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Connectivity and Wv-Paths in Polyhedral Maps on Surfaces

Michael D. Plummer∗, Dong Ye† and Xiaoya Zha‡

This paper is dedicated to the memory of Victor Klee.

Abstract

The Wv-Path Conjecture due to Klee and Wolfe states that any two vertices of a simple

polytope can be joined by a path that does not revisit any facet. This is equivalent to the well-

known Hirsch Conjecture. Klee proved that the Wv-Path Conjecture is true for all 3-polytopes

(3-connected plane graphs), and conjectured even more, namely that the Wv-Path Conjecture is

true for all general cell complexes. This general Wv-Path Conjecture was verified for polyhedral

maps on the projective plane and the torus by Barnette, and on the Klein bottle by Pulapaka

and Vince. Let G be a graph polyhedrally embedded in a surface Σ, and x, y be two vertices

of G. In this paper, we show that if there are three internally disjoint (x, y)-paths which are

homotopic to each other, then there exists a Wv-path joining x and y. For every surface Σ,

define a function f(Σ) such that if for every graph polyhedrally embedded in Σ and for a pair

of vertices x and y in V (G), the local connectivity κG(x, y) ≥ f(Σ), then there exists a Wv-

path joining x and y. We show that f(Σ) = 3 if Σ is the sphere, and for all other surfaces

3− τ (Σ) ≤ f(Σ) ≤ 9− 4χ(Σ), where χ(Σ) is the Euler characteristic of Σ, and τ (Σ) = χ(Σ) if

χ(Σ) < −1 and 0 otherwise. Further, if x and y are not cofacial, we prove that G has at least

κG(x, y) + 4χ(Σ) − 8 internally disjoint Wv-paths joining x and y. This bound is sharp for the

sphere. Our results indicate that the Wv-path problem is related to both the local connectivity

κG(x, y), and the number of different homotopy classes of internally disjoint (x, y)-paths as well

as the number of internally disjoint (x, y)-paths in each homotopy class.
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1 Introduction

The Wv-Path Conjecture (or Non-revisiting Path Conjecture), originally due to Klee and Wolfe (cf.

[8]), states that any two vertices of a simple polytope P can be joined by a path that does not revisit
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any facet of P . (Such a non-revisiting path is also called a Wv-path.) Klee further conjectured

that the Wv-Path Conjecture is true for general cell complexes [10]. Larman [13] showed that this

general Wv-Path Conjecture is false for a very general type of 2-dimensional complex and later Mani

and Walkup [14] found a 3-sphere counterexample. The original Wv-Path Conjecture for boundary

complexes of polytopes is known to be equivalent to two other well-known conjectures, the Hirsch

Conjecture and the Danzig d-step Conjecture, involving higher dimensional polytopes which in turn

are important in the continuing search for a practical polynomial algorithm for the simplex method

of linear programming. For proofs of these equivalences we direct the reader to [8, 9] and [11]. The

Dantzig d-step Conjecture was verified by Klee and Walkup for all bounded polyhedra for d ≤ 5

[12]. In 2012, the Hirsch Conjecture was shown to be false by Santos (cf. [21].)

The first positive result related to the general Wv-Path Conjecture was obtained by Klee [8] who

showed that every pair of vertices of a 3-connected plane graph G (or “3-polytope”) are joined by a

Wv-path. (See also [6] ad Grünbaum [7].) One of the nice properties of 3-connected plane graphs is

that their faces meet “properly”. (Here and throughout the rest of the paper we consider a face to

include its boundary.) That is, they meet at a single vertex, a single edge or not at all. This idea

has been generalized to surfaces other than the plane by the notion of a polyhedral embedding. An

embedding of a graph G in a surface Σ is polyhedral if every face is a closed disk and any two faces

of the embedding meet properly, which is equivalently to saying the representativity (face-width) of

the embedding is at least 3 (cf. [15]). It follows that a graph admitting a polyhedral embedding

must be 3-connected (cf. [15]).

The general Wv-Path Conjecture has also been studied for polyhedral embeddings of graphs

in general 2-dimensional surfaces as well. (Here by “2-dimensional surface” we mean a connected

compact 2-manifold without boundary.) The Wv-Path Conjecture in this context states that for

every surface (orientable or non-orientable) and every graph polyhedrally embedded therein, there

is a Wv-path joining every pair of distinct vertices. Klee’s result on 3-connected plane graphs was

later extended to graphs polyhedrally embedded in the projective plane [2] and torus [3] by Barnette,

and in the Klein bottle by Pulapaka and Vince [18]. It is now known, however, that the Wv-Path

Conjecture is false for every orientable surface of genus g ≥ 2 and for every non-orientable surface

of genus g ≥ 4 (cf. [17]). Hence the sole unsettled case is the non-orientable surface with g = 3. For

a summary of these results, see [4, 16, 17, 18]. As positive results for the Wv-Path Conjecture are

rare, the departure point in the present paper is an attempt to ascertain what conditions suffice to

make the Wv-Path Conjecture hold.

