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Abstract

We prove variations of Carathéodory’s, Helly’s and Tverberg’s the-
orems where the sets involved are measured according to continuous
functions such as the volume or diameter. Among our results, we
present continuous quantitative versions of Lovász’s colorful Helly the-
orem, Bárány’s colorful Carathéodory’s theorem, and the colorful Tver-
berg theorem.

1 Introduction

Carathéodory’s, Helly’s, and Tverberg’s theorems are undoubtedly among
the most important theorems in convex geometry (see [36] for an introduc-
tion). Many generalizations and extensions, including colorful, fractional,
and topological versions of these theorems have been developed before. For
a glimpse of the extensive literature see [3, 18, 22, 36, 47, 48] and the refer-
ences therein.

This paper presents several new quantitative versions of these theorems
where we measure the size of the convex sets involved with a continuous
function, such as the volume or diameter.

Carathéodory Helly Tverberg

Monochromatic version X+ (2.4 − 5) X+ (3.1, 3.5) (4.1)

Colorful version (2.4− 6) (3.6) (4.2)

Table 1: Prior and new results in quantitative combinatorial convexity. The
symbol X means some prior result was known, (#) indicates the number of
the theorem that is a brand new result or a stronger version of prior results.
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The equivalent results for discrete parameters are discussed in the pa-
per [20], where the focus is on Tverberg-type results. The full picture is
presented in [19], which was split into this paper and [20] for publication.

Let us recall the statement of the original results.

Theorem (Carathéodory, 1911 [17]). Let S be any subset of Rd. Then each
point in the convex hull of S is a convex combination of at most d+1 points
of S.

Theorem (Helly, 1913 [28]). Let F be a finite family of convex sets of Rd.
If
⋂

K 6= ∅ for all K ⊂ F of cardinality at most d+ 1, then
⋂

F 6= ∅.

Theorem (Tverberg, 1966 [45]). Let a1, . . . , an be points in Rd. If the
number of points satisfies n > (d + 1)(m − 1), then they can be partitioned
into m disjoint parts A1, . . . , Am in such a way that the m convex hulls
convA1, . . . , convAm have a point in common.

The case of m = 2 in Tverberg’s theorem was proved in 1921 by Radon
[38] and is often referred to as Radon’s theorem or Radon’s lemma.

A key idea in many of our proofs is to link these three classical theorems
with the efficient approximation of convex sets by polytopes. We were thus
able to apply recent developments in the active field of convex body approx-
imation (for which we recommend the surveys [15, 26]). In a separate paper
we will discuss analogous results where one counts points in discrete sets.

In the remainder of the introduction, we discuss prior work and describe
our results divided by the type of theorem. In Section 2 we prove our
Carathéodory-type results, in Section 3 the Helly-type results, and finally
in Section 4 the Tverberg-type results.

Carathéodory-type contributions

Carathéodory’s theorem has interesting consequences and extensions (e.g.,
[9, 36]). In 1914, Steinitz improved the original proof by Carathéodory
(which applied only to compact sets [17]) and at the same time he was the
first to describe a version of this theorem for points in the interior of a convex
set:

Theorem (Steinitz, 1914 [44]). Consider X ⊂ R
d and x a point in the

interior of the convex hull of X. Then, x belongs to the interior of the
convex hull of a set of at most 2d points of X.
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More generally, a Carathéodory-type theorem describes points within the
convex hull of a set S as convex combinations of a given number of gen-
erators, under some additional conditions. One important generalization
of Carathéodory’s theorem, commonly known as the colorful Carathéodory
theorem, was given by Bárány:

Theorem (Bárány, 1982 [5]). Given d+ 1 subsets X1,X2, . . . ,Xd+1 in Rd

and a point x such that x ∈ convXi for all i, we can find points x1 ∈
X1, . . . , xd+1 ∈ Xd+1 such that x ∈ conv{x1, . . . , xd+1}.

This result is called colorful since we can consider each Xi as colored
with a different color. By contrast, a non-colorful version will be called
monochromatic. Note that the case X1 = . . . = Xd+1 above gives us the
original, monochromatic result.

Bárány, Katchalski, and Pach were the first to present quantitative the-
orems in combinatorial convexity, including a monochromatic quantitative
Carathéodory-type theorem. We denote by Br(p) ⊂ R

d the Euclidean ball
of radius r with center p.

Theorem (Quantitative Steinitz theorem, Bárány, Katchalski, Pach 1982
[6, 7]). There is a constant r(d) ≥ d−2d such that the following statement
holds. For any set X such that B1(0) ⊂ convX, there is a subset X ′ ⊂ X
of at most 2d points that satisfies Br(d)(0) ⊂ convX ′.

Bárány et al. used this theorem as a key lemma to prove their main
quantitative results. We prove that the result above admits a colorful ver-
sion, Lemma 2.6. A colorful version of Steinitz’ original (non-quantitative)
theorem was also noted by Jerónimo-Castro but has not been published [31].

