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5 GENERATING MAPS ON SURFACES

THOM SULANKE

ABSTRACT. We describe procedures for generating all 2-cell embedded
simple graphs with up to a fixed number of vertices on a given surface.
We also modify these procedures to generate closed 2-cell embeddings
and polyhedral embeddings. We give results of computer implementa-
tions of these procedures for seven surfaces: the sphere, the torus, the
double torus, the projective plane, the Klein bottle, the triple cross sur-
face, and the quadruple cross surface.

1. INTRODUCTION

A mapis a simple graph embedded in a surface such that every face issimply connected.
A triangulationis a map in which every face has three edges. Section 2 contains more de-
tailed definitions. In Sections 3, 4, and 5 we describe the operations or local deformations
which we apply to triangulations and maps.

The generation of triangulations and maps on surfaces such as the projective plane, the
torus, and the Klein bottle has similarities to the generation of triangulations and maps on
the sphere. There are also interesting differences.

Brinkmann and McKay provide procedures for generating triangulations and
maps on the sphere [4, 5]. They implement these procedures ina computer programplantri
[3]. We extend these techniques to non-spherical surfaces.

We know from the work of Steinitz [11] that we can generate allthe triangulations of
the sphere withn > 4 vertices by applying the vertex splitting operation (Figure 1 and
Section 5) to the triangulations of the sphere withn− 1 vertices. The single initial tri-
angulation for this recursive process isK4 embedded in the sphere, the (boundary of the)
tetrahedron. The inverse of the vertex splitting operationis the operation of edge contrac-
tion. To assure that the repeated application of the vertex splitting operation generates all
triangulations it is required that the edge contraction operation can always be performed on
any triangulation other thanK4 and that the result of this edge contraction operation is also
a triangulation. For a triangulation of the sphere other than K4 it is indeed always possible
to find an edge for which the edge contraction operation can beapplied [11].

Triangulations of non-spherical surfaces can be generatedin the same way. However,
for any surface other than the sphere there are many but a finite number of triangulations
which do not have any contractible edges [1]. An edge is not contractible if an attempt to
apply the edge contraction operation would produce multiple edges. We define a triangula-
tion with no contractible edges to be anirreducible triangulation. The initial triangulations
used for generating all triangulations of a surface are the irreducible triangulations of this
surface. In Section 7 we provide a method for producing the class of irreducible triangula-
tions of a surface.
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E

FIGURE 1. Expansion for splitting a vertex

D

FIGURE 2. Expansion for removing edge

We next turn to the generation of maps which might not be triangulations. Maps on
the sphere can be obtained from the triangulations of the sphere by the operation of edge
removal (Figure 2 and Section 4). For the repeated application of the operation of edge
removal to generate all the maps on the sphere, it must alwaysbe possible to perform
the inverse operation of adding an edge to a map which is not a triangulation and, in the
process, obtain another map. The edge must be added in such a way that does not create
multiple edges. By applying the Jordan curve theorem we can show that for the sphere the
operation of adding an edge is always possible for a map whichis not a triangulation.

We would like to generate maps on other surfaces in a similar way. However, there
are maps which are not triangulations for which it is not possible to add an edge without
producing multiple edges. In Section 5 we introduce a class of maps, which we called
irreducible maps, which are analogous to irreducible triangulations for the purpose of gen-
erating maps.

The generation of the maps withn vertices of a fixed surface consists of four steps:

(1) Generate theirreducible triangulationsof the surface (Section 7).
(2) Generate theirreducible mapsof the surface from the irreducible triangulations

by removing vertices (Section 6).
(3) Split vertices (E-expansions) of the irreducible maps to obtain face irreducible

mapswith n vertices (Figure 1 and Section 5).
(4) Remove edges (D-expansions) of the face irreducible maps while the maps remain

2-cell embeddings(Figure 2 and Section 4).

Before describing these steps in Sections 4–7 we give definitions related to graphs in
Section 2 and we provide notation used when describing operations for generating maps
in Section 3. The computer programsurftri [13] is an implementation of the techniques
for generating triangulations and maps described in this paper. Information on how this
was done is contained in Section 8. In Section 9 we discuss howthe steps for generating
maps can be modified to generate closed 2-cell embeddings andpolyhedral embeddings.
We display the irreducible maps on the projective plane and torus in Section 10.
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2. DEFINITIONS

A surfaceis a two-dimensional compact manifold. We denote the orientable surface
with genusg, the sphere withg handles attached, asSg and the nonorientable surface with
genusg, the sphere withg crosscaps attached, asNg.