Let G be a polyhedrally embedded graph in a surface Σ. Given two distinct vertices x and y in a

graph G, they are cofacial if they belong to the boundary of a common face. If the cofacial vertices

x and y are adjacent, then there is exactly one Wv-path joining them (the single edge xy). If they

are not adjacent, there are exactly two Wv-paths joining them, namely the two paths forming the

boundary of the face. In this paper, we will focus on the case in which x and y are non-cofacial.

The local connectivity κG(x, y) of two vertices x and y is defined to be the maximum number of

internally disjoint paths joining x and y, where two paths joining x and y are internally disjoint if

they have only x and y in common. A graph G is k-connected if κG(x, y) ≥ k for any two vertices

x and y. We observe that the Wv-path problem is closely related to both the local connectivity
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κG(x, y), and the number of homotopy classes of (x, y)-paths as well as the number of (x, y)-paths

in each homotopy class. In order to describe our results, define f(Σ) to be the smallest value such

that for every graph G polyhedrally embedded in the surface Σ and for a pair of vertices x and y

of G, if κG(x, y) ≥ f(Σ), then there exists a non-revisiting (x, y)-path. The following is one of our

main results, in which χ(Σ) denotes the Euler characteristic of the surface Σ.

Theorem 1.1. Let Σ be a closed surface. Then f(Σ) = 3 if Σ is the sphere. For all other surfaces

3− τ(Σ) ≤ f(Σ) ≤ 9− 4χ(Σ), where τ(Σ) = χ(Σ) if χ(Σ) < −1 and 0 otherwise.

The lower bound is obtained by construction. In order to verify the upper bound, we introduce

the concept of dual curve for revisits, which turns out to be very useful in bounding the number of

revisits and the number of different homotopy classes of (x, y)-paths. In particular, we prove the

following result.

Theorem 1.2. Let G be a graph polyhedrally embedded in a surface Σ, and x and y be two non-

cofacial vertices. If there exist three internally disjoint (x, y)-paths which are homotopic to each

other, then there exists a non-revisiting (x, y)-path.

The above result says three internally disjoint homotopic (x, y)-paths implies the existance of one

non-revisiting path. However, Theorem 1.1 indicates that, for each surface Σ with Euler characteris-

tic χ(Σ) < −1, a graph G polyhedrally embedded in Σ may not have Wv-path between two vertices

x and y if there are less than 3− χ(Σ) paths joining them. This shows that the non-revisiting path

problem is related to the homotopy classes of (x, y)-paths.

Another application of our method provides a very short proof for the upper bound for the face

touching number of a 3-connected graph embedded in a surface, which was originally proved by

Sanders [20] using a discharging argument.

Besides the existence of Wv-paths, Barnette [1] also generalized the Wv-path result for the plane

in a different direction. He proved that if two vertices of a graph polyhedrally embedded in the plane

are non-cofacial, then they are joined by at least three internally disjoint Wv-paths. Richter and

Vitray [19] proved that, in fact, if a graph is embedded in any surface with representativity at least 4,

there are at least two internally disjoint homotopic Wv-paths joining any two non-cofacial vertices.

In this paper, we also derive the following new relationship between the number of internally disjoint

Wv-paths joining two vertices x and y and the local connectivity κG(x, y).

Theorem 1.3. Let G be a graph polyhedrally embedded in a surface Σ, and x and y be two non-

cofacial vertices. Then G has at least κG(x, y) + 4χ(Σ)− 8 internally disjoint non-revisiting (x, y)-

paths.

The bound in Theorem 1.3 is sharp for the sphere. This will be proved in Section 3. An even

better bound for the projective plane will be given in Section 4.

2 Dual curves and contractible revisits

We begin with some definitions and notation. Let G be a graph polyhedrally embedded in a surface

Σ and let x and y be two vertices of G. Let P be a path joining x and y. A face F is revisited by
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the path P if F ∩ P has at least two components. Let c(F ∩ P ) to be the number of components of

F ∩P . The total revisit number of P is rP =
∑

F (c(F ∩P )− 1). Let S1, S2, ..., Sk be the connected

components of F ∩ P . Throughout the paper, Si for some integer i always stands for a connected

component of the intersection of an (x, y)-path and some face. A pair {Si, Sj} is called a revisit to

F by P . (See Figure 1 (left) where P is represented by the thick edges joining x and y and F is the

face exterior to the outside octagon.)

Figure 1: Dual curves, contractible and non-contractible revisits.

For an (x, y)-path P joining x and y, let Nǫ(P ) be a closed ǫ-neighborhood of P such that Nǫ(P )

is homotopic to a disk. Denote the interior of F by Int(F ). Let Ntop(P ) = Nǫ(P ) \ Int(F ). Then

Ntop(P ) is homeomorphic to a closed disk. (See the dark grey area in Figure 1.)

