Plane Bichromatic Trees of Low Degree *

Ahmad Biniaz Prosenjit Bose Anil Maheshwari Michiel Smid

School of Computer Science, Carleton University, Ottawa, Canada.

October 25, 2018

Abstract

Let R and B be two disjoint sets of points in the plane such that $|B| \leqslant|R|$, and no three points of $R \cup B$ are collinear. We show that the geometric complete bipartite graph $K(R, B)$ contains a non-crossing spanning tree whose maximum degree is at most $\max \left\{3,\left\lceil\frac{|R|-1}{|B|}\right\rceil+1\right\}$; this is the best possible upper bound on the maximum degree. This solves an open problem posed by Abellanas et al. at the Graph Drawing Symposium, 1996.

1 Introduction

Let R and B be two disjoint sets of points in the plane. We assume that the points in R are colored red and the points in B are colored blue. We assume that $R \cup B$ is in general position, i.e., no three points of $R \cup B$ are collinear. The geometric complete bipartite graph $K(R, B)$ is the graph whose vertex set is $R \cup B$ and whose edge set consists of all the straight-line segments connecting a point in R to a point in B. A bichromatic tree on $R \cup B$ is a spanning tree in $K(R, B)$. A plane bichromatic tree is a bichromatic tree whose edges do not intersect each other in their interior. A d-tree is defined to be a tree whose maximum vertex degree is at most d.

If $R \cup B$ is in general position, then it is possible to find a plane bichromatic tree on $R \cup B$ as follows. Take any red point and connect it to all the blue points. Extend the resulting edges from the blue endpoints to partition the plane into cones. Then, connect the remaining red points in each cone to a suitable blue point on the boundary of that cone without creating crossings. This simple solution produces trees possibly with large vertex degree. In this paper we are interested in computing a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is as small as possible. This problem was first mentioned by Abellanas et al. [1 in the Graph Drawing Symposium in 1996:

Problem. Given two disjoint sets R and B of points in the plane, with $|B| \leqslant|R|$, find a plane bichromatic tree on $R \cup B$ having maximum degree $O(|R| /|B|)$.

Assume $|B| \leqslant|R|$. Any bichromatic tree on $R \cup B$ has $|R|+|B|-1$ edges. Moreover, each edge is incident on exactly one blue point. Thus, the sum of the degrees of the blue points is $|R|+|B|-1$. This implies that any bichromatic tree on $R \cup B$ has a blue point of degree at least $\frac{|R|+|B|-1}{|B|}=\frac{|R|-1}{|B|}+1$. Since the degree is an integer, $\left\lceil\frac{|R|-1}{|B|}\right\rceil+1$ is the best possible upper bound on the maximum degree.

[^0]For cases when $|R|=|B|$ or $|R|=|B|+1$ it may not always be possible to compute a plane bichromatic tree of degree $\left[\frac{|R|-1}{|B|}\right\rceil+1=2$, i.e., a plane bichromatic path; see the example in the figure on the right which is borrowed from [2]; by adding one red point to the top red chain, an example for the case when $|R|=|B|+1$ is obtained. In 1998, Kaneko [9] posed the following conjecture.

Conjecture 1 (Kaneko [9]). Let R and B be two disjoint sets of points in the plane such that $|B| \leqslant|R|$ and $R \cup B$ is in general position, and let $k=\left\lceil\frac{|R|}{|B|}\right\rceil$. Then, there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+2$.

Kaneko [9] posed the following sharper conjecture for the case when $k \geqslant 2$.
Conjecture 2 (Kaneko [9]). Let R and B be two disjoint sets of points in the plane such that $|B| \leqslant|R|$ and $R \cup B$ is in general position, and let $k=\left\lceil\frac{|R|}{|B|}\right]$. If $k \geqslant 2$, then there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+1$.

1.1 Previous Work

Assume $|B| \leqslant|R|$ and let $k=\left\lceil\frac{|R|}{|B|}\right\rceil$. Abellanas et al. [2] proved that there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is $O(k+\log |B|)$. Kaneko [9] showed how to compute a plane bichromatic tree of maximum degree $3 k$.

Kaneko [9] proved Conjecture 1 for the case when $|R|=|B|$, i.e., $k=1$; specifically he showed how to construct a plane bichromatic tree of maximum degree three. In [10] the authors mentioned that Kaneko proved Conjecture 1 for the case when $|R| \neq|B|$. However, we have not been able to find any written proof for this conjecture. Moreover, Kano [11] confirmed that he does not remember the proof.

Abellanas et al. [2] considered the problem of computing a low degree plane bichromatic tree on some restricted point sets. They proved that if $R \cup B$ is in convex position and $|R|=k|B|$, with $k \geqslant 1$, then $R \cup B$ admits a plane bichromatic tree of maximum degree $k+2$. If R and B are linearly separable and $|R|=k|B|$, with $k \geqslant 1$, they proved that $R \cup B$ admits a plane bichromatic tree of maximum degree $k+1$. They also obtained a degree of $k+1$ for the case when B is the convex hull of $R \cup B$ (to be more precise, B is equal to the set of points on the convex hull of $R \cup B$). To the best of our knowledge, neither Conjecture 1 nor Conjecture 2 has been proven for points in general position where $|R| \neq|B|$.

The existence of a spanning tree (not necessarily plane) of low degree in a bipartite graph is also of interest. If $|B| \leqslant|R| \leqslant k|B|+1$, with $k \geqslant 1$, then $K(R, B)$ has a spanning $(k+1)$-tree which can be computed as follows. Partition the points of R into non-empty sets $R_{1}, \ldots, R_{|B|}$ each of size at most k, except possibly one set which is of size $k+1$; let R_{1} be that set. Let $B=\left\{b_{1}, \ldots, b_{|B|}\right\}$. Let $S_{1}, \ldots, S_{|B|}$ be the set of stars obtained by connecting the points in R_{i} to b_{i}. To obtain a $(k+1)$-tree we connect S_{i} to S_{i+1} by adding an edge between a red point in S_{i} to the only blue point in S_{i+1} for $i=1, \ldots,|B|-1$. Kano et al. 12] considered the problem of computing a spanning tree of low degree in a (not necessarily complete) connected bipartite graph G with bipartition (R, B). They showed that if $|B| \leqslant|R| \leqslant k|B|+1$, with $k \geqslant 1$, and $\sigma(G) \geqslant|R|$, then G has a spanning $(k+1)$-tree, where $\sigma(G)$ denotes the minimum degree sum of $k+1$ independent vertices of G.

The problem of computing a plane tree of low degree on multicolored point sets (with more than two colors) is also of interest, see [13, 4]. Let P be a set of colored points in the plane in general position. Let $\left\{P_{1}, \ldots, P_{m}\right\}$ be the partition of P where the points of P_{i} have the same
color that is different from the color of the points of P_{j} for $i \neq j$. Kano et al. [13] showed that if $\left|P_{i}\right| \leqslant\left\lceil\frac{|P|}{2}\right\rceil$, for all $i=1, \ldots, m$, then there exists a plane colored 3-tree on P; a colored tree is a tree where the two endpoints of every edge have different colors. Biniaz et al. 4] presented algorithms for computing a plane colored 3-tree when P is in the interior of a simple polygon and every edge is the shortest path between its two endpoints in the polygon.

A related problem is the non-crossing embedding of a given tree into a given point set in the plane. It is known that every tree T with n nodes can be embedded into any set P of n points in the plane in general position (see Lemma 14.7 in [14]). If T is rooted at a node r, then the rooted-tree embedding problem asks if T can be embedded in P with r at a specific point $p \in P$. This problem which was originally posed by Perles, is answered in the affirmative by Ikebe et al. [8]. A related result by A. Tamura and Y. Tamura [15] is that, given a point set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ in the plane in general position and a sequence $\left(d_{1}, \ldots, d_{n}\right)$ of positive integers with $\sum_{i=1}^{n} d_{i}=2 n-2$, then P admits an embedding of some tree T such that the degree of p_{i} is d_{i}. Optimal algorithms for solving the above problems can be found in [6].

Another related problem is to compute a plane bichromatic Euclidean minimum spanning tree on $R \cup B$. This problem is NP-hard [5]. The best polynomial-time algorithm known so far for this problem, has approximation factor $O(\sqrt{n})$, where n is the total number of points [5].

1.2 Our Results

In Section 2 we prove Conjecture 1 for the case when $|R|=k|B|$, with $k \geqslant 1$. The proof-which is very simple - is based on a result of Bespamyatnikh et al. [3] and a recent result of Hoffmann et al. [7]. The core of our contribution is in Section 3, where we partially prove Conjecture 2; If $|R|=k|B|$, with $k \geqslant 2$, and $R \cup B$ is in general position, then there exists a plane bichromatic tree on $R \cup B$ whose maximum degree is $k+1$. We present a constructive proof for obtaining such a tree. We prove the full Conjecture 2 in Section 4 the proof is again constructive and is based on the algorithm of Section 3. Then, in Section 5 we combine the results of Sections 3 and 4 to show the following theorem that is even sharper than Conjecture 2

Theorem 1. Let R and B be two disjoint sets of points in the plane such that $|B| \leqslant|R|$ and $R \cup B$ is in general position, and let $\delta=\left\lceil\frac{|R|-1}{|B|}\right\rceil$. Then, there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $\max \{3, \delta+1\}$; this is the best possible upper bound on the maximum degree.

As we will see, the proof of Theorem 1 is simpler for $\delta \geqslant 4$. However, for smaller values of δ, the proof is much more involved.

2 Plane Bichromatic ($k+2$)-trees

In this section we show that if $|R|=k|B|$, with $k \geqslant 1$, then there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+2$. We make use of the following two theorems.

Theorem 2 (Bespamyatnikh, Kirkpatrick, and Snoeyink [3]). Let $g \geqslant 1$ be an integer. Given $g n$ red and $g m$ blue points in the plane in general position, there exists a subdivision of the plane into g convex regions each of which contains n red and m blue points.

Theorem 3 (Hoffmann and Tóth [7]). Every disconnected plane bichromatic geometric graph with no isolated vertices can be augmented (by adding edges) into a connected plane bichromatic geometric graph such that the degree of each vertex increases by at most two.

The subdivision in Theorem 2 is known as an "Equitable Subdivision" of the plane. The result of Theorem 3 is optimal, as there are disconnected plane bichromatic geometric graphs with no isolated vertices that cannot be augmented into a connected plane bichromatic geometric graph while increasing each vertex degree by less than two; see the example in the figure on the right.

Theorem 4. Let R and B be two disjoint sets of points in the plane such that $|R|=k|B|$, with $k \geqslant 1$, and $R \cup B$ is in general position. Then, there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+2$.

