates.
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1 Introduction

Visibility between geometric objects is a cornerstone notion in discrete and computational
geometry, that appeared as soon as the late 1960s in pioneering experiments in robotics [17].
Visibility is involved in major themes that helped shape the field, such as art gallery and
motion planning problems [5, 8, 21]. However, despite decades of research on those topics, the
combinatorial structures induced by visibility relations in the plane are far from understood.

Among such structures, visibility graphs are arguably the most natural. In general, a
visibility graph encodes the binary, symmetric visibility relation among sets of objects in the
plane, where two objects are visible from each other whenever there exists a straight line of
sight between them that does not meet any obstacle. More precisely, a point visibility graph
associated with a set P of points in the plane is a simple undirected graph G = (P,E) such
that two points of P are adjacent if and only if the open segment between them does not
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contain any other point of P . Note that the points play both roles of vertices of the graph
and obstacles. In what follows, we will use the abbreviation PVG for point visibility graph.

1.1 Our results
We consider the recognition problem for point visibility graphs: given a simple undirected
graph G = (V,E), does there exists a point set P such that G is isomorphic to the visibility
graph of P? More concisely, the problem consists of deciding the property of being a point
visibility graph of some point set.

As is often the case for geometric graphs, the recognition problem appears to be intractable
under usual complexity-theoretic assumptions. We actually characterize the problem as
complete for the existential theory of the reals; hence recognizing point visibility graphs
is as hard as deciding the existence of a solution to an arbitrary system of polynomial
inequalities over the reals. Equivalently, this amounts to deciding the emptiness of a
semialgebraic set. This complexity class is intimately related to fundamental results on
oriented matroids and pseudoline arrangements starting with the insights of Mnëv on the
algebraic universality properties of these structures [20]. The notation ∃R has been proposed
recently by Schaefer [27] to refer to this class, motivated by the continuously expanding
collection of problems in computational geometry that are identified as complete for it.

The only known inclusion relations for ∃R are NP ⊆ ∃R ⊆ PSPACE. It is known from
the Tarski-Seidenberg Theorem that the first-order theory of real closed fields is decidable,
but polynomial space algorithms for problems in ∃R have been proposed only much more
recently by Canny [4].

Whenever a graph is known to be a point visibility graph, the description of the point
set as a collection of pairs of integer coordinates constitutes a natural certificate. Since it is
not known whether ∃R ⊆ NP , we should not expect such a certificate to have polynomial
size. In fact, we show that there exist point visibility graphs all realizations of which have an
irrational coordinate, and point visibility graphs that require doubly exponential coordinates
in any realization.

1.2 Related work and Connections
The recognition problem for point visibility graphs has been explicitly stated as an important
open problem by various authors [14], and is listed as the first open problem in a recent
survey from Ghosh and Goswami [9].

A linear-time recognition algorithm has been proposed by Ghosh and Roy for planar
point visibility graphs [10]. For general point visibility graphs they showed that recognition
problem lies in ∃R. More recently, Roy [26] published an ingenious and rather involved
NP-hardness proof for recognition of arbitrary point visibility graphs. Our result clearly
implies NP-hardness as well, and, in our opinion, has a more concise proof.

Structural aspects of point visibility graphs have been studied by Kára, Pór, and Wood [14],
Pór and Wood [24], and Payne et al. [23]. Many fascinating open questions revolve around
the big-line-big-clique conjecture, stating that for all k, ` ≥ 2, there exists an n such that
every finite set of at least n points in the plane contains either k pairwise visible points or `
collinear points.

Visibility graphs of polygons are defined over the vertices of an arbitrary simple polygon in
the plane, and connect pairs of vertices such that the open segment between them is completely
contained in the interior of the polygon. This definition has also attracted a lot of interest
in the past twenty years. Ghosh gave simple properties of visibility graphs of polygons and
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conjectured that they were sufficient to characterize visibility graphs [6, 7]. These conjectures
have been disproved by Streinu [31] via the notion of pseudo-visibility graphs, or visibility
graphs of pseudo-polygons [22]. A similar definition is given by Abello and Kumar [1].
Roughly speaking, the relation between visibility and pseudo-visibility graphs is of the same
nature as that between arrangements of straight lines and pseudolines. Although, as Abello
and Kumar remark, these results somehow suggest that the difficulty in the recognition task
is due to a stretchability problem, the complexity of recognizing visibility graphs of polygons
remains open, and it is not clear whether the techniques described in this paper can help
characterizing it. The influential surveys and contributions of Schaefer about ∃R-complete
problems in computational geometry form an ideal point of entry in the field [27, 28]. Among
such problems, let us mention recognition of segment intersection graphs [15], recognition
of unit distance graphs and realizability of linkages [13, 28], recognition of disk and unit
disk intersection graphs [19], computing the rectilinear crossing number of a graph [3],
simultaneous geometric graph embedding [16], and recognition of d-dimensional Delaunay
triangulations [2].