We consider only simple graphs which are graphs with no loopsand no multiple edges.
Let G be a connected graph embedded on a surfaceS. A faceof G is a connected compo-
nent of the complement ofG in S. The graphG is amap(or open2-cell embedding) on S
if every face ofG is homeomorphic to an open disk. If the three edgesv1v2, v2v3, andv3v1

are contained in the mapG then the union of these three edges is a 3-cycleof G denoted as
v1v2v3. A mapG on a surfaceS is a triangulationof S if the boundary of every face ofG
is a 3-cycle and the map is not a single 3-cycle embedded on thesphere.

Let F be a face ofG with the boundary edges, in order,v1v2, v2v3, . . . ,vmv1. The faceF
is denoted by the list of verticesv1v2v3 . . .vm. These vertices do not need to be distinct. We
call F anm-faceand we say thatF hassize m. If F has sizem≥ 4 thenF is defined to be a
large face. The subscripts of the vertices of a face are modulom. We say wetriangulatea
large faceF when we add vertices and edges to the interior ofF in such a way that all the
new faces formed are 3-faces.

3. RECURSIVE GENERATION

The basic “isomorph-free” generation technique that is used for the Steps (1)–(4) is
described in detail in [4, 5, 8]. For each generation processwe specify the classC which
is the class of maps to be generated, the initial classC0 ⊆ C which is the class of maps
from which the maps inC are generated, andF an expansion operation. The expansion
operationF is a function fromC into the set of subclasses ofC . We say(C0;F) generates
C if for eachG∈C there is a sequenceG0, G1, . . . ,Gm=Gsuch thatG0∈C0 and for every
i, 1≤ i ≤ m we haveGi ∈ F(Gi−1). We call the expansion operationF theF-expansion.
The inverse of the expansion operationF is theF-reduction.

Figures 1 and 2 represent expansion operations which we use to generate maps. The
left side of each figure shows a part of the embedded graph before the expansion operation.
The right side shows the same part of the graph after the expansion operation. Each part
of the graphs shown is contained in a simply connected component of the surface. The full
edges which are shown are required to be a part of the map beingmodified. The shorter half
edges (in Figure 1) are other unchanged edges of the map. The small flattened triangles
(in Figures 1 and 2) represent the location of zero or more other unchanged edges. The
expansion operation replaces the subgraph on the left with the subgraph on the right. The
reduction operation replaces the right subgraph with the left subgraph. Since the part of the
graph being modified is contained in a simply connected component the surface remains
the same.

4. REMOVING EDGES IN CORNERS OF LARGE FACES

We examine the steps of the overall map generation process inreverse order to help
clarify the choice of operations and initial classes which we use.

In Step 4 we generateM2, the class of all maps for a surfaceS. We consider an arbitrary
map of the type being generated and describe the reduction operation, the D-reduction. The
D-expansion is the inverse of the D-reduction. LetM1 ⊆M2 be the class of those maps on
S for which the D-reduction is not possible. We characterizeM1 and show that(M1;D)
generatesM2.
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Let G be a map on a surfaceS. We continue to call the mapG even as it is modified
by the D-reduction. The D-expansion which is shown in Figure2 is the removal of an
edge from a 3-face. It can only be applied if the map has a 3-face. The D-reduction is the
addition of an edge in the “corner” of a large face. We only apply the D-reduction if the
edge to be added does not already exist in the map.

Let F = v1v2 . . .vm be a large face ofG and letvi be a vertex onF . If vi = vi+2 thenvi+1

has degree 1 and is not adjacent tovi+3. The edgevi+1vi+3 can be added in the interior
of F dividing F into a 3-face and a face of sizem−1. Adding this edge reduces the number
of vertices of degree 1. Repeated addition of edges of this type results in no faces having a
vertex of degree 1.

We can now assume that the three verticesvi ,vi+1,vi+2 on F are distinct. Ifvi is not
adjacent tovi+2 then again the edgevivi+2 can be added in the interior ofF dividing F into
a 3-face and a face of sizem−1.

The addition of an edge in this way is the D-reduction. Even though aD-reduction
adds an edge to the map it simplifies the map by making it more like a triangulation by
increasing the number of 3-faces. The application of aD-reduction reduces the size of one
large face and does not change the size of the other large faces. So eventually no more
D-reductions are possible.

If S is the sphere then aD-reduction can always be applied in a large face. The initial
classM1 of maps on the sphere for which theD-reduction is not possible is the class of
triangulations of the sphere.

If S is a surface other than the sphere then it is possible to have alarge face in which it
is not possible to use aD-reduction. For example,P4, in Figure 5 showsK4 embedded in
the projective plane. Opposite points on the hexagon have been identified. The map has
three 4-faces. None of the faces are 3-faces and no edges can be added since the graph is
complete.