Proof. By applying Theorem 2 with $g=|B|$ we divide the plane into $|B|$ convex regions each of which contains one blue point and k red points. In each region we obtain a star by connecting the k red points in that region to its only blue point. Each star is a bichromatic tree of maximum degree k. By Theorem 3 we connect the stars to form a plane bichromatic tree of degree at most $k+2$.

3 Plane Bichromatic $(k+1)$-trees

In this section we prove Conjecture 2 for the case when $|R|=k|B|$ and $k \geqslant 2$:
Theorem 5. Let R and B be two disjoint sets of points in the plane, such that $|R|=k|B|$, with $k \geqslant 2$, and $R \cup B$ is in general position. Then, there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+1$.

Note that any bichromatic tree on $R \cup B$ has $|B|+|R|-1=(k+1)|B|-1$ edges. Since each edge is incident to exactly one blue point, the sum of the degrees of the blue points is $(k+1)|B|-1$. This implies the following observation:

Observation 1. Let R and B be two disjoint sets of points in the plane such that $|R|=k|B|$, with $k \geqslant 1$ is an integer. Then, in any bichromatic $(k+1)$-tree on $R \cup B$, one point of B has degree k and each other point of B has degree $k+1$.

In order to prove Theorem 5 we provide some notation and definitions. Let P be a set of points in the plane. We denote by $C H(P)$ the convex hull of P. For two points p and q in the plane, we denote by (p, q) the line segment whose endpoints are p and q. Moreover, we denote by $\ell(p, q)$ the line passing through p and q. For a node p in a tree T we denote by $d_{T}(p)$ the degree of p in T. Let p be a vertex of $C H(P)$. The radial ordering of $P-\{p\}$ around p is obtained as follows. Let p_{1} and p_{2} be the two vertices of $C H(P)$ adjacent to p such that the clockwise angle $\angle p_{1} p p_{2}$ is less than π. For each point q in $P-\{p\}$, define its angle around p-with respect to p_{1} - to be the clockwise angle $\angle p_{1} p q$. Then the desired radial ordering is obtained by ordering the points in $P-\{p\}$ by increasing angle around p.

We start by proving two lemmas that play an important role in the proof of Theorem 5.
Lemma 1. Let R and B be two sets of red and blue points in the plane, respectively, such that $|B| \geqslant 1, k(|B|-1)<|R| \leqslant k|B|$, with $k \geqslant 2$, and $R \cup B$ is in general position. Let b_{1}, b, b_{2} be blue points that are counter clockwise consecutive on $C H(R \cup B)$. Then, in the radial ordering of $R \cup B-\{b\}$ around b, there are $\alpha=|R|-k(|B|-1)$ consecutive red points, $r_{1}, \ldots, r_{\alpha}$, such that $\left|R_{1}\right|=k\left|B_{1}\right|+1$ and $\left|R_{2}\right|=k\left|B_{2}\right|+1$, where R_{1} (resp. B_{1}) is the set of red points (resp. blue points) of $R \cup B-\{b\}$ lying on or to the left of $\ell\left(b, r_{1}\right)$, and R_{2} (resp. B_{2}) is the set of red points (resp. blue points) of $R \cup B-\{b\}$ lying on or to the right of $\ell\left(b, r_{\alpha}\right)$.

Figure 1: k consecutive red points in the radial ordering of the points around b.

Proof. By a suitable rotation of the plane, we may assume that b is the lowest point of $C H(R \cup B)$, and b_{1} (resp. b_{2}) is to the left (resp. right) of the vertical line passing through b. Note that b_{1} is the first point and b_{2} is the last point in the clockwise radial ordering of $R \cup B-\{b\}$ around b. See Figure 1 . We define the function f as follows: For every point x in this radial ordering,

$$
\begin{aligned}
f(x)= & k \cdot(\text { the number of points of } B-\{b\} \text { lying on or to the left of } \ell(b, x)) \\
& -(\text { the number of points of } R \text { lying on or to the left of } \ell(b, x)) .
\end{aligned}
$$

Based on this definition, we have $f\left(b_{1}\right)=k \geqslant 2$ and $f\left(b_{2}\right)=k(|B|-1)-|R|=-\alpha \leqslant-1$. Along this radial ordering, the value of f changes by $+k$ at every blue point and by -1 at every red point. Since $f\left(b_{1}\right)>0>f\left(b_{2}\right)$, there exists a point in the radial ordering for which f equals 0 . Let v be the last point in the radial ordering where $f(v)=0$. Since b_{2} increases f by $+k$ and $f\left(b_{2}\right) \leqslant-1$, there are at least $k+2$ points strictly after v in the radial ordering. Let $S=\left(r_{1}, \ldots, r_{k}\right)$ be the sequence of k points strictly after v in the radial ordering.

Claim: The points of S are red. Assume that r_{i} is blue for some $1 \leqslant i \leqslant k$. Then, r_{i} changes f by $+k$. Since f decreases only at red points, the value of $f\left(r_{i}\right)$ is minimum when all points r_{1}, \ldots, r_{i-1} are red. Thus,

$$
\begin{aligned}
f\left(r_{i}\right) & \geqslant f(v)-(i-1)+k \\
& =k-i+1 \\
& >0 .
\end{aligned}
$$

Since $f\left(r_{i}\right)>0>f\left(b_{2}\right)$, there exists a point between r_{i} and b_{2} in the radial ordering for which f equals 0 . This contradicts the fact that v is the last point in the radial ordering with $f(v)=0$. This proves the claim.

Thus, each $r_{i} \in S$ is red. Moreover, $f\left(r_{i}\right)=-i$. We show that the subsequence $S^{\prime}=$ $\left(r_{1}, \ldots, r_{\alpha}\right)$ of S satisfies the statement of the lemma; note that, by definition, $\alpha \leqslant k$. Having r_{1} and r_{α}, we define R_{1}, B_{1}, R_{2} and B_{2} as in the statement of the lemma. See Figure 1. By definition of f, we have $f\left(r_{1}\right)=k\left|B_{1}\right|-\left|R_{1}\right|=-1$, and hence $\left|R_{1}\right|=k\left|B_{1}\right|+1$. Moreover,

$$
\begin{aligned}
\left|R_{2}\right| & =|R|-\left|R_{1}\right|-\left|S^{\prime}\right|+2 \\
& =|R|-\left(k\left|B_{1}\right|+1\right)-(|R|-k(|B|-1))+2 \\
& =k\left(|B|-\left|B_{1}\right|-1\right)+1 \\
& =k\left|B_{2}\right|+1,
\end{aligned}
$$

where $\left|S^{\prime}\right|$ is the number of elements in the sequence S^{\prime}. Note that $R_{2}=\left(R-\left(R_{1} \cup S^{\prime}\right)\right) \cup\left\{r_{\alpha}\right\}$. Since r_{1} belongs to both R_{1} and S^{\prime}, and r_{α} belongs to R_{2}, the term " +2 " in the first equality is necessary (even for the case when $\left.r_{1}=r_{\alpha}\right)$. The last equality is valid because $B_{2}=B-\left(B_{1} \cup\{b\}\right)$. This completes the proof of the lemma.

Figure 2: (a) $0<f(b)=\alpha<k$, (b) $f(b)=0$, and b, b^{\prime} are consecutive blue points.

Lemma 2. Let R and B be two sets of red and blue points in the plane, respectively, such that $|B| \geqslant 1,|R|=k|B|+1$, with $k \geqslant 2$, and $R \cup B$ is in general position. Let r_{1}, r, r_{2} be red points that are counter clockwise consecutive on $C H(R \cup B)$. Then, one of the following statements holds:

1. There exists a blue point b in the radial ordering of $(R \cup B)-\{r\}$ around r, such that $\left|R_{1}\right|=k\left(\left|B_{1}\right|-1\right)+k-\alpha$ and $\left|R_{2}\right|=k\left(\left|B_{2}\right|-1\right)+\alpha$, where R_{1} (resp. B_{1}) is the set of red points (resp. blue points) of $(R \cup B)-\{r\}$ lying on or to the left of $\ell(r, b), R_{2}$ (resp. $\left.B_{2}\right)$ is the set of red points (resp. blue points) of $(R \cup B)-\{r\}$ lying on or to the right of $\ell(r, b)$, and $0<\alpha<k$.
2. There exist two consecutive blue points b and b^{\prime} in the radial ordering of $(R \cup B)-\{r\}$ around r, such that $\left|R_{1}\right|=k\left|B_{1}\right|$ and $\left|R_{2}\right|=k\left|B_{2}\right|$, where R_{1} (resp. B_{1}) is the set of red points (resp. blue points) of $(R \cup B)-\{r\}$ lying on or to the left of $\ell(r, b)$ and R_{2} (resp. B_{2}) is the set of red points (resp. blue points) of $(R \cup B)-\{r\}$ lying on or to the right of $\ell\left(r, b^{\prime}\right)$.

Proof. By a suitable rotation of the plane, we may assume that r is the lowest point of $C H(R \cup B)$, and r_{1} (resp. r_{2}) is to the left (resp. right) of the vertical line passing through r. Note that r_{1} is the first point and r_{2} is the last point in the clockwise radial ordering of $(R \cup B)-\{r\}$ around r. See Figure 2. We define the function f as follows: For every point x in this radial ordering,

$$
\begin{aligned}
f(x)= & k \cdot(\text { the number of points of } B \text { lying on or to the left of } \ell(r, x)) \\
& -(\text { the number of points of } R-\{r\} \text { lying on or to the left of } \ell(r, x)) .
\end{aligned}
$$

Based on this definition, we have $f\left(r_{1}\right)=-1$ and $f\left(r_{2}\right)=k|B|-(|R|-1)=0$. Along this radial ordering, the value of f changes by $+k$ at every blue point and by -1 at every red point. Let v be the point before r_{2} in the radial ordering. Since r_{2} decreases f by -1 and $f\left(r_{2}\right)=0$, we have $f(v)=1$. Since $f\left(r_{1}\right)<0<f(v)$, there exists a point b between r_{1} and v in the radial ordering such that $f(b) \geqslant 0$ and f is negative at b 's predecessor. Let b be the last such point between r_{1} and v; it may happen that $b=v$. Observe that b is blue and $f(b)<k$. We consider two cases, depending on whether $0<f(b)<k$ or $f(b)=0$.

