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Curves in R
4 and two-rich points

Larry Guth∗ Joshua Zahl†

Abstract

We obtain a new bound on the number of two-rich points spanned by an arrangement of low
degree algebraic curves in R4. Specifically, we show that an arrangement of n algebraic curves
determines at most Cǫn

4/3+3ǫ two-rich points, provided at most n2/3+2ǫ curves lie in any low
degree hypersurface and at most n1/3+ǫ curves lie in any low degree surface. This result follows
from a structure theorem about arrangements of curves that determine many two-rich points.

1 Introduction

We will prove a new incidence bound for the number of two-rich points spanned by an arrangement
of algebraic curves in R

4. This is an extension to four dimensions of a previous three-dimensional
bound of the authors in [7]. Bounds of this type were a key ingredient in the proof of the Erdős
distinct distances problem in the plane [6], and have also been used by Ellenberg, Solymosi and the
second author in [3] to attack other planar incidence problems.

Definition 1.1 (Two-rich point). Let L be a set of algebraic curves in R
d. We say a point x ∈ R

d

is two-rich if there are at least two curves from L that contain x. We denote the set of two-rich
points by P2(L).

In [6], Katz and the first author proved the following result about the incidence geometry of
lines in R

3.

Theorem 1.2. If L is a set of n lines in R
3 with at most n1/2 lines in any plane or degree 2

surface, then L has at most Cn3/2 two-rich points.

There are now several proofs of Theorem 1.2 and related results: [9], [7], and [4]. The paper
[9] generalizes Theorem 1.2 to any field. The paper [7] generalizes Theorem 1.2 further by allowing
low degree algebraic curves instead of lines (also over any field). An important open problem is to
find good generalizations of Theorem 1.2 to higher dimensions. We prove a generalization to four
dimensions. Our argument works only over R, but it applies to low degree curves and not only
straight lines. Here is our main theorem.

Theorem 1.3. For every D and every ǫ > 0, there is a constant E so that the following holds.
Let L be an arrangement of n irreducible curves of degree at most D in R

4. Suppose that at most
n2/3+ǫ curves are contained in any three-dimensional hypersurface of degree E or less, and at most
n1/3+2ǫ curves are contained in any two-dimensional surface of degree 100D2 or less. Then the
number of two-rich points spanned by L is OD,ǫ(n

4/3+3ǫ).

∗Massachusetts Institute of Technology, Cambridge MA. Supported by a Simons Investigator award.
†Massachusetts Institute of Technology, Cambridge, MA. Supported by a NSF Postdoctoral Fellowship.
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1.1 Previous work

In [10], Sharir and Solomon established a new incidence bound for points and lines in R
4 under

the non-degeneracy condition that not too many lines lie in any plane, hyperplane, or quadric
hypersurface. Sharir and Solomon establish essentially sharp bounds on the number of k–rich
points when k is large, but they do not consider the problem of bounding the number of two-rich
points. (Also, their results are only for lines and don’t apply to low degree algebraic curves.)

Like Sharir and Solomon’s results, Theorem 1.7 is only proved over the reals. However, while
Sharir and Solomon’s result is probably extremely difficult to prove over finite fields (in particular,
it would imply a sharp Szemerédi-Trotter bound in F

2
p), Theorem 1.7 is almost certainly true in

finite fields, and while such a result is out of the reach of current methods, we suspect that it
is much less difficult than proving a sharp analogue of the Szemerédi-Trotter theorem over finite
fields.

1.2 Outline of the proof

Our approach to Theorem 1.3 is based on polynomial partitioning. The paper [4] proves (a slightly
weaker version of) Theorem 1.2 using polynomial partitioning. The argument there provides the
framework for our approach, but the 4-dimensional case is much subtler. We will first describe the
framework from [4] and then the new ideas. Also, there is a crucial point of the argument where
we need to work over C and apply the incidence estimates for complex algebraic curves in C

3 from
[7].

The argument from [4] is based on induction, and to make the induction close, one actually
proves a slightly stronger theorem. The theorem says that for any set of n lines in R

3, if the number
of two-rich points is much larger than n3/2, then most of the two-rich points come from a small
number of low degree varieties. To state the theorem, we will use the following notation. If V is a
set of varieties in R

d and Z ⊂ R
d is a (higher-dimensional) variety, then we define

VZ = {V ∈ V : V ⊂ Z}.

Generalizing the argument from [4] a little, we will prove the following result:

Proposition 1.4. (See Proposition 3.1) For any D and ǫ > 0, there are constants C and C ′ so
that the following holds. If L is a set of n irreducible curves in R

3 of degree at most D, then there
is a set Z of algebraic surfaces so that

1. Each surface Z ∈ Z is an irreducible surface of degree at most C ′.

2. Each surface Z ∈ Z contains at least n1/2+ǫ curves of L.

3. |Z| ≤ 2n1/2−ǫ.

4. |P2(L) \
⋃

Z∈Z P2(LZ)| ≤ CL3/2+ǫ.

This result is proved using polynomial partitioning and induction. Polynomial partitioning was
introduced in [6], where the following result was proved:

Theorem 1.5. ([6]) If X is a finite set in R
d and E ≥ 1, then there is a non-polynomial P of

degree at most E so that each component of Rd \ Z(P ) contains at most CdE
−d|X| points of X.

A little later, a more general version of polynomial partitioning was proven, which applies not
just to finite sets of points but also to finite sets of lines, or more generally to finite sets of varieties.
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Theorem 1.6 (Polynomial partitioning for varieties; see [5], Theorem 0.3). Let Γ be a set of
varieties in R

d, each of which has degree at most D and dimension at most e. For each E ≥ 1,
there is a non-zero polynomial P of degree at most E, so that each connected component of Rd\Z(P )
intersects at most C(d, e,D)Ee−d|Γ| varieties from Γ.

Here is the rough idea of the proof of Theorem 1.4. We pick a degree E ≤ C ′ and apply
Theorem 1.6. This theorem tells us that there is a polynomial P of degree at most E ≤ C ′ so that
each connected component of R3 \ Z(P ) intersects not too many curves of L. For each connected
component Ω of R3\Z(P ), we let LΩ be the set of curves of L that intersect Ω. By induction, we can
assume that Theorem 1.4 holds for each LΩ. For each Ω, we get a set of irreducible surfaces ZΩ of
degree at most C ′. Now we define Z1 to be the union of ZΩ over all the components Ω ⊂ R

3 \Z(P ),
together with all the irreducible components of Z(P ). Now Z1 is a set of irreducible surfaces of
degree at most C ′, and a simple calculation shows that it obeys the bound on two-rich points in
Theorem 1.4. However, Z1 does not close the induction, because there are too many surfaces in
Z1, and not all the surfaces contain enough curves of L.

To find Z, we need to process Z1. The processing in [4] is a simple pruning mechanism: we let

Z := {Z ∈ Z1 so that |LZ | ≥ n1/2+ǫ}.

It turns out that |Z| ≤ 2n1/2−ǫ, and that Z obeys all the desired properties and closes the induction.
We review this argument in detail in Section 3, where we prove (a slightly more general version of)
Theorem 1.4.

The proof of Theorem 1.3 has a similar framework. We use polynomial partitioning and induc-
tion to prove a slightly stronger result. Here is the stronger result.