1.3 Outline of the paper

In Section 2, we provide two simple visibility graph constructions, the fan and the generalized
fan, all geometric realizations of which are guaranteed to preserve a specified collection of
subsets of collinear points. The proofs are elementary and only require a series of basic
observations.

In Section 3, we give two applications of the fan construction. In the first, we show
that there exists a point visibility graph that does not have any geometric realization on
the integer grid. In other words, all geometric realizations of this point visibility graph
are such that at least one of the points has an irrational coordinate. Another application
of the fan construction follows, where we show that there are point visibility graphs each
grid realization of which require coordinates of values 22

3√n where n denotes the number of
vertices of the point visibility graph.

The main result of the paper is given in Section 4. We first recall the main notions and
tools used in the results from Mnëv [20], Shor [29], and Richter-Gebert [25] for showing that
realizability of abstract order types is complete for the existential theory of the reals. We
then combine these tools with the generalized fan construction to produce families of point
visibility graphs that can simulate arbitrary arithmetic computations over the reals.

1.4 Notations

For the sake of simplicity, we slightly abuse notations and do not distinguish between a
vertex of a point visibility graph and its corresponding point in a geometric realization. We
denote by G[P ′] the induced subgraph of a graph G = (P,E) with the vertex set P ′ ⊆ P .
For a point visibility realization R we denote by R[P ′] the induced subrealization containing
only the points P ′. The PVG of this subrealization is in general not an induced subgraph of
G. By N(p) we denote the open neighbourhood of a vertex p.

The line through two points p and q is denoted by `(p, q) and the open segment between
p and q by pq. We will often call pq the sightline between p and q, since p and q see each
other iff pq ∩ P = ∅. We call two sightlines p1q1 and p2q2 non-crossing if p1q1 ∩ p2q2 = ∅.

For each point p all other points of G lie on deg(p) many rays Rp
1, . . . , R

p
deg(p) originating

from p.

SoCG’15
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2 Point visibility graphs preserving collinearities

We first describe constructions of point visibility graphs, all the geometric realizations of
which preserve some fixed subsets of collinear points.

2.1 Preliminary observations

p
p

qq

Figure 1 (Lemma 1) Left: a point sees points on consecutive rays with small angle. Right: a
vertex of deg(q) = 1 in G[N(p)] lies on the boundary of an empty halfspace.

In the realization of a PVG, the point p sees exactly deg(p) many vertices, hence all other
points lie on deg(p) rays of origin p.

I Lemma 1. Let q ∈ N(p) be a degree-one vertex in G[N(p)]. Then all points lie on one
side of the line `(p, q). Furthermore, the neighbor of q lies on the ray that forms the smallest
angle with qp.

Proof. If the angle between two consecutive rays is smaller than π, then every vertex on one
ray sees every vertex on the other ray. Hence one of the angles incident to q is at least π and
the neighbour of q lies on the other incident ray. J

I Corollary 2. If G[N(p)] is an induced path, then the order of the path and the order of the
rays coincide.

Proof. By Lemma 1 the two endpoints of the path lie on rays on the boundary of empty
halfspaces. Thus all other rays form angles which are smaller than π, and thus they see their
two neighbors of the path on their neighboring rays. J

I Observation 3. Let q, q 6= p, be a point that sees all points of N(p). Then q is the second
point (not including p) on one of the rays emerging from p.

Proof. Assume q is not the second point on one of the rays. Then q cannot see the first
point on its ray which is a neighbor of p. J

This also shows the following observation.

I Observation 4. Let q, q 6= p, be a point that is not the second point on one of the rays
from p and sees all but one (r) of the neighbors of p. Then q lies on the ray of r.

2.2 Fans and generalized fans
We have enough tools by now to show the uniqueness of a PVG obtained from the following
construction, which is depicted in Figure 2. Consider a set S of segments between two lines
` and `′ intersecting in a point p. For each intersection of a pair of segments, construct a ray
of origin p and going through this intersection point. Add two segments s1 and s2 between `
and `′, such that s1 is the closest and s2 is the second closest segments to p.
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`

`′

s2s1

a
b

c d

e
p

Figure 2 A fan: a vertex is placed on each intersection of two lines/segments.