A large faceF = v1v2 . . .vm of a map is anirreducible faceif for every i, 1≤ i ≤ m, the
verticesvi andvi+2 are adjacent. A map isface irreducibleif every face is an irreducible
face or a 3-face. Trivially, every triangulation is a face irreducible map.

So the initial classM1 of maps onS for which theD-reduction is not possible is the
class of face irreducible maps onS.

5. SPLITTING VERTICES

We now consider Step 3 of the map generation process in which we generate the face
irreducible maps. The class of maps to be generated isM1 which is used as the initial class
in the previous section. TheE-expansion shown in Figure 1 is used. Below we specify an
initial classM0 such that(M0;E) generatesM1.

Let G ∈ M1 be a face irreducible map on the surfaceS. TheE-reduction,edge con-
traction, is the inverse of theE-expansion. TheE-reduction is applied only if the faces
on both sides of the edge being contracted are 3-faces. Also theE-reduction is performed
only if the resulting graph is still simple. Letv1 andv2 be the vertices of the edge to be
contracted and letu1v1v2 andu2v1v2 be the 3-faces on either side ofv1v2. The two ends
of the contracted edge,v1 andv2, must not both be adjacent to any vertices other thanu1

andu2. Otherwise, multiple edges would be produced whenv1v2 is contracted. An edge is
contractibleif it is on exactly two 3-cycles both of which are 3-faces. To apply the edge
contraction operation to an edge the edge must be contractible and the map must not be
K4 embedded in the sphere. An edge isnoncontractibleif there is at least one 3-cycle
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containing the edge which is not a 3-face. An edge isessentially noncontractibleif at least
one 3-cycle containing the edge is an essential 3-cycle onS.

Theorem 1. Every edge on the boundary of an irreducible face is essentially noncon-
tractible.

Proof. Let F = v1v2 . . .vm be an irreducible face and letvivi+1 be an edge on the boundary
of F . DefineCF,i to be the 3-cyclevivi+1vi+2. AssumeCF,i is not essential, i.e. the interior
of CF,i is simply connected. LetD be the disk consisting ofCF,i and its interior. The path
vivi+1vi+2 is on the boundary of bothF andD. The graph consisting of the vertices and
edges inD is a map on the sphere soF cannot be inD. The vertexvi+3 must be adjacent to
vi+1 but the edgevi+3vi+1 cannot be in the interior ofF or in the interior ofD. Sovi+3 = vi .
Similarly, vi+2 = vi−1. Thus the edgee= vi+2vi+3 = vi−1vi = vi+2vi must occur twice on
F andF is on both sides ofe. This is impossible sinceCF,i must be on one side ofe. �

Contracting edges ofG does not change the surfaceS in which G is embedded soCF,i

in the proof of Theorem 1 remains essential and cannot becomea 3-face when edges are
contracted. So an irreducible face ofG remains an irreducible face ofG with the same size
when edges ofG are contracted. As edges ofG are contracted the number of irreducible
faces and the their sizes remain unchanged.

We apply theE-reduction while contractible edges remain inG. Each application of the
E-reduction reduces the number of vertices ofG. So after a finite number ofE-reductions
there are no contractible edges.

We define a mapG as anirreducible mapif G is face irreducible and no edge inG is
contractible. The following property of irreducible maps is a generalization of a similar
property of irreducible triangulations.

Theorem 2. Every edge of an irreducible map is essentially noncontractible.

Proof. Let G be an irreducible map. An edge ofG is either on the boundary of an irre-
ducible face or on two 3-faces. In the first case the edge is essentially noncontractible by
Theorem 1. In the second case since the edge is not contractible it must be on a 3-cycle
C which is not a 3-face. We show thatC is essential. AssumeC is not essential. On the
surfaceC bounds a diskD. A new mapH on the sphere can be obtained by replacing the
exterior ofD with a 3-face.

The mapH cannot contain a large face. IfH contains a large faceF = v1v2 . . .vm then at
least one vertex, sayv2 of F must be in the interior of the (assumed) non-essential 3-cycle
C. Then the essential 3-cyclev1v2v3 is in the diskD. But this is not possible.

The mapH contains no large face and is a triangulation of the sphere. If H is K4 then
any interior edge ofD is contractible inG. If H is notK4 then there are contractible edges
of H which are also contractible inG.

�

The initial classM0 is the class of all irreducible maps on the surfaceS and(M0;E)
generatesM1, the class of all face irreducible maps on the surfaceS.

6. GENERATING IRREDUCIBLE MAPS

Irreducible maps which we generate in Step 2 have a very nice property which makes
them easy to obtain. Each irreducible mapG is a “submap” of an irreducible triangulation
T, i.e. G is obtained by removing zero or more vertices and adjacent edges fromT.

