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Abstract

We study geometric and topological properties of the image of a smooth submanifold of R™
under a bi-Lipschitz map to R™. In particular, we characterize how the dimension, diameter,
volume, and reach of the embedded manifold relate to the original. Our main result establishes
a lower bound on the reach of the embedded manifold in the case where m < n and the bi-
Lipschitz map is linear. We discuss implications of this work in signal processing and machine
learning, where bi-Lipschitz maps on low-dimensional manifolds have been constructed using
randomized linear operators.
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1 Introduction

Let M C R” be a k-dimensional smooth submanifold of R™ with finite diameter and volume, and
with nonzero reachH Consider also ®;, : R" — R™ that acts as a bi-Lipschitz map on M in the
sense that

Ul = ylle < |[Pru(e) = Pru(@)lly S u-fle—yll2,  Va,y e M, (1)

for some 0 < I <1 < uw < oo. In particular, when [,u ~ 1, then ®;,(-) is a near-isometry
on M, in that it barely distorts the pairwise Euclidean distances between points on ME| Such
maps naturally arise in a variety of applications in data sciences, often involving dimensionality
reduction [2}3/6,/8,9,/11,|12]; we will expand on this remark in Section Let us point out that
we only assume the map ®;,(-) to be bi-Lipschitz on M, not on the entire domain R™. This is a
subtle but crucial detail which will be significant, for example, in applications where ®; ,, is linear
and where m < n. In such applications ®;,(-) will have a nullspace and map many vectors to 0,
but for to be satisfied with [ > 0 no vector of the form x —y with x,y € M, x # y can be in the
nullspace of ®;,,(-).

The setup above naturally raises the following question: What happens to M under the bi-
Lipschitz map ®;,,(-)7 It is in fact trivially verified that ®; ,(M) C R™ is itself a smooth submanifold
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2The deviation max[u — 1,1 — ] (if positive) is commonly referred to as the isometry constant of the map ®; ()
on M.



of R™, where ®;,(M) is the image of M under ®;,(-). This allows us to define our inquiry more
precisely:

e Question: How do key characteristics of ®; ,,(M)—mnamely dimension, diameter, volume, and
reach—relate to those of M?

When [, u = 1, we will verify that

dim (1, (M) = dion (M),
diam (®;,(M)) ~ diam (M),
volg (®7,,(M)) ~ voly, (M),

as formalized in Proposition However, for reach—an important attribute of the manifold—
the story is somewhat different as additional restrictions must be imposed on ®;,(-) for reach to
be approximately preserved. We briefly outline this peculiar case next and defer the details to
Section [3l

Reach, as a measure of regularity of a submanifold of Euclidean space, can be traced back
to the pioneering works in geometric measure theory [10]. More recently, the concept of reach
has proved indispensable in the role that manifold models play in signal processing and machine
learning [1,7,12}/1519,22/24]. As elaborated later in Proposition@ reach is actually preserved under
an exact isometry, i.e., rch(®;1(M)) = rch(M). However, there is generally no relation between
rch(®;,,(M)) and rch(M) when [ < 1 < u, and we provide a concrete example in Proposition
to demonstrate this. This example involves a nonlinear choice of ®;,(-). Interestingly, however, if
we limit ourselves to the class of linear maps, reach is nearly preserved. Specifically, we can lower
bound rch (®;,(M)) in terms of rch(M) when ®;,(-) is a linear near-isometry; we formalize this
claim in Theorem 8l

Before attending to the details, however, we present the necessary background in Section |2 to
make this paper self-contained. Then, Section [3| makes precise the claims we outlined above, with
further discussion and context for these results appearing in Section In Section [5} revisiting
the applications of nearly-isometric maps in data sciences, we show how the (seemingly abstract)
Question above naturally arises in modern signal processing and machine learning, and we discuss
the implications of our results in these contexts. We defer all proofs to the appendices.

2 Necessary Concepts

Let M C R™ be a smooth, bounded, and boundary-less k-dimensional submanifold of R". More
formally, M satisfies the following. Any point x € M belongs to some neighborhood U, C M that is
diffeomorphid’|to R¥, and the transition between adjacent neighborhoods is smooth |16} 17]

To every point x € M, we assign a tangent subspace T,M C R" comprised of the directions of
all smooth curves on M that pass through «:

T, M :=

d
span [{C;(O) |v:[—1,1] = M is a smooth curve and 7(0) =z € MH .

3A diffeomorphism is a smooth and bijective map with a smooth inverse.

4By smooth transition we mean the following: If ¢z : Uz — R* and ¢, : Uy — RF are, respectively, the
diffeomorphisms corresponding to the neighborhoods U, and U,s on the manifold M and U, N U, # @, then the
composition (¢g o ¢_,')(-) must be smooth (wherever defined).



Figure 1: The reach of the unit circle (in bold) is equal to 1, as the open normal bundle of radius r (shaded)
is embedded in R? for any r < 1. Moreover, any point in R? whose distance from the unit circle is less than
1 has a unique nearest point on the unit circle.

At any xz € M, we note that T,M is a k-dimensional linear subspace of R"™. The tangent bundle of
M is the collection of all tangent subspaces:

TM := | {z} x T.M.
zeM

The normal subspace NM is the orthogonal complement of T,.M with respect to R™ so that
R"™ = T,M & N, M,

(with @ standing for direct sum). Thus, at any x € M, N;M is an (n — k)-dimensional linear
subspace of R™. The normal bundle of M is the collection of all normal subspaces:

NM := | ] {2} x NM.
zeM

For r > 0, we also let N'M C NM denote the open normal bundle of M of radius r comprised of all
normal vectors of length less than r. For example, when M is the unit circle in R? and r € (0, 1),
N"M may be identified with a disc of width 2r (around the circle); see Figure

The reach of M |10], denoted by rch(M) throughout, is a geometric attribute that captures
valuable local and global properties of a manifold (that we will highlight shortly).

Definition 1. (Reach) For a smooth submanifold M C R", the reach of M (denoted by rch(M))
1s the largest number having the following property: the open normal bundle of M of radius r is
embedded in R™ for all r < rch(M).

For example, the reach of a circle of radius p is simply p itself. This fact is generalized by the
following result, which may be of its own independent interest.

Proposition 2. (Reach of an ellipsoid) Let M be an (n — 1)-dimensional ellipsoid in R™ with
principal axes r1 > 19 > -+ > 1y > 0. Then

3N

rch(M) =

3|

By definition, any point in R™ within the distance rch(M) of M has a unique nearest point on
M. The role of reach can be summarized in two key properties (see the Toolbox in [9] for more



details). The first property concerns local regularity of M: the curvature of any unit-speed geodesic
cum/eﬂ on M is bounded by (rch(M))~!. The second property concerns global regularity: at long
geodesic dz’stancesﬁ the reach controls how close the manifold may curve back upon itself. For
example, supposing x,y € M with geodesic distance dy(z, y), we have that

rch(M)
5

dyg (2, y) > rch(M) = ||z — yll2 >

3 Results

Let M € R™ be a smooth, bounded, and boundary-less k-dimensional submanifold of R™. We let
diam(M), volx(M), and rch(M) > 0 denote, respectively, the diameter, k-dimensional volume, and
reach of M. For 0 <1 <1 <wu < oo and for m > k, let ®;,, : R® — R™ be a smooth bi-Lipschitz
map on M so that

Ulle = ylls < 1Pru(@) = Pru()llz <w-llz—yll2, Yo,y e M. (2)

Some basic properties of ®;,,(M), the image of M under ®;,,(-), are collected below and proved in
Appendix [Bl One key insight used in the proof is the following: Under ®;,(-), a tangent vector
v € T,M is mapped to a tangent vector at ®;,(z). To be precise, v — D®;,(z) - v, where
D®;,(x) € R™™ is the derivative of ®;,(-) at . Moreover, D®; ,(z) acts as a near-isometry on
T,M if ®;,,(-) is itself a near-isometry on M.