Theorem 1.7. For every D and every ǫ > 0, there are constants C and C ′ so that the following
holds. Let L be an arrangement of n irreducible curves of degree at most D in R

4. Then there are
sets M and S with the following properties. M is a set of irreducible real algebraic varieties of
dimension at most three, and it has cardinality at most n1/3−ǫ. Each variety M ∈ M has degree at
most C ′, and |LM | ≥ n2/3+ǫ. S is a set of irreducible real algebraic varieties of dimension at most
two, and it has cardinality at most n2/3−2ǫ. Each variety S ∈ S has degree at most 100D2, and
|LS | ≥ n1/3+2ǫ. Finally, the number of two-rich points occurring between pairs of curves that are
not contained in some surface M ∈ M or S ∈ S is small. More precisely, we have the bound

∣

∣

∣
P2(L) \

(

⋃

M∈M

P2(M(L)) ∪
⋃

S∈S

P2(LS)
)∣

∣

∣
≤ Cn4/3+3ǫ. (1)

By Theorem 1.6, we can choose a polynomial P of degree E ≤ C ′ so that each component of
R
4 \Z(P ) intersects a controlled number of curves from L. For each component Ω of R4 \Z(P ), we

let LΩ be the set of curves of L that intersect Ω. By induction, we can assume that Theorem 1.7
holds for each LΩ. The inductive hypothesis gives us a set of 3-dimensional varieties MΩ and a set
of two-dimensional varieties SΩ. We now define M1 to be the union of the irreducible components
of Z(P ) together with

⋃

Ω MΩ. Similarly, we define S1 to be the union
⋃

Ω SΩ. A simple calculation
shows that M1 and S1 satisfy the bound about two-rich points at the end of Theorem 1.7. However,
they don’t close the induction, because there are too many varieties in M1 and S1, and each variety
may not contain enough curves.

To close the induction, we have to process M1 and S1. This processing is subtler than in three
dimensions, and the processing scheme that we use is the main contribution of the paper. This
processing is not a simple pruning process, like it was in the three-dimensional case. We introduce
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two new processing maneuvers. Sometimes, we remove a 3-dimensional variety M from M1, and
add a set of two dimensional varieties, {Sj}, to S1, where the Sj are subvarieties of M . At other
times, we remove a set of two-dimensional varieties, {Sj}, from S1, and add to M1 a 3-dimensional
variety M containing the Sj . A key insight is that getting this replacement scheme to work involves
variations of the original problem.

For example, in order to carry out the second replacement maneuver from the last paragraph,
we need a variation of Proposition 1.4 where curves are replaced by two-dimensional surfaces and
two-rich points are replaced by two-rich curves – see Proposition 4.2 below. If S is a set of two-
dimensional surfaces, we let C2(S) be the set of two-rich curves of S, i.e. the set of irreducible
algebraic curves that lie in at least two of the surfaces of S. Proposition 1.4 roughly says that for
n surfaces in R

4, the number of 2-rich curves is at most n3/2+ǫ, except for the contribution coming
from surfaces contained in a small number of low degree 3-dimensional varieties.

To prove such a result for two-dimensional surfaces in R
4, it looks like a reasonable idea to

intersect all the objects with a generic hyperplane H ⊂ R
4. For a generic H, each surface S ∈ S

will intersect H in an irreducible curve (possibly empty). In this way, we get a set of irreducible
curves LH in the 3-dimensional planeH. We can control the two-rich points of LH using Proposition
1.4. But this does not allow us to control the two-rich curves of S. The problem is that a curve
γ ∈ C2(S) may not intersect the plane H. If γ is a small closed curve in R

4, then most hyperplanes
H fail to intersect γ. If C2(S) consists of many small closed curves that are spread out in R

4, then
every hyperplane H will intersect only a small number of these curves.

The situation improves if we switch from R
4 to C

4. An algebraic curve γ in C
4 intersects almost

every (complex) hyperplane H in C
4. By intersecting with a hyperplane, we can reduce a question

about two-rich curves of surfaces in C
4 to a problem about two-rich points of curves in C

3. We
then apply the two-rich point estimate about curves in C

3 from [7]. In summary, we prove a key
lemma about the incidences of 2-dimensional surfaces in R

4 by using the results on curves in C
3

from [7].
We were hoping that we might be able to prove a result analogous to Theorem 1.7 in all

dimensions, using polynomial partitioning and induction on the dimension, but we have not been
able to do so. The problem is that we use an incidence theorem in C

3 to prove an incidence theorem
in R

4. If we had a similar incidence theorem in C
4, the tools in this paper would probably lead to

an incidence theorem in R
5. However, we don’t know how to prove such an incidence theorem in

C
4.
In a broader sense, the problem is that different tools work well in different fields. Polynomial

partitioning works over R. But many tools in algebraic geometry work better over C because C is
algebraically closed. In particular, intersecting a variety with a hyperplane works better over C. (A
similar tension appears in [10], where polynomial partitioning plays a crucial role, but some parts
of the argument are carried out over C.) The second author has adapted polynomial partitioning
arguments to the complex setting in certain situations in [11] (joint with Sheffer and Szabó) and in
[14], but these ideas are not yet enough to adapt the main argument in this paper to C. In the last
section of the paper, we share some speculations and failed attempts to get polynomial partitioning
to work over C.

1.3 Thanks

The authors would like to thank Misha Rudnev for pointing out an error in an earlier version of
this manuscript.
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2 Notation and background

2.1 Notation

We write A = O(B) or A . B to mean A ≤ CB for some absolute constant C. If the constant
is allowed to depend on a set of parameters t1, . . . , tℓ, then we will write A = Ot1,...,tℓ(B) or
A .t1,...,tℓ B.

2.2 Real algebraic geometry

Definition 2.1 (Degree and dimension of a real variety). Let V ⊂ R
d be a real algebraic variety,

and let V ∗ be the smallest complex variety in C
d that contains V . We define the degree of V to be

the degree of V ∗; the latter is the sum of the degrees of the irreducible components of V ∗. For the
dimension of a real variety we refer the reader to [2]. Informally, however, the dimension of a real
algebraic variety is the largest integer d′ so that the variety contains subset that is homeomorphic
to the open unit cube (0, 1)d

′
.

Some of the results about real varieties that we will use do not refer to the degree of a variety.
Instead, they refer to the number and degree of the polynomials needed to define the variety.
Results of this type begin with hypotheses such as “let M be a real variety that can be defined by
a1 polynomials of degree at most a2.” If M ⊂ R

d has degree D, then a1, a2 = OD,d(1). Similarly, if
M can be defined by a1 polynomials of degree at most a2, then the degree of M is Oa1,a2,d(1). To
keep our notation consistent, we will quote these results by specifying the degree of the varieties
involved. For our purposes, this will be an equivalent formulation.

The following theorem describes the number of (Euclidean) connected components that can be
“cut out” by a real polynomial.

Theorem 2.2 (Barone and Basu, [1]). Let M ⊂ R
d be a variety of degree D and dimension at

most d′. Let P ∈ R[x1, . . . , xd] be a polynomial. Then both M ∩ Z(P ) and M\Z(P ) contain
Od,d′,D(d

′)deg(P ) connected components.

Observe that in the special case M = d, Theorem 2.2 states that the number of connected
components of Rd\Z(P ) is Od(d

deg P ). This is known as the Milnor-Thom theorem.

Proposition 2.3. Let γ ⊂ R
d be a real algebraic variety of degree D. Let π : Rd → R

d′ be the
projection to the first d′ coordinates. Then the Zariski closure of π(γ) is an algebraic variety of
degree Od,D(1) and dimension at most dim(γ).