The class to be generated is the class of irreducible maps. The initial class is the class
of irreducible triangulations. The expansion operation isto remove a set of vertices and
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V

FIGURE 3. Expansion for removing vertex,k= 4

adjacent edges with the condition that the resulting embedded graph is in the class of
irreducible maps. Theorem 4 shows that this expansion operation does generate all of the
irreducible maps.

The following theorem proves another property of irreducible faces and provides us
with the tool to prove Theorem 4.

Theorem 3. Let F be an irreducible face of a map G (which need not be irreducible).
We may replace the interior of F with new vertices, edges, andfaces to create a new map
G′ such that the new faces are 3-faces, the new edges are noncontractible in G′, and the
interior of the union of the new vertices, edges, and faces issimply connected.

Proof. There is one special irreducible face which we handle separately. P3 shown in Fig-
ure 5 is a single 3-cycle embedded in the projective plane. The dotted lines and open circles
in the figure represent the edges and vertices which are addedto obtain the irreducible tri-
angulationP1. So we now can assume thatF is not the one face ofP3.

Let F = v1v2 . . .vm be an irreducible face ofG. We could triangulateF by placing an
m-cycle w1w2 . . .wm in the interior ofF and an additional vertexx inside thism-cycle.
Adding the edgeswivi ,wivi+1,wix for i, 1≤ i ≤ mwould fill F with 3-faces. We could then
contract edges in the interior ofF until no more edges in the interior ofF are contractible.
However, this map might not containG. This might occur if, while contacting edges in the
interior ofF , two vertices of the boundary ofF are the ends of an edge which is contracted
thus merging these two vertices ofG. So triangulating ofF must be done with more care.

We use theV-reduction to add one vertex at a time to the interior ofF and to attach
the new vertex to vertices which are on the boundary of the large face. TheV-reduction is
shown in Figure 3. This figure is similar to the previous figures showing expansions and
reductions. Figure 3 shows only four vertices of the large face, more vertices may be used.
The figure also shows dashed curves. Each dashed curve represents part of an edge which is
not completely contained in the simply connected componentof the surface represented by
the figure. One requirement for the application of theV-reduction is that at least four edges
are added joining consecutive vertices on the boundary of the face to the new vertex. With
eachV-reduction the size of the large face is reduced. We can applytheV-reduction only
a finite number of times. Let the new vertex bew and let these consecutive vertices on the
boundary of the face bev1, v2, . . . ,vk with k≥ 4. A second requirement for the application
of theV-reduction is that the 3-cyclesvivi+1vi+2 be essential fori, 1≤ i ≤ k−2. Since the
3-cyclewvivi+2 is homeomorphic inSto the essential 3-cyclevi+1vivi+2 for i, 1≤ i ≤ k−2
each new edgewvi is essentially noncontractible fori, 1≤ i ≤ k.

We now describe how to add the first vertex to the interior ofF.
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First assume the verticesv1, v2, . . . , vm of F are distinct. This is always the case when
m≤ 5 since each vertex onF is adjacent to all the other vertices onF . SinceF is an
irreducible face andm≥ 4 we use all the vertices ofF for theV-reduction. The added
edges are all essentially noncontractible and all the new faces are 3-faces satisfying the
theorem.

Now assume the vertices ofF are not distinct. There is at least one vertex which occurs
at least twice on the boundary ofF . To triangulate the interior ofF we must add more than
one new vertex to the interior ofF to prevent multiple edges.

Let k be the number of vertices in the longest paths on the boundaryof F . Since there
is at least one vertex which occurs at least twice on the boundary of F we havek < m. If
necessary we relabel the vertices so thatp= v1v2 . . .vk is one of the longest paths on the
boundary ofF. The verticesv1, v2, . . . , vk are all distinct. The vertexvm occurs at least
twice onF and is onp for, otherwise, we could extendp to vm producing a longer path
on the boundary ofF . Sincevm is adjacent tov1 andv2, vm = va for somea, 3≤ a≤ k.
Likewise,vk+1 = vb for someb, 1≤ b≤ k−2.

We assert thatk ≥ 4. SinceF is an irreducible facevi , vi+1, andvi+2 are pairwise
adjacent and distinct for everyi, 1≤ i ≤ m. Sok≥ 3. Suppose thatk= 3. Then for every
i, 1≤ i ≤ m we havevi = vi+3. The edges ofF would bev1v2, v2v3, v3v1, v1v2, v2v3, v3v1,
. . . . Since a face can occur on an edge at most twiceF = v1v2v3v1v2v3 and the map isP3

contrary to our earlier assumption.
We use{v1,v2, . . . ,vk} to apply aV-reduction and call the new vertexw1. The resulting

large faceF1 is v1w1vk . . .vm. We observe that the faceF1 might not be irreducible but it
almost satisfies the definition. For everyi, k ≤ i ≤ m− 1, vi is adjacent tovi+2. Since
vm = va andvk+1 = vb, w1 is adjacent tovm andvk+1. The only possible missing condition
is thatv1 might not be adjacent tovk.