Proposition 3. (Basic properties) Let the manifold M and map ®;,,(-) be as specified above.
Then, ®;,(M) is itself a smooth, bounded, and boundary-less k-dimensional submanifold of R™.
Moreover, it holds that

l- diam(M) < diam (®;,,(M)) < u - diam(M),
1% - voly (M) < woly, (97, (M) < uF - volj, (M).

Further discussion of this result appears in Section [4]

Before we study how a nearly isometric map affects the reach of a smooth manifold, some
results are in order to build intuition and form insight to the problem. The next result, proved in
Appendix |C] states that (not surprisingly) the tangent structure of the manifold remains entirely
intact under an exact isometry on M, i.e., when [ = u = 1. The key insight used in the proof is that
the angle between any pair of tangent vectors in M is preserved in ®;,(M) if ®;,(-) is an exact
isometry on M.

Proposition 4. (Tangent bundle under exact isometry) For the manifold M specified earlier,
take p,q € M. When |l =u =1, it holds that

2 [Ty Bt (M), T B (M) = £ T, M, T, M),

with Z[A,B] standing for the angle between the subspaces A and IBSE

5Loosely speaking, a geodesic curve between a pair of points on M is a curve on M that locally minimizes the
distances [16]. For example, an arc on a circle is a geodesic curve between its end points. Note that the geodesic
curve between two points is not necessarily unique.

5The geodesic distance between a pair of points on M is the length of the shortest geodesic curve connecting those
two points [16].

" Angle between subspaces generalizes the notion of angle between lines. The (largest principle) angle between the
two subspaces A and B is defined such that cos(Z[A, B]) := min, max; cos(Z[a, b]), where the optimization is over all
vectors a € A and b € B. See [13] for more details.



To extend Proposition[dto a general bi-Lipschitz map on M with I < 1 < h, we restrict ourselves
to linear maps. The next result is proved in Appendix

Proposition 5. (Tangent bundle under linear near-isometry) With the manifold M as before,
take p,q € M. If the map ®;,, : R" — R™ is linear on R™ and bi-Lipschitz on M (i.e., satisfies (@),
then

‘Cos (4[%1’“@)@17“ (M), Ta () Pr (M)]) — cos (£[T,M, ’]qu])‘

25 |lp—ql3 5 o > 18max (A, /Aru)
< = flhs @ ” , 1 b ) ,
=42 reh(M)2 (maX(H Lull®,u”) + ) + 2

where Ay, = max [1 — 1% - 1] and || @y, is the spectral norm of the matriz representation of
the linear operator ®p,(-).

In words, the angles between tangent spaces on the manifold remain nearly unchanged under a
linear near-isometry (I, u = 1), for sufficiently close points on the manifold (those within a distance
of approximately ||®;, || ?rch(M)). The proof of this fact involves sampling two additional points
from the manifold, one near p and one near ¢, controlling the distances between all four of these
points under the bi-Lipschitz map ®;,, and relating these distances to the angles between the
tangent spaces at p and gq.

Finally, what can be said about rch(®;,(M))? The next result, proved in Appendix [E| deals
with the special case of an exact isometry.

Proposition 6. (Reach under exact isometry) Consider the manifold M as before, and take
l=u=1. Then,
rch (®;,, (M)) = rch (M) .

We note that Proposition |§| does not require ®1; : R™ — R™ to be linear, nor does it place
any restriction on m (aside from the requirement—assumed throughout this section—that m > k).
The key insight here is that ®; ;(-) preserves not only pairwise distances on M, but also the angles
between pairs of tangent spaces of M (see Proposition . This in turn guarantees that ®; (M) is
as regular as M itself (as recorded in the above proposition).

What about the case [ < 1 or w > 1, where ®;,(-) is not an exact isometry on M? In
full generality, there is no relation between rch(®;,(M)) and rch(M). This is demonstrated in
Appendix [F| where, by adding a smooth “cusp” of width 26 to a line segment in R?, we explicitly
construct a manifold M and a near-isometric map ®;,(-) on M such that rch(®;,(M)) < % <

5
oo = rch(M).

Proposition 7. (Negative result) In general, reach is not preserved under a bi-Lipschitz map-
ping.

When & ,(-) is linear, however, we can lower bound rch (®;,(M)) in terms of rch(M); the
following theorem is proved in Appendix [G}

Theorem 8. (Reach under linear near-isometry) Consider the manifold M specified earlier.
Suppose m < n, and suppose Py, (-) to be a rank-m linear map from R™ to R™ with its m nonzero
singular values in the interval [Omin, Omax] C (0,00). Then, if m = n, it holds that

2
reh (1, (M) > 200 reh(M),

Omax



whereas, if m < n, it holds that

rch (®p,,(M)) > Imin”_ rch(M).

We note that Theorem |8 does require ®;, : R" — R™ to be linear, and it also requires that
m < n (in addition to the requirement that m > k). The proof, without any loss of generality,
models the linear map ®;,(-) as an orthogonal projection followed by stretching in R™ along
different coordinates, and then records how the reach changes in each of these two steps. In the
first step, we use Definition [I]to directly quantify the rather involved effect of orthogonal projection
on the reach. On the other hand, qualitatively speaking, modestly scaling an object along different
coordinates will not substantially distort its geometry, and we will solidify this notion in the second
step of the proof. Combining the two steps proves Theorem

4 Discussion

Manifold embeddings have a rich history in differential topology and geometry. The following
discussion might help put our results in the proper context. First, the (strong) Whitney embedding
theorem [23] states that any k-dimensional smooth manifold M (not necessarily originating as a
submanifold of any Euclidean space) can be smoothly embedded into R?* | In contrast, the type
of bi-Lipschitz map ®;, : R" — R™ that we consider in this paper can be interpreted as stably
embedding M (which does originate as a submanifold of R™) into R™. In particular, stability in
this sense refers to the preservation of extrinsic, Euclidean distances as formalized in . As noted
in [1], this type of embedding can also imply the preservation of intrinsic, geodesic distances. The
celebrated Nash embedding theorem [1§] also concerns the embedding of manifolds in Euclidean
space, but with an exact isometry. However, isometry in this context refers only to the preservation
of intrinsic, geodesic distances.

In Section [5] we discuss how certain randomized constructions have been used to construct
linear mappings ®;,, : R" — R™ that satisfy with m as small as possible. Deterministic
linear constructions, adapted to the structure of the manifold M have also been proposed [2,|11] to
satisfy (I). Other manifold learning algorithms such as ISOMAP [21], however, typically involve
nonlinear maps designed to preserve only intrinsic, geodesic distances.