Let p and q be two points lying in the interiors of F and Ntop(P ) respectively. We construct an

auxiliary graph H(p, q) also embedded in Σ such that H(p, q) has two vertices p and q and k edges

ei, 1 ≤ i ≤ k, where ei joins p and q through Si. Let ℓij = ei ∪ ej . Then ℓij is a simple closed

curve which we will call the dual closed curve of the revisit {Si, Sj}. In general, of course, a dual

closed curve can be contractible or non-contractible. A revisit {Si, Sj} is non-contractible if ℓij is

non-contractible, and contractible, otherwise. For example, see Figure 1 (right) in which ℓ13 and ℓ23

are non-contractible and ℓ12 is contractible. Therefore {S1, S2} is a contractible revisit, but {S1, S3}

is a non-contractible revisit in Figure 1 (left). Additional definitions and notation will be introduced

below as needed.

Lemma 2.1. Let G be a 3-connected graph embedded in a surface Σ and let x and y be two vertices

of G. Let P be an (x, y)-path revisiting a face F such that every revisit is non-contractible. Then

the number of components of P ∩ F is at most 4− 2χ(Σ).

Proof. Assume that P ∩ F = {S1, . . . , Sk} where k ≥ 2. Let H = H(p, q) be the auxiliary graph

defined as above, namely let p and q be two vertices belonging to the interiors of F and Ntop(P )

respectively, and suppose, for i = 1 . . . k, ei is an edge joining p and q through Si. Then the graph H

is embedded in Σ. Since every revisit {Si, Sj} is non-contractible, every dual closed curve ℓij = ei∪ej

is non-contractible. If ei ∪ ej bounds a face of H , then the interior of the face is not homemorphic

to an open disk. In this case, cut the face along ei ∪ ej and cap off its boundary curve ei ∪ ej. For
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every face of size 2, apply this operation so that eventually we generate a new surface Σ′ such that

every face of size 2 of H embedded in Σ′ has its interior homemorphic to an open disk. Let f2 be

the number of faces of H with size 2. Then χ(Σ′) ≥ χ(Σ) + f2. Consider the graph H embedded

in the surface Σ′. Then H has f2 faces of size 2 which are closed disks. Let F (H) be the set of all

faces of H . Then by Euler’s formula,

2− |E(H)|+ |F (H)| ≥ χ(Σ′)

where equality holds if the interior of every face is homemorphic to an open disk. Let f4+ be the

number of faces of H with size at least 4, then |F (H)| = f2 + f4+ . Hence

2− k + (f2 + f4+) ≥ χ(Σ) + f2.

It follows that χ(Σ) ≤ 2 − k + f4+ . Note that 2k = 2|E(H)| ≥ 2f2 + 4f4+ ≥ 4f4+ , and further,

f4+ ≤ k/2. Combining this inequality with χ(Σ) ≤ 2−k+f4+ , it then follows that k ≤ 4−2χ(Σ).

The face touching number of two faces F1 and F2 is the number of components of F1 ∩ F2.

The face touching number of a graph G is the maximum face touching number over all pairs of

faces of G. Assume that F1 ∩ F2 = {S1, . . . , Sk} where Si is a connected component of F1 ∩ F2.

If G is 3-connected, every component Si is a single edge or vertex and hence the boundary of F1

contains at least one edge xy which is not on the boundary of F2. Then deleting xy from the

boundary of F1 results in a path, which we will denote by P . Note that P ∩ F2 = F1 ∩ F2 as

xy /∈ F1 ∩ F2. By the 3-connectivity of G, we can conclude that every revisit {Si, Sj} to F2 by

P is non-contractible. Otherwise, {Si, Sj} contains a 2-vertex-cut of G as the dual closed curve

ℓij of {Si, Sj} is contractable and hence separating, a contradiction to the 3-connectivity of G. By

Lemma 2.1, we have the following result on face touching numbers of 3-connected graphs, which was

originally proved by Sanders [20] using a discharging argument.

Corollary 2.2 ([20]). Let G be a 3-connected graph embedded in a surface Σ. Then the face touching

number of G is at most 4− 2χ(Σ).

Remark. The bound of Lemma 2.1 is tight in that equality may hold. Sanders constructed examples

to illustrate that the face touching number of a 3-connected graph can reach 4 − 2χ(Σ). Again, if

one traverses a path P from the boundary of one of the two faces of the examples of Sanders, then

P revisits the other face 4− 2χ(Σ) times.

The following lemma gives a condition under which the number of contractible revisits can be

reduced.

Lemma 2.3. Let G be a graph polyhedrally embedded in a surface Σ, and x and y be two non-cofacial

vertices. Suppose P = {P1, . . . , Pk} (k ≥ 3) is a set of k internally disjoint (x, y)-paths. If a face F

has a contractible revisit by path Pi, there exists a path P ′
i such that P ′ = (P\{Pi}) ∪ {P ′

i} is a set

of k internally disjoint (x, y)-paths with rP′ < rP .
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Proof. Assume that F ∩ Pi = {S1, S2, · · · , St}. Without loss of generality, we may assume that

{S1, S2} is a contractible revisit. Then the dual curve ℓ12 bounds a disk D. If the disk D contains

any other component of F ∩ Pi, say Sj , then the dual curve ℓ1j bounds another disk D′ which is

contained inside D. Since the number of revisits is finite, there exists a revisit such that its dual

curve bounds a disk which does not contain any other revisits. Therefore, without loss of generality,

assume that D does not contain any other component of F ∩ Pi.