Our key contribution is a version of the result above where we seek to
optimize the volume of the resulting set, instead of the number of vertices
forming X ′. This is shown in Theorem 2.4, which provides tight asymptotic
bounds for the number of sets involved. In particular, the conclusion gives
vol(convX ′) ≥ (1 − ε) vol(conv X), using the notation above, for a positive
ε fixed in advance. The size of the subset obtained is closely related to the
number of vertices needed for an inscribed polytope to efficiently approxi-
mate the volume of a convex set.

For the applications of colorful Steinitz theorems, we need to work with
slightly different parameters than the volume. We show a variation of this
type with Theorem 2.5, which is based on a different type of approximation
of convex sets by polytopes. The monochromatic version of Theorem 2.5
was obtained previously in [33]. Our methods shows which type of polytope
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approximation results yield quantitative Steinitz theorems. These quanti-
tative versions of Steinitz’ theorem are at the core of our proofs for the
quantitative versions of Helly’s and Tverberg’s theorems.

Helly-type contributions

Helly’s theorem and its numerous extensions are of central importance in
discrete and computational geometry (see [3, 18, 22, 47]). Helly himself un-
derstood immediately that his theorem had many variations, and was, for
instance, the first to prove a topological version [29]. A Helly-type prop-
erty P is a property for which there is a number µ such that the following
statement holds. If F is a finite family of objects such that every subfamily
with µ elements satisfies P , then F satisfies P . In rough terms, we may
summarize some of our results below as the statement that “the intersection
has a large volume” is a Helly-type property for convex sets.

To our knowledge, the first family of quantitative Helly-type theorems
was made explicit by Bárány, Katchalski, and Pach in [6, 7], who obtained
extensions of the classic Helly and Steinitz theorems for convex sets with a
volumetric constraint.

Theorem (Bárány, Katchalski, Pach, 1982 [6, 7]). Let F be a finite family
of convex sets such that for any subfamily F ′ of at most 2d sets,

vol
(

⋂

F ′
)

≥ 1.

Then,

vol
(

⋂

F
)

≥ d−2d2 .

This result has recently been improved by Naszódi to conclude vol(∩F) ≥
d−cd for some absolute constant c [37]. The size of the subfamilies one must
check cannot be improved over 2d, as is noted in [6]. In order to see this, let
F be the family of 2d half-spaces defining the facets of an arbitrarily small
hypercube. Any 2d − 1 define an unbounded polyhedron with non-empty
interior, showing the optimality of their result.

In Section 3, we analyze the other side of the spectrum. We present
Theorem 3.1, showing that it is possible to obtain better approximations
of the volume of the intersection, namely vol (∩F) ≥ 1 − ε for some ε > 0
fixed in advance, if one is willing to check for subfamilies F ′ of larger size.
This answers a question raised by Kalai and Linial during an Oberwolfach
meeting in February 2015. Moreover, we show that the loss of volume ε
is unavoidable. In other words, it is impossible to conclude vol(∩F) ≥ 1
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regardless of the size of the subfamilies we are willing to check. This is
a remarkable difference between the continuous and discrete quantitative
Helly-type theorems (see [1] for the existing discrete counterpart). The
bounds we present for Theorem 3.1 are optimal in their dependence on ε.

Similar Helly-type quantitative results were known previously only with
other types of functions, related to the expansion and contraction of convex
sets [34]. The proof method extends naturally to other functions as long as
a polytope approximation result is proved. We show how this method gives
an analogous result for the diameter, Theorem 3.5.

We also extend the volumetric result to the colorful setting, in Theorem
3.6, in the same spirit as Lovász’s generalization of Helly’s theorem [5].
However, since the estimates for the size of the subfamilies needed to check
vary greatly among the two results, we state them separately.

Quantitative versions of newer results regarding intersection structure of
families of convex sets are shown by Rolnick and Soberón in [40]. These are
closely related to the contributions of this paper and include versions of the
(p, q) theorem of Alon and Kleitman [2] and the fractional Helly theorem of
Katchalski and Liu [32].

Tverberg-type contributions

Tverberg published his classic theorem in 1966 [45]. Later in 1981 he
published another proof [46], and simpler proofs have since appeared in
[9, 41, 42]. Section 8.3 of [36] and the expository article [48] can give the
reader a sense of the abundance of work surrounding this elegant theorem.
Here we present the first quantitative versions with continuous parameters.

First, we prove a version of Tverberg’s theorem, Theorem 4.1, where
each convex hull must contain a Euclidean ball of given radius. In other
words, we measure the “size” of ∩m

i=1 convAi by the inradius. Our proof
combines Tverberg’s theorem with our two versions of quantitative Steinitz’
theorem for balls, Lemma 2.6 and Proposition 2.5.

Note that, unlike the classical Tverberg theorem, some conditions must
be imposed on the set of points to be able to obtain such a result. For
instance, regardless of how many points we start with, if they are all close
enough to some flat of positive co-dimension, then all hopes of a continuous
quantitative version of Tverberg’s theorem quickly vanish. In order to avoid
the degenerate cases, we make the natural assumption that the set of points
is “thick enough”.