Regarding the implications of bi-Lipschitz mappings that we have derived in this paper, let
us begin by discussing the assumptions made in Proposition 3] First, it is worth noting that the
dimension of a manifold is actually invariant under any homeomorphismﬂ One might also consider
replacing the bi-Lipschitz map in Proposition [3] with a “locally” bi-Lipschitz map, one that barely
distorts the angle between any pair of tangent vectors anchored at the same point on M. It is
not difficult to verify that the dimension of M remains invariant under a locally bi-Lipschitz map
and that such a map only modestly changes the volume. The diameter and reach, however, might
change drastically under a locally bi-Lipschitz map. One example is rolling a thin and very long
strip of paper along its length (as one would roll up a carpet); this transformation does not distort
the angle between any pair of tangent vectors (at the same point) but can arbitrarily reduce the
diameter and reach. On the other hand, it is possible to construct an operator that maps such
a manifold to itself while significantly distorting the tangent vectors (one could envision placing
one’s palm on a rubber sheet, and twisting). In this case, the diameter, volume, and reach would
all remain the same. However, depending on the conditioning of the Jacobian at a point on the

81n this context, a smooth embedding is simply a diffeomorphism.
9A homeomorphism is a continuous and bijective map with a continuous inverse.



sheet, a pair of tangent vectors at that point could map to vectors with a significantly different
angle between them.

Regarding Proposition [5], we believe that there may be some room for improvement. While this
result confirms that the angles between tangent spaces are better preserved as the isometry of the
bi-Lipschitz map tightens (i.e., as A;, — 0), for a fixed p and ¢, the right hand side of the bound
does not go to zero. We do believe that some dependence on ||p — q||3 is natural: for points farther
away, the isometry constant must be tighter in order to preserve the angles between the respective
tangent spaces. However, it may be possible to derive a bound on the right hand side that scales
with the product of |[p — ¢||3 and A, rather than their sum.

Finally, let us explore the tightness of the bounds in Theorem [§ using some toy examples. For
instance, consider M to be the unit circle in R?, and let D, : R? — R? be the linear map specified

3 0
P, = .
[31]
Then omin = 1/2, omae = 3, and [ = 1/2, u = 3. Here, ®;,(M) is an ellipse with principal axes
r1 = 3 and ro = 1/2. Thus, by Proposition 2, rch(®;,(M)) = r3/r1 = 1/12, which precisely
matches the lower bound in Theorem [

As another example, suppose that M is the unit circle along the plane in R? that passes through
e1 = [1,0,0]T and makes an angle § with es = [0,1,0]7. Let ®;, : R — R? be the linear map
specified by the matrix

Dro = [ 1 00 } ‘

by the matrix

010

Then, one can verify that omin = Omax = 1, and that [ = cosf, u = 1. In this case, ®;,(M) is
an ellipse with principal axes 1 = 1 and 79 = cosf = [. The reach of this ellipse is given by
Proposition [2} rch(®;,,(M)) = r3/r; = (2, which exactly matches the lower bound in Theorem

However, it is not difficult to construct an example where the bound in Theorem [§]is not tight.
Again suppose that M is the unit circle along the plane in R? that passes through e; = [1,0,0]”
and makes an angle 6 with ey = [0, 1, O]T. Now, let @, : R3 — R? be the linear map specified by
the matrix

2 00
Pl = [ 010 } ‘
Then, one can verify that omin = 1, omax = 2, and that [ = cosf, u = 2. In this case, ®;,(M)
is an ellipse with principal axes r; = 2 and ro = cosf = [. The reach of this ellipse is given by
Proposition [2} rch(®;,(M)) = r3/r;1 = cos?6/2, which is larger than what Theorem [§] predicts,
namely

2 2 2
ool _ cos 0
o3 8

max

This appears to be an artifact of the proof technique which, when m < n, decomposes ®;,,(-) into
two bi-Lipschitz maps with isometry constants of ﬁ < —%— and omin < Omax, respectively.

— Omin

5 Applications in Dimensionality Reduction

We conclude by noting that the Question posed in Section [I)is strongly motivated by recent advances
in signal processing and machine learning. The Information Age has carried with it the burden

ONote the lower bounds in Theorem [§] scale linearly if ®;,(-) were to be scaled. As a result, the same conclusion
holds true if we replace the map ®; .. (-) in this example with, say, 2®; . (-).



of acquiring, storing, processing, and communicating increasingly higher dimensional signals and
data sets. Fortunately, in many cases, the information contained within a high-dimensional signal
or data set actually obeys some sort of concise, low-dimensional model [4,9]. Of particular interest
to us here is the common scenario where the data lives on a k-dimensional submanifold M C R”
(and typically k£ < n) [6,9].

The low dimension of the manifold model motivates the use of compressive measurements for
simplifying the data acquisition process. Rather than designing a (possibly very expensive) sensor
to measure a signal x € R”, for example, it often suffices to design a sensor that can measure a
much shorter vector x = ®; ,2 € R™, where ®;,, € R™*" is a linear measurement operator that
acts as a near-isometry on M (see ), and where typically m < n. Data inference tasks (e.g.,
classification or parameter estimation) can be performed—both reliably and inexpensively—in the
measurement space R™ (since m < n) [12]. In fact, it is even possible to reconstruct the original
signal = given only x = ®;,2 (and the knowledge of M and ®;,,) [15}[20].

In this context, two important cases are worth mentioning in regards to Theorem First,
consider the case where the manifold M is concentrated in or around an m-dimensional subspace
of R", and suppose ®;,, is chosen as an orthogonal projection onto an orthogonal basis for that
subspace. Such optimal projections are the topic of classical Principal Component Analysis (PCA).
In this case, the m nonzero singular values of ® will exactly equal 1, and if [ = 1, Theorem
guarantees a lower bound on rch (®;,,(M)) that is approximately equal to rch(M).

As a second case, suppose @ is generated randomly as an m X n matrix with m < n. Such
matrices are commonly used as tool for dimensionality reduction in the field of Compressive Sens-
ing [3,4,8]. Consider, in particular, the situation where ® is populated with independent and
identically distributed Gaussian random variables, each with zero mean and variance 1/m. In this
situation, it is known that assuming

ok log[(volk(M))kr )

~ Al,u I‘Ch(M)

then with high probability will hold [9] (see also IGI)E In this case, one may indeed achieve
a near-isometric embedding of the manifold with [ &~ u =~ 1 and guarantee that the reach of
the manifold does not collapse. However, the singular values of ® will cluster around y/n/m.
Consequently, the lower bound on rch (®; ,(M)) will be lower than in the first case: around y/m/n-
rch(M).
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A Proof of Proposition
(Reach of an ellipsoid)

To establish a lower bound on the reach, we rely on Blaschke’s rolling theorem, as stated in [5].

Theorem 9. (Blaschke’s rolling theorem [5]) Let V' C R™ be a relatively compact convex open
set. Assume that the boundary of V., OV, is a C? manifold. Assume that the mazimum K of the
principal curvatures at any point of OV is finite. Then, for all 0 < e < 1/K the Euclidean ball of
radius € can roll freely on OV in the interior of V.. More precisely, for all x € OV, the ball of radius
€ which is tangent to OV at x has only T as an intersection point with OV .

Letting V' denote the interior of our ellipsoid (so that 0V = M), the problem of bounding
rch(M) reduces to that of bounding the maximum K of the principal curvatures at any point of
M. Theorem [9] then implies that the open normal bundle of M of radius r is embedded in R™ for
all r < 1/K. Therefore, rch(M) > 1/K.

To bound K, we consider the following argument. Without loss of generality, we suppose the
ellipsoid is centered at the origin and aligned with the canonical axes, so that points x € M are
defined by the equation

n 2

Sy
2 T
T3

i=1

for ry > --- > r, > 0. Equivalently, 7Dz = 1 with D € R™" the diagonal matrix containing
{ri*}

Next, we consider a rigid transformation (which leaves reach unchanged) that shifts and rotates
the ellipsoid as follows: for an arbitrary point b € M, we shift the point b to the origin and rotate
the ellipsoid so that, at the origin, it is orthogonal to e,, the nth canonical vector in R". More
precisely, we consider the transformation z = Ry + b for some unitary rotation matrix R € R"*"
to be defined below. Under this change of variables,

1= (Ry+0b)TD(Ry+b) =y"RTDRy + 26" DRy + b Db.