Let v1, v2 be two endvertices of S1 and u1, u2 be two endvertices of S2 such that v1, v2, u1 and

u2 appear on the boundary of F in clockwise order. Note that, it is possible that v1 = v2 and/or

u1 = u2. Assume that the segment of the boundary of F inside the disk D from v2 to u1 is denoted

by v2Fu1.

If one of x and y is outside the disk D and the other is inside the disk D, then an (x, y)-path

Pj ∈ P with j 6= i will intersect the boundary of disk D by the Jordan Curve Theorem; in other

words, Pj intersects Pi, contradicting the fact that Pi and Pj are internally disjoint. Hence x and y

are either both outside the disk D or both inside the disk D.

First, assume that both x and y are outside the disk D. Then every Pj ∈ P with j 6= i is disjoint

from v2Fu1. Further, assume that Pi is traversed from x to v1 first and then v2. By the definition

of dual curve, the segment of path Pi from S1 to S2 together with v2Fu1 forms a curve homotopic

to ℓ12. Since y is outside D, it follows that Pi passes through u1 first and then u2. Let v2Piu1 stand

for the subpath of Pi joining v2 and u1, and let P ′
i = (Pi\v2Piu1) ∪ v2Fu1. Then P ′

i is internally

disjoint from Pj ∈ P with j 6= i. Since y is outside of the disk D, the segment of Pi\v2Piu1 from u2

to y does not intersect the cycle v2Fu1 ∪ v2Piu1. Note that every face visited by v1Fu1, except F ,

lies inside the disk bounded by v2Fu1∪v2Piu1. It then follows that v1Fu1 does not revisit any other

face F ′, for if there were such a revisit, the two faces F and F ′ would touch twice, contradicting the

fact that G is polyhedrally embedded in Σ. So rP′

1
< rP .

So in the following, assume that both x and y are inside the disk D. Then all other (x, y)-paths

Pj ∈ P with j 6= i are inside D, for otherwise, Pj intersects Pi, a contradiction of the fact that Pi

and Pj are internally disjoint. Now let P ′
i = (Pi\v1Piu2)∪u2Fv1. Then P ′

i is disjoint from Pj since

u2Fv1 is outside D. Any face F ′ visited by u2Fv1 is outside D and is not visited by the segments

Pi\v1Piu2 which are inside D. So u1Fv1 does not revisit any face of G since G is polyhedrally

embedded in Σ. Therefore rP′

1
< rP . This completes the proof.

If G is polyhedrally embedded in the plane, then every revisit to a face by a path is contractible.

So the following result, which strengthens a classical result of Barnette on Wv-paths ([1]), is an

immediate corollary of Lemma 2.3.

Theorem 2.4. Let G be a graph polyhedrally embedded in the sphere and x, y two non-cofacial

vertices of G. Then there are at least κG(x, y) internally disjoint Wv-paths joining x and y.

3 Polyhedral maps on general surfaces

In this section, we will prove our main results, namely Theorems 1.1, 1.2 and 1.3.
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Let x and y be two vertices of a graph G polyhedrally embedded in a surface Σ. Two internally

disjoint (x, y)-paths P and P ′ are homotopic to each other if P ∪P ′ bounds an open disk of Σ. Given

a family P of internally disjoint (x, y)-paths, a homotopy class P ′ of P is a subfamily of P such that

any two paths of P ′ are homotopic to each other and any path P ∈ P\P ′ is not homotopic to any

path in P ′. Note that, if Σ is the sphere, then all internally disjoint (x, y)-paths are homotopic to

each other and hence there is exactly one homotopy class of any given family of internally disjoint

(x, y)-paths in this case.

Lemma 3.1. Let G be a connected graph embedded in a surface Σ different from the sphere, and

suppose x, y ∈ V (G). Then the number of homotopy classes of a family of internally disjoint (x, y)-

paths is no more than 4− 2χ(Σ).

Proof. Let P be a family of internally disjoint (x, y)-paths and let k be the total number of homotopy

classes of P . Since Σ is not the sphere, χ(Σ) < 2. If k = 1, then the lemma holds trivially. So in the

following, suppose that k ≥ 2. Choose one (x, y)-path Pi (i = 1, 2, ...k) from each homotopy class.

Then no two of P1, . . . , Pk are homotopic to each other.