As with Helly’s and Carathéodory’s theorems, there are colorful versions
of Tverberg’s theorem. In this case, the aim is to impose additional combi-
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natorial conditions on the resulting partition of points, while guaranteeing
the existence of a partition where the convex hulls of the parts intersect.
Now that the conjectured topological versions of Tverberg’s theorem have
been proven false [23] (using the generalized Van Kampen–Shapiro–Wu the-
orem [35]), the following conjecture by Bárány and Larman is arguably the
most important open problem surrounding Tverberg’s theorem.

Conjecture 1.1 (Bárány and Larman 1992 [8]). Let F1, F2, . . . , Fd+1 ⊂ Rd

be sets of m points each, considered as color classes. Then, there is a colorful
partition of them into sets A1, . . . , Am whose convex hulls intersect.

By a colorful partition A1, . . . , Am we mean that it satisfies |Ai∩Fj| = 1
for all i, j. In presenting the conjecture, Bárány and Larman showed that it
holds for d = 2 and any m, and included a proof by Lóvász for m = 2 and
any d. Recently, Blagojević, Matschke, and Ziegler [11, 12] showed that it is
also true for the case when m+1 is a prime number and any d. The reason
for these conditions on the parameters of the problem is that their method
of proof uses topological machinery requiring these assumptions. However,
their result shows that if we allow each Fi to have 2m− 1 points instead of
m, we can find m pairwise disjoint colorful sets whose convex hulls intersect,
without any conditions on m. For variations of Conjecture 1.1 that do imply
Tverberg’s theorem, see [11, 12, 43].

Combining results of Blagojević, Matschke, and Ziegler with our two
colorful Steinitz theorems, we also obtain volumetric versions of these results
in Theorem 4.2. In order to obtain a ball in the intersection, for these results
we must allow each Ai to have more points of each color class. It should be
stressed that other interpretations of quantitative Tverberg’s theorem are
possible, and some are presented in [40].

2 Quantitative Carathéodory theorems

We prove only the colorful versions of our Carathéodory-type theorems.
Given sets X1, . . . ,Xn, considered as color classes, whose convex hulls con-
tain a large set K, we want to make a colorful choice x1 ∈ X1, . . . , xn ∈ Xn

such that conv{x1, . . . , xn} is also large. The monochromatic versions of the
results below follow from the case X1 = X2 = · · · = Xn.

There are two parameters we may seek to optimize. One is the number n
of sets required to obtain some lower bound for the size of conv{x1, . . . , xn}.
The other is the size of conv{x1, . . . , xn} assuming that the size of K is 1.
These considerations lead to different results.
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The first result of this kind is a monochromatic quantitative version of
Steinitz’ theorem by Bárány, Katchalski, and Pach [6, 7], quantifying the
largest size of a ball centered at the origin and contained in K, described
in the introduction. The case when X is the set of vertices of a regular
octahedron centered at the origin shows that the number of points they use,
2d, cannot be reduced. We will later show how adapting the proof of [6] to
the colorful case gives Lemma 2.6.

On the other side, it is natural to optimize the size of conv{x1, . . . , xn}
instead of the integer n. This optimization turns out to be closely related
to finding efficient approximations of convex sets with polytopes. This is a
classic problem which has many other motivations, see [10, 15, 26] for the
state of the art and the history of this subject. In this paper we will need
the following constants.

Definition 2.1. Let d be a positive integer and ε > 0. We define n(d, ε)
as the smallest integer such that, for any convex set K ⊂ R

d with positive
volume, there is a polytope P ⊂ K of at most n(d, ε) vertices such that

vol(P ) ≥ (1− ε) vol(K).

Definition 2.2. Let d be a positive integer and ε > 0. We define n∗(d, ε)
as the smallest integer such that, for any convex set K ⊂ R

d with positive
volume, there is a polytope P ⊃ K of at most n∗(d, ε) facets such that

vol(P ) ≤ (1 + ε) vol(K).

Definition 2.3. Let d be a positive integer and ε > 0. We define nbms(d, ε)
as the smallest integer such that, for any centrally symmetric convex set
K ⊂ Rd with positive volume and C2 boundary, there is a polytope P of at
most nbms(d, ε) vertices and a linear transformation λ : Rd → R

d such that

P ⊂ λ(K) ⊂ (1 + ε)P.

The asymptotic behavior of n(d, ε) is known:

(

c1d

ε

)(d−1)/2

≥ n(d, ε) ≥

(

c2d

ε

)(d−1)/2

,

for absolute constants c1, c2. This comes from approximating convex bodies
with polytopes of few vertices via the Nikodym metric [15, Section 4.2]. The
lower and upper bounds can be found in [24] and [25], respectively.
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We will use these definitions to obtain both upper and lower bounds for
our quantitative results. As shown below, n(d, ε) is precisely the number
needed for a quantitative colorful Steinitz theorem with volume.