2.3 Polynomial partitioning

Theorem 1.6 will play an important role in the paper. We recall the statement here.

Theorem (Polynomial partitioning for varieties; see [5], Theorem 0.3). Let Γ be a set of varieties
in R

d, each of which has degree at most D and dimension at most e. For each E ≥ 1, there
is a non-zero polynomial P of degree at most E, so that each connected component of Rd\Z(P )
intersects Od,D(E

e−d|Γ|) varieties from Γ.

Combining Theorem 1.6 and Proposition 2.3, we obtain the following corollary.

Corollary 2.4. Let Γ be a set of varieties in R
d, each of which has degree at most D and dimension

at most e. For each E ≥ 1 and e ≤ d′ ≤ d, there is a non-zero polynomial P ∈ R[x1, . . . , xd] of
the form P (x1, . . . , xd) = Q(x1, . . . , xd′) of degree at most E, so that each connected component of
R
d\Z(P ) intersects Od,D(E

e−d′ |Γ|) varieties from Γ.

5



3 Warm-up: two-rich points in three dimensions

As a warm-up, we will first prove a bound on the number of two-rich points spanned by an arrange-
ment of curves that are contained in a low degree three dimensional real variety. We will closely
follow the proof from [4].

Proposition 3.1. For each d ≥ 3, D,E ≥ 1 and ǫ > 0, there are constants C and C ′ so that the
following holds. Let M ⊂ R

d be an irreducible three-dimensional variety of degree at most E. Let L
be a set of irreducible curves in M , each of which has degree at most D. Then for each ǫ > 0 there
is a set S of at most n1/2−ǫ irreducible varieties, each of dimension at most two, so that each S ∈ S
has degree at most C ′ and satisfies |LS| ≥ n1/2+ǫ. Furthermore, there are few two-rich points not
covered by the surfaces in S. More precisely, we have the estimate

∣

∣

∣
P2(L) \

⋃

S∈S

P2(LS)
∣

∣

∣
≤ Cn3/2+ǫ. (2)

Proof. We will prove the result by induction on n; the case when n is small is trivial, provided
we select C sufficiently large. After a rotation, we can assume that M intersects every affine hy-
persurface of the form P (x1, x2, x3) = 0 properly (e.g. the intersection has dimension strictly
smaller than three). Use Corollary 2.4 to select a polynomial P ∈ R[x1, . . . , xd] of the form
P (x1, . . . , xd) = P (x1, x2, x3) of degree E1 so that each connected component of Rd\Z(P ) intersects
OD,d(nE

−2
1 ) curves from L. We will select the parameter E1 later.

For each cell Ω of this partition, let LΩ be the set of curves from L that meet Ω. Apply
the induction hypothesis to each set LΩ; let SΩ be the resulting set of irreducible surfaces. Let
S1 =

⋃

Ω SΩ. Recall that M ∩ Z(P ) is a proper intersection, and thus M ∩ Z(P ) is an algebraic
variety of dimension at most two and degree Od,E1,ǫ(1). Note that |SΩ| .d,D (nE−2

1 )1/2−ǫ for each
index Ω, and thus

|S1| .d,D E2
1n

1/2−ǫ.

Observe that for each cell Ω, we have

∣

∣

∣
P2(LΩ) \

⋃

S∈SΩ

P2(LS)
∣

∣

∣
≤ C|LΩ|

3/2+ǫ

.d,D C(nE−2
1 )3/2+ǫ,

and thus if we define S0 = Z(P ) ∩M , then

∣

∣

∣
P2(L)

∖

(

P2(LS0
) ∪

⋃

S∈S1

P2(LS)
)∣

∣

∣
≤

∑

Ω

∣

∣

∣
P2(LΩ) \

⋃

S∈SΩ

P2(LS)
∣

∣

∣

.d,D CE−2ǫ
1 n3/2+ǫ.

(3)

If we choose E1 = Od,D,ǫ(1) sufficiently large, then (3) ≤ C
3 n

3/2+ǫ. Note that with such a choice
of E1, Z(P ) ∩M has degree Od,D,E,ǫ(1). Thus if we choose C ′ sufficiently large (depending only
on d,D,E and ǫ), then S0 is a union of Od,D,E,ǫ(1) irreducible varieties, each of dimension at most
two and degree at most C ′. Let S2 be the union of S1 and the irreducible components of S0. Then
|S2| .d,D,E,ǫ n

1/2−ǫ.
Define

S = {S ∈ S2 : |LS| ≥ 2n1/2+ǫ}.
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Since each pair of curves can intersect Od,D(1) times, we conclude that

∑

S∈S1\S2

|P2(LS)| .d,D |S1|(n
1/2+ǫ)2

.d,D E2
1n

1/2−ǫ(n1/2+ǫ)2

.d,D,ǫ n
3/2+ǫ.

(4)

If the constant C = Od,D,E,ǫ(1) from the statement of Proposition 3.1 is selected sufficiently large,
then (4) ≤ C

3 n
3/2+ǫ. Thus (2) holds for this choice of S. Next, we will verify that that |S| ≤ n1/2−ǫ.

To do this, we will first need the following lemma.

Lemma 3.2 (Unions of surfaces contain many lines). For each d,D ≥ 1, there is a constant C1 so
that the following holds. Let L be a set of curves in R

d, each of degree at most D. Let S be a set of
two-dimensional surfaces in R

d, each of degree at most D. If each surface from S contains at least
C1|S| curves from L, then

∑

S∈S

|LS | ≤ 2
∣

∣

⋃

S∈S

LS

∣

∣. (5)

Proof. First, note that any two surfaces from S can intersect in at most Od,D(1) irreducible curves,
and thus the intersection can contain at most Od,D(1) curves from L. Let S1, . . . , St, t = |S| be an
enumeration of the curves from S. By inclusion-exclusion, we have

∣

∣

∣

t
⋃

i=1

LSi

∣

∣

∣
≥

t
∑

i=1

(

|LSi
| −

i
∑

j=1

|LSi
∩ LSj

|
)

≥
t

∑

i=1

(

|LSi
| −Od,D(1)|S|

)

≥
1

2

t
∑

i=1

|LSi
|,

provided C1 = Od,D(1) is chosen sufficiently large.

Apply Lemma 3.2 to S; each surface S ∈ S2 contains at least 2n1/2+ǫ curves from L, and this
is larger than C1|S| provided n is sufficiently large compared to d,D, and ǫ. We conclude that
|S| ≤ n1/2−ǫ. This completes the proof of Proposition 3.1.

We note the following corollary of Lemma 3.2.

Corollary 3.3. Let L be a set of curves in R
d, each of degree at most D. Let S be a set of two-

dimensional surfaces in R
d, each of degree at most D. Suppose that each surface from S contains

at least A curves from L. Then

∣

∣

⋃

S∈S

LS

∣

∣ &d,D min
(

A2, A|S|
)

. (6)

7



4 Incidence bounds coming from C3

In this section, we prove incidence bounds on two-dimensional surfaces in R
4 that are based on

incidence bounds for curves in C
3. The key input is the following bound on the number of two-rich

points spanned by a collection of curves in C
3. This is Lemma 12.2 from [7]. (It is a small variation

of the main theorem of [7], Theorem 1.2.)

Proposition 4.1. Let D > 0. Then there are constants C ′
1, C

′
2 so that the following holds. Let L

be an arrangement of irreducible curves in C
3, each of degree at most D. Then for each number

A > C ′
1n

1/2, at least one of the following two things must occur

• There is a curve γ ∈ L that contains at most C ′
2A two-rich points of L.