In the remainder of the proof we add additional verticesw2, w3, . . . , in a similar way.
With each additional vertexwn+1 a faceFn+1 is produced which has fewer vertices of the
original faceF thanFn has. When a faceFn+1 with no vertices of the original faceF is
obtained then we finish triangulatingF as described below.

Assume we have addedn new vertices to the interior ofF and we have a large face
Fn with boundaryv1w1 . . .wnv j . . .vm such thatj ≤ m andwn is adjacent tov j+1 (which is
v1 if j = m). We have shown above that this assumption is true forn = 1. Starting from
this assumption forn we show either (i) that we can finish triangulatingF or (ii ) that the
assumption is true forn+1 and the faceFn+1 has fewer vertices of the original faceF than
Fn has. Thus the construction terminates in a finite number of steps.

We obtain (i) when the vertices on the boundary ofFn are distinct. In this case, the
vertices for attachingwn+1 are{wn,v j , . . . ,vm,v1,w1}. Recall that whenw1 is attachedw1

is adjacent tovm. If n+1≤ 3 then there is no longer a large face inF and all the edges
which have been added in the interior ofF are essentially noncontractible. Ifn+ 1 >

3 then there is a resulting large faceFn+1 with boundaryw1w2 . . .wn+1. We arbitrarily
triangulate the faceFn+1 with edgeswn+1wi for i, 1< i < n. Some of thesen− 2 edges
might be contractible but all the other edges which have beenadded to the interior ofF are
essentially noncontractible. We repeatedly contract any contractible edge in the interior of
Fn+1 until there are no contractible edges in the interior ofFn+1. All of the edges in the
interior ofF are then noncontractible and we have triangulated the faceF as required.

We can show (ii ) when the vertices on the boundary ofFn are not distinct. The vertices
wn, v j , v j+1, andv j+2 are distinct sincewn is not on the boundary ofF and the vertices
v j , v j+1, andv j+2 are pairwise adjacent. Letv j ′ be the vertex on the boundary ofFn such
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thatwn, v j , v j+1, v j+2, . . . ,v j ′ are distinct andv j ′+1 is in {v j ,v j+1,v j+2, . . . ,v j ′−2}. We use
{wn,v j ,v j+1,v j+2, . . . ,v j ′} to apply aV-reduction with the new vertexwn+1. In this way
we obtain a smaller faceFn+1 which fulfills our assumption forn+1 which is (ii ). �

Theorem 4. If G is an irreducible map on a surface S then there is at least one irreducible
triangulation T of S from which G may be obtained by removing aset of vertices from T
along with the edges containing these vertices.

Proof. Let G be the irreducible map. Using Theorem 3 we “irreducibly triangulate” each
irreducible face ofG to produce a triangulationT. The edges ofT which are inG are
essentially noncontractible by Theorem 2. The edges ofT which are not inG are non-
contractible by Theorem 3. It may be possible to triangulatethe irreducible faces ofG in
more than one way so the irreducible triangulationT may be one of many which satisfy
the theorem. �

7. GENERATING IRREDUCIBLE TRIANGULATIONS

Irreducible triangulations which are generated in Step 1 have been extensively studied.
For any fixed surface the number of irreducible triangulations is finite [1]. Irreducible
triangulations have been determined and displayed by a number of authors: the single
irreducible triangulation of the sphere (S0) by Steinitz and Rademacher [11]; the two irre-
ducible triangulations of the projective plane or the crosssurface (N1) by Barnette [2]; the
21 irreducible triangulations of the torus (S1) by Lawrencenko [6]); and the 29 irreducible
triangulations of the Klein bottle (N2) by Lawrencenko and Negami [7] and Sulanke [14].
The irreducible triangulations of the double torus (S2), the triple cross surface (N3), and the
quadruple cross surface (N4) have been generated by the author using an extension of com-
puter programsurftri [13]. The counts of irreducible triangulations are shown inTable 1.
The largest of these classes (N4) required 54 CPU days. The author estimates it would take
CPU centuries for this program to generate the irreducible triangulations forS3 or N5.

We describe briefly how the two stage generation process for irreducible triangulations
of a surfaceS works. In the first stage we use the vertex splitting operation to generate
triangulations on slightly simpler surfaces thanS. We impose certain conditions necessary
for the second stage on these triangulations. These conditions limit the triangulations gen-
erated to a finite number. In the second stage these triangulations are modified in such a
way that new handles or crosscaps are added to produce irreducible triangulations onS.
Only the reduction operation for the second stage is described. More details may be found
in [12].