We now put a point on each intersection of the segments and rays and construct the
PVG of this set of points. We call this graph the fan of S. Since we have the choice of the
position of the segments s1 and s2 we can avoid any collinearity between a point on s1 or s2
and points on other segments, except for the obvious collinearities on one ray. Thus every
point sees all points on s1 except for the one of the ray it lies on.

I Lemma 5. All realizations of a fan preserve collinearities between points that lie on one
segment and between points that lie on one ray.

Proof. We first show that the distribution of the points onto the rays of p is unique. By
construction the points on s2 see all the points on s1, which are exactly the neighbors of
p. Thus by Observation 3 the points from s2 are the second points of a ray. Since there is
exactly one point for each ray on s2, all the other points are not second points on a ray. By
construction each of the remaining points sees all but one point of s1. Observation 4 gives a
unique ray a point lies on. The order of the rays is unique by Corollary 2. On each ray the
order of the points is as constructed, since the PVG of points on one ray is an induced path.

Now we have to show that the points originating from one segment are still collinear.
Consider three consecutive rays R1, R2, R3. We consider a visibility between a point p1 on
R1 and one point p3 on R3 that has to be blocked by a point on R2. Let p2 be the original
blocker from the construction. For each point on R2 that lies closer to p there is a sightline
blocked by this point, and for each point that lies further away from p there is a sightline
blocked by this point. For each of those points pick one sightline that corresponds to an
original segment and p1p3. This set of sightlines is non-crossing, since the segments only
intersect on rays by assumption. So we have a set of non-crossing sightlines and the same
number of blockers available. Since the order on each ray is fixed, and the sightlines intersect
R2 in a certain order, the blocker for each sightline is uniquely determined and has to be
the original blocker. By transitivity of collinearity all points from the segments remain
collinear. J

To show the hardness of PVG recognition in the existential theory of the reals in Section 4
we need a unique realization property for the following generalization of a fan.

Consider again two lines ` and `′ and a set of n segments S located between those lines.
We assume for now that ` and `′ are parallel, i.e., their intersection point p lies on the line
at infinity, and horizontal. Now we are not interested in preserving the exact arrangement
of the segments S in a PVG, but only in keeping the segments straight, and the order of
the segments on ` and on `′ as described by S. For that purpose we add three parallel and
equidistant segments s1, s2, s3 to the left of all segments of S. Below `′ and above ` we add
5n equidistant rays each, that are parallel to ` and `′ and start on the point at infinity p.
Let ε be the distance between two consecutive rays in one bundle. We choose ε such that
(5n)4ε is smaller that the distance of any intersection of segments in S to ` or `′. We call

SoCG’15
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`s3s1
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((5n)4 + 5n)× 3-grid}
5n}
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s0

Figure 3 Left: a bundle of a generalized fan above and below each intersection. Right: the
generalized fan with the segment s0 and the point p.

such a set of 5n rays a bundle. Above the bundle close to ` and below the bundle close
to `′ we add (5n)4 segments starting on s3 and ending in p. The segments are parallel to
the rays of the bundles and are also equidistant with distance ε to their close bundle. The
bundles together with the (5n)4 segments forms what we will call the extended bundle. The
equidistance property is preserved according to the following lemma.

I Lemma 6. Consider a realization of a PVG of an r × q integer grid, r ≥ 6, q ≥ 3, such
that the points of each of the r rows lie on a horizontal line. Then – up to a projective
transformation – the horizontal lines are equally spaced, the verticals are parallel, and also
equally spaced.

Now we apply a projective transformation, such that the intersection point p of ` and `′
does not lie on the line at infinity as shown in Figure 3. We add a segment s0 between ` and
`′ that lies between p and s1. Again we take all the intersection points between segments,
rays or lines as points and construct the visibility graph of those points. Note that we can
add s0, such that each point on s0 sees all points that do not lie on its ray or s0. A visibility
graph constructed in this way will be called a generalized fan. In Lemma 7 we show that
all realizations of a generalized fan preserve the collinearities between the points on the
segments.