• There is an irreducible surface Z ⊂ C
3 of degree at most 100D2 that contains at least A curves

from L.

Here is our main result on surfaces in R
4.

Proposition 4.2 (Two-rich curves for surfaces in R
4). For each D ≥ 1, there are constants C1, C2

so that the following holds. Let S be a collection of n irreducible two-dimensional surfaces in R
4,

each of degree at most D, and let A ≥ C1n
1/2. Then there exists a set M of at most n/A three-

dimensional varieties, each of degree at most 100D2, such that each variety contains ≥ A surfaces
from S. Furthermore,

∑

γ∈C2(S)

|{S ∈ S ′ : γ ⊂ S}| ≤ C2An,

where C2(S) is the set of irreducible one-dimensional curves contained in two or more surfaces from
S, and

S ′ = S \
⋃

M∈M

{S ∈ S : S ⊂ M}.

Proposition 4.2 is a corollary of the following lemma.

Lemma 4.3. For each D ≥ 1, there are constants C1, C2 so that the following holds. Let S be
a collection of n irreducible two-dimensional surfaces in R

4, each of degree at most D, and let
A ≥ C1n

1/2. Then at least one of the following must hold

(A) There is a three-dimensional variety M ⊂ R
4 of degree at most 100D2 which contains at least

A surfaces from S.

(B) The surfaces in S determine few rich curves. More precisely,

∑

γ∈C2(S)

|{S ∈ S : γ ⊂ S}| ≤ C2An.

Proof of Proposition 4.2 using Lemma 4.3. Let M0 = ∅ and let S0 = S. For each j = 0, 1, . . . ,
apply Lemma 4.3 to Sj with the value of A from the statement of Proposition 4.2. If (A) holds,
let Mj+1 = Mj ∪ {M}, where M is the three dimensional variety given by Lemma 4.3, and let
Sj+1 = {S ∈ Sj : S 6⊂ M}. Note that each M ∈ Mj+1 contains at least A surfaces from S. Also
note that |Sj+1| ≤ |Sj| − A, and so this process can continue at most n/A times, until (A) must
fail. At this point (B) holds, and we are done.

It remains to prove Lemma 4.3. Lemma 4.3 is a consequence of the following lemma.
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Lemma 4.4. For each D ≥ 1, there are constants C1, C2 so that the following holds. Let S be
a collection of n irreducible two-dimensional surfaces in R

4, each of degree at most D, and let
A ≥ C1n

1/2. Suppose that for each S ∈ S, there are at least C2A distinct irreducible curves γ ⊂ S
that are incident to at least one other surface from S. Then there is an irreducible three dimensional
variety M of degree at most 100D2 that contains ≥ A surfaces from S.

Proof of Lemma 4.3 using Lemma 4.4. We will prove Lemma 4.3 by induction on n, for all n ≤
C−2
1 A2. If n = 1 then C2(S) is empty, so conclusion (B) of Lemma 4.3 holds automatically and we

are done. Now suppose Lemma 4.3 has been proved for all sets of surfaces of size at most n − 1.
Applying Lemma 4.4, we conclude that either there is an irreducible three dimensional variety M
of degree at most 100D2 that contains at least A surfaces from S, or there exists a surface S0 ∈ S
for which there exists fewer than C2A distinct irreducible curves γ ⊂ S that are incident to at least
one other surface from S. If the former happens then conclusion (A) holds and we are done. If
the latter happens, let S ′ = S\{S0}. Then |S ′| = n− 1, so we can apply the induction hypothesis.
Either conclusion (A) holds, or there does not exist a three dimensional variety of degree at most
100D2 that contains at least A surfaces from S ′. This implies that

∑

γ∈C2(S′)

|{S ∈ S ′ : γ ⊂ S}| ≤ C2A(n− 1).

Therefore
∑

γ∈C2(S)

|{S ∈ S : γ ⊂ S}| < C2A+
∑

γ∈C2(S′)

|{S ∈ S ′ : γ ⊂ S}|

< C2A+ C2A(n− 1)

= C2An.

(7)

Thus conclusion (B) holds.

The proof of Lemma 4.4 uses a principle known as degree reduction. This is the phenomenon
that if a set of varieties intersects much more frequently than one would expect, then this set of
varieties has algebraic structure. More precisely, the set of varieties can be contained in the zero-set
of a polynomial of lower degree than one might expect using dimension counting arguments. We
will use the following degree reduction type result.

Lemma 4.5 (Degree reduction). For each D ≥ 1, there are constants C3, C4 so that the following
holds. Let S be a set of n irreducible two dimensional surfaces, each of which has degree at most
D. Suppose that A ≥ C3n

1/2 and that for each surface S ∈ S, there are at least C4A irreducible
curves γ ⊂ S that are contained in some other surface S′ ⊂ S. Then there exists a polynomial
P ∈ R[x1, . . . , x4] of degree at most n/(2A) whose zero-set contains every surface in S.

See Proposition 12.4 from [7] for details. Proposition 12.4 deals with irreducible curves and
points (rather than surfaces and curves), but the argument is identical.

Proof of Lemma 4.4. Use Lemma 4.5 to find a polynomial P of degree at most n/(2A) whose zero-
set contains every surface S ∈ S. Write P as a product of irreducible factors P = P1 . . . Pℓ, and for
each index j, define

Sj = {S ∈ S : S ⊂ Z(Pj)}.

9



Note that for each index j and each S ∈ Sj, we have

|{γ ∈ C2(S) : γ ⊂ S, γ ⊂ S′ for some S′ ∈ Sj′ , j′ 6= j}| .D degP,

since each curve in the above set is an irreducible component of S ∩ Z(P/Pj). By Theorem 2.2,
the number of irreducible components is .D degP . Thus if we select C1 (from the statement of
Lemma 4.4) sufficiently large (depending only on D), then

|{γ ∈ C2(S) : γ ⊂ S, γ ⊂ S′ for some S′ ∈ Sj′ , j′ 6= j}| ≤ C2A/2,

and thus for each index j and each S ∈ Sj , there are at least C2A/2 irreducible curves γ ⊂ S that
are contained in at least one other surface S′ ∈ Sj .

Recall that
∑

j |Sj | ≥ n and
∑

j degPj ≤ n/(2A). Let J = {j = 1, . . . , ℓ : |Sj| ≥ A}. To finish

the proof, we need to find some j0 ∈ J so that the degree of Pj0 is at most 100D2.
Since ℓ ≤ degP = n/(2A), we have

∑

j∈J |Sj| ≥ n−A(n/(2A)) ≥ n/2. By pigeonholing, there
exists an index j0 ∈ J so that

|Sj0 | ≥
1

2

n

degP
degPj0

≥
1

2

n

(degP )2
(degPj0)

2

≥
1

2

n

(n/(2A))2
(degPj0)

2

≥
A2

n
(deg Pj0)

2.

(8)

Consider the complex variety ZC(Pj0) ⊂ C
4; this variety contains the complexification of each

surface S ∈ Sj0 . Let H ⊂ C
4 be a hyperplane that is generic with respect to Pj0 , and Sj0 . Then

H∩ZC(Pj0) is an irreducible two dimensional variety in H. The complexification S∗ of each surface
S ∈ Sj0 meets H in an irreducible curve. Let Lj0 be the set of all these irreducible curves S∗ ∩H,
where S ∈ Sj0 . For each curve S∗ ∩ H ∈ L, there are at least C2A/2 points in S∗ ∩ H that are
contained in (S′)∗ ∩H for at least one other surface S′ ∈ Sj0 . (In this step, we used crucially that
we are working over C! If S∗ and (S′)∗ intersect in a curve γ ⊂ C

4, then for a generic H, γ ∩H
will be non-empty.)