- $0<f(b)<k$. Since b is blue and r_{2} is red, there is at least one point after b in the radial ordering. Define R_{1}, B_{1}, R_{2} and B_{2} as in the first statement of the lemma. See Figure 2 (a). Let $\alpha=f(b)$. By definition of f, we have $\alpha=f(b)=k\left|B_{1}\right|-\left|R_{1}\right|$, and hence $\left|R_{1}\right|=k\left|B_{1}\right|-\alpha=k\left(\left|B_{1}\right|-1\right)+k-\alpha$. Moreover,

$$
\begin{aligned}
\left|R_{2}\right| & =|R|-\left|R_{1}\right|-1 \\
& =(k|B|+1)-\left(k\left|B_{1}\right|-\alpha\right)-1 \\
& =k\left(|B|-\left|B_{1}\right|\right)+\alpha \\
& =k\left(\left|B_{2}\right|-1\right)+\alpha,
\end{aligned}
$$

where the last equality is valid because b belongs to both B_{1} and B_{2}.

- $f(b)=0$. In the radial ordering there are at least $k+1$ points after b since a red point only decreases the value of f and $f\left(r_{2}\right)=0$. Let b^{\prime} be the successor of b in the radial ordering. The point b^{\prime} is blue: If b^{\prime} is red, we have $f\left(b^{\prime}\right)=-1<0<f(v)$ and, thus, there exists a point $b^{\prime \prime}$ between b^{\prime} and v such that $f\left(b^{\prime \prime}\right) \geqslant 0$ and f is negative at the predecessor of $b^{\prime \prime}$, contradicting our choice of b. Define R_{1}, B_{1}, R_{2} and B_{2} as in the second statement of the lemma. See Figure 2(b). Since $f(b)=k\left|B_{1}\right|-\left|R_{1}\right|=0$, we have $\left|R_{1}\right|=k\left|B_{1}\right|$. Moreover,

$$
\begin{aligned}
\left|R_{2}\right| & =|R|-\left|R_{1}\right|-1 \\
& =(k|B|+1)-k\left|B_{1}\right|-1 \\
& =k\left(|B|-\left|B_{1}\right|\right) \\
& =k\left|B_{2}\right|
\end{aligned}
$$

which completes the proof of the lemma.

3.1 Proof of Theorem 5

We use Lemma 1 and Lemma 2 to prove Theorem 5. Let R and B be two disjoint sets of points in the plane, such that $|R|=k|B|$, with $k \geqslant 2$, and $R \cup B$ is in general position. We will present an algorithm, plane-tree, that constructs a plane bichromatic tree of maximum degree $k+1$ on $R \cup B$ such that each red vertex has degree at most 3 . This algorithm uses two procedures, proc1 and proc2:

plane-tree (R, B)

Input: A set R of red points and a non-empty set B of blue points, where $|R|=k|B|$, with $k \geqslant 2$, and $R \cup B$ is in general position.
Output: A plane bichromatic $(k+1)$-tree on $R \cup B$ such that each red vertex has degree at most 3 .

$\operatorname{proc} 1(R, B, b)$

Input: A set R of red points, a non-empty set B of blue points, and a point $b \in B$, where $k(|B|-1)<$ $|R| \leqslant k|B|$, with $k \geqslant 2$, and b is on $C H(R \cup B)$.
Output: A plane bichromatic $(k+1)$-tree T on $R \cup B$ where $d_{T}(b)=|R|-k(|B|-1)$ and each red vertex has degree at most 3 .

$\operatorname{proc} 2(R, B, r)$

Input: A set R of red points, a non-empty set B of blue points, and a point $r \in R$, where $|R|=k|B|+1$, with $k \geqslant 2$, and r is on $C H(R \cup B)$.
Output: A plane bichromatic $(k+1)$-tree T on $R \cup B$ where $d_{T}(r) \in\{1,2\}$ and each other red vertex has degree at most 3 .

First we describe each of the procedures proc1 and proc2. Then we describe algorithm plane-tree. The procedures proc1 and proc2 will call each other. As we will see in the description of these procedures, when proc1 or proc2 is called recursively, the call is always on a smaller point set. We now describe the base cases for proc1 and proc2.

The base case for proc1 happens when $|B|=1$, i.e., $B=\{b\}$. In this case, we have $1 \leqslant|R| \leqslant k$ and $2 \leqslant|R \cup B| \leqslant k+1$. We connect all points of R to b, and return the resulting star as a desired tree T where $d_{T}(b)=|R|$ and each red vertex has degree 1 .

The base case for proc2 happens when $|B|=1$; let b be the only point in B. In this case, we have $|R|=k+1$ and $|R \cup B|=k+2$. We connect all points of R to b, and return the resulting star as a desired tree T where $d_{T}(b)=k+1$ and each red vertex has degree 1 .

In Section 3.1.1 we describe $\operatorname{proc} 1(R, B, b)$, whereas $\operatorname{proc} 2(R, B, r)$ will be described in Section 3.1.2. In these two sections, we assume that both proc1 and proc2 are correct for smaller point sets.

3.1.1 Procedure proc1

The procedure $\operatorname{proc} 1(R, B, b)$ takes as input a set R of red points, a set B of blue points, and a point $b \in B$, where $|B| \geqslant 2, k(|B|-1)<|R| \leqslant k|B|$, with $k \geqslant 2$, and b is on $C H(R \cup B)$. Let $\alpha=|R|-k(|B|-1)$, and notice that $1 \leqslant \alpha \leqslant k$. This procedure computes a plane bichromatic $(k+1)$-tree T on $R \cup B$ where $d_{T}(b)=\alpha$ and each red vertex has degree at most 3 .

We consider two cases, depending on whether or not both vertices of $C H(R \cup B)$ adjacent to b belong to B.

Case 1: Both vertices of $C H(R \cup B)$ adjacent to b belong to B. We apply Lemma 1 on R, B, and b. Consider the α consecutive red points, $r_{1}, \ldots, r_{\alpha}$, and the sets R_{1}, R_{2}, B_{1}, and B_{2} in the statement of Lemma 1. Note that r_{1} is a red point on $C H\left(R_{1} \cup B_{1}\right)$ and r_{α} is a red point on $C H\left(R_{2} \cup B_{2}\right)$. We distinguish between two cases: $1<\alpha \leqslant k$ and $\alpha=1$.

Case 1.1: $1<\alpha \leqslant k$. In this case $r_{1} \neq r_{\alpha}$. Moreover $C H\left(R_{1} \cup B_{1}\right)$ and $C H\left(R_{2} \cup B_{2}\right)$ are disjoint. Let T_{1} be the plane bichromatic ($k+1$)-tree obtained by running proc2 on R_{1}, B_{1}, r_{1}; note that $d_{T_{1}}\left(r_{1}\right) \in\{1,2\}$, all other red points in T_{1} have degree at most 3 , and $\left|R_{1} \cup B_{1}\right|<|R \cup B|$. Similarly, let T_{2} be the plane bichromatic $(k+1)$-tree obtained by running proc2 on R_{2}, B_{2}, r_{α}; note that $d_{T_{2}}\left(r_{\alpha}\right) \in\{1,2\}$, all other red points in T_{2} have degree at most 3, and $\left|R_{2} \cup B_{2}\right|<|R \cup B|$. Let S be the star obtained by connecting the vertices $r_{1}, \ldots, r_{\alpha}$ to b. Then, we obtain a desired tree $T=T_{1} \cup T_{2} \cup S$. See Figure 1. T is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}\left(r_{1}\right) \in\{2,3\}, d_{T}\left(r_{\alpha}\right) \in\{2,3\}, d_{T}(b)=\alpha$, and $d_{T}\left(r_{i}\right)=1$ where $1<i<\alpha$.
Case 1.2: $\alpha=1$. In this case $r_{1}=r_{\alpha}$ and $|R|=k(|B|-1)+1$. Moreover, $r_{1} \in R_{1} \cap R_{2}$. If we handle this case as in the previous case, then it is possible for r_{1} to be incident on two edges in each of T_{1} and T_{2}, and incident on one edge in S. This makes $d_{T}\left(r_{1}\right)=5$. If $k \geqslant 4$, then T is a desired $(k+1)$-tree. But, if $k=2,3$, then T would not be a $(k+1)$-tree. Thus, we handle the case when $\alpha=1$ differently.
Let x_{1} and y_{1} be the two blue neighbors of b on $C H(R \cup B)$. By a suitable rotation of the plane, we may assume that b is the lowest point of $C H(R \cup B)$, and x_{1} (resp. y_{1}) is to the left (resp. right) of the vertical line passing through b. Let $C_{1}=\left(x_{1}, \ldots, x_{j}=r_{1}\right)$ be the sequence of points on the boundary of $C H\left(R_{1} \cup B_{1}\right)$ from x_{1} to r_{1} that are visible from b. Similarly, define $C_{2}=\left(y_{1}, \ldots, r_{1}\right)$ on $C H\left(R_{2} \cup B_{2}\right)$. See Figure 3. Let x_{s} be the first red point in the sequence C_{1}, and let y_{t} be the first red point in the sequence C_{2}. Note that $s, t \geqslant 2$. It is possible for x_{s} or y_{t} or both to be r_{1}. Consider the subsequences $C_{1}^{\prime}=\left(x_{1}, \ldots, x_{s}\right)$ and $C_{1}^{\prime \prime}=\left(x_{s}, \ldots, r_{1}\right)$ of C_{1} as depicted in Figure 3(a). Similarly, consider
the subsequences $C_{2}^{\prime}=\left(y_{1}, \ldots, y_{t}\right)$ and $C_{2}^{\prime \prime}=\left(y_{t}, \ldots, r_{1}\right)$ of C_{2}. Let l_{1} and l_{2} be the lines passing through $\left(x_{s-1}, x_{s}\right)$ and $\left(y_{t-1}, y_{t}\right)$, respectively. Note that l_{1} is tangent to $C H\left(R_{1} \cup B_{1}\right)$ and l_{2} is tangent to $C H\left(R_{2} \cup B_{2}\right)$.

Figure 3: (a) l_{1} does not intersect the interior of $C H(R \cup B)$, and (b) l_{1} intersects C_{2}^{\prime}.