Let us briefly consider the differences between a fan and a generalized fan. In the fan in
Figure 2 the vertical order of the intersection points is a > b > c > d > e. In contrast, the
generalized construction, shown on the left of Figure 3, allows different vertical orders on
those points. In Figure 4 we used three bundles instead of two bundles to fix the orders. In
the proof of Lemma 7 it will turn out that all realizations for this construction also preserve
collinearities. In this case we have a further restriction on the vertical order of the intersection
points: the points a and b must lie above the middle bundle, and the points c, d, e must
lie below. This restricts the possible vertical orders of intersection points to some linear
extensions of the partial order shown in Figure 3. To indicate that a and b lie above c, d and
e we introduce the notation {a, b} > {c, d, e}. This notation captures exactly the restriction
we can add to the horizontal orders of a fan: given a realization of the segments S between
the lines ` and `′ it is possible to add bundles between some intersection points, partitioning
the intersection points of the segments into subsets I1, . . . , Ik. Now every realization of the
PVG respects the vertical order I1 > · · · > Ik of the intersection points. If |Ij | = 1, one line
through an intersection point as in Figure 2 can also be used.

I Lemma 7. All realizations of a generalized fan preserve collinearities between points that
lie on one segment and between points that lie on one ray.
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Figure 4 A generalized fan with several bundles.

uk

s′k
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sk

Figure 5 A clockwise orientation of (uk, vk, wk) forces the triple on a right segment s′
k to be

oriented clockwise.

Proof. The argument showing that the distribution of the points onto the rays starting at p
and the order of the rays remains as constructed is identical to the proof of Lemma 5. So
we only have to show that the points from the segments stay collinear. We do this in two
steps. In the first one we show that the points on segments within one extended bundle stay
collinear. We will use this in a second step to show that the segments in two consecutive
bundles stay aligned.

We proceed with the first step. First note that the points from one segment within one
bundle stay collinear in each realization by the same arguments as in Lemma 5. The same
holds for the points on a segment sk, k ∈ {0, . . . , 3}, and the intersection with the (5n)4

segments. So for the first step we only have to show that the segments s0, . . . , s3 in extended
bundles stay aligned. Therefore we consider the lowest ray of the bundle close to `′ and
two neighboring segments. The points on the segments sk stay collinear on those three rays,
because four non-crossing sightlines have to be blocked by four points. Now consider the two
lowest rays of the bundle close to `′, and the (5n)4 segments below. Assume that the points
on one of the segments s0, . . . , s4 do not stay aligned for one sk. Then the points on sk that
lie on the two lowest rays uk (lowest) and vk (second lowest) and the lowest segment wk

form the convex hull of all the points on sk that lie in between, see Figure 5. In this triangle
there are (5n)4 − 1 non-crossing sightlines that have to be blocked. This implies that one of
the other segments sl have to support blockers. If the triple (uk, vk, wk) is oriented clockwise
some the blockers have to be supported by a segment s′k to the right, or by one to the left
otherwise. In the clockwise case the three according points on the convex hull of the s′k have
to be oriented clockwise as well. Since a symmetric case holds for the counterclockwise case
we obtain a contradiction for the rightmost clockwise or leftmost counterclockwise oriented
triple.

So it is left to show that the two subsegments within consecutive bundles stay aligned.
We will refer to those subsegments as the upper and the lower part of a segment. First
note that the segments sk, k ∈ {0, . . . , 3} stay aligned in consecutive extensions of a bundle,
thus they cannot provide blockers for sightlines between upper and lower part on the other
segments.

SoCG’15
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s′

s′′

(5n)4}
b (0, 0)

q = (N,N)

b
b0,1

b2,5

x = y

Figure 6 Left: A blocker on b. Right: The situation after the coordinate transformation.

We assume the points from one original segment s are not all collinear in a realization
of the fan. We denote by s′ and s′′ respectively the lower and upper part of s. If s′ and s′′
are not aligned then one of the two lower points of s′′ does not lie on the supporting line of
s′. We denote this point by q. Between q and the points on s′ there are at least (5n)4 − 1
non-crossing sightlines that have to be blocked. At most n of those sightlines can be blocked
from points on the upper bundle, namely the points from the lowest ray if q lies on the
second lowest ray. The other blockers lie on the other n − 1 lower parts of the segments.
From the pigeonhole principle there is a lower part b of a segment that provides at least
d(5n− n− 1)/(n− 1)e = 5 blockers for sightlines between q and points on s′. We will show
that this is not possible.