The constant nbms(d, ε) will be needed to improve the quantitative Steinitz
theorem if we are interested in determining the size of a set by the radius of
the largest ball around the origin contained in it. The bounds for nbms(d, ε)
involve the condition of central symmetry as the Banach-Mazur distance
is most natural when working with norms in Banach spaces. There is a
precise asymptotic bound nbms(d, ε) ≤ (γε)−(d−1)/2, where γ is an absolute
constant [14, 27]. The dependence on ε is optimal, as shown in [13]. If the
smoothness condition is removed from Definition 2.3, the best known upper

bound is given by Barvinok [10], giving a bound of O
(

(

ε−1/2 ln
(

1
ε

))d
)

if d

is large enough.
Finally, the constant n∗(d, ε) is the key value for the continuous quanti-

tative Helly theorems in Section 3. A result of Reisner, Schütt and Werner

shows that n∗(d, ε) ≤
(

c1d2

ε

)(d−1)/2
for an absolute constant c1, and noted

that this is optimal in the dependence on ε [39, Section 5].
The only extra ingredient needed is the following result. For other ex-

tensions of the colorful Carathéodory theorem, see [4, 30].

Theorem (Very colorful Carathéodory theorem, Bárány, 1982 [5, Theorem
2.3]). Let X1,X2, . . . ,Xd ⊂ Rd be sets, each of whose convex hulls contains
p ∈ Rd and let q ∈ Rd. Then, we can choose x1 ∈ X1, . . . , xd ∈ Xd such
that

p ∈ conv{x1, x2, . . . , xd, q}.

Theorem 2.4 (Colorful quantitative Steinitz with volume). Let d ∈ N and
ε > 0, consider m = d · n(d, ε) as in Definition 2.1. Then, the following
property holds: If X1,X2, . . . ,Xm are sets in Rd and K ⊂

⋂m
i=1 conv(Xi) is

a convex set of volume 1, we can choose x1 ∈ X1, x2 ∈ X2, . . . , xm ∈ Xm so
that

vol(conv{x1, x2, . . . , xm}) ≥ 1− ε.

Moreover, if m < n(d, ε) the conclusion of the theorem may fail.

Proof of Theorem 2.4. Let P ⊂ K be a polytope with n = n(d, ε) vertices
such that vol(P ) ≥ (1 − ε) vol(K) = (1 − ε). We may assume without loss
of generality that 0 is in the interior of P . Now label the vertices of P as
y1, y2, . . . , yn. Using the very colorful Carathéodory theorem, for a fixed j
we can find x(j−1)d+1∈X(j−1)d+1, . . . , xjd ∈ Xjd such that

yj ∈ conv{0, x(j−1)d+1, . . . , xjd}.
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In order to finish the proof, it suffices to show that 0 ∈ conv{x1, . . . , xnd}. If
this is not the case, then there is a hyperplane separating 0 from conv{x1, . . . , xnd}.
We may assume that the hyperplane contains 0 and leaves x1, . . . , xnd in the
same closed half-space. Notice that then there would be a vertex of yj of P in
the other (open) half-space, contradicting the fact that yj∈ conv{0, x1, . . . , xnd}.

We now prove the near-optimality of our bound. Let K be a convex set
of volume 1 such that for every polytope P ⊂ K of at most n − 1 vertices
we have vol(P ) < 1− ε. Then, taking K = X1 = X2 = · · · = Xn−1 gives the
desired counterexample, as any colorful choice of points has size n− 1.

Additionally, with the same ideas we get the following proposition, which
improves the quantitative version of Bárány, Katchalski, and Pach when we
want to optimize the radius of the balls contained in the set. The number of
sets we use is slightly improved by using the symmetries of the sphere. The
estimates are very similar to those of [33], where the monochromatic version
of the problem below was studied. Indeed, the asymptotic growth in terms
of ε is the same, and it is multiplied by a factor which is exponential in the
dimension. We did not chase the constants in the base of this exponential
factor in the bounds for nbms(d, ε) to determine which result is best, but the
proof with these methods is more concise and gives the colorful version.

Theorem 2.5. Set n = nbms(d, ε) and let X1,X2, . . . ,X(n−1)d+1 be sets

in Rd such that B1(0) ⊂
⋂(n−1)d+1

i=1 convXi. Then, we can choose x1 ∈
X1, x2 ∈ X2, . . . , x(n−1)d+1 ∈ X(n−1)d+1 so that

B1/(1+ε)(0) ⊂ conv{x1, x2, . . . , x(n−1)d+1}.

Proof. We follow a proof similar to that of Theorem 2.4. Let P ⊂ B1(0) be a
polytope with n = nbms(d, ε) vertices such that B1(0) ⊂ (1+ε)P . Note that
0 is in the interior of P . Now label the vertices of P as y1, y2, . . . , yn. Using
a rotation on P , we may assume that there is a point x(n−1)d+1 ∈ X(n−1)d+1

such that yn ∈ conv{0, x(n−1)d+1}. Using the very colorful Carathéodory
theorem as before, for every 1 ≤ j ≤ n− 1 we can find x(j−1)d+1∈X(j−1)d+1,
. . . , xjd ∈ Xjd such that

yj ∈ conv{0, x(j−1)d+1, . . . , xjd}.

As in the proof of Theorem 2.4, we have that 0 ∈ conv{x1, . . . , x(n−1)d+1},
yielding the desired result.