We consider two cases, depending on whether or not l_{1} intersects C_{2} and l_{2} intersects C_{1}.
Case 1.2.1: l_{1} does not intersect C_{2}, or l_{2} does not intersect C_{1}. Because of symmetry, we assume that l_{1} does not intersect C_{2}. Note that in this case l_{1} does not intersect the interior of $C H(R \cup B-\{b\})$. Let $R^{\prime}=R$ and $B^{\prime}=B-\{b\}$; note that $\left|R^{\prime}\right|=$ $|R|=k(|B|-1)+1=k\left|B^{\prime}\right|+1$. In addition, x_{s} is on $C H\left(R^{\prime} \cup B^{\prime}\right)$. See Figure 3(a). Let T^{\prime} be the plane bichromatic $(k+1)$-tree obtained by $\operatorname{proc} 2\left(R^{\prime}, B^{\prime}, x_{s}\right)$. Note that $d_{T^{\prime}}\left(x_{s}\right) \in\{1,2\}$, all other red points in T^{\prime} have degree at most 3 , and $\left|R^{\prime} \cup B^{\prime}\right|<|R \cup B|$. We obtain a desired tree $T=T^{\prime} \cup\left\{\left(b, x_{s}\right)\right\}$. T is a plane $\operatorname{bichromatic}(k+1)$-tree on $R \cup B$ with $d_{T}(b)=\alpha=1$ and $d_{T}\left(x_{s}\right) \in\{2,3\}$.
Case 1.2.2: l_{1} intersects C_{2}, and l_{2} intersects C_{1}. We distinguish between two cases:
Case 1.2.2.1: l_{1} intersects C_{2}^{\prime}, or l_{2} intersects C_{1}^{\prime}. Because of symmetry, we assume that l_{1} intersects C_{2}^{\prime}. Let $\left(y_{i}, y_{i+1}\right)$, with $1 \leqslant i<t$, be the leftmost edge of C_{2}^{\prime} that is intersected by l_{1} (note that l_{1} may intersect two edges of C_{2}^{\prime}). Observe that y_{i} is a blue point. Let $R_{1}^{\prime}=R_{1}-\left\{x_{s}\right\}, B_{1}^{\prime}=B_{1}, R_{2}^{\prime}=R_{2}-\left\{r_{1}\right\}$ and $B_{2}^{\prime}=B_{2}$ as shown in Figure 3(b). Note that $\left|R_{1}^{\prime}\right|=k\left|B_{1}^{\prime}\right|$ and $\left|R_{2}^{\prime}\right|=k\left|B_{2}^{\prime}\right|$. In addition, $C H\left(R_{1}^{\prime} \cup B_{1}^{\prime}\right)$ and $C H\left(R_{2}^{\prime} \cup B_{2}^{\prime}\right)$ are disjoint, x_{s-1} is a blue point on $C H\left(R_{1}^{\prime} \cup B_{1}^{\prime}\right)$, and y_{i} is a blue point on $C H\left(R_{2}^{\prime} \cup B_{2}^{\prime}\right)$. Let T_{1} be the plane bichromatic $(k+1)$-tree obtained by the recursive call proc1 $\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$, and let T_{2} be the plane bichromatic $(k+1)$-tree obtained by the recursive call $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$. Note that $d_{T_{1}}\left(x_{s-1}\right)=k$, $d_{T_{2}}\left(y_{i}\right)=k$, all red points in T_{1} and T_{2} have degree at most $3,\left|R_{1}^{\prime} \cup B_{1}^{\prime}\right|<|R \cup B|$, and $\left|R_{2}^{\prime} \cup B_{2}^{\prime}\right|<|R \cup B|$. We obtain a desired tree $T=T_{1} \cup T_{2} \cup\left\{\left(b, x_{s}\right),\left(x_{s-1}, x_{s}\right),\left(y_{i}, x_{s}\right)\right\} ;$ see Figure 3 (b). T is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}(b)=\alpha=1$, $d_{T}\left(x_{s}\right)=3, d_{T}\left(x_{s-1}\right)=k+1$ and $d_{T}\left(y_{i}\right)=k+1$.
Case 1.2.2.2: l_{1} intersects $C_{2}^{\prime \prime}$, and l_{2} intersects $C_{1}^{\prime \prime}$. In this case $Q=\left(x_{s-1}, x_{s}, y_{t}, y_{t-1}\right)$ is a convex quadrilateral because $l_{1} \cap\left(y_{t-1}, y_{t}\right)=\emptyset$ and $l_{2} \cap\left(x_{s-1}, x_{s}\right)=\emptyset$. Moreover, Q does not have any point of $R \cup B$ in its interior and it has no intersection with the interiors of $C H\left(R_{1} \cup B_{1}\right)$ and $C H\left(R_{2} \cup B_{2}\right)$. We handle this case as in Case 1.2.2.1 with the blue point y_{t-1} playing the role of y_{i}. Observe that this construction gives a valid tree even if $x_{s}=y_{t}=r_{1}$.

Case 2: At least one of the vertices on $C H(R \cup B)$ adjacent to b does not belong to B. Let
x_{1} be such a vertex that belongs to R. Initialize $X=\left\{x_{1}\right\}$. If at least one of the vertices of $C H((R-X) \cup B)$ adjacent to b does not belong to b, let x_{2} be such a red point. Add x_{2} to the set X. Repeat this process on $C H((R-X) \cup B)$ until $|X|=\alpha$ or both neighbors of b on $C H((R-X) \cup B)$ are blue points. Let x_{1}, \ldots, x_{β} be the sequence of red points added to X in this process. After this process we have $|X|=\beta$, where $1 \leqslant \beta \leqslant \alpha$. Let S_{1} be the star obtained by connecting all points of X to b. See Figure 4 where S_{1} is shown with green bold edges. Observe that $d_{S_{1}}(b)=\beta$. We distinguish between two cases: $\beta=\alpha$ and $1 \leqslant \beta<\alpha$.

Figure 4: The edges in S_{1} are in bold where (a) $\beta=\alpha$, and (b) $1 \leqslant \beta<\alpha$.
Case 2.1: $\beta=\alpha$. Let $R_{1}=(R-X) \cup\left\{x_{\alpha}\right\}$ and $B_{1}=B-\{b\}$. See Figure $4(\mathrm{a})$. Note that x_{α} is a red point on $C H\left(R_{1} \cup B_{1}\right)$ and

$$
\begin{aligned}
\left|R_{1}\right| & =|R|-\alpha+1 \\
& =|R|-(|R|-k(|B|-1))+1 \\
& =k\left|B_{1}\right|+1 .
\end{aligned}
$$

Let T_{1} be the plane bichromatic $(k+1)$-tree obtained by $\operatorname{proc} 2\left(R_{1}, B_{1}, x_{\alpha}\right)$ with $d_{T_{1}}\left(x_{\alpha}\right) \in$ $\{1,2\}$ and all other red points in T_{1} are of degree at most 3. Note that $\left|R_{1} \cup B_{1}\right|<|R \cup B|$. We obtain a desired tree $T=T_{1} \cup S_{1} . T$ is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}\left(x_{\alpha}\right) \in\{2,3\}$ and $d_{T}(b)=\alpha=|R|-k(|B|-1)$ as required.
Case 2.2: $1 \leqslant \beta<\alpha$. In this case both vertices of $C H((R-X) \cup B)$ adjacent to b are blue points. Let $R_{1}=R-X$ and $B_{1}=B$. See Figure 4(b). Let $\gamma=\alpha-\beta$ and note that $1 \leqslant \gamma<\alpha \leqslant k$. Then,

$$
\begin{aligned}
\left|R_{1}\right| & =|R|-\beta \\
& =(k(|B|-1)+\alpha)-\beta \\
& =k\left(\left|B_{1}\right|-1\right)+\gamma .
\end{aligned}
$$

Thus, $k\left(\left|B_{1}\right|-1\right)<\left|R_{1}\right| \leqslant k\left|B_{1}\right|$. Let T_{1} be the plane bichromatic ($k+1$)-tree obtained by the recursive call proc1 $\left(R_{1}, B_{1}, b\right)$ with $d_{T_{1}}(b)=\gamma$ and all red points of T_{1} are of degree at most 3. Note that $\left|R_{1} \cup B_{1}\right|<|R \cup B|$. We obtain a desired tree $T=T_{1} \cup S_{1}$. T is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}(b)=\beta+\gamma=\alpha$.

3.1.2 Procedure proc2

The procedure $\operatorname{proc} 2(R, B, r)$ takes as input a set R of red points, a set B of blue points, and a point $r \in B$, where $|B| \geqslant 2,|R|=k|B|+1$, with $k \geqslant 2$, and r is on $C H(R \cup B)$. This procedure computes a plane bichromatic $(k+1)$-tree T on $R \cup B$ where $d_{T}(r) \in\{1,2\}$ and each other red vertex has degree at most 3 .

We consider two cases, depending on whether or not both vertices of $C H(R \cup B)$ adjacent to r belong to R.

Case 1: At least one of the vertices on $C H(R \cup B)$ adjacent to r does not belong to R. Let b be such a point belonging to B. Let $R_{1}=R-\{r\}, B_{1}=B$. Note that $\left|R_{1}\right|=k\left|B_{1}\right|$, and b is on $C H\left(R_{1} \cup B_{1}\right)$. Let T_{1} be the plane bichromatic $(k+1)$-tree obtained by $\operatorname{proc}\left(R_{1}, B_{1}, b\right)$ with $d_{T_{1}}(b)=k$ and all red points of T_{1} are of degree at most 3 . Note that $\left|R_{1} \cup B_{1}\right|<|R \cup B|$. Then, we obtain a desired tree $T=T_{1} \cup\{(r, b)\} . T$ is a plane bichromatic ($k+1$)-tree on $R \cup B$ with $d_{T}(b)=k+1$ and $d_{T}(r)=1$.

Case 2: Both vertices of $C H(R \cup B)$ adjacent to r belong to R. In this case, by Lemma 2 there are two possibilities:

Case 2.1: The first statement in Lemma 2 holds. Consider the blue point b and the sets R_{1}, R_{2}, B_{1}, and B_{2} in this statement. Note that b is a blue point on $C H\left(R_{1} \cup B_{1}\right)$ and on $C H\left(R_{2} \cup B_{2}\right)$. Let T_{1} and T_{2} be the plane bichromatic ($k+1$)-trees obtained by running $\operatorname{proc} 1\left(R_{1}, B_{1}, b\right)$ and $\operatorname{proc}\left(R_{2}, B_{2}, b\right)$, respectively. Note that $d_{T_{1}}(b)=k-\alpha, d_{T_{2}}(b)=\alpha$, all red points of T_{1} and T_{2} have degree at most $3,\left|R_{1} \cup B_{1}\right|<|R \cup B|$, and $\left|R_{2} \cup B_{2}\right|<|R \cup B|$. We obtain a desired tree $T=T_{1} \cup T_{2} \cup\{(r, b)\}$. See Figure 2(a). T is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}(r)=1$ and $d_{T}(b)=(k-\alpha)+\alpha+1=k+1$.
Case 2.2: The second statement in Lemma 2 holds. Consider the blue points b, b^{\prime} and the sets R_{1}, R_{2}, B_{1}, and B_{2} in this statement. Note that b is a blue point on $\operatorname{CH}\left(R_{1} \cup B_{1}\right)$ and b^{\prime} is a blue point on $C H\left(R_{2} \cup B_{2}\right)$. Let T_{1} and T_{2} be the plane bichromatic ($k+1$)-trees obtained by $\operatorname{proc} 1\left(R_{1}, B_{1}, b\right)$ and $\operatorname{proc} 1\left(R_{2}, B_{2}, b^{\prime}\right)$. Note that $d_{T_{1}}(b)=k, d_{T_{2}}\left(b^{\prime}\right)=k$, all red points of T_{1} and T_{2} have degree at most $3,\left|R_{1} \cup B_{1}\right|<|R \cup B|$, and $\left|R_{2} \cup B_{2}\right|<|R \cup B|$. We obtain a desired tree $T=T_{1} \cup T_{2} \cup\left\{(r, b),\left(r, b^{\prime}\right)\right\}$. See Figure $2(\mathrm{~b})$. T is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}(b)=k+1, d_{T}\left(b^{\prime}\right)=k+1$, and $d_{T}(r)=2$.