We construct an auxiliary graph H embedded in Σ as follows: let V (H) = {x, y} and E(H) =

{e1, . . . , ek} where ei is a single edge joining x and y and is homotopic to path Pi. Then H is a

bipartite multigraph with two vertices and k edges. Since Pi is not homotopic to Pj for j 6= i, the

same is true for ei and ej. Therefore, ei ∪ ej is a non-contractible cycle of H . If ei ∪ ej bounds a

face, then the interior of the face is not homemorphic to an open disk. An argument similar to that

used in the proof of Lemma 2.1 shows that k = |E(H)| ≤ 4− 2χ(Σ).

The following result illustrates an important connection between homotopy classes and Wv-paths.

Lemma 3.2. Let G be a graph polyhedrally embedded in a surface Σ, and let x and y be two non-

cofacial vertices of G. Let P be a homotopy class of a family of internally disjoint (x, y)-paths of

G, and assume that D is the minimal disk containing all paths P. Then D contains at least |P| − 2

internally disjoint non-revisiting (x, y)-paths.

Proof. Assume that P = {P1, . . . , Pk} is a homotopy class of a family of internally disjoint (x, y)-

paths. If k ≤ 2, the lemma holds trivially. So suppose that k ≥ 3. As D is the minimal disk

containing all paths in P , we can conclude that D is bounded by two paths in P , say P1 and Pk.

Note that all (x, y)-paths contained in D are homotopic. We choose a set of k internally disjoint

(x, y)-paths in D, denoted by P ′ = {P ′
1, . . . , P

′
k}, such that the total revisit number of P ′ is minimal.

Relabeling if necessary, we may assume that all paths in P ′ are contained in a disk bounded by P ′
1

and P ′
k. Every revisit to a face F in D by an (x, y)-path in P ′ is contractible. By Lemma 2.3 and

the choice of P ′, all paths in P ′ except P ′
1 and P ′

k, are Wv-paths joining x and y. It then follows

immediately that D contains at least |P| − 2 non-revisiting (x, y)-paths.

Theorem 1.2 follows immediately from Lemma 3.2. Now, we are going to prove Theorem 1.3.

Proof of Theorem 1.3. Assume that κG(x, y) = k. Then G has k internally disjoint (x, y)-paths.

Assume these k internally disjoint (x, y)-paths can be partitioned into t homotopy classes P1, . . . ,Pt.
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It follows from Lemma 3.1, that t ≤ 4−2χ(Σ). Let Di be the minimal disk containing all paths in Pi.

By Lemma 3.2, each disk Di contains at least |Pi| − 2 internally disjoint non-revisiting (x, y)-paths.

Therefore, the total number of internally disjoint non-revisiting (x, y)-paths is at least

t
∑

i=1

(|Pi| − 2) =
t

∑

i=1

|Pi| − 2t ≥ k + 4χ(Σ)− 8.

Theorem 1.3 guarantees that if the local connectivity κG(x, y) is large enough, then G has a

non-revisiting (x, y)-path. It would be interesting to find the minimum local connectivity for graphs

polyhedrally embedded in a surface Σ which guarantees the existence of a non-revisiting (x, y)-path.

Define f(Σ) to be the smallest number k such that for any graph G polyhedrally embedded in Σ and

any two vertices x and y in G, if κG(x, y) ≥ k, then G has at least one non-revisiting (x, y)-path. By

Theorem 2.4, f(Σ) = 3 if Σ is the sphere. The results obtained in [8, 1, 2, 3, 18] show that f(Σ) = 3

for surfaces with χ(Σ) ≥ 0. For all other surfaces Σ, the exact value of f(Σ) remains unknown. By

Theorem 1.3, we have the following result which provides an upper bound of f(Σ) for surfaces Σ

with χ(Σ) < 0.

Corollary 3.3. Let Σ be a surface. Then f(Σ) = 3 if χ(Σ) ≥ 0 and f(Σ) ≤ 9− 4χ(Σ) otherwise.

In the following, we are going to construct examples in which the lower bound given in Theo-

rem 1.1 holds. Since G is polyhedrally embedded in a surface Σ, it follows that G is 3-connected and

therefore f(Σ) ≥ 3. The lower bound in Theorem 1.1 holds trivially for surfaces Σ with χ(Σ) ≥ −1.

Now, we construct examples to illustrate the even better lower bound f(Σ) ≥ 3− χ(Σ) for surfaces

with χ(Σ) < −1, i.e., all orientable surfaces with genus g ≥ 2 and non-orientable surfaces with genus

g ≥ 4.

For each orientable genus g ≥ 2 and each non-orientable genus g ≥ 4, we now exhibit examples

of graphs with these genera having the property that they contain vertices x and y such that

κG(x, y) = 2g = 2 − χ(Σ) in the orientable case and such that κG(x, y) = g = 2 − χ(Σ) in the

non-orientable case, but there is no Wv-path joining x and y.

First we consider the orientable case for all g ≥ 2. Let x and y be two distinct vertices. Let

Cx = 11′22′33′ · · ·nn′1 be a cycle on 2n vertices such that N(x) = {1, 2, . . . , n}, where n = 2g.