The reader may notice that an analogous proof of Theorem 2.4 but using
Definition 2.3 gives a version of the result above involving the Banach-Mazur
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distance to some fixedK contained in each set of the form convXi. We finish
the section by showing that the quantitative Steinitz theorem from Bárány,
Katchalski and Pach mentioned in the introduction can be colored:

Lemma 2.6 (Colorful quantitative Steinitz with containment of small balls).
Let r(d) ≤ (π/e2)d−2d−2 and X1,X2, . . . ,X2d be sets in R

d such that B1(0) ⊂
conv(Xi) for all i. Then, we can choose x1 ∈ X1, x2 ∈ X2, . . . , x2d ∈ X2d so
that

Br(d)(0) ⊂ conv{x1, x2, . . . , x2d}.

Proof of Lemma 2.6. Our goal is to pick explicitly the 2d points x1, . . . , x2d.
For this, let P be a regular simplex of maximal volume contained in B1(0).
Note that B1/d(0) ⊂ P ⊂ B1(0). Since P ⊂ convXi for an arbitrary i and
P has d+1 vertices, by repeatedly applying Carathéodory’s theorem we can
see that there is a subset of Xi of size at most (d + 1)2 whose convex hull
contains P . Thus, without loss of generality we may assume |Xi| ≤ (d+1)2

and B1/d(0) ⊂ conv(Xi) for all i.
Given a collection of d points, x1 ∈ X1, x2 ∈ X2, . . ., xd ∈ Xd, consider

the convex (simplicial) cone spanned by them. Let C1, C2, . . . , Cn be all pos-
sible cones generated this way. The number of cones, n, is clearly bounded
by

n ≤ (d+ 1)2d.

Claim. The cones C1, C2, . . . , Cn cover Rd.
In order to prove the claim, it suffices to show that for each vector v

of norm at most 1
d , there is a cone Ci that contains it. However, since

B1/d(0) ⊂ Xi for all i (in particular for the first d), we can apply the very
colorful Carathéodory theorem above with the point p in the convex hull
being v and the extra point q being 0.

If we denote by ωd−1 the surface area of the unit sphere Sd−1, there must
be one of the cones Ci which covers a surface area of at least 1

nωd−1. We
can assume without loss of generality that it is the first cone C1.

Let a ∈ C1 be a unit vector whose minimal angle α with the facets of C1

is maximal (i.e. we take the incenter of C1 ∩ Sd−1, with distance measured
in the sphere). Now we show that since the surface area of C1 ∩ Sd−1 is
large, its inradius must also be large. The argument we present is different
from [6], giving a slightly worse constant. Our final radius is (π/e2)d−2d−2

as opposed to their d−2d.
For a facet Li of C1, let Di be the set of points whose angle with Li is at

most α and that lie on the same side of Li as a. Note that C1 has d facets
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and so ∪d
i=1Di = C1. The surface area of Sd−1 ∩Di is clearly bounded by

α
2πωd−1. Thus

1

n
ωd−1 ≤ Area(Sd−1 ∩C1) <

d
∑

i=1

Area(Sd−1 ∩Di) ≤
dα

2π
ωd−1,

which implies α > 2π
dn . Now consider a′ = −1

d a, the vector of norm 1
d in the

direction opposite to a. By applying the very colorful Carathéodory theorem
as before, we can choose now xd+1 ∈ Xd+1, xd+2 ∈ Xd+2, . . . , x2d ∈ X2d such
that

a′ ∈ conv{0, xd+1, xd+2, . . . , x2d}.

Now consider the set K = {x ∈ 1
dS

d−1 : ∠(x, a) ≤ α}. Let x1 ∈ X1, . . . , xd ∈
Xd be the d points that generate C1. Notice that the cone with apex a′ and
base K is contained in conv{x1, x2, . . . , x2d}. Finding the radius r of the
largest ball around 0 that is contained in this new cone is easily reduced to
a 2-dimensional problem, giving

r =
tanα

2d
>

α

2d
>

π

nd2
> (π/e2)d−2d−2.

as we wanted.

3 Quantitative Helly theorems

In this section we state precisely and give proofs for our Helly-type results.
As mentioned in the introduction, the first quantitative Helly-type theo-
rem came from Bárány, Katchalski, and Pach’s ground-breaking work [6, 7].
They measure the size of the intersection of a family of convex sets in two
ways, using volume and diameter respectively. Their result with diame-
ter is essentially equivalent to that with volume, though the final constant
obtained is slightly different.

Let us begin by showing that one can get a version of Helly’s theorem
with strong volumetric estimates.

Theorem 3.1 (Quantitative Helly with volume). Let n = n∗(d, ε) as in
Definition 2.2. Let F be a finite family of convex sets such that for any
subfamily F ′ of at most nd sets, vol (

⋂

F ′) ≥ 1. Then, vol (
⋂

F) ≥ (1+ε)−1.
Moreover, if we only ask the condition for subfamilies of size n − 1, the
conclusion of the theorem may fail.
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Proof of Theorem 3.1. We may assume that
⋂

F has non-empty interior.
This was the first step in the original proof given in [6]. We may either use
the same method or notice that if n ≥ 2 we can actually use the“quantitative
volume theorem” of [6, p. 109] to obtain this. If

⋂

F is not bounded, then it
has infinite volume. Moreover, we may assume that the sets in F are closed
half-spaces, or we could take the set of half-spaces containing

⋂

F instead
of F . Thus, it suffices to prove the following lemma.