By first reversing the projective transformation applied in the construction of the gener-
alized fan, and then applying Lemma 6, we can assume that the lines in the lower bundle are
parallel and equidistant, as shown in Figure 6. Now we use an affine transformation such
that the points of s′ have coordinates (0, i) for i ∈ {−k, . . . , r − 1 − k}, where k is chosen
such that the lowest point blocked by a point on b has coordinates (0, 0). By another linear
transformation we can ensure that q = (N,N) for some N > 0. We can now use the segments
starting from s3 to give a lower bound on N : the segments above the bundle of s′ are also
equidistant with the same distance as the lines in the bundle, since the segments extend the
grid. Since q lies on a parallel line above those rays we know that N > (5n)4.

The points on b that block visibilities between points on s′ from q also have y-coordinates
in {0, . . . , r − 1 − k}, since they lie on lines in the same bundle as s′. Let us assume that
the point bij on b has y-coordinate j and blocks the visibility of (0, i) from q. Then the
x-coordinate of bij is x = (j − i) N

N−i . We consider the sets M := {(i, j) | bij is a blocker}
and M ′ := {(j − i) | bij is a blocker}. We will obtain a contradiction in the following two
cases.

Case 1. |M ′| < 3: In this case there are three points in M with the same value for j − i.
Those points on b have the coordinates of the form ( cN

N−i , c+ i) where c = j − i is constant.
This is a parameterization of a hyperbola. No three points for i < N on this curve are
collinear, which contradicts that they all lie on the segment b.

Case 2: |M ′| ≥ 3: In this case there are three blockers b0, b1, b2 with pairwise different
values for j − i. Assume without loss of generality that b0 = (x0, j0) blocks (0, 0) from q,
b1 = (x1, j1) blocks (0, i1), and b2 = (x2, j2) blocks (0, i2). Then the x-coordinates of bk is
given by xk = (jk − ik) N

N−ik
. The difference of the x-coordinate of two consecutive points

on b is dmin := xk−x0
jk−j0

. Calculating dmin using the expression above once with b1 and once
with b2 leads to the following equation.
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Figure 7 The Perles configuration.

(j2 − i2) N
N−i2

− j0

j2 − j0
=

(j1 − i1) N
N−i1

− j0

j1 − j0

⇔ (i12j0 − i12j2 − i1j0j2 + i1j1j2 − i22j0 + i2
2j1 + i2j0j1 − i2j1j2)N

+(−i1j0 + i1j2 + i2j0 − i2j1)N2 + i1i2j0(j2 − j1) = 0

Since all coefficients in the last equation are integral we obtain that i1i2j0(j2 − j1) is a
multiple of N . This is a contradiction to N > (5n)4 since each of the factors is bounded by
5n and is nonzero. J

3 Drawing point visibility graphs on grids

We give a first simple application of the fan construction.

I Theorem 8. There exists a point visibility graph every geometric realization of which has
at least one point with one irrational coordinate.

Proof. We use the so-called Perles configuration of 9 points on 9 lines illustrated in Fig. 7.
It is known that for every geometric realization of this configuration in the Euclidean plane,
one of the points has an irrational number as one of its coordinate [12]. We combine this
construction with the fan construction described in the previous section. Hence we pick
two lines ` and `′ intersecting in a point p, such that all lines of the configuration intersect
both ` and `′ in the same wedge. Note that up to a projective transformation, the point
p may be considered to be on the line at infinity and ` and `′ taken as parallel. We add
two non-intersecting segments s1 and s2 close to p, that do not intersect any line of the
configuration. We then shoot a ray from p through each of the points, and construct the
visibility graph of the original points together with all the intersections of the rays with
the lines and the two segments s1, s2. From Lemma 5, all the collinearities of the original
configuration are preserved, and every realization of the graph contains a copy of the Perles
configuration. J

Also note that point visibility graphs that can be realized with rational coordinates do
not necessarily admit a realization that can stored in polynomial space in the number of
vertices of the graph. To support this, consider a line arrangement A, and add a point p in an
unbounded face of the arrangement, such that all intersections of lines are visible in an angle
around p that is smaller than π. Construct rays ` and `′ through the extremal intersection
points and p. From Lemma 5, the fan of this construction gives a PVG that fixes A. Since
there are line arrangements that require integer coordinates of values 22Θ(|A|) [11] and the

SoCG’15
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fan has Θ(|A|3) points we get the following worst-case lower bound on the coordinates of
points in a representation of a PVG.

I Corollary 9. There exists a point visibility graph with n vertices every realization of which
requires coordinates of values 22Θ( 3√n) .