Similarly, let Cy = 1(g+1)′2(g+2)′ · · · gn′(g+1)1′ · · ·ng′1 be a second (2n)-cycle such that N(y) =

{1′, 2′, . . . , n′}, again where n = 2g. For i = 1, . . . , n, join vertex i in Cx and i ∈ Cy as well as i′ in

Cx and i′ ∈ Cy. Call the resulting graph H1. (See Figure 2.) The cyclic orders of edges incident

with vertices as shown in Figure 2 define a rotation scheme which represents an embedding of H1 in

an orientable surface Σ. By Euler’s formula, the surface Σ has genus g. The faces of the embedding

derived from the rotation system shown in Figure 2 are of the form xii′(i+1)x, yi′(g+ i+1)(i+1)′y,

and ii′i′(g + i)(g + i)(g + i)′(g + i)′i where all integers are taken modulo n.

Now envision the graph H1 embedded in this surface Σ. Next contract all edges of the form ii

and i′i′. Call the resulting graph H2. Then H2 inherits the embedding of H1 in the surface Σ such

that each facial 8-cycle in H1 of the form ii′i′(g+i)(g+i)(g+i)′(g+i)′i in H1 corresponds to a facial
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Figure 2: Orientable surfaces.

4-cycle ii′(g+ i)(g+ i)′i in H2, and other facial 4-cycles of H1 are still facial 4-cycles of H2. Now the

graph H2 is embedded in the surface Σ where every face is bounded by a 4-cycle. This embedding is

not polyhedral because, for example, the 4-faces ii′(g+ i)(g+ i)′i and (i−1)′i(g+ i−1)′(g+ i)(i−1)′

share vertices i and (g + i) which are two components of the intersection of the face boundaries.

So we add some additional diagonal edges to some of these paired 4-cycles as follows: for each

i = 1, . . . , n, to the cycle ii′(g + i)(g + i)′i we add the diagonal edge i(g + i) and to the cycle

(i− 1)′i(g + i− 1)′(g + i)(i− 1)′ we add the diagonal edge (i− 1)′(g + i− 1)′. (See Figure 2.)

The resulting graph on 4g + 2 vertices, which we will call Γg, is then polyhedrally embedded in

the orientable surface Σ of genus g and κG(x, y) = 2g. Note that an (x, y)-path starting with an

edge xi revisits either a face incident with x (for example x(g + i)(g+ i)′(g+ i+1)x or x(g+ i)(g+

i− 1)′(g + i− 1)x) or a face incident with y (for example i(g + i)′y(g + i− 1)′i). So in Γg there are

no Wv-paths joining x and y.

We now turn to the non-orientable case. For the non-orientable surface Σ where χ(Σ) = 2− g is

even (i.e., g = 2k), we proceed as follows.

Let x and y be distinct vertices, and Cx = 11′22′ · · ·nn′1 be a 2n-cycle with N(x) = {1, 2, . . . , n}

and let Cy = 1(k+1)′2(k+2)′ · · · kn′(k+1)1′ · · ·nk′1 be a second 2n-cycle withN(y) = {1′, 2′, . . . , n′}

where n = g. Join vertex i of Cx to i of Cy and vertex i′ of Cx to i′ of Cy. As in the orientable

case, we also add all “vertical” edges of the form ii and i′i′ and call the resulting graph H1. This

time, however, we position a separate crosscap on each the edges 1′1′, 2′2′, . . . , n′n′ in H1 to obtain

9



Figure 3: Non-orientable surfaces.

a non-orientable graph H1. The rotation scheme as shown in Figure 3 represents an embedding of

H1 in a non-orientable surface Σ. Again by Euler’s formula, the surface Σ has non-orientable genus

ḡ.

We contract all edges of the form ii and i′i′. We denote by H2 the resulting graph embedded

in the surface Σ. In so doing, the 8-faces of the form ii′i′(k + 1 + i)(k + 1 + i)(k + i)′(k + i)′i

and i′(i + 1)(i + 1)(k + i)′(k + i)′(k + i)(k + i)i′ contract to the 4-faces ii′(k + 1 + i)(k + i)′i and

i′(i + 1)(k + i)′(k + i)i′ respectively. As before, we obtain pairs of quadrilaterals which share two

vertices on their boundaries which are not consecutive on either boundary. So again we add the

diagonal edges i(k + i+ 1) and (i − 1)′(k + i− 1)′ to H2 to obtain a polyhedrally embedded graph

which we shall call Γg. In this embedded graph Γg, κG(x, y) = g. Again, in Γg, an (x, y)-path revisits

either a face incident with x or a face incident with y. Therefore, there is no Wv-path joining x and

y in Γg.

