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SL(n) INVARIANT VALUATIONS ON POLYTOPES

MONIKA LUDWIG AND MATTHIAS REITZNER

Abstract. A classification of SL(n) invariant valuations on the space of
convex polytopes in R

n without any continuity assumptions is established.
A corresponding result is obtained on the space of convex polytopes in R

n

that contain the origin.

2000 AMS subject classification: Primary 52B45; Secondary 52A20.

1. Introduction

Since Felix Klein announced his Erlangen program nearly 150 years ago,
the study and classification of invariants of geometric objects with respect to
transformation groups are among the most important tasks in geometry. In
Euclidean space R

n, volume and the Euler characteristic are invariant under
translations and rotations. They are even invariant under maps from the special
linear group, SL(n). Both invariants turn out to have a further natural property.
They satisfy the inclusion-exclusion principle showing that these functionals are
valuations. Here, a functional Ψ is called a valuation on a collection S of sets if

(1) Ψ(P ) + Ψ(Q) = Ψ(P ∪Q) + Ψ(P ∩Q)

whenever P,Q,P ∩Q,P ∪Q ∈ S. Hence it is a natural task to classify invariants
which are also valuations.

The aim of this paper is to obtain a complete classification of SL(n) invari-
ants which are valuations on the set Pn of convex polytopes in R

n. We show
that besides volume and the Euler characteristic there are further invariant
valuations. We characterize these SL(n) invariant valuations and prove that
among these volume and Euler characteristic are essentially the only invariants
with certain continuity properties.

The classification of valuations using invariance and continuity properties is
a classical part of geometry with important applications in integral geometry
(cf. [5] and [11, Chapter 6]). Such results are useful in the affine geometry
of convex bodies and for affine invariant problems in analysis. As mentioned
above, the n-dimensional volume Vn : Pn → R and the Euler characteristic
V0 : Pn → R (for which V0(P ) = 1 for P 6= ∅) are the most important such
functionals. Since we do not assume continuity, also functionals that depend
on (possibly discontinuous) solutions ψ : [0,∞) → R of Cauchy’s functional
equation

ψ(x+ y) = ψ(x) + ψ(y)

for x, y ∈ [0,∞) will occur.
1
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Denote by Pn
0 the subspace of convex polytopes that contain the origin. First,

we consider valuations defined on Pn
0 and obtain the following result. Let dimP

be the dimension of the polytope P , that is, the dimension of its affine hull,
aff P , and write relintP for the relative interior of P with respect to aff P . Let
n ≥ 2 throughout the paper.

Theorem 1. A functional Ψ : Pn
0 → R is an SL(n) invariant valuation if and

only if there are constants c0, c
′
0 ∈ R and a solution ψ : [0,∞) → R of Cauchy’s

functional equation such that

Ψ(P ) = c0 V0(P ) + c′0 (−1)dimP
1relintP (0) + ψ

(
Vn(P )

)

for every P ∈ Pn
0 .

Here 1Q is the indicator function of Q ⊂ R
n, that is, 1Q(x) = 1 if x ∈ Q and

1Q(x) = 0 otherwise.
Let Pn and Pn

0 be equipped with the standard topology, which comes from
the Hausdorff metric. A functional on Pn or Pn

0 is (Borel) measurable if the
pre-image of every open set in R is a Borel set. In Section 5, we show that
P 7→ (−1)dimP

1relintP (0) is measurable. It is well known that every measurable
solution of Cauchy’s functional equation is linear. This immediately implies the
following result.

Corollary 1.1. A functional Ψ : Pn
0 → R is a measurable and SL(n) invariant

valuation if and only if there are constants c0, c
′
0, cn ∈ R such that

(2) Ψ(P ) = c0 V0(P ) + c′0 (−1)dimP
1relintP (0) + cn Vn(P )

for every P ∈ Pn
0 .

Let Kn denote the space of convex bodies (that is, compact convex sets)
in R

n and let Kn
0 be the subspace of convex bodies that contain the origin.

On these spaces, important upper semicontinuous functionals exist that are
defined as certain curvature integrals. Classification results for SL(n) invariant
and upper semicontinuous valuations were established in [6, 9, 10]. For SL(n)
invariant valuations on polytopes containing the origin, the following result is
a consequence of Corollary 1.1.