3.1.3 Algorithm plane-tree

Algorithm plane-tree (R, B) takes as input a set R of red points and a non-empty set B of blue points, where $|R|=k|B|$, with $k \geqslant 2$, and $R \cup B$ is in general position. This algorithm constructs a plane bichromatic ($k+1$)-tree T on $R \cup B$ such that each red vertex has degree at most 3. By Observation 1, T has only one blue vertex of degree k and the other blue vertices are of degree $k+1$. We consider two cases, depending on whether or not all vertices of $C H(R \cup B)$ belong to R.
Case 1: At least one of the vertices of $C H(R \cup B)$ belongs to B. Let b be such a vertex. Let T be the tree obtained by running $\operatorname{proc1}(R, B, b)$. T is a plane bichromatic $(k+1)$-tree on $R \cup B$ with $d_{T}(b)=k$ and all red vertices of T are of degree at most 3 . Notice that b is the only blue vertex of degree k in T.
Case 2: All vertices of $C H(R \cup B)$ belong to R. Let a be an arbitrary red point on $C H(R \cup B)$. By a suitable rotation of the plane, we may assume that a is the lowest point of $C H(R \cup B)$. We add a dummy red point r^{\prime} at a sufficiently small distance ϵ to the left of a such that the radial ordering of the points in $(R \cup B)-\{a\}$ around r^{\prime} is the same as their radial ordering around a. See Figure 5. Now we consider the radial ordering of the points in $R \cup B$ (including a) around r^{\prime}. We apply Lemma 2 with r^{\prime} playing the role of r. There are two possibilities:

Figure 5: A dummy red point r^{\prime} is placed very close to a.

Case 2.1: The first statement in Lemma 2 holds. Consider the blue point b and the sets R_{1}, R_{2}, B_{1}, and B_{2} as in the first statement of Lemma 2. Note that $a \in R_{2}, r^{\prime} \notin R_{1} \cup R_{2}$, and b is a blue point on $C H\left(R_{1} \cup B_{1}\right)$ and on $C H\left(R_{2} \cup B_{2}\right)$. Let T_{1} and T_{2} be the plane bichromatic $(k+1)$-trees obtained by $\operatorname{proc} 1\left(R_{1}, B_{1}, b\right)$ and $\operatorname{proc} 1\left(R_{2}, B_{2}, b\right)$, respectively. Note that $d_{T_{1}}(b)=k-\alpha, d_{T_{2}}(b)=\alpha$, and all red vertices of T_{1} and T_{2} have degree at most 3. We obtain a desired tree $T=T_{1} \cup T_{2}$ with $d_{T}(b)=k-\alpha+\alpha=k ; b$ is the only blue vertex of degree k in T.

Case 2.2: The second statement in Lemma 2 holds. Consider the blue points b, b^{\prime} and the sets R_{1}, R_{2}, B_{1}, and B_{2} as in the second statement of Lemma 2. Note that $a \in R_{2}$, $r^{\prime} \notin R_{1} \cup R_{2}, b$ is a blue point on $C H\left(R_{1} \cup B_{1}\right)$, and b^{\prime} is a blue point on $C H\left(R_{2} \cup B_{2}\right)$. If we compute trees on $R_{1} \cup B_{1}$ and $R_{2} \cup B_{2}$ and discard r^{\prime}, as we did in the previous case, then the resulting graph is not connected and hence it is not a tree. Thus, we handle this case in a different way. First we remove a from R_{2} as shown in Figure 5 this makes $\left|R_{2}\right|=k\left|B_{2}\right|-1=k\left(\left|B_{2}\right|-1\right)+(k-1)$. Note that $C H\left(R_{1} \cup B_{1}\right)$ and $C H\left(R_{2} \cup B_{2}\right)$ are disjoint. Let T_{1} and T_{2} be the plane bichromatic $(k+1)$-trees obtained by $\operatorname{proc} 1\left(R_{1}, B_{1}, b\right)$ and $\operatorname{proc} 1\left(R_{2}, B_{2}, b^{\prime}\right)$, respectively. Note that $d_{T_{1}}(b)=k, d_{T_{2}}\left(b^{\prime}\right)=k-1$, and all red vertices of T_{1} and T_{2} have degree at most 3 . We obtain a desired tree $T=T_{1} \cup T_{2} \cup\left\{(a, b),\left(a, b^{\prime}\right)\right\}$ with $d_{T}(a)=2, d_{T}(b)=k+1$ and $d_{T}\left(b^{\prime}\right)=k ; b^{\prime}$ is the only vertex of degree k in T.

This concludes the description of algorithm plane-tree. The pseudo code for proc1, proc2, and plane-tree are given in Algorithms 1, 2, and 3, respectively.

```
Algorithm \(1 \operatorname{proc} 1(R, B, b)\)
Input: \(R, B\), and \(b \in B\) such that \(k(|B|-1)<|R| \leqslant k|B|\), with \(k \geqslant 2\), and \(b\) on \(C H(R \cup B)\).
Output: a plane bichromatic \((k+1)\)-tree \(T\) on \(R \cup B\) with \(d_{T}(b)=|R|-k(|B|-1)\) and each
red vertex has degree at most 3 .
    \(S_{1}, X \leftarrow \emptyset ; \alpha \leftarrow|R|-k(|B|-1)\)
    if both neighbors of \(b\) on \(C H(R \cup B)\) are blue then
        \(r_{1}, \ldots, r_{\alpha} \leftarrow\) radially consecutive red points obtained in Lemma 1
        \(R_{1}, B_{1}, R_{2}, B_{2} \leftarrow\) point sets obtained in Lemma 1
        if \(\alpha=1\) then \(T \leftarrow\) the tree obtained in Case 1.2
        else \(T \leftarrow\left\{\left(b, r_{1}\right), \ldots,\left(b, r_{\alpha}\right)\right\} \cup \operatorname{proc} 2\left(R_{1}, B_{1}, r_{1}\right) \cup \operatorname{proc} 2\left(R_{2}, B_{2}, r_{\alpha}\right)\)
    else
        while \(b\) has a red neighbor on \(C H((R-X) \cup B)\) and \(d_{S_{1}}(b)<\alpha\) do
            \(x \leftarrow\) a red neighbor of \(b\) on \(C H((R-X) \cup B)\)
            \(X \leftarrow X \cup\{x\}, S_{1} \leftarrow S_{1} \cup\{(b, x)\}\)
        if \(d_{S_{1}}(b)=\alpha\) then \(T \leftarrow S_{1} \cup \operatorname{proc} 2(R \cup\{x\}, B-\{b\}, x)\)
        else \(T \leftarrow S_{1} \cup \operatorname{proc} 1(R-X, B, b)\)
    return \(T\)
```

```
Algorithm 2 proc2 \((R, B, r)\)
Input: \(R, B\), and \(r \in R\) such that \(|R|=k|B|+1\), with \(k \geqslant 2\), and \(r\) on \(C H(R \cup B)\).
Output: a plane bichromatic \((k+1)\)-tree \(T\) on \(R \cup B\) with \(d_{T}(r) \in\{1,2\}\) and each other red
vertex has degree at most 3 .
    if \(B=\emptyset\) then return \(\emptyset\)
    if \(r\) has any blue neighbor on \(C H(R \cup B)\) then
        \(b \leftarrow\) a blue neighbor of \(r\) on \(C H(R \cup B)\)
        \(T \leftarrow(r, b) \cup \operatorname{proc} 1(R-\{r\}, B, b)\)
    else
        if case 1 of Lemma 2 with respect to \(r\) then
            \(b \leftarrow\) the point obtained in case 1 of Lemma 2
            \(R_{1}, B_{1}, R_{2}, B_{2} \leftarrow\) point sets obtained in case 1 of Lemma 2
            \(T \leftarrow\{(r, b)\} \cup \operatorname{proc} 1\left(R_{1}, B_{1}, b\right) \cup \operatorname{proc} 1\left(R_{2}, B_{2}, b\right)\)
        else
            \(b, b^{\prime} \leftarrow\) the points obtained in case 2 of Lemma 2
            \(R_{1}, B_{1}, R_{2}, B_{2} \leftarrow\) point sets obtained in case 2 of Lemma 2
            \(T \leftarrow\left\{(r, b),\left(r, b^{\prime}\right)\right\} \cup \operatorname{proc} 1\left(R_{1}, B_{1}, b\right) \cup \operatorname{proc} 1\left(R_{2}, B_{2}, b^{\prime}\right)\)
    return \(T\)
```

```
Algorithm 3 plane-tree \((R, B)\)
Input: a set \(R\) of red points, a set \(B\) of blue points such that \(|R|=k|B|\), with \(k \geqslant 2\).
Output: a plane bichromatic \((k+1)\)-tree \(T\) on \(R \cup B\) such that each red vertex has degree at
most 3.
    if there is a blue point \(b\) on \(C H(R \cup B)\) then
        \(T \leftarrow \operatorname{proc} 1(R, B, b)\)
    else
        \(a \leftarrow\) a red point on \(C H(R \cup B)\)
        \(r^{\prime} \leftarrow\) a dummy red point very close and to the left of \(a\) on \(C H(R \cup B)\)
        if case 1 of Lemma 2 with respect to \(r^{\prime}\) then
            \(b \leftarrow\) the point obtained in case 1 of Lemma 2
            \(R_{1}, B_{1}, R_{2}, B_{2} \leftarrow\) point sets obtained in case 1 of Lemma 2
            \(T \leftarrow \operatorname{proc} 1\left(R_{1}, B_{1}, b\right) \cup \operatorname{proc} 1\left(R_{2}, B_{2}, b\right)\)
        else
            \(b, b^{\prime} \leftarrow\) the points obtained in case 2 of Lemma 2
            \(R_{1}, B_{1}, R_{2}, B_{2} \leftarrow\) point sets obtained in case 2 of Lemma 2
            \(T \leftarrow\left\{(a, b),\left(a, b^{\prime}\right)\right\} \cup \operatorname{proc} 1\left(R_{1}, B_{1}, b\right) \cup \operatorname{proc} 1\left(R_{2}-\{a\}, B_{2}, b^{\prime}\right)\)
    return \(T\)
```


4 Proof of Conjecture 2

In this section we prove Conjecture 2, Given two disjoint sets, R and B, of points in the plane such that $|B| \leqslant|R|,\left\lceil\frac{|R|}{|B|}\right\rceil=k$, with $k \geqslant 2$, and $R \cup B$ is in general position, we show how to compute a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+1$.