We can modify the above construction for even non-orientable genera in order to treat the case

when the non-orientable genus is odd as follows. Begin with the embedded graph H2 of even non-

orientable genus g and select any triangular face F . Denote it by F = abca. Now add two new

adjacent vertices d and e and a new crosscap to the interior of F . Join a to d and e, b to e and c

to d. Finally, join c to e and b to d through the crosscap. (See Figure 4.) The graph we seek is

obtained from the original H2 by adding the new crosscap and the above seven new edges. This

graph, then, has (odd) non-orientable genus g + 1.

10



Figure 4: The added crosscap.

The above examples show that kG(x, y) = 2 − χ(Σ) does not guarantee the existence of a Wv-

path joining x and y. Therefore f(Σ) ≥ 3− χ(Σ) for surfaces Σ with χ(Σ) < −1. By Corollary 3.3,

Theorem 1.1 follows.

4 Polyhedral maps on the projective plane

In this section, we obtain a sharp lower bound for the number of internally disjoint non-revisiting

(x, y)-paths for graphs polyhedrally embedded in the projective plane which improves the bound

given in Theorem 1.3. Barnette’s result [2] for the projective plane is a direct corollary of this result.

In the following, two closed curves α and β are homotopically disjoint if there exist two disjoint

closed curves α′ and β′ such that α is homotopic to α′ and β is homotopic to β′.

Theorem 4.1. Let G be a graph polyhedrally embedded in the projective plane and suppose x and

y are two non-cofacial vertices. Then there are at least κG(x, y) − 2 internally disjoint Wv-paths

joining x and y.

Proof. Let P = {P1, . . . , Pk} be a family of internally disjoint (x, y)-paths such that rP =
∑k

i=1 rPi

is minimum. If rP = 0, we are done, so in the following we will assume that rP > 0.

Suppose P1 ∈ P . Define PA by PA = {Pi ∈ P|Pi is homotopic to P1}. Trivially, P1 ∈ PA. Now

define PB by PB = P −PA. Then for any Pi, Pj ∈ PA, Pi ∪Pj bounds a disk. Moreover, if Pi ∈ PA

and Pα ∈ PB, Pi ∪ Pα is a non-contractible cycle since Pi and Pα are not homotopic. Note that

there is only one homotopy class of non-contractible simple closed curves on the projective plane

since the fundamental group of this surface is Z2. So all non-contractible cycles of G are homotopic.

For Pα, Pβ ∈ PB, P1 ∪ Pα is homotopic to P1 ∪ Pβ . It follows that Pα is homotopic to Pβ . Hence

PB is also a homotopy class of internally disjoint (x, y)-paths.

Without loss of generality, we may write PA = {P1, . . . , Pt} and PB = {Pt+1, . . . , Pk}, and also

without loss of generality, we may assume that |PA| ≥ |PB|. Note that k ≥ 3 since G is 3-connected

and PB may be empty. In any case t ≥ 2.

Since PA is a homotopy class, Pi∪Pj bounds a disk, for any two distinct Pi, Pj ∈ PA. Therefore,

all paths in PA are contained in a closed disk D bounded by the union of two paths in this set.

Without loss of generality, let us renumber the paths if necessary, so that these two paths are denoted

by P1 and Pt. (See Figure 5 where the disk D is represented by the shaded region.) Similarly, we

may suppose that paths Pt+1 and Pk bound a closed disk D′ containing all the paths in PB.
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Figure 5: The two homotopy classes PA and PB of all (x, y)-paths.

By Lemma 2.3 and the minimality of rP , every revisit to any face F by an (x, y)-path in P is

non-contractible. So every face contained in the disk D bounded by P1∪Pt (respectively, in the disk

D′ bounded by Pt+1 ∪ Pk) is not revisited by any path in P . Hence a face can only be revisited by

P1, Pt, Pt+1 or Pk.

If PB = ∅, then a face can be revisited only by P1 or Pt (= Pk), so in this instance, there are

at least κG(x, y) − 2 Wv-paths. So assume that PB 6= ∅. Let F be a face revisited by path P1. By

Lemma 2.1, F ∩ P1 has exactly two components S1 and S2.

Claim 1: One of S1 and S2 is the single vertex x or y.

Proof of Claim 1. Suppose to the contrary that S1 −{x, y} contains a vertex u and that S2 −{x, y}

contains a vertex v. The dual closed curve ℓ12 of {S1, S2} through u and v does not intersect Pt∪Pk

which is a non-contractible cycle. Therefore, ℓ12 is contractible. Hence {S1, S2} is a contractible

revisit, a contradiction. This completes the proof of Claim 1.

If both homotopy classes PA and PB contain at most one path that is not a Wv-path, then

trivially there are at least κG(x, y) − 2 Wv-paths. So in the following we will assume, without loss

of generality, that class PA contains exactly two paths that are not Wv-paths, P1 and Pt, since a

face of G can only be revisited by P1, Pt, Pt+1 or Pk.

Claim 2: The paths P1 and Pt cannot revisit the same face.