Corollary 1.2. A functional Ψ : Pn
0 → R is an upper semicontinuous and

SL(n) invariant valuation if and only if there are constants c0, cn ∈ R such that

Ψ(P ) = c0 V0(P ) + cn Vn(P )

for every P ∈ Pn
0 .

We remark that for upper semicontinuous and SL(n) invariant valuations
on Pn

(0), that is, the set of convex polytopes that contain the origin in their
interiors, a complete classification was established by Haberl & Parapatits [3].
For homogeneous, measurable and SL(n) invariant valuations such a result was
established in [7]. Recently, Haberl & Parapatits [4] strengthened these re-
sults and obtained a complete classification of measurable and SL(n) invariant
valuations on Pn

(0).
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Next, we consider the space of all convex polytopes Pn. For P ∈ Pn, we
write [0, P ] for the convex hull of the origin and P .

Theorem 2. A functional Ψ : Pn → R is an SL(n) invariant valuation if and

only if there are constants c0, c
′
0, d0 ∈ R and solutions φ,ψ : [0,∞) → R of

Cauchy’s functional equation such that

Ψ(P ) = c0 V0(P )+c
′
0 (−1)dimP

1relintP (0)+ψ
(
Vn(P )

)
+d0 1P (0)+φ

(
Vn([0, P ])

)

for every P ∈ Pn.

Taking into account that all measurable solutions of Cauchy’s functional
equation are linear immediately gives the following corollary.

Corollary 2.1. A functional Ψ : Pn → R is a measurable and SL(n) invariant
valuation if and only if there are constants c0, c

′
0, cn, d0, dn ∈ R such that

Ψ(P ) = c0 V0(P ) + c′0 (−1)dimP
1relintP (0) + cn Vn(P ) + d0 1P (0) + dn Vn([0, P ])

for every P ∈ Pn.

As in Corollary 1.2, we also impose stronger assumptions on the valuations
and obtain the following results.

Corollary 2.2. A functional Ψ : Pn → R is an upper semicontinuous and

SL(n) invariant valuation if and only if there are constants c0, cn, dn ∈ R and

d0 ≥ 0 such that

Ψ(P ) = c0 V0(P ) + cn Vn(P ) + d0 1P (0) + dn Vn([0, P ])

for every P ∈ Pn.

Corollary 2.3. A functional Ψ : Pn → R is a continuous and SL(n) invariant
valuation if and only if there are constants c0, cn, dn ∈ R such that

Ψ(P ) = c0 V0(P ) + cn Vn(P ) + dn Vn([0, P ])

for every P ∈ Pn.

We remark that deducing Theorem 2 from Theorem 1 is similar to the cor-
responding step for convex-body valued valuations. Classification results for
convex-body valued valuations intertwining SL(n) were first established on Kn

0
in [8] (also see [2]) and then extended to classification results on Kn by Schuster
& Wannerer [12] and Wannerer [13].

2. Notation and Preliminaries

We work in n-dimensional Euclidean space, Rn, and denote its standard basis
by e1, . . . , en. We write lin for linear hull and [v1, . . . , vi] for the convex hull of
v1, . . . , vi ∈ R

n.
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A valuation Ψ : Pn → R can be extended to a valuation on finite unions
of convex polytopes such that the inclusion-exclusion principle holds (cf. [5]
or [11, Theorems 6.2.1 and 6.2.3]), that is, for P1, . . . , Pm ∈ Pn,

(3) Ψ(P1 ∪ · · · ∪ Pm) =
m∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤m

Ψ(Pi1 ∩ · · · ∩ Pij ).

This is also called finite additivity.
Let Q be a finite union of k-dimensional polytopes. We define a triangulation

of Q into simplices as a set of k-dimensional simplices {T1, . . . , Tm} which have
pairwise disjoint interiors, with Q =

⋃
Ti and with the property that for arbi-

trary 1 ≤ i1 < · · · < ij ≤ m the intersections Ti1 ∩ · · · ∩ Tij are again simplices.
This guarantees that when making use of the inclusion-exclusion principle in
this setting, on the right hand side only simplices occur.

We also require the following special case of a result by Haberl [1, Lemma 3.2]
(or see [2, Lemma 2]) for simple valuations, that is, for valuations which vanish
on lower dimensional sets.