Since b € M, we have
bI'Db =1, (4)

and the transformed ellipsoid becomes
y"RTDRy + 26T DRy = 0,

which passes through the origin. Ignoring the quadratic terms, we find that 26" DRy = 0. There-
fore, the normal direction at the origin is DRTb. We choose R such that the normal vector is
aligned with the last coordinate e,, i.e.,

DRTb = —||DRTb||3 - ey,. (5)

10



With this choice, the ellipsoid is defined by the equation

y"RT DRy

[ TE— 6
Un = SDRTH], (6)

which now passes through the origin and has the normal vector of e,. Let us decompose R DR
according to the index n, i.e., we let

D\, D
D = [ 11 12
Dlg D/22

’

] .= RTDR,
for short, with
D}, e Rn=Dx(n=1)  pro e R™ Db, € R,

Then, we can write @ as
2DRTbz - yo = 4T, Dywn + (267, D2 ) yn + Doy,

where y\,, € R™~! contains all the entries of y except 7,. We now rotate the tangent plane y, = 0 by
making the change of variables z = Ly, € R™! where the orthonormal matrix L € R(»—1x(n-1)

diagonalizes D};. We arrive at
2| DRbl2 - yo = 2" Bz + (22" F) yu + Diyr,

E:=L"D\ L e R-"Dx(=1)  p.— [Tpl, e R* 1,

where FE is diagonal. Note that the first two terms (constant and linear) of the Taylor expansion of

2
Yn in terms of z are both zero. The principal curvatures are the eigenvalues of the Hessian | a?j g ]
J

evaluated at z = 0. By taking derivatives of both sides, we may verify that

%’ _ B
920z ="~ | DRTb|)y"
Note that ) _ )
H *yn [Elle _ L7Dy L) _ Pl
020z |,_oll = [IDRTbllz  [[DRTD|2 = |DRTb|2  ||DRTD|2’

11



where we recall that r,, = min; r;. By design, b" Db =Y b?ri_ 2 — 1 and consequently we note that

HDRTszzm IDR”b||2
b VBTDb b Db

. ||DRTD~ 2c||2

= mm--—F——F———

¢ lellz

= 1\/)\mm [D—%RDRTD—%]

= 11"\ Amin [D-'RDRT]

=71y L/ Amin [D~RD)]

= T‘fl Amin [R]

where the sixth and eighth lines hold because the spectrum of a matrix is unchanged under a
similarity transform. In the fourth line, we used the fact that D = 7] -2 - I, because r1 = max; r;.

|

That is, the largest principal curvature of an ellipsoid is bounded above by K = rq/r2. In fact,
this is achieved at each endpoint of the major axis of the ellipsoid, which means that the largest
principal curvature equals r/r2 exactly. From the rolling theorem, we conclude that the reach of
the ellipsoid is lower bounded by 72 /ry.

In fact, Blaschke’s rolling theorem is tight (see [14]) in that—in the parlance of Theorem [0} —
the Euclidean ball of radius 1/K cannot roll freely on OV in the interior of V. Since we have
established above that K = r1/r2 exactly, it follows that the reach of the ellipsoid is also upper
bounded bounded by r2/r1, and therefore, must equal exactly r2/ry.

Overall, we arrive at
r—2 1

*yn |
82]'82]‘/ z=0

—-
n

B Proof of Proposition
(Basic Properties)

We prove only the claims concerning dimension and volume, as the others are self-evident. We also
set ®(-) = ®;,,(-) for short.

Let € M be arbitrary. Fix a tangent vector v € T,M, and consider a curve v : [-1,1] - M
such that

W0=r T =0 (7

Note that ® o~y : [—1,1] = ®(M) is a curve on ®(M) that passes through ®(z) = ®(y(0)) with the
tangent direction
d(®on)

220 (0) = Da((0) - T (0) = D) -, 0

dt

12



where D®(x) € R™*" is the Jacobian of ®(-) at x € R™. On the other hand,

Hd(@ 29 || — 11 120D = 2GO)
dt g =0 t
> z-gigéw (see @)
||
=1- E(O) ,
=1-|vlly >0, (see (7)) 9)

where the second to last line holds because the derivative exists. Comparing with @, we
conclude that the Jacobian D®(x) : T,M — Tg(,)®(M) is an injective map. Since any tangent
vector to ®(M) at ®(x) can be written as in (for some curve 7(-)), D®(x) is in fact a bijective
map. Since the choice of z € M was arbitrary, we conclude that dim(®(M)) = dim(M) = k.

In fact, a matching upper bound for @D exists and we have that

Uvll2 < |1 D®(x) - vy < ullv|l2, Vv e T,M, Vze M. (10)

That is, ®(-) nearly preserves the lengths of tangent vectors of M. To prove the last claim in
Proposition [3] note that

volg, (M) = / volg(dz),
xeM

where volg(dx) is the volume of the parallelotope formed by columns of

k times
doe € T,M x --- x T,M C R™¥F.

Similarly,
vl (0 (1) = [ volu(dy),
ye®(M)

where )
k times

dy € Top(y® (M) x -+ x Te()® (M) C R™*F,

From , recall that ®(-) is injective on M. Then, with the change of variables y = ®(z), we find
that

volg (¢ (M) = /GM volg, (D®(x) - dz) . (11)

Note that

volg (D®(x) - dr) = \/det [daT - DB(2)T D@ (z) - dal.
On the other hand, by , it holds that
1? . de? - de g da’ - D®(2)T DO(x) - dx < u? - daT - da,

and therefore

- \Jdet [da - do) < \/det[daT - D®(2)T DB(x) - da] < u* - \/det [da - dal,

13




which reduces to
1% voly,(dx) < voly (D®(z) - dz) < uF - voly(dz).

Substituting the bound above into yields
1% . vol, (M) < voly, (® (M)) < u* - voly, (M),

which completes the proof of Proposition

C Proof of Proposition
(Tangent Bundle Under Exact Isometry)

Fix p,q € M and unit-length vectors e, € T,M and e, € T,M. Let 0,,6, : [-1,1] — M be geodesic
curves that pass through p and ¢, respectively, such that

o 0,(t) —6,(0
0,(0) =p, e, =0,(0) = lim M

0,0)=1q,  eq=10,(0). (12)

For fixed t > 0, we consider 6,(t) — p on one hand and 6,4(t) — ¢ on the other hand. We set
®(-) = ;4 (-) for short. Because ®(-) is an exact isometry on M, we have for any ¢ > 0 that

(@ (0p(t)) — D(p), @ (04(t)) — (q))
(

N | =

~— —
% S~—
[}
—~
~
S~—
~
|
P
3
>
[}
—~
~
SN—
~
|
>
bS]
—~
~
S~—
)
~
+
T~
3
=
~

where the second and fourth equalities follow from the polarization identity. Hence,

D (0,(1) =@ (p) . P (64(1) — ‘1>(q)>

(D2p) ¢y D2(a) ) = {

,lim

t—0 t t—0 t

e (2 0,(0) = @ (), @ (8,(1) — ® (@)
t—0 t2

— lim <9p(t) — D, aq(t) - Q>
150 t2
iy =2, )~

t—0 t t—0 t
= (ep, €q) - (13)
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Recalling the definition of principal angle, we then note that
cos (£ [Tagp (D), Tap D)) = min, o s cos (£ e o)
= mnin, - max cos (£[D®(p) - ep, DP(q) - €4])
Do(p) - ey, DP(q) - €
T e e e HD<<I>( >( )epnf ’- ||D<(1>q<)q> -qe>q||2
= min max _{epcg) (see and (13))

ep€TpM eq€TaM |[ep|l, - [legll,

= cos (£ [T,M, T,M]) .