We prove Conjecture 2 by modifying the algorithm presented in Section 3. Since $|B| \leqslant|R|$ and $\left[\frac{|R|}{|B|}\right]=k$, we have $(k-1)|B|<|R| \leqslant k|B|$, with $k \geqslant 2$. If $|R|=k|B|$, then by Theorem 5 there exists a plane bichromatic $(k+1)$-tree on $R \cup B$. Therefore, assume that
$(k-1)|B|<|R|<k|B|$. Let $\omega=k|B|-|R|$. Observe that $1 \leqslant \omega<|B|<|R|$. Our main idea for proving Conjecture 2 is to add ω dummy red points and then use (a modified version of the algorithm presented in Section 3 to obtain a $(k+1)$-tree on $R \cup B$.

We pick an arbitrary subset S of R of size ω. For each point $r \in S$ we add a new red point r^{\prime} at a sufficiently small distance ϵ to r such that the cyclic orders of $(R \cup B)-\{r\}$ around r and around r^{\prime} are equal. Let R^{\prime} be the set of these new points.

We call the points in R^{\prime} as dummy red points, the points in S as saturated red points, and the points in $R-S$ as unsaturated red points. Each dummy red point corresponds to a saturated red point, and vice versa.

In Section 4.1 we present a method that computes a plane bichromatic $(k+1)$-tree on $R \cup B$ for the case when $k \geqslant 4$. In Section 4.2 we present another method that computes a plane bichromatic ($k+1$)-tree on $R \cup B$ for the case when $k \geqslant 2$, which proves Conjecture 2,

Figure 6: Unifying the dummy red point r^{\prime} with its corresponding saturated red point r.

4.1 Unify Method

In this section we present a method that computes a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $\max \{5, k+1\}$.

Note that $\left|R \cup R^{\prime}\right|$ is equal to $k|B|$. Let T^{\prime} be the plane bichromatic ($k+1$)-tree obtained by running algorithm plane-tree on $R \cup R^{\prime}, B$. Consider any dummy red vertex r^{\prime} in T^{\prime}. Let r be the saturated red vertex in T^{\prime} that corresponds to r^{\prime}. Recall that $d_{T^{\prime}}(r) \leqslant 3$ and $d_{T^{\prime}}\left(r^{\prime}\right) \leqslant 3$. We unify r^{\prime} with r as follows. Connect all points adjacent to r^{\prime} to r, and then remove r^{\prime} from R. This creates a cycle in the resulting graph where r is on that cycle. Then, remove one of the edges of the cycle incident on r; see Figure 6. As a result, we obtain a tree $T^{\prime \prime}$ with $d_{T^{\prime \prime}}(r) \leqslant 5$. Let T be the tree obtained after unifying all the dummy red points with their corresponding saturated red points. Then, T is a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $\max \{5, k+1\}$. If $k \geqslant 4$, then this construction gives a plane bichromatic $(k+1)$-tree. However, if $k \in\{2,3\}$ then this construction may give a tree of degree 5 .

4.2 Pair-Refine Method

In this section we present a method that computes a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $k+1$ when $k \in\{2,3\}$. However, this method works for all $k \geqslant 2$.

Recall that $\left|R \cup R^{\prime}\right|$ is equal to $k|B|$. Consider a plane bichromatic ($k+1$)-tree T^{\prime} obtained by plane-tree $\left(R \cup R^{\prime}, B\right)$. If in T^{\prime} all the dummy points are leaves, i.e., $d_{T^{\prime}}\left(r^{\prime}\right)=1$ for all $r^{\prime} \in R^{\prime}$, then a desired tree can easily be obtained by removing the dummy vertices from T^{\prime}. In this section we show how to extend/modify the algorithm of Section 3 to obtain a plane bichromatic $(k+1)$-tree T^{\prime} where all the dummy points are leaves, i.e., no dummy point appears as an internal node in T^{\prime}. For simplicity, we write R for $R \cup R^{\prime}$. We denote the set of dummy points
in a set R by \mathcal{D}_{R}. A dummy red point r^{\prime} can appear as an internal node only in one of the following cases:

Case 1: proc1 calls proc2 on r^{\prime} when $\alpha \geqslant 2$
Case 2: $r^{\prime}=x_{s}$ in proc 1 when $\alpha=1$
Case 3: plane-tree calls proc2 on r^{\prime}.
We show how to handle each of these cases. Consider the moment we want to call proc2 on r^{\prime} either in proc1 or in plane-tree. Let r be the saturated red point corresponding to r^{\prime}. In order to prevent r^{\prime} from becoming an internal node, we either delete r^{\prime} or pair r^{\prime} to an unsaturated red point different from r; this makes r unsaturated. Then, we call proc2 on r (instead of on $\left.r^{\prime}\right)$. To see why it is necessary to delete or pair r^{\prime}, assume we called proc2 on r while keeping r^{\prime}. Later on, during the algorithm we may call proc2 on r^{\prime} for the second time. Now if we run proc2 on r for the second time, it may lead to creating a cycle in T^{\prime} or increasing the degree of r.

Figure 7: pair-refine method: (a) moving the dummy red point r^{\prime} to an unsaturated red point where $|R|=2|B|+1$, (b) refining the set of dummy red points by removing $|B|$-many of them (including r^{\prime}) where $|R|=3|B|+1$; after refinement we have $|R|=2|B|+1$. Disks represent blue points, big circles represent non-dummy red points, and small circles represent dummy red points

Since we want to run proc2 on r right after deleting or pairing r^{\prime}, we have to make sure that the conditions of proc2 are satisfied after deleting or pairing r^{\prime}. Thus, we define two new operations: pair and refine. The pair operation moves a dummy red point from its corresponding saturated red point to an unsaturated red point; see Figure 7(a). This makes the saturated red point to become unsaturated, and vice versa. The refine operation deletes some dummy red points from R; this makes their corresponding saturated points to become unsaturated; see Figure 7(b). We define pair-refine method is depicted in Algorithm 4. This method gets a set R of red points (some of them are dummy), a non-empty set B of blue points, and a saturated point $r \in R$ that is on $C H\left(\left(R-\mathcal{D}_{R}\right) \cup B\right)$ as input. Since we call pair-refine method right before calling proc2, we are in the case where $|R|=k|B|+1$, with $k \geqslant 2$. Let r^{\prime} be the dummy point in R that saturated r. The pair-refine method either (i) pairs r^{\prime} to an unsaturated point $r_{1} \in R$ (this is done by removing r^{\prime} from R, and adding a new dummy point to R at a very small distance from r_{1}); this makes r unsaturated, or (ii) refines R by removing $|B|$ dummy points (including r^{\prime}) from R; again this makes r unsaturated. After this method we have $|B| \neq \emptyset$, $|R|=k^{\prime}|B|+1$, with $2 \leqslant k^{\prime} \leqslant k$, and r on $C H\left(\left(R-\mathcal{D}_{R}\right) \cup B\right)$; these are necessary conditions for proc2.

```
Algorithm 4 pair-refine \((R, B, r)\)
Input: a set \(R\) of red points, a non-empty set \(B\) of blue points, a saturated point \(r \in R\) that
is on \(C H\left(\left(R-\mathcal{D}_{R}\right) \cup B\right)\), where \(|R|=k|B|+1\), with \(k \geqslant 2\).
Output: \(R, B, r\) where \(r\) is unsaturated, and \(|R|=k^{\prime}|B|+1\), with \(2 \leqslant k^{\prime} \leqslant k\).
    \(S \leftarrow R-\mathcal{D}_{R}\)
    \(r^{\prime} \leftarrow\) the point of \(\mathcal{D}_{R}\) who saturated \(r\)
    if \(|S| \neq\left|\mathcal{D}_{R}\right|\) then
    there is an unsaturated red point \(r_{1}\) in \(S\). We pair \(r^{\prime}\) with \(r_{1} ; r\) becomes unsaturated while
    \(r_{1}\) becomes saturated. Then, we return \(R, B, r\).
    else
    all points of \(S\) are saturated. Observe that \(|R|=|S|+\left|\mathcal{D}_{R}\right|=2|S|\). Thus, \(|R|=2|S|=\)
    \(k|B|+1\), implying that \(k\) is an odd number and, thus, \(k \geqslant 3\). Then, we remove \(|B|\)
    arbitrary dummy points (including \(r^{\prime}\) ) from \(R\). See Figure 7(b). As a result, we have
    \(|R|=(k-1)|B|+1\) where \(k \geqslant 3\); alternatively \(|R|=k^{\prime}|B|+1\) where \(2 \leqslant k^{\prime}<k\). Then, we
    return \(R, B\), \(r\).
```

Now we show how to handle each of Cases 1,2 , and 3 .
Case 1: Assume we called proc1 on a blue point b, and let $r_{1}, \ldots, r_{\alpha}$ be the selected consecutive red points where $\alpha \geqslant 2$. We do not care about $r_{2}, \ldots, r_{\alpha-1}$ at this moment as they will be of degree one in the final tree. Before calling $\operatorname{proc} 2\left(R_{1}, B_{1}, r_{1}\right)$ and $\operatorname{proc} 2\left(R_{2}, B_{2}, r_{\alpha}\right)$, we look at the following two cases, depending on whether or not r_{1} and r_{α} saturate each other.