Let S (not the sphere) be the surface for which we are generating irreducible triangula-
tions. LetG be an irreducible triangulation ofS. Theorem 5 below shows thatG contains
many nonseparating 3-cycles. Letw1w2w3 be a nonseparating 3-cycle ofG. We create a
new triangulationG′ of a different surfaceS′ using the operations described below.

If the 3-cyclew1w2w3 in G is two-sided then we cut alongw1w2w3 to produce a surface
S′ with a boundary consisting of two disjoint 3-cyclesu′1u′2u′3 andv′1v′2v′3 whereu′i andv′i
come from the original vertexwi for i = 1,2,3. We cap the holes with two 3-facesu′1u′2u′3
andv′1v′2v′3. G′ is now a triangulation ofS′ which has an Euler genus two less than the
Euler genus ofS.

If the 3-cyclew1w2w3 in G is one-sided then we cut alongw1w2w3 to produce a surface
S′ with a boundary consisting of the 6-cycleu′1u′2u′3v′1v′2v′3 whereu′i andv′i again come from
the original vertexwi for i = 1,2,3. We cap the hole with a new vertext ′ and six 3-faces
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TABLE 1. The number of irreducible triangulations and irreducible maps

S1 S2 N1 N2 N3 N4

Irreducible triangulations 21 396784 2 29 9708 6297982
Irreducible maps 68 2181071 7 173 75596 62641140

t ′u′1u′2, t ′u′2u′3, t ′u′3v′1, t ′v′1v′2, t ′v′2v′3, andt ′v′3u′1. G′ is now a triangulation ofS′ which has
an Euler genus one less than the Euler genus ofS.

The following theorem is similar to Lemma 4 of [2] and Lemma 4 of [6]. In a trian-
gulation thelink of a vertexv is the cycle which is the boundary of the union of the faces
containingv.

Theorem 5. Let G be an irreducible triangulation of a surface other thanthe sphere, let v
be a vertex of G, and let L be the link of v. Then there are two nonseparating3-cycles vvivk

and vvjvl such that vi , vj , vk, and vl are distinct and one path from vi to vk in L contains vj
and the other path from vi to vk in L contains vl .

Proof. SinceG is irreducible, for any vertexu in L the edgevu is on a nonfacial 3-cycle
vuw. Pick two verticesvi andvk in L for whichvvivk is a nonfacial 3-cycle and the distance
from vi to vk in L is minimal. The shorter path fromvi to vk in L must have an interior
vertex sincevvivk is not a face. Let the vertexv j be such an interior vertex on the shorter
path fromvi to vk in L. Let vl be a vertex inL such thatvvjvl is a nonfacial 3-cycle.vl is
not on the path fromvi to vk in L containingv j since the distance fromv j andvl in L is
at least the distance fromvi andvk in L. Supposevvivk separates the surface. Thenv j and
vl would be in different components butv jvl is an edge. Therefore,vvivk is nonseparating
and, similarly,vvjvl is also nonseparating. �

8. IMPLEMENTATION

The computer programsurftri [13] implements the procedures to generate maps on
various surfaces. Many of the ideas and much of the code used in surftri are taken from the
work of Brinkmann and McKay. Their programplantri [3] generates triangulations and
maps on the sphere as well as other classes of planar graphs.

The operation ofplantri is described in [4, 5]. To obtain triangulations of the sphere
with n verticesplantri starts with the only irreducible triangulation of the sphere,K4, and
vertices are split using variations of theE-expansion until the triangulations haven vertices.
If maps withn vertices are being generated then as each triangulation with n vertices is
produced the program switches to the mode of using the operation of removing edges.
Edges are removed from 3-faces using theD-expansion.

To generate triangulations of a surface in the programsurftri we start with the irre-
ducible triangulations of that surface. Vertices are splitusing theE-expansion to obtain
triangulations of the surface using procedures similar those used inplantri. The list of the
irreducible triangulations is provided as input tosurftri.

To generate maps on a surface withn verticessurftri generates the face irreducible
maps withn vertices. Vertex splitting, theE-expansion, is again used.surftri starts with
irreducible maps and vertex splitting is only done if each irreducible face remains irre-
ducible. The irreducible maps are provided as input, havingbeen pregenerated and stored
on disk. As each face irreducible map withn vertices is producedsurftri switches to the
mode of using the operation of removing edges. Edges are removed from 3-faces using the
D-expansion.
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The irreducible maps with at least one large face were generated using Theorem 4 rather
than the construction used in its proof. For a fixed surface each irreducible triangulation
was processed by removing sets of vertices and checking if the results were irreducible
maps. Duplicates were removed by sorting all the irreducible maps obtained in this way.
The number of irreducible triangulations of a surface is finite [1] and each irreducible map
is obtained by removing vertices from an irreducible triangulation. Therefore, the number
of irreducible maps on a surface is finite. We also show the counts of irreducible maps in
Table 1.