The second line above holds because D®(p) : T,M — T,y ®(M) is a bijective map (see ) This
completes the proof of Proposition

D Proof of Proposition
(Tangent Bundle Under Linear Near-Isometry)

For short, we will use the notation ® instead of ®;,,, the matrix representation of the linear map
®; ,(-). Fix p,q € M, as well as e, € TyM and e, € T;M. Let 0, : [-1,1] - Mand §,: [-1,1] = M
be unit speeﬂ geodesic curves passing through p and ¢, respectively, such that holds. For
some sufficiently small § > 0, it holds that

=)= OBy GO 00)

More concretely,

0p(9) — 6,(0)

1
ay0) - 020

9 Y

(15// lo2(8) H2dﬁda

i 1
6 rch / / dfdo (Sec. I w>H2<rch(M))

T 2. rch(M) (14)

9” dﬁda

and similarly
04(0) — 04(0) 0

5 5~ 2-rch(M)’
To prove Proposition we proceed as follows. First, we approximate (e, ;) with a simpler quantity
by noting that

(ep,€q) = <€p - W’eq>
n <9p(5) — 6,(0) 04(9) — 9q(0)> n <<9p(5) — 0p(0) 04(9) — 9q(0)> '

0,(0) — (15)

eq — 16
5 ’»-q 5 5 ’ 5 ( )
2For subspaces A, B and their orthogonal complements A~ B*, it holds that Z[A,B] = Z[A",BY]. Therefore, a
similar claim to that in Proposition [4] holds for normal spaces under an exact isometry.
139(.) is a unit-speed curve if ||§’(:)||2 = 1.

15



The first two terms on the right hand side above are small thanks to and . Specifically,

(ep,eq) — <9p(5) — 0p(0) 04(9) — Gq(0)>
P> =q 5 ) s
0p(9) — 0,(0) 0,(8) — 6,(0) 0,(8) — 6,(0)
< <€p_5,€q>‘+’< ; ,eq — 5 >‘
- O8O |,
< 5 2
+ (lely [~ 25O Y o, - HO 00
= 2rc5h(1\/JI) + <1 g rci(M)) 3. rc(;(M) (llepllz = lleglla = 1, see (14) and (15))
< ZHSE(M). (if & < rch(M)) a7

Similarly, we approximate (®e,, ®e,) with a more technically amenable quantity:
0p(0) — 0p(0) o 64(8) — 04(0) 5)®|1%

Dey, Pey) — (D - L P e A d <

‘< e Peq) < ) ’ ) ~ 4 -rch(M)

Above, ||®|| is the spectral norm of the matrix ®. We now use the triangle inequality, , and
to simplify the difference (®e,, Pe,) — (ep, €4) as follows:

[(Pep, Peg) — (ep; €q)]
0,(0) — 0,(0 04(0) — 64(0 0p(0) — 0,(0) 64(5) —64(0
§‘<(I)' ()5 0 ()>_< (6) = 6p(0) 64(3) ()>‘

(if § < rch(M))  (18)

’ 0 1) ’ 0
5|12 +1)-0
4 - rch(M)
To control the difference on the right hand side above, we write that

0,(0) = 0,(0) o 64(0) = 6,(0)
<<I>- 5 , P 5 >

(19)

(II‘P( p(8) = 04(0)) I3 + @ (85(0) — 04(8)) I3 — [|® (85(8) — 04(8)) 1|5 — | @ (85(0) — 64(0)) [13)

<

PAO«) P—‘Oq
[}

552 (105(0) = 040113 + 105(0) = 04 ()12 = 1165(8) — a(8)12 = 16,(0) = 64 (0)113)

252(u2 1)[16,(8) — 6, (0)[3 + (u — 1)[16,(0) — 8,(5) 3
(1= 2)]18,(8) — 84(B)[3 + (1 — 12)[16,(0) — 8,(0)[3)
(

< 252 (1165(8) = (013 + 1185(0) — O (8) 13 = 1165(8) — O ()13 — [16,(0) — 04(0)]I3)

AN,
+ 275[2 (16,(0) — 6,(0) |2 + 28)* (A, == max [1 — I%,u* — 1] , triangle ineq.)

= 0,(0) — 0,(0),0,(0) — 0,(0)) + 220

0p(9) = 0p(0) 84(9) = 04(0) 2A u
(7o ). 2

(/165(0) = 04(0)||2 + 25)2 (polarization id.)

5 : (116,(0) — 64(0) |2 + 26)° .

16

(w?118p(8) — Og(0)1I3 + u?[[6(0) — B (D)3 — 1*[165(8) — Bg(8) 13 — 1Z[16,(0) — 4 (O)[13) ~ (see [@))



Above, the first equality follows from the polarization identity. A matching lower bound is obtained
similarly:

5. (0 = 0,(0) o 0(6) —0,(0)
) ’ )
0,(5) —6,(0) 6,(5) —6,(0) 20,
> (00, OB, 2 (16,000 - 0,0l + 207
Substituting the upper and lower bounds above back into , we find that

[(®ey, Peg) — (ep, eq)]

2N, > S(leP+1)-9

< 2=k — 2

S 5 (105(0) — 64(0) |2 + 26)" + 4 - rch(M)

< =" llp = all3 + 164, + (!1 . !ch(M)) (a+b)? <20° + 2%, Va,b€R)  (20)
A0, 2 5 (max(||®)* w®) +1) -

< =W p—

< —7 llp—ala+ 1640, + 4 - rch(M) 2

In the last line above we introduce the term max(||®||?,u?). If the upper bound in (2) is achieved
for any pair of points, then it is guaranteed that ||®| > wu; however, if is loose, then u? may
dominate this maximum. Now, we may choose

§— 4- I‘Ch(M)\/ALu

5 (max([|@]?,u?) + 1)

which is guaranteed to be less than or equal to rch(M), as required, and we find that

25 |lp—4qli3 2
y<q>ep,q>eq>—<ep,eq>\SZ.W.(MX(;@H{@)H) + 17 max (A,,u,,/Al,u). (22)
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Equipped with this estimate, we argue that

cos (£ [TopPM, Te,PM)])

= i a cos (£
e@,pél%;q’M €q>,qr€nT<1>}§‘1>M ( [e(bﬁ”’efp,q])

= eprgqirgM eqrg%fm cos (£ [Pey, Pey))

. (Pep, Pey)
= min
ep€TpM eq€TyM H(I)epHQ . H(I)€q||2
<€p7 eq) + \(@ep, (I)eq> - <€p7 €q>’

< min max triangle inequality and ({10
S e O 7R Y P P Y PN (triane &)
) ep, eq) + [(Pep, Peg) — (ep, €
= min max {ep,€q) + I( p72 2 — ()| (Ilepllz = llegll2 = 1)
ep€TpM e €T, M l

LIS 25 |p—dli3 5> o 2
sz =5 T o P 1
< <12 6:&1{5\4 e;g%fM <6p7€q>> + rch (M2 (max(||®||%, v*) 4 1)