This is the setup to apply Proposition 4.1. If C ′
1, C

′
2 are the constants in Proposition 4.1, then

we choose C1 = C ′
1 and C2 = 2C ′

2. Each curve of L contains at least C ′
2A two-rich points of L.

Also, the number of curves in L is |Sj0 | ≤ n, and so A > C ′
1|L|

1/2. By Proposition 4.1, there is an
irreducible two-dimensional surface Z ⊂ H of degree at most 100D2 that contains S∗ ∩H for at
least A different surfaces S ∈ Sj0 .

We claim that Z is actually equal to ZC(Pj0) ∩ H. We know that Z ∩ ZC(Pj0) ∩ H contains
at least A different irreducible curves. But degZ ≤ 100D2 and degPj0 ≤ n/A ≤ C−1

1 n1/2, and so
(degZ)(degPj0) < A. Since Z is irreducible, Bézout’s theorem (cf. Theorem 5.7 in [7]) implies
that Z = ZC(Pj0) ∩H. Therefore deg(ZC(Pj0) ∩H) ≤ 100D2.

Since deg(ZC(Pj0) ∩ H) ≤ 100D2 for a generic hyperplane H, degPj0 ≤ 100D2. (Recall that
the degree of a k-dimensional variety in C

n is the number of intersection points with a generic
(n − k)-plane cf. Definition 18.1 in [8]. From this it follows that if degZ(Pj0) ∩ H ≤ 100D2 for
a generic hyperplane H, then degZ(Pj0) ≤ 100D2 too. Finally since Pj0 is irreducible (and hence
square-free), degPj0 = degZ(Pj0).)
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4.1 Degree bounds for surfaces

The results from [7] also lead to degree bounds for two-dimensional surfaces that contain a set of
low-degree curves with many two-rich points. In particular, we will use the following result.

Lemma 4.6. For each D,E ≥ 1, there is a constant C1 so that the following holds. Let S ⊂ C
3

be an irreducible surface of degree at most E. Let L be a set of of n irreducible curves of degree at
most D that are contained in S. Suppose P2(L) ≥ C1n. Then S has degree at most 100D2.

Proof. Let L′ ⊂ L be the set of curves that intersect P2(L) in at least C1/2 points. By Bézout’s
theorem, any two curves from L can intersect in at most D2 points, and thus each curve from L
can intersect P2(L) in at most D2n places. We conclude that |L′| ≥ C1/D

2.
We now apply Proposition 10.2 from [7]. This proposition says that there is a constant C

(depending only on D) so that if S contains ≥ CE2 curves γ, and on each such curve there are
≥ CE points of intersection with a curve of degree ≤ D that is contained in S (the curve must be
distinct from γ), then there is a Zariski-open subset O ⊂ S so that for each z ∈ O, there exist at
least two distinct curves of degree ≤ D that pass through z and are contained in S. If we select
C1 > D2CE2, then the conclusion of Proposition 10.2 applies. By Proposition 3.4 from [7], this
implies that the degree of S is at most 100D2.

Corollary 4.7. For each D,E ≥ 1, there is a constant C1 so that the following holds. Let S ⊂ C
4

be an irreducible (two-dimensional) surface of degree at most E. Let L be a set of of n irreducible
curves of degree at most D that are contained in S. Suppose P2(L) ≥ C1n. Then S has degree at
most 100D2.

Proof. The corollary follows by applying a generic (with respect to S and L) linear transformation
C
4 → C

3. This transformation preserves the degree of S and all of the curves in L. We apply
Lemma 4.6 to the image of S, and conclude that the degree of S is at most 100D2.

Corollary 4.8. For each D,E ≥ 1, there is a constant C1 so that the following holds. Let S ⊂ R
4

be an irreducible (two-dimensional) surface of degree at most E. Let L be a set of of n irreducible
curves of degree at most D that are contained in S. Suppose P2(L) ≥ C1n. Then S has degree at
most 100D2.

5 Proof of Theorem 1.7

5.1 Polynomial partitioning and the induction hypothesis

We will prove Theorem 1.7 by induction on n. The case where n is small (compared to D and ǫ)
is trivial, provided we choose the constant C = OD,ǫ(1) from the statement of Theorem 1.7 to be
sufficiently large. Fix a number E = OD,ǫ(1). Use Theorem 1.6 to find a polynomial P of degree
at most E so that OD(nE

−3) curves from L intersect each cell Ω. Also recall that by Theorem 2.2,
there are O(E4) cells. Let LΩ ⊂ L be the set of curves that intersect the cell Ω. Apply the induction
hypothesis to LΩ for each cell Ω. We obtain sets MΩ and SΩ with the following properties. First,
the number of three-dimensional varieties obeys the bound

|MΩ| .D (nE−3)1/3−ǫ.

For each M ∈ MΩ,
|LM,Ω| &D (nE−3)2/3+ǫ.
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The number of two-dimensional varieties obeys the bound

|SΩ| .D (nE−3)2/3−2ǫ.

For each S ∈ SΩ,
|LS,Ω| &D (nE−3)1/3+2ǫ.

Finally, we have
∣

∣

∣

∣

P2(LΩ) \
(

⋃

M∈MΩ

P2(LM,Ω) ∪
⋃

S∈S

P2(LS,Ω)
)

∣

∣

∣

∣

.D (nE−3)4/3+3ǫ. (9)

Since the number of cells Ω is O(E4), if we sum (9) over all cells, then we get

∑

Ω

∣

∣

∣

∣

P2(LΩ) \
(

⋃

M∈MΩ

P2(LM,Ω) ∪
⋃

S∈S

P2(LS,Ω)
)

∣

∣

∣

∣

.D E−9ǫn4/3+3ǫ. (10)

Now provided that we choose E = OD,ǫ(1) sufficiently large, we get

∑

Ω

∣

∣

∣

∣

P2(LΩ) \
(

⋃

M∈MΩ

P2(LM,Ω) ∪
⋃

S∈S

P2(LS,Ω)
)

∣

∣

∣

∣

≤
1

100
n4/3+3ǫ, (11)

We will fix a value of E so that (11) holds. Note that Z(P ) is a union of OD,ǫ(1) irreducible
varieties, each of which has degree at most E = OD,ǫ(1). We will choose C ′ = OD,ǫ(1) so that
C ′ ≥ E.

Let M1 be the union of MΩ over all Ω together with all the irreducible components of Z(P ).
Let S1 =

⋃

Ω SΩ. These will be the first of several intermediate objects we will consider before
finally closing the induction. Note that with E = OD,ǫ(1) fixed, we have

|M1| .D,ǫ n
1/3−ǫ,

|S1| .D,ǫ n
2/3−2ǫ,

(12)

and each M ∈ M1 has degree at most C ′. By Equation 11, we also have

∣

∣

∣

∣

P2(L) \
⋃

M∈M1

P2(LM ) ∪
⋃

S∈S1

P2(LS)

∣

∣

∣

∣

≤
1

100
n4/3+3ǫ. (13)

The bound on two-rich points in Equation 13 is strong enough to close the induction, but the
sets M1 and S1 are too big. We need to process these sets to find smaller sets of varieties that still
do a comparable job of covering two-rich points.