9. MAPS, CLOSED2-CELL EMBEDDINGS, AND POLYHEDRAL EMBEDDINGS

We have described the steps listed in Section 1 for generating maps (open 2-cell em-
beddings). We now consider how more restricted classes of maps can be generated by
modifying these steps.

The face-widthof an embedded graph on a surface is the smallest numberk such that
there is a noncontractible closed curve on the surface that intersects the graph atk points
[10].

Maps are embedded graphs which have face-width at least 1 andare 1-connected.
A closed2-cell embeddingis a map for which the closure of every face is a closed

2-cell. For every faceF of a closed 2-cell embedding no vertex occurs more than once
on F . Closed 2-cell embeddings are those maps which have face-width at least 2 and are
2-connected [9]. The D-expansion does not increase the face-width or the connectivity of
a map. So in order to obtain a closed 2-cell embedding when we apply the D-expansion we
must apply the operation to another closed 2-cell embedding. However, the E-expansion
may increase the face-width of some maps from 1 to 2. We only modify the final step used
to generate maps to obtain a procedure for generating closed2-cell embeddings.

The generation of the closed 2-cell embeddings withn vertices of a fixed surface con-
sists of four steps:

(1) Generate theirreducible triangulationsof the surface.
(2) Generate theirreducible mapsof the surface from the irreducible triangulations

by removing vertices.
(3) Split vertices (E-expansions) of the irreducible maps to obtain face irreducible

mapswith n vertices.
(4) Remove edges (D-expansions) of the face irreducible maps while the maps remain

closed2-cell embeddings.

A polyhedral embeddingis a map for which the closures of any pair of faces have
exactly one vertex, exactly one edge, or no points in common.Polyhedral embeddings on
a surface are those maps which have face-width at least 3 and are 3-connected [9].

We use Theorem 1 to show that any map with an irreducible face has face-width at
most 2. LetF = v1v2 . . .vm be an irreducible face on a surfaceS. We construct a closed
curve consisting of two segments. One segment is in the interior of F connectingv1 and
v3. The other segment is close to the edgev1v3 and connects them. This closed curve is
homeomorphic inSto the essential 3-cyclev1v2v3 and thus is noncontractible. This closed
curve intersects the graph at only 2 points,v1 andv3.

Again we note that the D-expansion does not increase the face-width nor the connec-
tivity of a map of a map. Also, the E-expansion is restricted from eliminating irreducible
faces. So we do not need to use any maps with irreducible facesin the generation of
polyhedral embeddings.
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The generation of the polyhedral embeddings withn vertices of a fixed surface consists
of only three steps:

(1) Generate theirreducible triangulationsof the surface.
(2) Split vertices (E-expansions) of the irreducible triangulations to obtaintriangula-

tionswith n vertices.
(3) Remove edges (D-expansion) of the triangulations whilethe maps remainpolyhe-

dral embeddings.

In Table 2 we show the counts of maps, closed 2-cell embeddings, and polyhedral em-
beddings on the projective plane for increasing numbers of vertices. We also show the
counts for irreducible maps and face irreducible maps. Thesurftri program produced these
values. Table 3 shows the counts for maps on the torus.

We estimate that the entries in the tables which are blank would require more than 100
days of CPU time to compute on 2.4 GHz processors. We adapted the data structures used
in the surftri program to store the embeddings from the data structures used in plantri.
We modified these data structures to allow embeddings in non-orientable surfaces. These
modified data structures require more computer operations than are used inplantri. The
generation rates forsurftri range from 1 to 1.4 million maps/second on a 2.4 GHz proces-
sor. When generating maps on the sphere the rates forsurftri are 0.7 to 0.95 of those rates
observed usingplantri.

10. IRREDUCIBLE MAPS ON THE PROJECTIVE PLANE AND THE TORUS

We provide drawings of the irreducible maps on the projective plane and torus. For
each irreducible map with large faces we indicate one of the irreducible triangulations
from which it may be obtained. The vertices and edges which have been removed from
the irreducible triangulation are shown as open circles anddotted lines. The irreducible
triangulation chosen requires the minimum number of vertices to be removed.

Figure 4 shows the two irreducible triangulations of the projective plane [2]. Figure 5
shows the five irreducible maps with large faces on the projective plane.

There are 21 irreducible triangulations,T1–T21, of the torus [6] which are shown in
Figures 6 and 7. Figures 8-11 show the 47 irreducible maps,T22–T68, with large faces on
the torus.