4 ∃R-completeness reductions

The existential theory of the reals (∃R) is a complexity class defined by the following complete
problem. We are given a well-formed quantifier-free formula F (x1, . . . , xk) using the numbers
0 and 1, addition and multiplication operations, strict and non-strict comparison operators,
Boolean operators, and the variables x1, . . . , xk, and we are asked whether there exists an
assignment of real values to x1, . . . , xk, such that F is satisfied. This amounts to deciding
whether a system of polynomial inequalities admits a solution over the reals. The first
main result connecting this complexity class to a geometric problem is the celebrated result
of Mnëv, who showed that realizability of order types, or – in the dual – stretchability of
pseudoline arrangements, is complete in this complexity class [20]. In what follows, we use
the simplified reductions due to Shor [29] and Richter-Gebert [25]. The latter is in turn well
explained in a recent manuscript by Matoušek [18]. We refer the curious reader to those
references for further details.

The orientation of an ordered triple of points (p, q, r) indicates whether the three points
form a clockwise or a counterclockwise cycle, or whether the three points are collinear. Let
P = {p1, . . . , pn} and an orientation O of each triple of points in P be given. The pair (P,O)
is called an (abstract) order type. We say that the order type (P,O) is realizable if there
are coordinates in the plane for the points of P , such that the orientations of the triples of
points match those prescribed by O.

In order to reduce the order type realizability problem to solvability of a system of strict
polynomial inequalities, we have to be able to simulate arithmetic operations with order types.
This uses standard constructions introduced by von Staudt in his “algebra of throws” [30].

4.1 Arithmetics with order types
To carry out arithmetic operations using orientation predicates, we associate numbers with
points on a line, and use the cross-ratio to encode their values.

The cross ratio (a, b; c, d) of four points a, b, c, d ∈ R2 is defined as

(a, b; c, d) := |a, c| · |b, d|
|a, d| · |b, c|

,

where |x, y| is the determinant of the matrix obtained by writing the two vectors as columns.
The two properties that are useful for our purpose is that the cross-ratio is invariant under
projective transformations, and that for four points on one line, the cross-ratio is given by
−→ac·
−→
bd−→

ad·
−→
bc
, where −→xy denotes the oriented distance between x and y on the line.

We will use the cross-ratio the following way: We fix two points on a line and call them 0
and 1. On the line through those points we call the point at infinity ∞. For a point a on
this line the cross-ratio x := (a, 1; 0,∞) results in the distance between 0 and a scaled by
the distance between 0 and 1. Because the cross-ratio is a projective invariant we can fix one
line and use the point a for representing the value x. In this way, we have established the
coordinates on one line.
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Figure 8 Gadgets for addition (left) and multiplication (right) on a line.

For computing on this line, the gadgets for addition and multiplication depicted in
Figure 8 can be used. Let us detail the case of multiplication. We are given the points
∞ < 0 < 1 < x < y on the line `, and wish to construct a point on ` that represents the
value x · y. Take a second line `∞ that intersects ` in ∞, and two points a, b on this line.
Construct the segments by, b1 and ax. Denote the intersection point of ax and b1 by c. Call
d the intersection point of by and `(0, c). The intersection point of ` and `(d, a) represents
the point x · y =: z on `, i.e., (z, 1; 0,∞) = (x, 1; 0,∞) · (y, 1; 0,∞). In a projective realization
of the gadget in which the line `∞ is indeed the line at infinity, the result can be obtained
by applying twice the intercept theorem, in the triangles with vertices 0, d, y and 0, d, z,
respectively. To add the cross ratios of two points on a line, a similar construction is given
in Figure 8.

4.2 The reduction for order types

Using the constructions above we can already model a system of strict polynomial inequalities.
However, it is not clear how we can determine the complete order type of the points without
knowing the solution of the system. Circumventing this obstacle was the main achievement
of Mnëv [20]. We cite one of the main theorems in a simplified version.

I Theorem 10 ([29],[25]). Every primary semialgebraic set V ⊆ Rd is stably equivalent
to a semialgebraic set V ′ ⊆ Rn, with n = poly(d), for which all defining equations have
the form xi + xj = k or xi · xj = xk for certain 1 ≤ i ≤ j < k ≤ n, where the variables
1 = x1 < x2 < · · · < xn are totally ordered.

A primary semialgebraic set is a set defined by polynomial equations and strict polynomial
inequalities with coefficients in Z. Although we cannot give a complete definition of stable
equivalence within the context of this paper, let us just say that two semialgebraic sets V and
V ′ are stably equivalent if one can be obtained from the other by rational transformations
and so-called stable projections, and that stable equivalence implies homotopy equivalence.
From the computational point of view, the important property is that V is the empty set if
and only V ′ is, and that the size of the description of V ′ in the theorem above is polynomial
in the size of the description of V . We call the description of a semialgebraic set V ′ given in
the theorem above the Shor normal form.