5.2 Dealing with three-dimensional surfaces

For each M,M ′ ∈ M1, let SM,M ′ = M ∩M ′; we have that SM,M ′ has degree OE,ǫ(1). Define

S2 = {SM,M ′ : M,M ′ ∈ M1}.

Then
|S2| ≤ |M1|

2 .D,ǫ n
2/3−2ǫ.

(We remark that the two-dimensional varieties in S2 may have degree more than 100D2 and
they may be reducible. These are both problems for closing the induction. We will deal with these
issues in the next subsection, when we process the two-dimensional varieties.)
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For each M ∈ M1, define

L∗
M = LM\

⋃

S∈S2

LS .

We know that LM ⊂ L∗
M ∪

⋃

S∈S2
LS . Many of the points of P2(LM ) lie in P2(L

∗
M ) ∪

⋃

S∈S2
P2(LS), but not all of them do. Let P2,hybrid(LM ) be the set of 2-rich points of LM that

are not contained in P2(L
∗
M )∪

⋃

S∈S2
P2(LS). We will prove the following bound on the number of

these points:

∣

∣

∣

∣

⋃

M∈M1

P2,hybrid(LM )

∣

∣

∣

∣

.D,ǫ n
4/3. (14)

Let x be a point of P2,hybrid(LM ). We know that x lies in two curves γ1, γ2 ∈ LM . We know
that at most one of γ1, γ2 lies in L∗

M . Without loss of generality, suppose that γ2 /∈ L∗
M . Therefore,

γ2 must lie in some variety M2 ∈ M1, with M2 6= M . But γ1 cannot lie in M2, or else x would lie
in P2(LSM,M2

). The number of intersection points between γ1 and varieties M2 ∈ M1 that don’t

contain γ1 is .D |M1| .D,ǫ n
1/3−ǫ. Taking the union over all M ∈ M1, we get the bound (14). In

other words,

∣

∣

∣

∣

∣

∣

⋃

M∈M1

P2(LM ) \
⋃

M∈M1

P2(L
∗
M ) ∪

⋃

S∈S2

P2(LS)

∣

∣

∣

∣

∣

∣

.D,ǫ n
4/3.

Define
M2 = {M ∈ M1 : |L

∗
M | > 2n2/3+ǫ}.

By construction, if M,M ′ ∈ M2, then L∗
M ∩ L∗

M ′ = ∅. Thus

|M2| ≤
1

2
n1/3−ǫ. (15)

For each three-dimensional variety M ∈ M1\M2, apply Proposition 3.1 with parameter ǫ/2
to the set of curves L∗

M in the 3-dimensional variety M , and let SM be the resulting collection of
two-dimensional surfaces. Note that |SM | ≤ |L∗

M |1/2−ǫ/2 ≤ 2n1/3+ǫ/2, and each surface S ∈ SM has
degree OD,ǫ(1). Finally,

∣

∣

∣

∣

P2(L
∗
M ) \

⋃

S∈SM

P2(LS))

∣

∣

∣

∣

.D,ǫ |L
∗
M |3/2+ǫ/2 .D,ǫ n

1+3ǫ.

Define
S3 = S1 ∪ S2 ∪

⋃

M∈M1\M2

SM .

Summing over all M ∈ M1\M2, and noting that |M1| .D,ǫ n
1/3−ǫ, we conclude that

∣

∣

∣

∣

⋃

M∈M1\M2

P2(L
∗
M ) \

⋃

S∈S3

P2(LS)

∣

∣

∣

∣

.D,ǫ n
1/3−ǫ · n1+3ǫ .D,ǫ n

4/3+2ǫ. (16)

Combining our equations so far, we see that

∣

∣

∣

∣

⋃

M∈M1

P2(LM ) \
⋃

M∈M2

P2(LM ) ∪
⋃

S∈S3

P2(LS)

∣

∣

∣

∣

.D,ǫ n
4/3+2ǫ, (17)
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and so

∣

∣

∣

∣

P2(L) \
⋃

M∈M2

P2(LM ) ∪
⋃

S∈S3

P2(LS)

∣

∣

∣

∣

≤
1

100
n4/3+3ǫ + C(D, ǫ)n4/3+2ǫ. (18)

By choosing n sufficiently large, we can arrange that the size of this set is at most 2
100n

4/3+3ǫ.
So we have effectively replaced M1 by the smaller set of 3-dimensional varieties M2. The number
of varieties in M2 is at most 1

2n
1/3−ǫ. This is good enough to close the induction, and it even leaves

us some room to add more three-dimensional varieties later. The cost of this operation was to add
more two-dimensional surfaces, replacing S1 by S3. We can also bound the size of |S3| by

|S3| ≤ |S1|+ |S2|+ n1/3−2ǫ|M1| .D,ǫ n
2/3−2ǫ. (19)

Our bound for |S3| is still too big to close the induction (but it is not much worse than our
bound for |S1|). In the next subsection, we process the two-dimensional varieties in S3.

5.3 Dealing with two-dimensional surfaces

In the last subsection, we constructed a set S3 of two-dimensional varieties. In this subsection, we
process the set S3 to close the induction. There are four problems that we have to fix:

1. Surfaces in S3 can be reducible.

2. We know that each surface in S3 has degree OD,ǫ(1), but the degree can be more than 100D2.

3. A surface S ∈ S3 may not contain n1/3+2ǫ curves of L.

4. |S3| is too big.

We will fix these problems one at a time. The last problem is the hardest and most important.
Each surface S ∈ S3 is a union of irreducible components

S = S1 ∪ ... ∪ Sl.

We let S4 be the set of irreducible components of surfaces S ∈ S3. We know that each surface
in S3 has degree OD,ǫ(1), and so l = OD,ǫ(1), and |S4| .D,ǫ |S3| .D,ǫ n

2/3+2ǫ. For each S ∈ S3, we
want to understand

P2(LS) \
l
⋃

i=1

P2(LSi
).

If a point x lies in this set, then we must have x ∈ γ, γ′, where γ ⊂ Si, γ
′ ⊂ Si′ , and γ is not

contained in Si. For a given γ ∈ LS, the number of such points is OD(1). Therefore,

∣

∣

∣

∣

P2(LS) \
l
⋃

i=1

P2(LSi
)

∣

∣

∣

∣

.D |LS| .D,ǫ

l
∑

i=1

|LSi
|.

Taking a union over all S ∈ S3, we see that

∣

∣

∣

∣

⋃

S∈S3

P2(LS) \
⋃

S∈S4

P2(LS)

∣

∣

∣

∣

.D,ǫ

∑

S∈S4

|LS|.
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Next we bound this sum. We know that |S4| .D,ǫ n
2/3−2ǫ. We decompose S4 = S4,big ∪S4,small,

where S ∈ S4,big if |LS | > n2/3. We apply Lemma 3.2. We can assume that n is sufficiently large
so that n2/3 ≥ C1|S4|, and so Lemma 3.2 gives

∑

S∈S4,big

|LS | ≤ 2

∣

∣

∣

∣

⋃

S∈S4,big

LS

∣

∣

∣

∣

≤ 2n.

On the other hand,

∑

S∈S4,small

|LS | ≤ |S4|n
2/3 .D,ǫ n

4/3.

So all together, we have

∑

S∈S4

|LS | .D,ǫ n
4/3. (20)

Plugging this bound into our equation above, we get

∣

∣

∣

∣

⋃

S∈S3

P2(LS) \
⋃

S∈S4

P2(LS)

∣

∣

∣

∣

.D,ǫ n
4/3.