Proof of Claim 2: Suppose to the contrary that there exists a face F which is revisited by paths P1

and Pt. By Lemma 2.1, F ∩P1 has two components S1 and S2. By Claim 1, one of S1 and S2 is the

single vertex x or y. Suppose without loss of generality that S1 = {x}. Similarly, F ∩ Pt has two

components and one of them is the single vertex x or y. Since x and y are not cofacial, the vertex y

cannot be a single vertex component of F ∩ Pt. Therefore, S1 = {x} is also a component of F ∩ Pt.

Let S3 be the other component of F ∩ Pt.

Let ℓ12 and ℓ13 be the dual closed curves of {S1, S2} and {S1, S3} respectively. Note that both

ℓ12 and ℓ13 are non-contractible. Therefore, ℓ12 and ℓ13 cross transversally at the vertex x. By the

definition of dual closed curves, we assume that ℓ12 and ℓ13 intersect only at x (otherwise, other

intersection components lie either in the face F or Ntop(P1)∩Ntop(Pt), and hence can be contracted

to x). Let D′′ = D ∪ Ntop(P1) ∪ Ntop(Pt). Then the face F touches the disk D′ four times along
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ℓ12 and ℓ13 at S1 = {x}, S2 and S3. So the boundary of F self-intersects at x which contradicts the

fact that G is polyhedrally embedded in the projective plane. This completes the proof of Claim 2.

By Claim 2, P1 and Pt revisit two distinct faces F1 and F2. By Lemma 2.1, P1 ∩ F1 has exactly

two components S1
1 and S1

2 and Pt ∩F2 has exactly two components St
1 and St

2. Next we show that

both Pt+1 and Pk are Wv-paths.

Assume there is a face F revisited by a path from PB, say Pk. Note that the boundary of F is

homotopically disjoint from the boundary of D ∪ F1 ∪ F2, and therefore, the boundary of D′ ∪ F is

homotopically disjoint from the boundary of D ∪ F1 ∪ F2. Let ℓ12 be the dual closed curve of the

revisits {S1
1 , S

1
2} of F1 by P1 and ℓ′ be the dual curve of the revisits of F by Pk. Therefore, ℓ12 and ℓ′

are homotopically disjoint, a contradiction to the fact that both ℓ12 and ℓ′ are non-contractible. This

contradiction implies that Pk is a Wv-path. Similarly, so is Pt+1. It follows then that G contains at

least κG(x, y)− 2 internally disjoint Wv-paths.

Figure 6: An example.

Remark: The example shown in Figure 6 shows that the bound of κG(x, y) − 2 in Theorem 4.1

for the projective plane is best possible. In the graph shown in this figure, there are six internally

disjoint (x, y)-paths: xay, xby, xdcy, xey, xfgy and xhy. Hence κG(x, y) = 6. But there are only

four internally disjoint non-revisiting (x, y)-paths: xay, xby, xey and xhy as both xdcy and xfgy

revisit the (shaded) face bounded by axhcga.

5 Concluding remarks

Let Σ be a closed surface and G be a graph polyhedrally embedded in Σ. A result of Cook [5] shows

that the connectivity of G is at most (5 +
√

49− 24χ(Σ))/2 if χ(Σ) ≤ 0. It then follows that, if

χ(Σ) < −7, the connectivity of G is less than 3 − χ(Σ). Then G may not have a Wv-path for some

pair of vertices by Theorem 1.1. However, the locally connectivity of a pair of vertices x and y of G

could be arbitrarily large. Hence, in the definition of f(Σ), the local connectivity cannot be replaced

by the connectivity of G.
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Theorem 1.1 shows linear bounds for f(Σ) for surfaces Σ. The previous results of Barnette

[1, 2, 3] and Pulapaka and Vince [18] show that f(Σ) = 3 for surfaces with χ(Σ) ≥ 0. However, the

exact values f(Σ) for surfaces Σ with χ(Σ) < 0 are unknown. It is interesting to ask the following

question.

Problem 5.1. Let Σ be a closed surface with χ(Σ) ≤ −1. Determine the exact value of f(Σ).

A solution to the above question would settle the existence problem of Wv-path in graphs poly-

hedrally embedded in the surface Σ with χ(Σ) = −1, the only surface for which the existence of a

Wv-path between a pair of vertices of G remains unknown.

Theorem 1.3 provides a lower bound for the number of internally disjoint Wv-paths between a

pair of vertices of G. The bound is sharp for the sphere, but may not be sharp for other surfaces.

Indeed, it is not tight for the projective plane. We propose the following.

Problem 5.2. Let G be a graph polyhedrally embedded in the surface Σ and let x and y be two

non-cofacial vertices. Find a sharp lower bound for the number of internally disjoint non-revisiting

(x, y)-paths.

Theorem 4.1 evidences that the number of internally disjoint non-revisiting (x, y)-paths is related

to the Euler characteristic of the surface. But the connection is not clear. A solution to Problem 5.2

for the torus or the Klein bottle is interesting, which may lead to a complete solution to the problem.

Acknowledgement. The authors would like to thank the anonymous referees for their valuable

comments which improved the final version of the paper.
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