Lemma 3.2. Let F be a family of half-spaces such that
⋂

F has volume 1
and contains the origin in its interior. For n = n∗(d, ε), there is a subfamily
F ′ ⊂ F of at most nd elements such that vol(

⋂

F ′) ≤ 1 + ε.

To prove the lemma, consider a polytope P of n facets containing K =
⋂

F such that vol(P ) ≤ 1 + ε. Such a polytope exists by the definition
of n∗(d, ε). After taking polars, we have P ∗ ⊂ K∗, and P ∗ is a convex
polytope with n vertices. Let F∗ be the family of polars of the elements
in F . Note that conv(F∗) = K∗. For each vertex v of P ∗, using the very
colorful Carathéodory theorem we can find a set Av of d points in F∗ such
that v ∈ conv(Av ∪ {0}). Now consider F ′ = (∪vAv)

∗ ⊂ F . Notice that F ′

is a subfamily of at most nd elements. Let us prove that P ∗ ⊂ conv[(F ′)∗].
By the definition of F ′, it suffices to show that 0 ∈ conv[(F ′)∗]. However, if
that is not the case, there would be a closed half-space through 0 containing
(F ′)∗, and thus every vertex of P ∗. This would contradict the fact that 0 is
in the interior of conv(P ).

Thus, we can find a subset F ′ ⊂ F of at most nd elements such that
P ∗ ⊂ conv[(F ′)∗]. Then

K ⊂
⋂

F ′ ⊂ P,

giving the desired result.
In order to prove optimality, let K be a convex polytope of volume 1

such that any polytope P ⊃ K with at most n−1 facets has volume greater
than 1+ε; this exists by the definition of n∗(d, ε). Let F be the set of closed
half-spaces that contain K and define a facet of K. Clearly, there is a δ > 0
such that the intersection of every n− 1 elements of F has volume at least
1 + ε+ δ, but the intersection

⋂

F is of volume 1.

Once we have constructed the polytope P , we can also finish the proof
with the following folklore lemma that follows from Helly’s theorem.

Lemma 3.3. Let F be a finite family of convex sets and H a closed half-
space such that

⋂

F ⊂ H and
⋂

F 6= ∅. Then, there is a subfamily F ′ ⊂ F
of at most d sets such that

⋂

F ′ ⊂ H.
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Similar statements hold with other continuous functions, such as the
diameter. Given two convex sets C,D, we denote their Hausdorff distance
δH(C,D); then, we have |diam(C) − diam(D)| ≤ 2δH(C,D). It is a classic
problem to approximate a convex set by a polytope with few facets that
contains it and is close in Hausdorff distance [15, 21, 16]. In particular, for
any convex set K, there is a polytope P ⊃ K with O(ε−(d−1)/2) facets which
is at Hausdorff distance at most ε from K (the O notation hides constants
depending on K). Thus it makes sense to define the following.

Proposition 3.4. Let d be a positive integer and ε > 0. Then, there exists
an integer n such that for any convex set K ⊂ R

d with positive volume,
there is a polytope P ⊃ K of at most n facets such that

diam(P ) ≤ (1 + ε) diam(K).

We define ndiam(d, ε) to be the smallest such value n.

Proof. From the discussion above, if we fix K, we know that ndiam(d, ε,K)
exists and is O(ε−(d−1)/2). Fix ε and d.

In order to get a universal bound for ndiam(d, ε), note that it is sufficient
to show the existence for the family C of closed convex sets K ⊂ B1(0) with
diameter 2. If there was no upper bound for ndiam(d, ε), we would be able
to find a sequence of convex sets such that ndiam(d, ε,Ki) → ∞. Since C is
compact under the Hausdorff topology, there is a convergent subsequence.
If Ki → K̃, one can see that polytopes that approximate K̃ very well would
approximate Ki as well if i is large enough (a small perturbation is needed
to fix containment, with arbitrarily small effect on the diameter). This leads
to the fact that lim supi→∞ ndiam(d, ε,Ki) is bounded by ndiam(d, ε, K̃), a
contradiction.

The fact that we have to work with convex sets up to homothetic copies
is the reason why we can get bounds which approximate diameter with a
relative error as opposed to an absolute error. With ndiam(d, ε) defined, we
can state our quantitative Helly theorem for diameter. The proof closely
follows that of Theorem 3.1.

Theorem 3.5 (Quantitative Helly with diameter). Let n = ndiam(d, ε). Let
F be a finite family of convex sets such that for any subfamily F ′ of at most
nd sets, diam (

⋂

F ′) ≥ 1. Then, diam (
⋂

F) ≥ (1 + ε)−1. Moreover, if we
only ask the condition for subfamilies of size n − 1, the conclusion of the
theorem may fail.

