Skip to main content
Log in

Invariant Measure of Rotational Beta Expansion and Tarski’s Plank Problem

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study the invariant measures of a piecewise expanding map in \(\mathbb {R}^m\) defined by an expanding similitude modulo a lattice. Using the result of Bang (Proc Am Math Soc 2:990–993, 1951) on the plank problem of Tarski, we show that when the similarity ratio is at least \(m+1\), the map has an absolutely continuous invariant measure equivalent to the m-dimensional Lebesgue measure, under some mild assumption on the fundamental domain. Applying the method to the case \(m=2\), we obtain an alternative proof of the result in Akiyama and Caalim (J Math Soc Japan 69:1–19, 2016) together with some improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Akiyama, S., Caalim, J.: Rotational beta expansion: ergodicity and soficness. J. Math. Soc. Japan 69, 1–19 (2016)

    MathSciNet  Google Scholar 

  2. Akiyama, S., Pethő, A.: On canonical number systems. Theor. Comput. Sci. 270(1–2), 921–933 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akiyama, S., Scheicher, K.: Symmetric shift radix systems and finite expansions. Math. Pannon 18(1), 101–124 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Ball, K.: The plank problem for symmetric bodies. Invent. Math. 104(3), 535–543 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bang, T.: A solution of the “plank problem”. Proc. Am. Math. Soc. 2, 990–993 (1951)

    MathSciNet  MATH  Google Scholar 

  6. Buzzi, J., Keller, G.: Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps. Ergodic Theory Dyn. Syst. 21(3), 689–716 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dajani, K., de Vries, M.: Invariant densities for random \(\beta \)-expansions. J. Eur. Math. Soc. 9(1), 157–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbert, W.J.: Complex numbers with three radix representations. Can. J. Math. 34, 1335–1348 (1982)

    Article  MATH  Google Scholar 

  9. Góra, P.: Invariant densities for generalized \(\beta \)-maps. Ergodic Theory Dyn. Syst. 27(5), 1583–1598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Góra, P., Boyarsky, A.: Absolutely continuous invariant measures for piecewise expanding \(C^2\) transformation in \({{\bf R}}^N\). Isr. J. Math. 67(3), 272–286 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ito, Sh, Sadahiro, T.: Beta-expansions with negative bases. Integers 9(A22), 239–259 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Ito, Sh, Takahashi, Y.: Markov subshifts and realization of \(\beta \)-expansions. J. Math. Soc. Japan 26(1), 33–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalle, C.: Isomorphisms between positive and negative \(\beta \)-transformations. Ergodic Theory Dyn. Syst. 34(1), 153–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kátai, I., Szabó, J.: Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37, 255–260 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Keller, G.: Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d’une région bornée du plan, C. C.R. Acad. Sci. Paris Sér. A-B 289(12), A625–A627 (1979)

    MATH  Google Scholar 

  16. Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrscheinlichkeitstheor. Verw. Geb. 69(3), 461–478 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kempton, T.: On the invariant density of the random \(\beta \)-transformation. Acta Math. Hung. 142(2), 403–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kenyon, R.: The construction of self-similar tilings. Geom. Funct. Anal. 6, 471–488 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kenyon, R., Solomyak, B.: On the characterization of expansion maps for self-affine tilings. Discrete Comput. Geom. 43(3), 577–593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Komornik, V., Loreti, P.: Expansions in complex bases. Can. Math. Bull. 50(3), 399–408 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \({\mathbb{R}}^n\) I. Standard and nonstandard digit sets. J. Lond. Math. Soc. 54(2), 161–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T.Y., Yorke, J.A.: Ergodic transformations from an interval into itself. Trans. Am. Math. Soc. 235, 183–192 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liao, L., Steiner, W.: Dynamical properties of the negative beta-transformation. Ergodic Theory Dyn. Syst. 32(5), 1673–1690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Parry, W.: On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parry, W.: Representations for real numbers. Acta Math. Acad. Sci. Hung. 15, 95–105 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Parry, W.: The Lorenz attractor and a related population model, Ergodic theory. In: Proceedings Conference Mathematics Forschungsinstitut Oberwolfach, 1978. Lecture Notes in Mathematics, vol. 729, pp. 169–187. Springer, Berlin (1979)

  27. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  28. Safer, T.: Polygonal radix representations of complex numbers. Theor. Comput. Sci. 210(1), 159–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saussol, B.: Absolutely continuous invariant measures for multidimensional expanding maps. Isr. J. Math. 116, 223–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scheicher, K., Thuswaldner, J.M.: Canonical number systems, counting automata and fractals. Math. Proc. Camb. Philos. Soc. 133(1), 163–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tarski, A.: Further remarks about degree of equivalence on polygons (English translation by I. Wirszup), Collected Papers, vol. 1, pp. 597–611. Birkhäuser, Basel, Boston, Stuttgart (1986)

  32. Tsujii, M.: Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane. Commun. Math. Phys. 208(3), 605–622 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tsujii, M.: Absolutely continuous invariant measures for expanding piecewise linear maps. Invent. Math. 143(2), 349–373 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vince, A.: Self-replicating tiles and their boundary. Discrete Comput. Geom. 21, 463–476 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Peter Grabner and Wöden Kusner who informed us of the result of Bang, which made Theorem 1.1 in the present form. The first author is indebted to Hiroyuki Tasaki for stimulating discussion. The authors are supported by the Japanese Society for the Promotion of Science (JSPS), Grant in aid 21540012. The second author expresses his deepest gratitude to the Hitachi Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Akiyama.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiyama, S., Caalim, J. Invariant Measure of Rotational Beta Expansion and Tarski’s Plank Problem. Discrete Comput Geom 57, 357–370 (2017). https://doi.org/10.1007/s00454-016-9849-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9849-4

Keywords