N 17 max (Al,ua \/R) (see (22)))

l2

_ 25 |lp—qll3 2 17Tmax (A, /A
=172 cos (£ ['H‘pM,’H‘qM]) + 2 ’r’ch(l\\/[[’)’g . (max(||<I>|]2,u2) + 1) + ( lQu u)
112
= cos (£ [T,M, T,M]) + i
2 —qll? 17 A /AL
5 . Hp QHQ . (max(||<I)H2,u2)+1)2+ max( 1, l, )

412 rch(M)?2 12

- cos (£ [TpM, T,M])

1-12 25 |p—q|3 5 o 5 17max (Alu,\/Alu)
< £ |T,M, T,M — 5 " o 1 : .
— COS( [ p »=q ]) + l2 4[2 I‘Ch(M)2 (ma‘x(” || 7u‘ ) + ) + l2

25 lp — qll3 9 9 o 18 max (Alu,«/Alu)
—= COS( [ p »=q ]) + 4l2 Al,u . rch(M)Q (maX(H H ,U ) + ) + l2

A lower bound is obtained similarly:

cos (£ [Tap®M, Te,PM])

7 25 |lp — qll3 59 17max (Alum/Alu)
2 2 2 2 , :

U2

-1
5 oS (£ [T,M, T M])

— é . Hp — qH% . (max(||(I>||2 ’LL2) + 1)2 o 17 max (Alvu’ V Al,u)
4u?  rch(M)? ’ u?

= cos (£ [T,M, T,M]) —

25 |lp—qll3 o 18max (A, /Ay
2 cos (Z[TMTMD) = 35 oppye (s us) +1)7 - = )

25 llp—al} 2 _ 18max (A, /Aiu
> cos (£ [TPM’TQMD_@'WM)S' (max(H(I)H27u2)+1) — ( = ),

where the last line uses the fact that [ < u. This completes the proof of Proposition
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E Proof of Proposition [6]
(Reach Under Exact Isometry)

By our assumption,
[@11(2) = PraW)lly = llz —yll,  Vo,yeM,

and we wish to determine rch(®;;(M)) in relation to rch(M). We set ®(-) = ®;1(-) for short
throughout the proof.

Fix an arbitrary point € M. Take another arbitrary point y € M and let v(-) be a unit-speed
geodesic curve that passes through = and y so that

'7(0) =7, W(d) =Y, (23)

for some d > 0. Next, we consider ®(z), ®(y) € ®(M) and fix a normal vector we € Ng(,)P(M)
with ||lwell2 = 1. For ¢ > 0 to be assigned later, we set

zp = P(x) + ro - Wo. (24)

Our objective is to show that, for sufficiently small rg, z¢ is closer to ®(z) than any other point
®(y) € ®(M). To that end, we write that

19 (y) — zall; — 3
= [2(y) — zalz — [(2) —zall;  (see 24))
= [1® (7(d)) = zall — 1® (v(0) = zall;  (see (23))

_ 4 d 2 d
= [ G100 — el a

d
2 [*(@60) - pe00) @) (40 =F0)

d
2 /0 (@ (4(£) — B (1(0)) — ro - wa, DB(4(£) -7(1)) dt(see ()

Il
NS

d d
/0 (® ((1)) — @ (4(0)), DB((1)) 7/ (1)) dt — 27 / (wa, DB(y(1)) -+ (1)) dt

d
(2/0 (@ (v(1)) — @ (7(0)), D2(¥(t)) - (1)) dt> — 2rg (we, @ (v(d)) — © (7(0)))
d
= (2/0 (@ (v(1)) = @ (v(0)) . D2(¥(t)) - 7' ()) dt) = 2rg (wo, ®(y) — (2)). (25)
Above, we used the fact that

% 1© (7(1)) = zall; = 2(® (v(t)) — 20, DO(3(t)) - 7'(1)) ,

where D®(-) € R™*" is the Jacobian of ®(-). In order to deal with the two terms in the last line
of , we invoke a variation of Proposition 4| (which we state without proof).

Lemma 10. Take p,q € M and fix e € T,M with unit length. Then

(@(q) — @(p), D®(p) - €) = (¢ — p,e) .
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Moreover,
A [q)(Q) - (I)(p)7T<I>(p)M] =Z [q - D TPM] )

v [(I)(Q) - @(p), N@(p)M] =Z [q - D NpM] ’

where Z[q—p, T,M] is the smallest angle between g —p and all directions in the subspace T,M. The
other angles are defined similarly.

Thanks to the above result, there exists a unit length normal vector w € N;M for which we can
write the following concerning the two inner products in the last line of E

(@ (v(t) = @ (¥(0)), DR(y(t)) - 7'(t)) = (¥(t) = 7(0),7' (1)),

(we, ®(y) — @(z)) = (w,y — ).
We are now in position to rewrite the last line of and find that

d
18() — 20l — 3 — (2 [ =20 dt) ~arg (w,y — ).

We set z = x + r¢ - w and trace back our steps in (25) to arrive at

d
18(y) — =0l — 13 = (2 [ 60 -20.70) dt) g (w,y — )

2
= lly = 2l = 3,

or
18 (y) — 2all5 = lly — =I5 (26)

By definition, as long as r¢ < rch(M), z is closer to = than it is to y, i.e.,
re <rch(M) = ||z =yl > ||z — =] = 3.
Now, thanks to (26, as long as re < rch(M), z¢ is closer to ®(z) than it is to ®(y), i.e.,
re < rch(M) = |20 — ®(y)ll3 > l|lz0 — ®(2)|5 = r3.

Our choice of z,y € M and wg € Ng(,)®(M) were arbitrary and therefore the reach of ®(M) is at
least rch(M), i.e., rch(®(M)) > rch(M). In the opposite direction, we find that rch(M) > rch(®(M)),
as the (inverse) map that takes ®(M) back to M too is obviously an isometry. This completes the
proof of Proposition [6]

F  Proof of Proposition [7]
(Negative Result)

Here, we establish Proposition [7] by constructing a suitable example. Suppose that M C R? is a
part of the horizontal axis in R?. More specifically, we set

M = {[ yM:”(x) ] Cym(z) =0, |z| < 1}. (27)

Note that rch(M) = co. We next design a smooth manifold M, C R? such that

MFor the second identity, the existence of normal vector w is guaranteed for the following reason. Set a =
Ly — x,N.M] = Z[®(y) — ®(x), No(y)@(M)]. Then, by definition of the angle between subspaces, for any angle
B > «, there must exist some unit length vector in N;M (say w) such that § = Z[y — z,w].
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Figure 2: Setup in AppendixlE (a) The solid blue curve shows a plot of yy (x) as a function of x, while
the dashed red curve shows a plot of yy, (z). (b) Plot of f(x) for a narrow range of x. In all plots, § = 0.1,
¢ = 0.05, and p = 0.01.

e M, is nearly-isometric to M, and yet

e rch(M,) =~ 0 < co = rch(M).