Lemma 3 (Haberl [1]). If Ψ : Pn
0 → R is a simple valuation and Ψ(T ) = 0 for

every n-dimensional simplex T with one vertex at the origin, then Ψ(P ) = 0
for every P ∈ Pn

0 .

3. Proof of Theorem 1

First, we check that Ψ : Pn
0 → R defined by Ψ(P ) = (−1)dimP

1relintP (0) is a
valuation, that is, we check that (1) holds for all P,Q ∈ Pn

0 with P ∪Q ∈ Pn
0 .

Note that (1) holds if P ⊆ Q or Q ⊆ P . If there is no inclusion, then P∪Q ∈ Pn
0

implies that P and Q have the same affine hull and hence dimP = dimQ =
dim(P ∪ Q). If 0 ∈ relintP and 0 ∈ relintQ, then 0 ∈ relint(P ∩ Q) and
0 ∈ relint(P ∪ Q) and therefore (1) holds. If 0 ∈ relintP and 0 6∈ relintQ
(or vice versa), then 0 ∈ relint(P ∪ Q) and 0 6∈ relint(P ∩ Q) and therefore
(1) holds. If 0 6∈ relintP and 0 6∈ relintQ while 0 6∈ relint(P ∪ Q), then
0 6∈ relint(P ∩Q) and therefore (1) holds. Finally, if 0 6∈ relintP and 0 6∈ relintQ
while 0 ∈ relint(P ∪Q), then 0 ∈ relint(P ∩Q) and dim(P ∪Q) = dim(P ∩Q)+1
and therefore (1) holds. Thus Ψ is a valuation and it clearly is SL(n) invariant.
Hence for c0, c

′
0 ∈ R and ψ : [0,∞) → R a solution of Cauchy’s functional

equation
P 7→ c0 V0(P ) + c′0 (−1)dimP

1relintP (0) + ψ
(
Vn(P )

)

is an SL(n) invariant valuation on Pn
0 . We have to show that every SL(n)

invariant valuation Ψ : Pn
0 → R is of such form.

For i = 0, . . . , n, let T i be the set of i-dimensional simplices T ⊂ R
n with

one vertex at the origin 0.

Lemma 4. If Ψ : Pn
0 → R is an SL(n) invariant valuation, then there are a

constant c0 ∈ R and a solution ψ : [0,∞) → R of Cauchy’s functional equation

such that

Ψ(T ) = c0 V0(T ) + ψ
(
Vn(T )

)

for every T ∈ T 1 ∪ · · · ∪ T n.
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Proof. Note that for k ≤ n − 1, any simplex T ∈ T k is an SL(n) image of the
simplex [0, e1, . . . , ek]. Set

c0 = Ψ([0, e1]).

We show that

(4) Ψ(T ) = c0 for all T ∈ T 1 ∪ · · · ∪ T n−1.

By definition this holds true for T ∈ T 1.
For n ≥ 3, assume T1, T2, T1 ∪ T2 ∈ T 2 and T1 ∩ T2 ∈ T 1. By the additivity

of Ψ, we have

Ψ(T1) + Ψ(T2) = Ψ(T1 ∪ T2) + Ψ(T1 ∩ T2).

Since all simplices in T 2 are SL(n) images of [0, e1, e2], we obtain

Ψ([0, e1, e2]) = Ψ(T1 ∩ T2) = Ψ([0, e1]) = c0.

We continue by induction. Assume that for k ≤ n − 2 we already know that
Ψ(T ) = c0 for all T ∈ T 1 ∪ · · · ∪ T k−1. Further, let T1, T2, T1 ∪ T2 ∈ T k and
T1 ∩ T2 ∈ T k−1. By the additivity of Ψ, we have

Ψ(T1) + Ψ(T2) = Ψ(T1 ∪ T2) + Ψ(T1 ∩ T2).

Since all simplices in T k are SL(n) images of [0, e1, . . . , ek] for k ≤ n − 1, we
obtain

Ψ([0, e1, . . . , ek]) = Ψ(T1 ∩ T2) = Ψ([0, e1, . . . , ek−1]) = c0.