- r_{1} is saturated by r_{α}, or r_{α} is saturated by r_{1}. In this case $\alpha=2$ and hence $r_{\alpha}=r_{2}$. By symmetry, assume r_{1} is saturated by r_{α}; note that r_{α} is a dummy point. First we remove the dummy point r_{α} from R_{2}. Then we add r_{1} to R_{2}. Note that $\left|R_{2}\right|$ does not change. In addition r_{1} belongs to both R_{1} and R_{2}. Then, we proceed as in Case 2 where $\alpha=1$ (the degree of b will be 1 instead of 2).
- r_{1} is not saturated by r_{α}, and r_{α} is not saturated by r_{1}. We only describe the solution for handling $\operatorname{proc} 2\left(R_{1}, B_{1}, r_{1}\right)$; we handle $\operatorname{proc} 2\left(R_{2}, B_{2}, r_{\alpha}\right)$ in a similar way. We consider three cases, depending on whether r_{1} is unsaturated, saturated, or dummy.
$-r_{1}$ is unsaturated. We connect b to r_{1}, and then call $\operatorname{proc} 2\left(R_{1}, B_{1}, r_{1}\right)$.
- r_{1} is saturated. We connect b to r_{1}. Let r_{1}^{\prime} be r_{1} 's corresponding dummy point. If $r_{1}^{\prime} \notin R_{1}$, then we call proc2 $\left(R_{1}, B_{1}, r_{1}\right)$. If $r_{1}^{\prime} \in R_{1}$, then we call pair-refine $\left(R_{1}, B_{1}, r_{1}\right)$ first; this makes r_{1} unsaturated and $\left|R_{1}\right|=k^{\prime}\left|B_{1}\right|+1$, with $2 \leqslant k^{\prime} \leqslant k$. Then we call $\operatorname{proc} 2\left(R_{1}, B_{1}, r_{1}\right)$.
- r_{1} is dummy. Let r be r_{1} 's corresponding saturated point. We connect b to r (instead of connecting to r_{1}). If $r \notin R_{1}$ (note that $r=r_{2}$) then we remove r_{1} from R_{1} and add r to R_{1}; this makes r unsaturated in R_{1} while $\left|R_{1}\right|$ does not change. Then we call proc2 $\left(R_{1}, B_{1}, r\right)$. If $r \in R_{1}$ then we first call pair-refine $\left(R_{1}, B_{1}, r\right)$ and then we call proc2 $\left(R_{1}, B_{1}, r\right)$.

Case 2: $\alpha=1$. Recall that in this case we connected b to a red point x_{s}. Moreover, we looked at two cases depending on whether or not l_{1} intersects C_{2} and l_{2} intersects C_{1}.

Case 2.1: l_{1} does not intersect C_{2}, or l_{2} does not intersect C_{1}. By symmetry, we assume l_{1} does not intersect C_{2}. We consider three cases:

- x_{s} is unsaturated. We connect b to x_{s} and call proc2 $\left(R^{\prime}, B^{\prime}, x_{s}\right)$.
- x_{s} is saturated. We connect b to x_{s}. Then we call pair-refine $\left(R^{\prime}, B^{\prime}, x_{s}\right)$, then call $\operatorname{proc} 2\left(R^{\prime}, B^{\prime}, x_{s}\right)$.
- x_{s} is dummy. Let x be the saturated point corresponding to x_{s}. We connect b to x. Then, we call pair-refine $\left(R^{\prime}, B^{\prime}, x\right)$, then call $\operatorname{proc} 2\left(R^{\prime}, B^{\prime}, x\right)$.
Case 2.2: l_{1} intersects C_{2}, and l_{2} intersects C_{1}. Recall that in this case l_{1} intersects either C_{2}^{\prime} or $C_{2}^{\prime \prime}$. In either case we connected b, x_{s-1}, y_{i} to x_{s}, and then called $\operatorname{proc} 1\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$ and $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$ (assuming $x_{s} \in R_{1}$). We have to make sure b, x_{s-1}, and y_{i} be connected to an unsaturated red point. We also have to make sure the size conditions for both $\operatorname{proc} 1\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$ and $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$ are satisfied. In order to do that, we distinguish between two cases: $x_{s} \neq r_{1}$ and $x_{s}=r_{1}$. In either case, we compute B_{1}^{\prime} and B_{2}^{\prime} as usual, and we show how to compute R_{1}^{\prime} and R_{2}^{\prime}.
Case 2.2.1: $x_{s} \neq r_{1}$. Before computing R_{1}^{\prime} and R_{2}^{\prime} we do the following.
a. If x_{s} is unsaturated, then we connect b, x_{s-1}, y_{i} to x_{s}.
b. If x_{s} is saturated, then we connect b, x_{s-1}, y_{i} to x_{s}, then call pair-refine $\left(R_{1}, B_{1}, x_{s}\right)$.
c. If x_{s} is dummy, let x be the saturated point corresponding to x_{s}. We connect b, x_{s-1}, y_{i} to x, then call pair-refine $\left(R_{1}, B_{1}, x\right)$.
At this point we have $\left|R_{1}\right|=k^{\prime}\left|B_{1}\right|+1$, with $2 \leqslant k^{\prime} \leqslant k$, and $\left|R_{2}\right|=k\left|B_{2}\right|+1$, with $k \geqslant 2$.
Note that r_{1} is in both R_{1} and R_{2}. Now we show how to compute R_{1}^{\prime} and R_{2}^{\prime}; if r_{1} is saturated/dummy, then we have to make sure r_{1} and its corresponding dummy/saturated point do not lie in different sets. We differentiate between the following cases:
- r_{1} is unsaturated. We compute R_{1}^{\prime} and R_{2}^{\prime} as usual: $R_{1}^{\prime}=R_{1}-\left\{x_{s}\right\}$ and $R_{2}^{\prime}=$ $R_{2}-\left\{r_{1}\right\}$; this makes $\left|R_{1}^{\prime}\right|=k^{\prime}\left|B_{1}^{\prime}\right|$ and $\left|R_{2}^{\prime}\right|=k\left|B_{2}^{\prime}\right|$.
- r_{1} is saturated (resp. dummy) and its corresponding dummy (resp. saturated) point belongs to R_{1}. We compute R_{1}^{\prime} and R_{2}^{\prime} as usual: $R_{1}^{\prime}=R_{1}-\left\{x_{s}\right\}$ and $R_{2}^{\prime}=R_{2}-\left\{r_{1}\right\}$.
- r_{1} is saturated and its corresponding dummy point, say r_{1}^{\prime}, belongs to R_{2}. We compute $R_{1}^{\prime}=R_{1}-\left\{x_{s}\right\}$ and $R_{2}^{\prime}=R_{2}-\left\{r_{1}, r_{1}^{\prime}\right\}$. Then, we have $\left|R_{1}^{\prime}\right|=k^{\prime}\left|B_{1}^{\prime}\right|$ and $\left|R_{2}^{\prime}\right|=k\left|B_{2}^{\prime}\right|-1=k\left(\left|B_{2}^{\prime}\right|-1\right)+(k-1)$.
- r_{1} is dummy and its corresponding saturated point, say r, belongs to R_{2}. We compute $R_{1}^{\prime}=\left(R_{1} \cup\{r\}\right)-\left\{x_{s}, r_{1}\right\}$ and $R_{2}^{\prime}=R_{2}-\left\{r_{1}, r\right\}$. Then, we have $\left|R_{1}^{\prime}\right|=k^{\prime}\left|B_{1}^{\prime}\right|$ and $\left|R_{2}^{\prime}\right|=k\left(\left|B_{2}^{\prime}\right|-1\right)+(k-1)$.
In all cases, the size conditions for $\operatorname{both} \operatorname{proc} 1\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$ and $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$ are satisfied. Now we call $\operatorname{proc} 1\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$ and $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$.
Case 2.2.2: $x_{s}=r_{1}$. Observe that in this case $x_{s}=r_{1}=y_{t}$, and $y_{i}=y_{t-1}$. We distinguish between three cases depending on whether r_{1} is unsaturated, saturated, or dummy.
- r_{1} is unsaturated. We connect b, x_{s-1}, y_{i} to r_{1}. Then, we compute R_{1}^{\prime} and R_{2}^{\prime} as usual: $R_{1}^{\prime}=R_{1}-\left\{r_{1}\right\}$ and $R_{2}^{\prime}=R_{2}-\left\{r_{1}\right\}$; this makes $\left|R_{1}^{\prime}\right|=k\left|B_{1}^{\prime}\right|$ and $\left|R_{2}^{\prime}\right|=k\left|B_{2}^{\prime}\right|$.
- r_{1} is saturated. Without loss of generality assume its corresponding dummy point, r_{1}^{\prime}, belongs to R_{1}. We connect b, x_{s-1}, y_{i} to r_{1}. Then, we compute $R_{1}^{\prime}=R_{1}-\left\{r_{1}, r_{1}^{\prime}\right\}$ and $R_{2}^{\prime}=R_{2}-\left\{r_{1}\right\}$; this makes $\left|R_{1}^{\prime}\right|=k\left(\left|B_{1}^{\prime}\right|-1\right)+(k-1)$ and $\left|R_{2}^{\prime}\right|=k\left|B_{2}^{\prime}\right|$.
- r_{1} is dummy. Without loss of generality assume its corresponding saturated point, say r, belongs to R_{1}. We connect b, x_{s-1}, y_{i} to r. Then, we compute $R_{1}^{\prime}=$ $R_{1}-\left\{r_{1}, r\right\}$ and $R_{2}=R_{2}-\left\{r_{1}\right\}$; this makes $\left|R_{1}^{\prime}\right|=k\left(\left|B_{1}^{\prime}\right|-1\right)+(k-1)$ and $\left|R_{2}^{\prime}\right|=k\left|B_{2}^{\prime}\right|$.
In all cases, the size conditions for $\operatorname{both} \operatorname{proc} 1\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$ and $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$ are satisfied. Now we call $\operatorname{proc} 1\left(R_{1}^{\prime}, B_{1}^{\prime}, x_{s-1}\right)$ and $\operatorname{proc} 1\left(R_{2}^{\prime}, B_{2}^{\prime}, y_{i}\right)$.

Case 3: Recall that R is a set of size $k|B|$ with some dummy points. If there is a blue point, b, on $C H(R \cup B)$ then we simply call proc1 (R, B, b). Assume, all points of $C H(R \cup B)$ are red. Recall that in Case 2 of plane-tree we choose an arbitrary red point r on $C H(R \cup B)$. Here we show how to choose r as an unsaturated point; the next steps would be the same as in Case 2 of plane-tree. Select a point r_{1} on $C H(R \cup B)$. We distinguish between the following three cases:

- r_{1} is unsaturated. We choose r to be r_{1}.
- r_{1} is saturated. First, we pair r_{1} 's corresponding dummy point to an unsaturated point in R that is different from r_{1} (since we have more red points than blue points at the beginning, such an unsaturated point exists). Then, we choose r to be r_{1}.
- r_{1} is dummy. Let r_{2} be r_{1} 's corresponding saturated point. First, we pair r_{1} to an unsaturated point in R. Then, we choose r to be r_{2}.

Now r is an unsaturated point on $C H(R \cup B)$; this makes sure that the only dummy point added in this stage will not be in the final tree.

This completes the proof of Conjecture 2 .

5 Proof of Theorem 1

In this section we prove Theorem 1; Given two disjoint sets, R and B, of points in the plane such that $|B| \leqslant|R|$ and $R \cup B$ is in general position, and let $\delta=\left\lceil\frac{|R|-1}{|B|}\right\rceil$; we prove there exists a plane bichromatic tree on $R \cup B$ whose maximum vertex degree is at most $\max \{3, \delta+1\}$; this is the best possible upper bound on the maximum degree.