We can now encode the defining relations of a semialgebraic set given in Shor normal form
using abstract order types by simply putting the points ∞, 0, 1, x1, . . . , xn in this order on `.
To give a complete order type, the orientations of triples including the points of the gadgets
and the positions of the gadget on `∞ have to be specified. This can be done exploiting the
fact that the distances between the points a and b of each gadget and their position on `∞
can be chosen freely. We refer to the references mentioned above for further details. We
next show how to implement these ideas to construct a graph GV associated with a primary
semialgebraic set V , such that GV has a PVG realization if and only if V 6= ∅.
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5 ∃R-completeness of PVG recognition

The idea to show that PVG recognition is complete in ∃R is to encode the gadgets described
in the previous section in a generalized fan. We therefore consider the gadgets not as a
collection of points with given order types, but as a collection of segments between the lines
` and `∞ with given crossing information, i.e., a certain arrangement of the segments of the
fan.

We will consider the addition and multiplication gadgets given in Fig. 8, and for a copy
gi of the addition gadget, denote by ai, bi, ci, di, and ei the points corresponding to gi, and
similarly for the multiplication gadget. To formalize the freedom we have in choosing the
points ai and bi for each addition or multiplication gadget gi, we make the following two
observations. The points of a gadget that do not lie on ` are denoted by Pi.

I Observation 11 ([25],[18]). The points ai and bi can be positioned arbitrarily on `∞. The
position of the other points of Pi is fully determined by ai, bi and the input values on `.

I Observation 12 ([25],[18]). All points of Pi are placed close to ai if ai and bi are placed
close to each other. (For each ε > 0 there exists a δ > 0, such |ai− bi| < δ implies |p− q| < ε

for all p, q ∈ Pi.)

With those two observations in hand, we show we can place the points of the gadgets on
`∞ one by one, such that we have a partial information on the relative height of the crossings
of the involved segments. This partial information can be combined with the generalized fan
construction to force the exact encoding.

Here we need a generalized fan since we cannot obtain the full information of the height
all the crossings with the segments of other gadgets, since the position and distance of the
other segments of gadgets is influenced by the solution of the inequality system.

For simplicity, we can work in the projective plane. This allows us to apply a projective
transformation such that the point ∞ is mapped onto the line at infinity, and the lines ` and
`∞ are parallel. Furthermore we can assume ` and `∞ are horizontal lines. In this setting we
have to specify a order on the y-coordinate of the intersection points of the segments/the
points of the gadgets. Therefore we fix one order of the gadgets g1, g2, . . . , gl on `∞.

I Lemma 13. Let V be a nonempty primary semialgebraic set given in Shor normal form and
let g1, gi−1, gi, . . . , gl be the gadgets realizing the defining equations, such that gj is realizing
an addition if j < i and a multiplication otherwise. Then there exists a realization such that
the order of the y-coordinates of the intersection points is given by

a1 = · · · = al = b1 = · · · = bl = fi = · · · = fl (1)
> el > dl > cl > · · · > ei > di > ci (2)

> ei−1 > ci−1 = di−1 > · · · > e1 > c1 = d1 (3)
> I2 > · · · > Il (4)

> 0 = x1 = x2 = · · · = xk, (5)

where Ij denotes the intersections between the segments of the gadget gk with the segments
of the gadgets gj for j < k.

Proof. We fix one solution for the relations defining V . The points on ` are fixed realizing
this solution. We place the points ai and bi such that the other points of the gadgets realize
the order of the y-coordinates described in the lemma.
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Figure 9 The vertical order of the points in the reduction.

First note that the order of the points within one gadget is determined as described by
the construction of the gadgets. The points corresponding to variables are also on ` and the
points a, b and f all lie on `∞. Thus the total relations given in (1) and (5), as well as the
relations between each triple of points belonging to one gadget in (2) and (3) are satisfied in
all realizations.