This proves (4).
In the last step, let T ∈ T n. There is A ∈ SL(n) such that

AT = [0, e1, . . . , en−1, n!v en]

where v = Vn(T ). Define α : [0,∞) → R by

α(v) = Ψ([0, e1, . . . , en−1, n!v en])

and note that by the SL(n) invariance Ψ(T ) = α
(
Vn(T )

)
for all T ∈ T n.

For x, y ≥ 0, let T ∈ T n be such that x+ y = Vn(T ). We choose T1, T2 ∈ T n

such that x = Vn(T1) and y = Vn(T2) while T = T1∪T2 and T1, T2 have disjoint
interiors. It follows that

α(x+ y) = Ψ(T ) = Ψ(T1) + Ψ(T2)−Ψ(T1 ∩ T2) = α(x) + α(y) − c0.

Thus α− c0 is a solution, say ψ : [0,∞) → R, of Cauchy’s functional equation.
Thus we obtain

Ψ(T ) = c0 V0(T ) + ψ
(
Vn(T )

)

which proves the lemma. �
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Let c0 and ψ be as in Lemma 4 and set c′0 = Ψ({0})−c0. Define Ψ′ : Pn
0 → R

as
Ψ′ = Ψ− c0 V0 − ψ ◦ Vn − c′0(−1)dimP

1relintP (0).

Note that Ψ′ is an SL(n) invariant valuation, that Ψ′({0}) = 0 and that Ψ′

vanishes by Lemma 4 on T 1 ∪ · · · ∪ T n. The following lemma completes the
proof of the theorem.

Lemma 5. The valuation Ψ′ vanishes on Pn
0 .

Proof. Since Ψ′ vanishes on T 0 ∪ T 1, for s, t > 0 we have Ψ′([0, te1]) = 0 and

Ψ′([−se1, te1]) = Ψ′([−se1, 0]) + Ψ′([0, te1]) = 0.

Thus Ψ′ vanishes on all at most 1-dimensional polytopes in Pn
0 .

We proceed by induction on k = dimP and assume that Ψ′(P ) = 0 holds
for all at most (k− 1)-dimensional P ∈ Pn

0 . Hence Ψ
′ is simple when restricted

to polytopes in Pn
0 in a k-dimensional subspace. Since Ψ′ vanishes on T k,

Lemma 3 implies that Ψ′ vanishes on all polytopes in Pn
0 in this k-dimensional

subspace. Hence Ψ′ vanishes on all at most k-dimensional polytopes in Pn
0 .

This completes the proof of the lemma. �

4. Proof of Theorem 2

It is easy to check (as in the proof of Theorem 1) that P 7→ (−1)dimP
1relintP (0)

is a valuation on Pn and also P 7→ 1P (0) is a valuation on Pn. They clearly
are SL(n) invariant. Hence for c0, c

′
0, d0 ∈ R and φ,ψ : [0,∞) → R solutions of

Cauchy’s functional equation

P 7→ c0 V0(P ) + c′0 (−1)dimP
1relintP (0) + ψ

(
Vn(P )

)
+ d0 1P (0) + φ

(
Vn([0, P ])

)

is an SL(n) invariant valuation on Pn. We have to show that every SL(n)
invariant valuation Ψ : Pn → R is of such form.

We apply Theorem 1 to the restriction of Ψ to Pn
0 and obtain a0, a

′
0 ∈ R and

a solution α : [0,∞) → R of Cauchy’s functional equation such that

Ψ(P ) = a0 V0(P ) + a′0 (−1)dimP
1relintP (0) + α

(
Vn(P )

)

for P ∈ Pn
0 . Set b0 = Ψ({e1}). Define Ψ′ : Pn → R by

Ψ′(P ) = Ψ(P )− a0 1P (0)− a′0 (−1)dimP
1relintP (0)− b0 1P c(0) − α

(
Vn(P )

)
,

where P c is the complement of P in R
n. Note that Ψ′ is an SL(n) invariant

valuation on Pn which vanishes on Pn
0 .

First we consider Ψ′ on at most (n− 2)-dimensional polytopes.

Lemma 6. The valuation Ψ′ vanishes on every polytope P ∈ Pn with dimP ≤
n− 2.

Proof. Note that Ψ′ vanishes already on Pn
0 and thus we have to take care of

polytopes P in Pn \ Pn
0 . We prove the statement by induction on k = dimP .