To that end, we proceed in two steps. First, we place a triangle wave function at the origin. More
specifically, given 0 < ¢ < § < 1, let

1-bkl g <6
.. 5 =0 28
ym, (z) = ¢ {0 5 < |z <1, (28)

be the triangle wave. This specifies a manifold in R? which we denote by M,:

(e

The solid blue curve in Figure[2|(a) shows a plot of yu, (). Note that M, is not smooth because of
the corners (cusps) at [+8,0]7 and at [0,¢]”. This manifold is therefore not suited for our example
because the map between M and M, must be, by our assumption, smooth. To work around this
issue, we simply smooth out the corners of M, as follows. Given 0 < p < ¢ and when z € (0, 1),

let
_ -1
exp (1 ) (x;p>2> 0<ax<p,

-1 p<x<6§—p,

fla) = (29)
)

_ -1 _
exp (1 1_(:0—((5—,0) 0—p<xz<§,
P

0 6 <ux,

\

and, when = € (—1,0), set
f(z) = —f(—x), x < 0.

We also set f(0) = 0. Closely related to the so-called bump function, f(-) is an odd function
compactly supported on [—d, §] which is also smooth (and in fact infinitely differentiable). We now
specify M, as follows:

M, = {[ o) ] @)= < /_Oo f(2)dz, |z| < 1} C R (30)
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The dashed red curve in Figure [2fa) shows a plot of yu, (z). Note that M, closely resembles M,
but, in contrast, is smooth. Furthermore, it is not difficult to verify that
0

rch (M), rch (M) < 7 (31)

Indeed, for M, the origin has a distance of at most §/v/2 from both of the line segments starting
t [0,c]” and ending at [+6,0]7. Therefore, rch(M,) < 6/v/2. The same statement holds true for
M., since the graph of M, is also symmetric about the vertical axis and lies beneath that of M,
(ie., 0 <ym, () < ym, (), and lastly because the origin does not belong to M.
Calculating the Isometry Constant of M,. We next show that M, is nearly-isometric to

M. First, from and , note that

S = M) <[], veg 0.2 (52)

Then, from and the fact that both f(-) and the derivative of ypr, (-) only change sign at the
origin, we write the following whenever both z1,z9 € (—1,1) have the same sign:

1

e () =g (@) = 5| [ fl@)da

vy
5/ x)| dz

d
< / ’Zf"(:v)’ dx (see (32)))
2

z1 g
[t

2

= ym, (z1) — ym, (z2)] -

That is, on each side of the origin, M, is a contraction of My. This conclusion is in fact true
everywhere. Indeed, for arbitrary x1,22 € (—1,1), we use the symmetry of both M, and M, to
argue that

[y, (1) — Y (72)] = [y, (J21]) — ym. (J22])] (by symmetry)
<ym, (z1) — ym, (x2)] s Vry, 22 € (—1,1),

and, consequently,

H[ ym, (1) } [ ny(Qm) } 2 o H[ ny(lxl) } B} [ ny(zwz) ]
H[ ymi(71) } [ me(i‘z) } 9 H[ me&l) } N [ yMngz) ]

(Above, we invoked the fact that yp(x) = 0 for all z, so that the denominators above all equal
|x1 — 22].) In words, the isometry constant of M, (as a mapping from M) is always upper-bounded
by the isometry constant of Ml,. We therefore focus on computing the latter quantity, as it is more

2, Vi, 29 € (—1, 1). (33)

2

convenient.
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To that end, we use and as follows. There are a few possibilities which we next study
one by one. For a pair of points x1, xo far from the origin, we have that

|Licten |~ Lmeten ], 07
| Y R (R

When |z1] € [0, 4] and |z2| € [4,1), we have that

yno (1) — ym, (2) = C< - |:?|> :

2 = 1, V‘.%l’, ’$2| S [57 1)

2

from which it follows that

[ nylxl) } ) [ ny(2962) } 2 _ H[ C(lxl—_lwff/@ ] 2 o 14 ¢

H[yM-’L‘l } {ny(;)} [3510562} _ .

for all |x1] € [0, 4] and |x2| € [§,1). (Above, the ratio is maximized when zo = § - sign(x1).) Finally,
when both points are near the origin, we may again confirm that

H[ ?/Mf(lﬂfl) ] - [ ny(Qﬂfz) } 2 H[ -5 ':E|1931_| i2|$2|) ]

1< = 2 <4/1+4

L Ll I 7

for all |xi],|x2] < 0. (Above, we again invoked the symmetry of M, about the vertical axis.)

2

2 2

c2

2

Overall, since /1 + g—z <1+ §, we arrive at

L ton |~ [ o
x x
wolon) ] Lwmow) Jiy ) ey e c1),
H[ ym(z1) i L ymi(w2) } 2
Owing to , we conclude that
Lten |~ [
x x
patn) | o) My g o0y e c). (34)
e ] =Lt I, |
yM IL‘1 ] L yM(ﬂﬁz) 2

Completing the Construction. Putting and together, we deduce the following.
There exists a smooth map ® : R? — R? such that M, = ®(M). Moreover, ®(-) is a near-isometry
on M with isometry constants u = 1+ § and [ = 1. In particular, since ¢ < § by design, u < 2 can
be made arbitrarily close to one. Nevertheless,

)
rch (®(M)) = rch (M) < NG < 00 = rch(M).

This argument establishes that, in general, it is not possible to lower bound rch (®(M)) in terms
of rch(M). Since the mapping ®(-) is invertible on M, we note that the entire argument can be
reversed, and so in general it is also not possible to upper bound rch (®(M)) in terms of rch(M).
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G Proof of Theorem
(Reach Under Linear Near-Isometry)

For the sake of brevity, we will use the notation ® instead of ®;,, the matrix representation of
the linear map ®;,(-). Let ® = UXV* € R™*" be the singular value decomposition of ®, with
orthobasis U € R™*™ 3 € R™*™ defined as

o1
02
Y= . Omx(n—m) S Rmxn? (35)
Om

and orthobasis V' € R™*". In particular, when m = n, ¥ is a square and diagonal matrix. Note
that ®M = UXV*M. Since V* acts as an isometry on all of R™, it follows from Proposition [f] that

rch(M') := rch(V*M) = rch(M), (36)
where we set M := V*M to keep the notation compact. Thus, it suffices to consider the action of
UY on the rotated manifold M’. Moreover, since U acts as an isometry on all of R, we can apply
Proposition [6] again and conclude that

rch(®M) = rch(ULV*M) = rch(UXM’) = rch(XM').

Thus, it suffices to merely consider the action of ¥ on M’. For any pair of points z,y € M’, note
that Vx,Vy € M, that
[z —yllz = [[Va = Vyllz,

and that
|1Xx — Xyl = |[UEV* Ve —UEV*Vyls = |2V — &V ylo.

Therefore, it follows from that
Uz =yl < [Bz - Byl <u-lle—yll2, Yo,y e M. (37)

To summarize, states that ¥ acts as a near-isometry on M/, and we wish to bound rch(XM')
in terms of rch(M').
Using , we can factor 3 as follows:
S=Y]In Opxm-m) | =2 Inn € R, (38)

where ¥/ € R™*™ is a square diagonal matrix containing the nonzero singular values of ®, and
I € R™*™ is a rectangular matrix comprised of the m x m identity and an m x (n —m) matrix
of zeros. In particular, when m = n, then I, ,, = I, is the identity matrix (and hence an exact
isometry). By assumption, the diagonal entries of ¥’ belong to the interval [omin, Omax|, S0 that
Ominllgllz < [I¥'gll2 < omaxllgll2, Vg € R™. (39)

In words, ¥/ is a bi-Lipschitz map on R™. If m < n, the fact that ¥ and ¥’ are bi-Lipschitz maps
on M’ and R™, respectively, implies that I,,,,, € R™*™ is a bi-Lipschitz map on M'. Indeed, it

follows from and that
Omax [[Tmn (@ = Yy = |2 I (z — ) ||, = 12z — 9)lly = Uz —yll2,  Va,y e M,

and consequently,

Hmn(z = y)lly > |z = yll2,  Va,y € M. (40)

We now proceed in two steps to prove the claim in Theorem

max
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Tm

Figure 3: Proof construction in Appendix|[G-1]

G.1 First Step

The first step is to compare rch(l, ,M’) with rch(M’). When m = n, I,,,, = I, is the identity
matrix and I,,, ,M' = M. Consequently, rch(Z, ,M’) = rch(M').