13



We can also prove a colorful version of Theorem 3.1.

Theorem 3.6 (Colorful quantitative Helly with volume). For any positive
integer d and ε > 0, there exists n = nh(d, ε) such that the following holds.
Let F1, . . . ,Fn be n finite families of convex sets such that for every choice
K1 ∈ F1, . . . ,Kn ∈ Fn we have vol (

⋂n
i=1 Ki) ≥ 1. Then, there is an index i

such that

vol
(

⋂

Fi

)

≥
1

1 + ε
.

To prove Theorem 3.6, we will prove the following equivalent formulation.

Theorem 3.7. For any positive integer d and ε > 0, there is an n = nh(d, ε)
such that the following holds. Let F1, . . . ,Fn be n families of closed half-
spaces such that for each i we have vol

(
⋂

H∈Fi
H
)

≤ 1. Then, there is a
choice H1 ∈ F1, . . . ,Hn ∈ Fn such that

vol

(

n
⋂

i=1

Hi

)

≤ 1 + ε.

Proof. Let ε′, ε′′ be values depending on ε, to be chosen later, and suppose
that n = Ω(d · n∗(d, ε′′)).

Applying Theorem 3.1 in the contrapositive, we replace each Fi by a
subset F ′

i ⊆ Fi such that we have |F ′
i | ≤ d · n∗(d, ε′) and

vol





⋂

H∈F ′

i

H



 ≤ 1 + ε′.

We will assume that none of the hyperplanes in the F ′
i are parallel, else we

could perturb them slightly.
Claim. There exists some choice of H1 ∈ F ′

1, . . . ,Hn ∈ F ′
n such that

⋂n
i=1 Hi has finite volume.
Observe that translating nonparallel half-spaces in different directions

does not affect whether their intersection has finite volume, though it may
affect the value of that volume. Given H ∈ F ′

i , we may consider the hyper-
plane that defines this half-space; by invariance under translation, we may
suppose that all these hyperplanes are tangent to the unit sphere centered at
the origin. Now, applying hyperplane-point duality, each family F ′

i is trans-
formed to a family of points for which the convex hull contains the origin.
Applying standard colorful Helly’s theorem, there must exist a rainbow set
of points for which the convex hull contains the origin. This corresponds to
our desired choice H1 ∈ F ′

1, . . . ,Hn ∈ F ′
n, proving the claim.

14



Now, suppose that H1 ∈ F ′
1, . . . ,Hn ∈ F ′

n are chosen such that V =
vol (

⋂n
i=1Hi) attains the minimum value. Applying Theorem 3.1, again

in the contrapositive, there exists some subset S ⊆ {1, . . . , n} such that
|S| ≤ d · n∗(d, ε′′) such that

vol

(

⋂

i∈S

Hi

)

≤ (1 + ε′′)V.

Let P be the polytope defined by {Hi | i ∈ S}, and let j be an element
of {1, . . . , n}\S. We will attempt to find some H ∈ F ′

j that significantly
reduces the volume of P .

Suppose towards a contradiction that, for each H, we have

vol(P ∩H) > (1 + ε′′)V −
1

|F ′
j |

[

(1 + ε′′)V − (1 + ε′)
]

.

Then, we would have

vol





⋂

H∈F ′

j

H



 ≥
⋂

H∈F ′

j

vol(P ∩H) > 1 + ε′,

a contradiction. Hence, for some H we must have

vol(P ∩H) ≤ (1 + ε′′)V −
1

|F ′
j |

[

(1 + ε′′)V − (1 + ε′)
]

≤ (1 + ε′′)V −
(1 + ε′′)V − (1 + ε′)

d · n∗(d, ε′)
.

However, we assumed that the intersection of any colorful set of half-
spaces has volume at least V . Hence,

V ≤ (1 + ε′′)V −
(1 + ε′′)V − (1 + ε′)

d · n∗(d, ε′)
,

which rearranges to

V ≤
1 + ε′

(1 + ε′′)− ε′′ · d · n∗(d, ε′)
≈ 1 + ε′ · ε′′ · d · n∗(d, ε′).

Thus, the theorem holds if we choose ε′, ε′′ such that ε′′ · d · n∗(d, ε′) ≪ 1
and ε′ · ε′′ · d · n∗(d, ε′) < ε.

A different proof is shown in [40].

15



4 Quantitative Tverberg theorems

We begin with a version for Tverberg’s theorem that requires the intersection
of the convex hulls of the parts to include a ball of large radius.

Theorem 4.1 (Continuous quantitative Tverberg). Let d,m be positive
integers, n = (2dm − 1)(d + 1) + 1 and T1, T2, . . . , Tn be subsets of Rd

such that the convex hull of each Ti contains a Euclidean unit ball, B1(ci).
Then, we can choose points t1 ∈ T1, t2 ∈ T2, . . . , tn ∈ Tn and a partition of
{t1, t2, . . . , tn} into m sets A1, A2, . . . , Am such that the intersection

m
⋂

i=1

convAi

contains a ball of radius (π/e2)d−2d−2.
Moreover, if we take n′ = nbms(d, ε) as in Definition 2.3 and instead of

the n above let

n = (m[(n′ − 1)d+ 1]− 1)(d + 1) + 1,

then we can guarantee that
⋂m

i=1 convAi contains a ball of radius (1+ ε)−1.