We differentiate between two cases: $|R|<|B|+2$ and $|R| \geqslant|B|+2$.
Case 1: $|R|<|B|+2$. In this case $|R|=|B|$ or $|R|=|B|+1$, and hence $\delta=1$. As shown in Section 1, it may not be possible to find a plane bichromatic tree of degree 2 (i.e., $\delta+1$), and hence 3 is the smallest possible degree. On the other hand, when $|R|=|B|$, Kaneko [9] showed how to compute a 3 -tree on $R \cup B$, and when $|R|=|B|+1$ by Conjecture 2 there exists a 3 -tree on $R \cup B$. This proves Theorem 1 for this case.

Case 2: $|R| \geqslant|B|+2$. In this case $\delta \geqslant 2$. As shown in Section $1, \delta+1$ is the smallest possible degree. Since $|B|<|R|$, we have $(k-1)|B|<|R| \leqslant k|B|$, for some $k \geqslant 2$. We distinguish between two cases where $(k-1)|B|+1<|R| \leqslant k|B|$ and $|R|=(k-1)|B|+1$. First assume $(k-1)|B|+1<|R| \leqslant k|B|$, with $k \geqslant 2$. In this range we have $\delta=\left\lceil\frac{|R|-1}{|B|}\right\rceil=\left\lceil\frac{|R|}{|B|}\right\rceil=k$. By Conjecture 2 there exists a $(\delta+1)$-tree on $R \cup B$. This proves Theorem 1 for this case.

Now, assume $|R|=(k-1)|B|+1$, with $k \geqslant 2$. If $k=2$, then $|R|=|B|+1$; we have already proved this case in Case 1. Thus, assume $k \geqslant 3$. Let $k^{\prime}=k-1$. Then, $|R|=k^{\prime}|B|+1$, with $k^{\prime} \geqslant 2$. In this case $\delta=k-1=k^{\prime}$, and we have to prove the existence of a $\left(k^{\prime}+1\right)$-tree. If there exists a red vertex r on $C H(R \cup B)$, then by running proc $2(R, B, r)$, we obtain a $\left(k^{\prime}+1\right)$-tree and we are done. Assume all vertices of $C H(R \cup B)$ are blue. In order to handle this case, first, we prove the following lemma by a similar idea as in the proof of Lemma 1 .

Lemma 3. Let R and B be two sets of red and blue points in the plane, respectively, such that $|B| \geqslant 1,|R|=k^{\prime}|B|+1$, with $k^{\prime} \geqslant 2$, and $R \cup B$ is in general position. Let b_{1}, b, b_{2} be blue points that are counter clockwise consecutive on $C H(R \cup B)$. Then, in the radial ordering of $R \cup B-\{b\}$ around b, there are $k=k^{\prime}+1$ consecutive red points, r_{1}, \ldots, r_{k}, such that $\left|R_{1}\right|=k^{\prime}\left|B_{1}\right|+1$ and $\left|R_{2}\right|=k^{\prime}\left|B_{2}\right|+1$, where R_{1} (resp. B_{1}) is the set of red points (resp. blue
points) of $R \cup B-\{b\}$ lying on or to the left of $\ell\left(b, r_{1}\right)$, and R_{2} (resp. $\left.B_{2}\right)$ is the set of red points (resp. blue points) of $R \cup B-\{b\}$ lying on or to the right of $\ell\left(b, r_{k}\right)$.

Proof. Assume b is the lowest point of $C H(R \cup B), b_{1}$ is to the left and b_{2} is to the right of b. We define the function f as follows: For each point x in $R \cup B-\{b\}$,

$$
\begin{aligned}
f(x)= & k^{\prime} \cdot(\text { the number of points of } B-\{b\} \text { lying on or to the left of } \ell(b, x)) \\
& -(\text { the number of points of } R \text { lying on or to the left of } \ell(b, x)) .
\end{aligned}
$$

Since b_{1} is the first point and b_{2} is the last point along the clockwise radial ordering of $R \cup B-\{b\}$ around b, we have $f\left(b_{1}\right)=k^{\prime}$ and $f\left(b_{2}\right)=k^{\prime}(|B|-1)-|R|=-\left(k^{\prime}+1\right)=-k$. The value of f changes by $+k^{\prime}$ at every blue point and by -1 at every red point. Since $f\left(b_{1}\right)>0>f\left(b_{2}\right)$, there exists a point in the radial ordering for which f equals 0 . Let v be the last point in this radial ordering where $f(v)=0$. Let $S=\left(r_{1}, \ldots, r_{k}\right)$ be the sequence of k points strictly after v in the radial ordering. The points of S are red, because if $r_{i} \in S$ is blue, then $f\left(r_{i}\right) \geqslant 0$ and hence there is a point between r_{i} and b_{2} (including r_{i}) in the radial ordering for which f equals 0 ; this contradicts the fact that v is the last point in the radial ordering with $f(v)=0$. We show that S satisfies the statement of the lemma. Having r_{1} and r_{k}, we define R_{1}, B_{1}, R_{2} and B_{2} as in the statement of the lemma. We have $f\left(r_{1}\right)=k^{\prime}\left|B_{1}\right|-\left|R_{1}\right|=-1$, and hence $\left|R_{1}\right|=k^{\prime}\left|B_{1}\right|+1$. Moreover,

$$
\begin{aligned}
\left|R_{2}\right| & =|R|-\left|R_{1}\right|-k+2 \\
& =\left(k^{\prime}|B|+1\right)-\left(k^{\prime}\left|B_{1}\right|+1\right)-\left(k^{\prime}+1\right)+2 \\
& =k^{\prime}\left(|B|-\left|B_{1}\right|-1\right)+1 \\
& =k^{\prime}\left|B_{2}\right|+1
\end{aligned}
$$

Let b be an arbitrary blue point on $C H(R \cup B)$. Since all the points on $C H(R \cup B)$ are blue, by Lemma 3 there are $k=k^{\prime}+1$ consecutive red points r_{1}, \ldots, r_{k} in the radial ordering of $R \cup B-\{b\}$ around b that divide the point set into two pairs of sets $\left\{R_{1}, B_{1}\right\}$ and $\left\{R_{2}, B_{2}\right\}$ with r_{1} on $C H\left(R_{1} \cup B_{1}\right)$ and r_{k} on $C H\left(R_{2} \cup B_{2}\right)$ such that $\left|R_{1}\right|=k^{\prime}\left|B_{1}\right|+1,\left|R_{2}\right|=k^{\prime}\left|B_{2}\right|+$ 1. Let T_{1} and T_{2} be the plane bichromatic $\left(k^{\prime}+1\right)$-trees obtained by proc2 $\left(R_{1}, B_{1}, r_{1}\right)$ and $\operatorname{proc} 2\left(R_{2}, B_{2}, r_{k}\right)$, respectively; note that $d_{T_{1}}\left(r_{1}\right) \in\{1,2\}$ and $d_{T_{2}}\left(r_{k}\right) \in\{1,2\}$. Then, we obtain a desired $\left(k^{\prime}+1\right)$-tree $T=T_{1} \cup T_{2} \cup\left\{\left(b, r_{1}\right), \ldots,\left(b, r_{k}\right)\right\}$ with $d_{T}\left(r_{1}\right) \in\{2,3\}, d_{T}\left(r_{k}\right) \in\{2,3\}$, and $d_{T}(b)=k=k^{\prime}+1$. This completes the proof of Theorem 1 .

6 Conclusion

In this paper, we answered the question posed by Abellanas et al. in 1996 [1] , in the affirmative, by proving the conjectures made by Kaneko in 1998 [9]. In fact we proved a slightly stronger result in Theorem 1 .

A simple reduction from the convex hull problem shows that the computation of a plane bichromatic spanning tree has an $\Omega(n \log n)$ lower bound. Using a worst-case deletion-only convex hull data structure, we can compute the tree in Theorem 1 in $O(n \cdot \operatorname{poly} \log (n))$ time.

References

[1] M. Abellanas, J. Garcia-Lopez, G. Hernández-Peñalver, M. Noy, and P. A. Ramos. Bipartite embeddings of trees in the plane. In Proceedings of the 4 th International Symposium on Graph Drawing (GD), pages 1-10, 1996.
[2] M. Abellanas, J. Garcia-Lopez, G. Hernández-Peñalver, M. Noy, and P. A. Ramos. Bipartite embeddings of trees in the plane. Discrete Applied Mathematics, 93(2-3):141-148, 1999.
[3] S. Bespamyatnikh, D. G. Kirkpatrick, and J. Snoeyink. Generalizing ham sandwich cuts to equitable subdivisions. Discrete \& Computational Geometry, 24(4):605-622, 2000.
[4] A. Biniaz, P. Bose, A. Maheshwari, and M. Smid. Plane geodesic spanning trees, Hamiltonian cycles, and perfect matchings in a simple polygon. In Proceedings of 1st International Conference on Topics in Theoretical Computer Science (TTCS), page to appear, 2015.
[5] M. G. Borgelt, M. J. van Kreveld, M. Löffler, J. Luo, D. Merrick, R. I. Silveira, and M. Vahedi. Planar bichromatic minimum spanning trees. J. Discrete Algorithms, 7(4):469478, 2009.
[6] P. Bose, M. McAllister, and J. Snoeyink. Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl., 1, 1997.
[7] M. Hoffmann and C. D. Tóth. Vertex-colored encompassing graphs. Graphs and Combinatorics, 30(4):933-947, 2014.
[8] Y. Ikebe, M. A. Perles, A. Tamura, and S. Tokunaga. The rooted tree embedding problem into points in the plane. Discrete \mathcal{E} Computational Geometry, 11:51-63, 1994.
[9] A. Kaneko. On the maximum degree of bipartite embeddings of trees in the plane. In Japan Conference on Discrete and Computational Geometry, JCDCG, pages 166-171, 1998.
[10] A. Kaneko and M. Kano. Discrete geometry on red and blue points in the plane - a survey. In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 551-570. Springer Berlin Heidelberg, 2003.
[11] M. Kano. Personal communication.
[12] M. Kano, K. Ozeki, K. Suzuki, M. Tsugaki, and T. Yamashita. Spanning k-trees of bipartite graphs. Electr. J. Comb., 22(1):P1.13, 2015.
[13] M. Kano, K. Suzuki, and M. Uno. Properly colored geometric matchings and 3-trees without crossings on multicolored points in the plane. In 16th Japanese Conference on Discrete and Computational Geometry and Graphs (JCDCGG), pages 96-111, 2013.
[14] J. Pach and P. K. Agarwal. Combinatorial geometry. Wiley-Interscience series in discrete mathematics and optimization. Wiley, 1995.
[15] A. Tamura and Y. Tamura. Degree constrained tree embedding into points in the plane. Inf. Process. Lett., 44(4):211-214, 1992.

[^0]: *Research supported by NSERC.