We therefore focus on the case where m < n. Let m, denote the m-dimensional subspace
spanning the first m coordinates in R”, and let P, € R™ be the projection of x onto the subspace
Tm. Note that P,M’ (the projection of M’ onto the subspace my,,) is isometric to I, ,M'. By
Proposition [6] we conclude that rch(P,M') = rch(l,, ,M'). Therefore, we shift our attention to
calculating rch(P,,M').

For an arbitrary point x € M/, consider P,z and an arbitrary unit-length normal vector w €
Np,, o PnM' N 7, i€, w is a normal vector at P,z but along m,. (The restriction of w to the
subspace 7, is due to our interest in computing rch(P,,M') C m,.) The constructions mentioned
throughout this proof are illustrated in Figure For r,,, > 0 to be set later, consider the point
Zm = Ppx + 1y - w € myy,. For small enough 7,,, we wish to show that P,,x is the unique nearest
point to z,, on P,,M’. To that end, if it at all exists, we consider another point y € M’ such that

Tm = |[2m — Pnzlly = [[2m — Pnylly - (41)
Because w = P,,w is supported only on the first m coordinates, w is also normal to M, i.e.,
w e NpmemM/ — w e N,M".

Consider the points
a:=1x+ry,-w, b:=x +rch(M') - w,
and note that a,b € ©+m,,. (Here, x+m,, is the affine subspace parallel to 7, and passing through
x.) We keep in mind that, by Definition |1} ||b — y|l2 > rch(M') = ||b — z||2.
Additionally, let
y :=Pny+Prrecx+m,,

be the projection of y onto the affine plane = + m,,. Let also y” be the projection of 3 onto the line
za. Note that ¢ is the nearest point on the subspace x + 7, to ¥ and, in turn, 3" is the nearest
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point on the line Ta C x + m,,, to y’. We conclude that y” is the nearest point to y on the line Za.
In particular, e L
vy L(x+m), Yy Lza,  yy" L7a (42)

Also, let @’ € x + 7, be the projection of a onto the line zy’. Finally, let b’ € Zy be the projection
of b onto the line zy. From (41)), it follows that ||z — d/[|2 = ||y’ — |2, and that

1 l _
o lrdly  dle =yl Pl M)l | mle vl
sin (a’ aa:) sin (a’ aa:) 2 sin <a’ am) 2 sin (a’ am) 2 sin (a’ aa:)

where a’az is, of course, the angle formed by the lines a’a and Za (facing xy/), and where the

inequality in follows from . In order to control r,,, we next calculate sin(a’/a\af).
The geometry of the problem forces that

—

daz = 1y'y", (44)

and that , Y
_ Hy -y ”2

= : (45)
Hy/ - ac||2

y'y" L Ta = cos (x/y’?)

by . Therefore, instead of calculating sin(a/’&\x), our plan is to find cos(@’y\”) first. To that
end, note that

v L (@t mm) = ' =o'l = Ml = wlls = Iy~ w3 (46)
by again. After recalling that ||z — b||2 = rch(M') < ||y — bl|2, we write that

2 . . -
Hy// — yH2 = ||$ — yH% . Sln2 (yxa) (yy// 1 Fa from )
=l =yl cos? (ab)  (gwa-+ab¥ = )

— Jl —yl3 - (1 - sin? (a00'))

2 lz — V3 /
= [z —yl3- 1*W (|l = bll, = rch(M"))

Iz —yll2 \°
> ||z —yll3 - [1— <2th@\41,) - ([l =bll2 < lly = bll2 = [lo = Vl|l2 < [ly — V'[|2)

Substituting the expression for ||y” — yl|, above back in (46), we arrive at

2
I ~ 5"l llz ~ I [1 - () ] ~ vl

In turn, plugging the expression for ||y’ — y"||, above back into yields

_ 2
o= ol |1 - (laptas)| = v - i

2
Hy/ —95||2

cos? (xy’ y") >
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By , then, we obtain that
sin? (c@) = sin® (W)

=1— cos? (@)

_ 2
o vl |1 - (plaptes)’| = v - i

<1-
Iy~ =12
2
2 2 —
I = ol -+ 1y = w1~ e = w15 - |1 - (L2l )]
- 2
I/ = 23
Iz~ 913~ e — i3 [1 - (leples)”
Yll2 Yll2 2.rch(M/) —
= 2l (vy' L (z+ 7))
2
_ 2
Iz~ 913 - (Sreas)

2
||Z/' —x||2

Plugging the above expression for sin((@) back into , we obtain that

l
L e =l

"~ 2sin <(17ch)
Ly —=lly

Omax |7 — yll2

:rch(M’)-( : )2, (see (40))

Omax

> rch(M') -

where the last line uses a similar argument to that used in (43)). Since our choices of z and w were
otherwise arbitrary, we conclude that

rch (I, ,M') = rch (P, M') > < )2 -rch(M). (47)

Umax

G.2 Second Step

So far, we have computed rch(I,, ,M’). In this section, we complete the argument by computing
rch(X - I, )M') = rch(EM') = rch(®M). We do so by studying the linear map ¥'.

As indicated in , ¥ is a bi-Lipschitz map on R™ with constants opin < omax. Therefore,
intuitively, it should be clear that ¥’ does not substantially distort the geometry of I, ,M' C R™.
Next, we make this notion concrete.

Consider an arbitrary point I, ,x € I, ,M'. By Definition (1} one can place an m-dimensional
(Euclidean) ball of radius rch(I,, ,M’) tangent to I, ,M’ at I, n& that never intersects I, ,M’.
Under ¥, this ball turns into an ellipsoid. The longest principal axis of this ellipsoid does not

exceed omax - rch(l, ,M’) and its smallest principal axis is no less than oy - rch(Zz,, ,M'). The

2
reach of this ellipsoid is never less than U:;‘( -rch(1, ,M') as guaranteed by Proposition Therefore,

g
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this ellipsoid itself contains an m-dimensional ball of radius Zi‘;i -rch(l, M) that is tangent at
¥ - Iy nx = Yo and never intersects the ellipsoid (and hence the manifold XM').

It is possible to choose the center of the original Euclidean ball in any direction normal to I, , M’
at I, nx; the resulting Euclidean balls (which are tangent to Xx) trace out all normal directions at
x. Since the choice of = was otherwise arbitrary, it follows that

2
rch(®M) = rch(EM') = rch (X' - I, s M) > Tmin . b (1, M). (48)

Omax
When m = n, in particular, we continue by noting that

o2

rch(®M) > —22 . rch (I, , M) (see (48))

Omax

J2

= —min . ych(M) (Im,n = I is the identity matrix)
Omax

0.2

= —min . ych(M) (see (36)).

Omax

On the other hand, when m < n, we write that

2
rch(®M) > Tmin . ch (L M) (see (48))
Omax

2
> O min X <

Omax

2 2
= 70-11111’1 . < l ) . I‘Ch(M) .
Omax Omax

This completes the proof of Theorem

2
) - rch(M) (see (47))

Omax
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