Proof of Theorem 4.1. First consider the case with (2dm − 1)(d + 1) + 1
sets. Consider C = {c1, c2, . . . , cn} the set of centers of the balls of unit
radius defined in the statement of the theorem. If we use the standard
Tverberg’s theorem with the set C, we can find a partition of C into 2dm
sets C1, C2, . . . , C2dm such that their convex hulls intersect in some point p.

Now we split these 2dm parts into m blocks of 2d parts each in an
arbitrary way. We now show that in each block, we can pick one point of each
of its corresponding Ti such that the convex hull of the resulting set contains
Br(d)(p), where r(d) is the constant in the quantitative Steinitz theorem.

This effectively proves the theorem, since we have r(d) ≥ (π/e2)d−2d−2.
Without loss of generality, we assume that one such block is C1, C2, . . . , C2d.

For each Ci consider
C̃i =

⋃

{Tj : cj ∈ Ci}.

Since conv(Tj) ⊃ cj +B1(0), we have

conv(C̃i) ⊃ conv(Ci) +B1(0) ⊃ p+B1(0) = B1(p).

Thus, we can apply Lemma 2.6, our colorful Steinitz with guaranteed con-
tainment of small balls, to the sets C̃1, C̃2, . . . , C̃2d and obtain a set {t1, t2, . . . , t2d}
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with ti ∈ C̃i whose convex hull contains Br(d)(p), as desired. If we are given
instead n = (m · [(n′ − 1)d+1]− 1)(d+1)+1, we can split the sets of balls’
centers into m blocks of size (n′−1)d+1, which allows us to use Proposition
2.5 to reach the conclusion.

Remark. The resulting set of the proof above uses only 2dm points, so most
sets Ti are not being used at all; this suggests that a stronger statement may
hold. Moreover, once we get the first Tverberg partition, we have complete
freedom on how to split the 2dm parts into m blocks of equal size. Thus, our
approach in fact shows that there exist ∼ m2dm different Tverberg partitions
of this kind.

For an integer q, let ⌈q⌉p be the smallest prime which is greater than or
equal to q. Then

Theorem 4.2 (Colorful continuous quantitative Tverberg). Let m,d be pos-
itive integers, n = ⌈2md+1⌉p − 1 and F1, F2, . . . , Fd+1 be families of n sets
of points of Rd each. We consider the families Fi = {Ti,j : 1 ≤ j ≤ n} as the
color classes. Suppose that conv(Ti,j) contains a ball of radius 1 for all i, j.
Then, there is a choice of points ti,j ∈ Ti,j and a partition of the resulting
set into m parts A1, . . . , Am such that each Ai contains at most 2d points of
each color class and

⋂m
i=1 conv(Ai) contains a ball of radius (π/e2)d−2d−2).

In addition, if we take instead n′ = nbms(d, ε) and

n = ⌈m · ((n′ − 1)d+ 1) + 1⌉p − 1,

and allow each Ai to have (n′ − 1)d + 1 points of each color, then in the
conclusion we can guarantee that

⋂m
i=1 conv(Ai) contains a ball of radius

(1 + ε)−1.

The reason why we require the use of ⌈2dm⌉p is the conditions for the
known cases of Conjecture 1.1. If Conjecture 1.1 were proved, we could
use 2dm sets in each color class instead. However, since the prime number

theorem implies limq→∞
⌈q⌉p
q = 1 and in the small cases we have ⌈q⌉p <

2q, the result above is almost as good. We should note that the “optimal
colorful Tverberg” by Blagojević, Matschke, and Ziegler [12, Theorem 2.1]
also admits a volumetric version as above, with essentially the same proof.

If all Ti,j are equal to B1(0), the need to allow each Ai to have more points
from each color class becomes apparent from the results of inaproximability
of the sphere by polytopes with few vertices [15]. The condition we have is
saying that the number of points from Fj in Ai should not exceed 1

m |Fj |.
We know that a subset of B1(0) that contains B1−ε(0) should have at least

17



nbms(d, ε) points, showing that the number of points we are allowing to take
from each color class is optimal up to a multiplicative factor of ∼ d2.

Proof of Theorem 4.2. Let ci,j be the center of a ball of unit radius contained
in conv(Ti,j). Note that we can apply the colorful Tverberg theorem in [12,
Theorem 2.1] to the set of centers to obtain a colorful partition of them into
⌈2dm + 1⌉p − 1 ≥ 2dm sets whose convex hulls intersect. As in the proof
of Theorem 4.1, we may split these sets into m blocks of exactly 2d parts
each, leaving perhaps some sets unused. The same application of Lemma
2.6 gives us the desired result. If we seek a ball of almost the same radius
in the end, Theorem 2.5 completes the proof.
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