For k = 0, we have Ψ′({x}) = Ψ′({e1}) = 0 for x 6= 0. Assume Ψ′(P ) = 0 for
all P ∈ Pn with dimP ≤ k−1. We prove the statement for dimP = k ≤ n−2.

First, let T be a k-dimensional simplex and 0 /∈ aff T . There is a special linear
map from T onto [e1, e2, . . . , ek+1] and if we dissect T into two k-dimensional
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simplices T1 and T2, then there are special linear maps from T1 and T2 onto
[e1, e2, . . . , ek+1]. By the SL(n) invariance of Ψ′, the valuation property and the
induction assumption, we obtain

Ψ′(T ) = Ψ′(T1) + Ψ′(T2)−Ψ′(T1 ∩ T2) = 2Ψ′(T )

which proves Ψ′(T ) = 0.
Second, let P be a k-dimensional polytope with 0 /∈ aff P . Triangulate P

into k-dimensional simplices T1, . . . , Tm. By the inclusion-exclusion principle
(3), the induction assumption and the statement just proved for simplices, we
have

Ψ′(P ) =

m∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤m

Ψ′(Ti1 ∩ · · · ∩ Tij ) = 0.

Third, let P be a k-dimensional polytope with 0 ∈ aff P . For P ∈ Pn
0 we

already have Ψ′(P ) = 0. So assume 0 /∈ P and let F1, . . . , Fm be the facets
of P visible from the origin, i.e. relintFi ⊆ relint[0, P ]. Triangulate the facets
Fi into simplices T ′

1, . . . , T
′
l , and thus the closure of [0, P ] \ P into simplices

T1 = [0, T ′
1], . . . , Tl = [0, T ′

l ] with a vertex at the origin. Using the inclusion-
exclusion principle (3), the fact that Ψ′ vanishes on Pn

0 , and by the induction
hypothesis also on polytopes of dimension at most k − 1, we obtain

0 = Ψ′([0, P ]
︸ ︷︷ ︸

∈Pn
0

) =

m∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤m

Ψ′(Ti1 ∩ · · · ∩ Tij
︸ ︷︷ ︸

∈Pn
0

)

+
m∑

j=1

(−1)j
∑

1≤i1<···<ij≤m

Ψ′(Ti1 ∩ · · · ∩ Tij ∩ P
︸ ︷︷ ︸

dim≤k−1

) + Ψ′(P )

= Ψ′(P ).

This completes the proof of the lemma. �

It remains to investigate polytopes of dimension at least n− 1.

Lemma 7. There is a solution β : [0,∞) → R of Cauchy’s functional equation

such that

Ψ′(P ) = β
(
Vn([0, P ])

)

for every (n− 1)-dimensional polytope P ∈ Pn.

Proof. First, let T be an (n − 1)-dimensional simplex with 0 /∈ aff T . There
is a special linear map from T onto the simplex [e1, . . . , en−1, n!v en] with v =
Vn([0, T ]). Define the function β : [0,∞) → R by

β(v) = Ψ′([e1, . . . , en−1, n!v en]) = Ψ′(T ).

Dissecting T into two (n − 1)-dimensional simplices T1 and T2 and setting
vi = Vn([0, Ti]) for i = 1, 2, we obtain by Lemma 6 that

β(v) = Ψ′(T ) = Ψ′(T1) + Ψ′(T2) = β(v1) + β(v2)

where clearly v = v1+v2. Thus β is a solution of Cauchy’s functional equation,
and we have Ψ′(T ) = β

(
Vn([0, T ])

)
.
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Second, let P be an (n−1)-dimensional polytope with 0 /∈ aff P . Triangulate
P into simplices T1, . . . , Tl. Using the inclusion-exclusion principle (3) and that
Ψ′ vanishes on at most (n − 2)-dimensional polytopes, we obtain

Ψ′(P ) =

l∑

j=1

Ψ′(Tj) =

l∑

j=1

β
(
Vn([0, Tj ]

)
= β

(
Vn([0, P ])

)
,

where we used the previous calculation for simplices and the finite additivity of
Vn.