We place the points ai and bi of the gadgets inductively. Assume that we have placed
the first i− 1 gadgets such that the inequalities above are satisfied. Now there exists a real ε
such that none of the points of the gadgets lies in an ε-neighborhood of ` or `∞, see Figure 9.
For this reason there exists an axis-aligned rectangle of height ε with lower boundary on `,
such that every segment drawn so far intersects the upper and the lower boundary of this
rectangle (the lower grey box in Figure 9). We now place ai such that all segments that
are constructed for the gadget gi (blue) intersect the right boundary of this rectangle. This
can be achieved by placing ai further than the intersection point of `∞ and the supporting
line of the diagonal with positive slope of the rectangle (the red segment in Figure 9). This
shows that (4) can be satisfied.

To show the inequalities in (2) and (3) hold it remains to check that the points ci, di

(and eventually ei) can be placed in an ε-neighborhood of `∞. This can be done, using
Observation 12, by placing bi close to ai. J

I Theorem 14. The recognition of point visibility graphs is ∃R-complete.

Proof. For a proof that PVG recognition is in ∃R we refer to [10]. For the hardness part,
the idea of the proof is the following. For a semialgebraic set V we compute the Shor normal
form and denote the corresponding primary semialgebraic set by V ′. For V ′, we can construct
the arrangement of pseudosegments that are attached on the lines ` and `∞. By inverting
the projective transformation applied in Lemma 13 we can construct a generalized fan GV of
the pseudosegments between ` and `∞, such that in any PVG realization the order of the
intersection points of the segments satisfies the inequalities in Lemma 13.

The bundles and rays for the generalized fan are added, such that the possible vertical
orders are fixed to the ones described in Lemma 13, see Figure 9: We add an orange ray from
p through each of the points ci, di and ei of each gadget gi, i ∈ [l]. This fixes the inequalities
in lines (2)-(3). A green bundle is added before and after each of the sets Ij , j ∈ {2, . . . , l},
such that (4) is satisfied.

From this generalized fan we want to construct a point visibility graph GV . Here we
have to be a careful with collinearities between point that do not lie on one segment or one
ray. Therefore, we show that we can construct the edges and nonedges between points on
different segments and different rays, such that they do not restrict too many solutions of
our strict inequality system. First notice that we can avoid collinearities between points
on segments of different gadgets by perturbing the positions of the points ai bi, the exact

SoCG’15



184 Recognition and Complexity of Point Visibility Graphs

position of the bundles, and the distance of the rays within a bundle (we have this freedom in
the proof of Lemma 13). So we can assume that the only collinearities of points on different
segments appear between segments in one gadget. In the addition gadget we have no three
segments that intersect in one point. By perturbing the position of the bundles we can avoid
collinearities in those gadgets.

In the multiplication gadget we are in the situation that we have three segments 0, 1, x
(and 0, y, x·y) that intersect in one point. If the ratio of those three points on ` is rational they
are (after projective transformations) columns in the integer grid. If those are intersected
by a bundle we obtain the points on projective transformation of the integer grid and
thus collinearities. The point here is that we can compute during the construction which
collinearities appear: the solutions of the original strict inequality system form an open set.
In this set we can assume that our solution consists of sufficiently independent numbers,
e.g. they are algebraically independent over Q, such that 0, 1, x and 0, y, x · y only have a
rational ratio if x is a coefficient of the inequality system. In this case we can calculate the
collinearities. Otherwise, we can perturb the bundles ai and bi to avoid collinearities. Hence
all collinearities between points on different segments can be computed and do not influence
the solvability of the inequality system. This way we can determine all edges of GV .

The number of vertices of the graph GV is polynomial in the size of V since calculating
the Shor normal form of V gives a description of V ′ which has size polynomial in the size
of V . The number of segments, bundles, rays, and the size of a bundle in the fan are all
polynomial in the number of operations in the Shor normal form. All calculations in this
construction can be done in polynomial time.

For the ∃R-hardness it remains to show that the graph GV is a point visibility graph if
and only if V (and thus V ′) is nonempty. To show that V is nonempty if GV has a PVG
realization we observe that the collinearities from a ray and from a segments stay collinear
in each realization by Lemma 7. Thus the gadgets implementing the calculations on ` are
preserved. Using the cross-ratio as described in Subsection 4.1 a PVG realization encodes a
point in V ′, and V is nonempty if GV has a PVG realization.

We show that there exists a PVG realization if V and V ′ are nonempty. We consider a
solution x ∈ V ′ and place the points corresponding to the variables on a line `. With points
in this position the gadgets implementing the calculations can be realized between ` and `∞,
such that the intersection points of the segments satisfy the order in Lemma 13. J

Acknowledgments. We thank an anonymous referee for pointing out an error in the original
proof of Lemma 7. The revised proof is largely based on the suggested fix.
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