P1 P2

FIGURE 4. Irreducible triangulations of the Projective Plane
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P3 P4 P5

P6 P7

FIGURE 5. Irreducible maps with large faces on the Projective Plane
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T1 T2 T3

T4 T5 T6

T7 T8 T9

T10 T11 T12

FIGURE 6. Irreducible triangulations of the torus,T1–T12
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T13 T14 T15

T16 T17 T18

T19 T20 T21

FIGURE 7. Irreducible triangulations of the torus,T13–T21
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T22 ⊂ T5 T23 ⊂ T1 T24 ⊂ T19

T25 ⊂ T5 T26 ⊂ T5 T27 ⊂ T21

T28 ⊂ T1 T29 ⊂ T5 T30 ⊂ T19

T31 ⊂ T21 T32 ⊂ T5 T33 ⊂ T5

FIGURE 8. Irreducible triangulations with large faces on the torus, T22–T33
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T34 ⊂ T19 T35 ⊂ T5 T36 ⊂ T12

T37 ⊂ T1 T38 ⊂ T19 T39 ⊂ T19

T40 ⊂ T5 T41 ⊂ T21 T42 ⊂ T12

T43 ⊂ T19 T44 ⊂ T20 T45 ⊂ T18

FIGURE 9. Irreducible triangulations with large faces on the torus, T34–T45
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T46 ⊂ T5 T47 ⊂ T14 T48 ⊂ T16

T49 ⊂ T20 T50 ⊂ T21 T51 ⊂ T18

T52 ⊂ T19 T53 ⊂ T16 T54 ⊂ T14

T55 ⊂ T19 T56 ⊂ T12 T57 ⊂ T13

FIGURE 10. Irreducible triangulations with large faces on the torus,
T46–T57
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T58 ⊂ T15 T59 ⊂ T17 T60 ⊂ T21

T61 ⊂ T14 T62 ⊂ T14 T63 ⊂ T5

T64 ⊂ T3 T65 ⊂ T5 T66 ⊂ T17

T67 ⊂ T14 T68 ⊂ T15

FIGURE 11. Irreducible triangulations with large faces on the torus,
T58–T68
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TABLE 2. Counts by number of vertices for maps on the projective plane

Irreducible maps Face irreducible maps Maps
closed open

vertices tri. 2-cell 2-cell triangular closed 2-cell open 2-cell polyhedral closed 2-cell open 2-cell
3 0 0 1 0 0 1 0 0 1
4 0 1 1 0 1 2 0 1 6
5 0 2 2 0 2 4 0 9 65
6 1 2 2 1 5 11 1 188 1128
7 1 1 1 3 18 42 10 4850 27041
8 0 0 0 16 90 204 247 141255 741730
9 0 0 0 134 566 1185 8576 4138394 21858099

10 0 0 0 1210 4059 7768 263539 119621784 663735117
11 0 0 0 11719 31773 55832 7290012 3413905527 20513612018
12 0 0 0 114478 261912 427171 185392686 96571642059 640173121863
13 0 0 0 1108826 2222281 3398145 4448447624 2716506356624 -
14 0 0 0 10606795 19187942 27792593102469338545 - -
15 0 0 0 100352404 167528480 2318693022292650424419 - -
16 0 0 0 940956644 1473754923 1963615254 - - -
17 0 0 0 8762227629 13035546948 16822695958 - - -
18 0 0 0 81168427279 115780306285 145453671164 - - -
19 0 0 0 748953936818 1031742846949 1267008314524 - - -
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TABLE 3. Counts by number of vertices for maps on the torus

Irreducible maps Face irreducible maps Maps
closed open

vertices tri. 2-cell 2-cell triangular closed 2-cell open 2-cell polyhedral closed 2-cell open 2-cell
4 0 0 2 0 0 2 0 0 3
5 0 2 7 0 2 8 0 3 70
6 0 7 11 0 8 25 0 205 2656
7 1 12 16 1 39 124 1 15958 126466
8 4 15 15 7 290 789 33 1014018 6070817
9 15 16 16 112 2584 5976 4713 52587939 280232378

10 1 1 1 2109 25202 49677 442429 2376996732 12389481487
11 0 0 0 37867 258518 443088 28635972 97845502685 527699182180
12 0 0 0 605496 2719039 4145672 1417423218 3770598166962 -
13 0 0 0 8778329 28922902 40158242 58321972887 - -
14 0 0 0 117839254 308507103 3982308592102831216406 - -
15 0 0 0 1491505713 3283573624 4008448713 - - -
16 0 0 0 18035839188 34773632099 40687327452 - - -
17 0 0 0 210391127053 365879925813 414537434014 - - -
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