Next we deal with the degrees of the surfaces. We decompose S4 = S4,high ∪ S4,low, where
S ∈ S4,low if and only if the degree of S is at most 100D2. By Corollary 4.8, we know that for each
S ∈ S4,high, |P2(LS)| .D,ǫ |LS |. Therefore, (using Equation 20),

∑

S∈S4,high

|P2(LS)| .D,ǫ

∑

S∈S4

|LS | .D,ǫ n
4/3.

Next we prune out surfaces containing few curves. We let C2 = O(1) be a large constant to be
chosen later, and we define

S5 := {S ∈ S4 so that |LS | > C2n
1/3+2ǫ}.

We bound the contribution of the surfaces in S4 \ S5:

∑

S∈S4\S5

|P2(LS)| ≤
∑

S∈S4\S5

|LS |
2 ≤ |S4|

(

C2n
1/3+2ǫ

)2
.D,ǫ n

4/3+2ǫ.

To summarize, each surface S ∈ S5 is irreducible, with degree at most 100D2, and contains at
least C2n

1/3+2ǫ curves of L. Also we have shown that

∣

∣

∣

∣

⋃

S∈S3

P2(LS) \
⋃

S∈S5

P2(LS)

∣

∣

∣

∣

.D,ǫ n
4/3+2ǫ.

Now we come to the most difficult and important issue: S5 may contain too many surfaces. If we
somehow knew that the sets {LS}S∈S5

were disjoint, then since each LS has size at least C2n
1/3+2ǫ,

it would follow that |S5| ≤ C−1
2 n2/3−2ǫ, which would be good enough to close the induction. Since

we can select C2 = O(1) to be large, it would suffice if the sets {LS}S∈S5
were merely “roughly

disjoint.” But these sets can fail badly to be disjoint. In particular, this can happen if many
surfaces of S5 cluster into a low-degree 3-dimensional variety M . We need to recognize when this
is happening. When it does happen, we add the variety M to M, and we delete the surfaces in
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M from S5. We will show that the remaining surfaces are roughly disjoint. We find the relevant
varieties M by using Proposition 4.2. We apply Proposition 4.2 to S5. The number of surfaces in
S5 is |S5| .D,ǫ n

2/3−2ǫ. We apply Proposition 4.2 to S5 with the value A taken as

A =
(

n2/3−2ǫ
)

1

2
+ ǫ

2
.

If n is large enough, then we see that A ≥ C1|S5|
1/2, and so Proposition 4.2 applies. It tells us that

there is a set M3 of irreducible 3-dimensional varieties with the following properties:

• The degree of each M ∈ M3 is OD,ǫ(1). We can choose the degree C ′ in the statement of the
main theorem so that the degree of each M ∈ M3 is at most C ′.

• |M3| . (n2/3−2ǫ)(1/2−ǫ/2) .D,ǫ n
1/3− 10

9
ǫ.

• For each M ∈ M3, we define SM := {S ∈ S5|S ⊂ M}. Then for each M ∈ M3,

|SM | ≥ (n2/3−2ǫ)(1/2+ǫ/2) ≥ n1/3− 3

4
ǫ.

• Define S := S5\
⋃

M∈M3
SM .

Then
∑

γ∈L

|{S ∈ S|γ ⊂ S}| .D,ǫ |S5|
3/2+ǫ/2 .D,ǫ n

1−ǫ/4.

We can rephrase this last inequality as an incidence bound. We let I(L,S) denote the set of
pairs (γ, S) ∈ L × S with γ ⊂ S. The last inequality can be rewritten as

|I(L,S)| .D,ǫ n
1−ǫ/4.

We have now defined our final set of surfaces S. Also, we can now define our final set of
3-dimensional varieties M by

M = M2 ∪M3.

To finish the proof, we have to check that S and M close the induction. First we consider S.
Since S ⊂ S5, we already know that each surface S ∈ S is irreducible with degree at most 100D2

and contains at least C2n
1/3+2ǫ curves of L. We now bound |S|. To do so, we double count the

incidences I(L,S). On the one hand, we know that each S ∈ S contains at least C2n
1/3+2ǫ curves

of L, and on the other hand we know that |I(L,S)| .D,ǫ n
1−ǫ/4. If n is big enough, we get:

C2n
1/3+2ǫ|S| ≤ |I(L,S)| ≤ n.

Choosing C2 ≥ 10, we see that

|S| ≤ n2/3−2ǫ.

Next we have to check thatM obeys the desired properties. We have to check that |M| ≤ n1/3−ǫ,
and we have to check that each M ∈ M contains at least n2/3+ǫ curves of L.

|M| ≤ |M2|+ |M3| ≤
1

100
n1/3−ǫ + C(D, ǫ)n1/3− 10

9
ǫ.

Since we can assume n is sufficiently large, we get |M| ≤ n1/3−ǫ.
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We already know that each M ∈ M2 contains at least 2n2/3+ǫ curves of L. If M ∈ M3, we
know that M contains at least n1/3− 3

4
ǫ surfaces S ∈ S5. Each surface S ∈ S5 contains at least

C2n
1/3+2ǫ curves of L. By Corollary 3.3,

|LM | &D min
(

(n1/3+2ǫ)2, n1/3+2ǫ · n1/3− 3

4
ǫ
)

≥ n2/3+ 5

4
ǫ.

Since we can assume n is sufficiently large, we get |LM | ≥ n2/3+ǫ.
Finally, combining all of our estimates about two-rich points in the two subsections, we see that

∣

∣

∣

∣

P2(L) \
⋃

M∈M

P2(LM ) ∪
⋃

S∈S

P2(LS)

∣

∣

∣

∣

≤
1

100
n4/3+3ǫ + C(D, ǫ)n4/3+2ǫ.

Since we can assume n is sufficiently large, this closes the induction and finishes the proof of
Theorem 1.7.

6 Polynomial partitioning over C: complex contemplations and

real realities

In this section we will discuss several half proofs and non-results. These are proof ideas that appear
promising but turn out to be fatally flawed.

6.1 The dream: polynomial partitioning over C

Let P ∈ C[z1, . . . , zd] be a complex polynomial. Define ReP : R2d → R by ReP (x1, y1, . . . , xd, yd) =
Re(P (x1 + iy1, . . . , xd + iyd)). Define ImP similarly. In particular, Z(ReP ) and Z(ImP ) are real
hypersurfaces in R

2d of degree deg(P ). Let ι : Cd → R
2d be the usual identification of C with R

2.

Conjecture 6.1. Let P ⊂ C
d be a set of n points. Then for each E ≥ 1, there is a polynomial

P ∈ C[z1, . . . , zd] of degree at most E so that each connected component of Z(Re(P )) ⊂ R
2d

contains O(nd−E) points from ι(P). Similarly, each connected component of Z(Im(P )) ⊂ R
2d

contains O(nd−E) points from ι(P)

Conjecture 6.1 appears plausible at first, because the dimension of the vector space of degree
E polynomials in C[z1, . . . , zd] is

(E+d
d

)

. In particular, given
(E+d

d

)

sets of points P1, . . . ,P(E+d

d ) in

C
d, it is possible to find a complex polynomial P so that {Re(P ) > 0} and {Re(P ) < 0} contain

an equal number of points from each of the sets P1, . . . ,P(E+d

d ). As we will discuss in Section 6.4

below, however, it appears that Conjecture 6.1 is likely false. For the moment though, we will
suspend disbelief and see what the implications of Conjecture 6.1 would be.