Third, let P be an (n − 1)-dimensional polytope with 0 ∈ aff P . Then the
polytope [0, P ] is (n−1)-dimensional and thus β

(
Vn([0, P ])

)
= 0. So we have to

prove that Ψ′(P ) = 0. If P ∈ Pn
0 we already know that Ψ′(P ) = 0. So assume

0 /∈ P , and as in the proof of Lemma 6 triangulate the facets of P visible from
the origin, and thus the closure of [0, P ]\P into simplices T1, . . . , Tl with a vertex
at the origin. Using that Ψ′ vanishes on Pn

0 and on at most (n−2)-dimensional
polytopes and the inclusion-exclusion principle (3), we obtain

0 = Ψ′([0, P ]) =
l∑

j=1

Ψ′(Tj) + Ψ′(P ) = Ψ′(P )

which completes the proof of the lemma. �

Observe that Vn([0, P ]) = Vn([0, P ]\P ) for every (n−1)-dimensional polytope
P ∈ Pn. Thus Lemmas 6 and 7 yield

Ψ′(P ) = β
(
Vn([0, P ] \ P )

)

if dimP ≤ n− 1. It remains to prove this also for polytopes P of dimension n.
For P ∈ Pn

0 , the assertion is trivial since Ψ′ vanishes on Pn
0 . Let P ∈ Pn\Pn

0 ,
and let F1, . . . , Fm be the facets of P visible from the origin. Since Ψ′ vanishes on
Pn

0 and on all at most (n− 2)-dimensional polytopes, we have by the inclusion-
exclusion principle (3)

0 = Ψ′([0, P ])

=

m∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤m

Ψ′([0, Fi1 ] ∩ · · · ∩ [0, Fij ]
︸ ︷︷ ︸

∈Pn
0

)

+
m∑

j=2

(−1)j
∑

1≤i1<···<ij≤m

Ψ′([0, Fi1 ] ∩ · · · ∩ [0, Fij ] ∩ P
︸ ︷︷ ︸

dim≤n−2

)

−
∑

1≤i≤m

Ψ′([0, Fi] ∩ P
︸ ︷︷ ︸

=Fi

) + Ψ′(P )

= Ψ′(P )−
m∑

i=1

Ψ′(Fi).

Hence Lemma 7 implies that

Ψ′(P ) =
m∑

i=1

Ψ′(Fi) =
m∑

i=1

β
(
Vn([0, Fi])

)
= β

(
Vn([0, P ]\P )

)
.
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Thus we obtain the following for Ψ. For all P ∈ Pn,

Ψ(P ) = a0 1P (0) + a′0 (−1)dimP
1relintP (0) + b0 1P c(0)

+ α
(
Vn(P )

)
+ β

(
Vn([0, P ]\P )

)
.

Set c0 = a0 + b0 and c′0 = a′0 as well as d0 = −b0. Further define the functions
φ,ψ : [0,∞) → R as ψ = α− β and φ = β. This gives the representation from
Theorem 2.

z

5. Proofs of the Corollaries

For Corollaries 1.1 and 2.1, we show that the function P 7→ (−1)dimP
1relintP (0)

is measurable. For k = 0, . . . , n, the set {P ∈ Pn
0 : dimP ≤ k} is closed in

Pn
0 . Hence Pn

0,k = {P ∈ Pn
0 : dimP = k} is a Borel set in Pn

0 for k = 0, . . . , n.
Since the set {P ∈ Pn

0 : dimP = k, 0 ∈ relintP} is open in Pn
0,k, this shows

that {P ∈ Pn
0 : dimP = k, 0 ∈ relintP} is a Borel set in Pn

0 and in Pn for
k = 0, . . . , n, which implies measurability.

For Corollaries 1.2 and 2.2, it suffices to show that the valuation

Φ(P ) = c′0(−1)dimP
1relintP (0)

is upper semicontinuous if and only if c′0 = 0. Indeed,

lim
s→0

Φ([−se1, se1]) = −c′0 ≤ Φ(0) = c′0

and hence c′0 ≥ 0. On the other hand

lim
s→0

Φ([−se1, se1,−e2, e2]) = c′0 ≤ Φ([−e2, e2]) = −c′0

and thus c′0 ≤ 0 which gives c′0 = 0.
For Corollary 2.2 it remains to note that P 7→ d0 1P (0) is upper semicontin-

uous for d0 ≥ 0.
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