6.2 An overly optimistic proof of Szemerédi-Trotter in the complex plane

If Conjecture 6.1 were true, it would allow for an elementary proof of the complex Szemerédi-
Trotter theorem. The key observation is that if Q ∈ C[z] is a complex polynomial of degree E, then
Re(Q) : R2 → R is harmonic, and thus Z(Re(Q)) contains O(E) connected components. Similarly
Z(Im(Q)) contains O(E) connected components. This means that if P ∈ C[z1, z2] is a degree E
polynomial, and if L ⊂ C

2 is a complex line, then ι(L) intersects O(E) connected components of
Z(Re(P )), and ι(L) intersects O(E) connected components of Z(Im(P )).

Let P ⊂ C
2 be a set of m points, and let L be a set of n complex lines; assume that n1/2 ≤

m ≤ n2. Use Conjecture 6.1 to find a polynomial P ∈ C[z1, z2] of degree E = m2/3n−1/3 so that
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each connected component of Z(Re(P )) contains O(mE−2 = O(m−1/3n2/3) points from ι(P), and
similarly each connected component of Z(Im(P )) contains O(m−1/3n2/3) points from ι(P).

Let mΩ be the number of points from ι(P) and let nΩ be the number sets from {ι(L) : L ∈ L}
that meet the cell Ω. We have

I(ι(P)\Z(Re(P )), ι(L)) =
∑

Ω

mΩn
1/2
Ω +

∑

Ω

nΩ

≤ C
(

∑

Ω

m2
Ω

)1/2(∑

Ω

nΩ

)1/2
+ C

∑

Ω

nΩ

= O(m2/3n2/3).

Similarly,
I(ι(P)\Z(Im(P )), ι(L)) = O(m2/3n2/3).

This implies that
I(P\Z(P ),L) = O(m2/3n2/3). (21)

Finally, let L1 = {L ∈ L : L ⊂ Z(P )}. We have |L1| = O(m2/3n−1/3). Thus

|I(P,L1)| = O(m1/2|L1|) = O(m5/6n−1/3) = O(m2/3n1/3). (22)

Since each line L ∈ L\L1 meets Z(P ) in at most O(D) = O(m2/3n−1/3) points, we have

|I(P ∩ Z(P ),L\L1)| = O(m2/3n2/3). (23)

The theorem follows from combining (21), (22), and (23). Note that this proof is much simpler
than the two existing proofs due to Tóth [12] and the second author [13].

6.3 An optimistic bound for two-rich points in higher dimensions

If Conjecture 6.1 were true, it would allow us to prove a complex analogue of Theorem 1.7 in higher
dimensions. In short,

Conjecture 6.2. Let Z ⊂ C
d be a bounded-degree irreducible variety of dimension d′. Let L be a

set of n low degree curves contained in Z. Then for each j = 2, . . . , d − 1, there exists a set Sj of
low degree j dimensional irreducible varieties, such that for each index j, |Sj | ≤ n(d−j)/(d−1)−(d−j)ǫ;
each variety S ∈ Sj contains at least n(j−1)/(d−1)+(d−j)ǫ of the curves; and

∣

∣

∣
P2(L) \

d−1
⋃

j=2

⋃

S∈Sj

P2(S(L))
∣

∣

∣
≤ nd/(d−1)+dǫ. (24)

If Conjecture 6.1 were true, then Conjecture 6.2 could be proved using a similar strategy to the
proof of Theorem 1.7. The proof of Theorem 6.1 begins by partitioning R

d into cells. If Conjecture
6.1 were true, we could perform an analogous partition on C

d′ (considered as a subset of C
d)

instead. (In Theorem 1.7 we performed a polynomial partition adapted to the set of curves, but
this is merely a technical convenience; see [4] for details on why it suffices to be able to partition a
set of points.)

The proof of Theorem 1.7 used two main ingredients. First, it used a bound on the number of
two-rich points determined by a collection of curves in a bounded-degree three-dimensional surface
in R

4. This is essentially a lower dimensional version of the original problem, so if we prove the
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result by induction on the dimension d, then we can assume that such lower-dimensional bounds
already exist.

Second, the proof of Theorem 1.7 used a bound on the number of two-rich curves determined
by a collection of bounded-degree two-dimensional surfaces in R

4. In order to prove this second
bound, it is temping to try to “slice” the surface arrangement with a generic real hyperplane.
Then, one would hope, two-dimensional surfaces become one-dimensional curves, and two-rich
curves become two-rich points. One could then apply an existing (lower dimensional) bound on
the number of two-rich points. Unfortunately, this does not work because it may be impossible to
find a hyperplane in R

d that intersects each of the two-rich curves. If we work over C, however,
this problem disappears—it is possible to find a hyperplane that meets each two-rich curve in a
two-rich point. Thus Conjecture 6.2 would likely be achievable. As we will see below, however,
Conjecture 6.1 is almost certainly false.

6.4 Why Conjecture 6.1 probably isn’t true

The following lemma demonstrates why Conjecture 6.1 is not true as stated. It also suggests that
any reasonable re-formulation of Conjecture 6.1 is also likely doomed to failure.

Lemma 6.3. Let P ∈ C[z1, . . . , zd] be a polynomial of degree E. Then R
2d\Z(Re(P )) has at most

2E connected components. In particular, if P ⊂ C
d is a finite set of points, then it is impossible

for each connected component of R2d\Z(Re(P )) to contain fewer than |P|/(2E) points from ι(P).

Proof. Let f = Re(P ). Let L be a complex line in C
d. P is holomorphic on L, and thus f is

harmonic on ι(L). This means that every connected component of ι(L)\Z(f) is unbounded. Now,
pick a complex line L0 through the origin so that the highest order part of P does not vanish on
L0. If L0 is parametrized by w, then on L0, P = cEw

E +O(|w|E−1) as |w| → ∞. If x ∈ C
d, let Lx

be the line passing through x parallel to L0. If Lx is parameterized by x+w, then on Lw, we have
P = cEw

E + O|x|(|w|
E−1) as |w| → ∞. In particular, for each r1, r2 > 0, there is a number R > 0

so that if x ∈ Br1 , then on each connected component of Lx ∩ SR, there is a point z ∈ Lx ∩ SR

so that f 6= 0 for each point of B(z, r2); here Br = {z ∈ C
d : |z| ≤ r} is the ball of radius r and

SR = {z ∈ C
d : |z| = R} is the sphere of radius R.

Consider the circle L0 ∩ SR. If R is large then Z(f) cuts this circle into 2E pieces. We claim
that we can move any point x in R

2d into one of these 2E pieces without crossing Z(f).
To see that this is true, let x be a point in Br\Z(f) for some r. If we select R sufficiently large

(depending on r), then on each connected component of Lx ∩ SR, there is a point z ∈ Lx ∩ SR

so that f 6= 0 for each point of B(z, 2r). Note that B(z, 2r) must intersect L0 ∩ SR. Thus z lies
on the same connected component as some segment of L0 ∩ SR ∩ Z(f). Now, by the discussion
above, x lies on the same connected component as one of the segments of Lx ∩SR ∩Z(f), and this
segment is part of the same connected component as one of the segments of L0 ∩ SR ∩ Z(f); there
are only 2E segments of this type. Thus for each r > 0, the set Br\Z(f) contains at most 2E
connected components. Since this holds for all r > 0, we conclude that R2d\Z(f) contains at most
2E connected components.
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