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Abstract

A stacking operation adds a d-simplex on top of a facet of a simplicial d-polytope while
maintaining the convexity of the polytope. A stacked d-polytope is a polytope that is obtained
from a d-simplex and a series of stacking operations. We show that for a fixed d every
stacked d-polytope with n vertices can be realized with nonnegative integer coordinates.
The coordinates are bounded by O(n2 log2(2d)), except for one axis, where the coordinates are
bounded by O(n3 log2(2d)). The described realization can be computed with an easy algorithm.

The realization of the polytopes is obtained with a lifting technique which produces an
embedding on a large grid. We establish a rounding scheme that places the vertices on a
sparser grid, while maintaining the convexity of the embedding.

1 Introduction

Steinitz’s Theorem [Ste22, Zie95] states that the graphs of 3-polytopes1 are exactly the planar
3-connected graphs. In particular, every planar 3-connected graph can be realized as a 3-polytope.
The original proof is constructive, transforming the graph by a sequence of local operations down
to a tetrahedron. Unfortunately, the resulting polytope construction requires exponentially many
bits of accuracy for each vertex coordinate. Stated another way, this construction can place the
n vertices on an integer grid, but that grid may have dimensions doubly exponential in n [OS94].
The situation in higher dimensions is even worse. Already in dimension 4, there are polytopes
that cannot be realized with rational coordinates, and a 4-polytope that can be realized on the
grid might require coordinates that are doubly exponential in the number of its vertices [Zie95].
Moreover, it is NP-hard to decide whether a lattice is a face lattice of a 4-polytope [RG96, RGZ95].

How large an integer grid do we need to embed a given planar 3-connected graph with n
vertices as a polytope? This question goes back at least eighteen years as Problem 4.16 in Günter
M. Ziegler’s book [Zie95]; he wrote that “it is quite possible that there is a quadratic upper
bound” on the length of the maximum dimension. The best bound so far is exponential in
n, namely O(27.21n) [BS10, MRS11]; see below for the long history. The central question is
whether a polynomial grid suffices, that is, whether Steinitz’s Theorem can be made efficient.
For comparison, a planar graph can be embedded in the plane with strictly convex faces using
a polynomial-size grid [BR06]. In this paper, we give the first nontrivial subexponential upper
bound for a large class of 3-polytopes. Moreover, our construction generalizes to higher dimensions
and we show that a nontrivial class of d-polytopes can be realized with integers coordinates, which
are bounded by a polynomial in n.

A d-dimensional stacked polytope is a polytope that is constructed by a sequence of “stacking
operations” applied to a d-simplex. A stacking operation glues a d-simplex ∆ atop a simplicial
facet f of polytope, by identifying f with a face of ∆, while maintaining the convexity of the
polytope. Thus a stacking operation removes one facet f and adds d new facets having a new
common vertex. We call this new vertex stacked on f .

∗Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA. edemaine@mit.edu
†LG Theoretische Informatik, FernUniversität in Hagen, andre.schulz@fernuni-hagen.de. Supported by the

German Research Foundation (DFG) under grant SCHU 2458/2-1.
1In our terminology a polytope is always understood as a convex polytope.
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Our results. We present an algorithm that realizes a stacked polytope on a grid whose dimen-
sions are polynomial in n. In our presentation log denotes the binary logarithm. Our main result
is the following:

Theorem 1 Every d-dimensional stacked polytope can be realized on an integer grid, such that
all coordinates have size at most 10d2R2, except for one axis, where the coordinates have size at
most 6R3, for R = dnlog(2d).

As a corollary of Theorem 1 we obtain that every stacked 3-polytope can be embedded on the
grid of dimensions 270n5.17 × 270n5.17 × 18n7.76.

Related work. Several algorithms have been developed to realize a given graph as a 3-polytope.
Most of these algorithms are based on the following two-stage approach. The first stage computes
a plane (flat) embedding. To extend the plane drawing to a 3-polytope, the plane drawing must
fulfill a criterion which can be phrased as an “equilibrium stress condition”. Roughly speaking,
replacing every edge of the graph with a spring, the resulting system of springs must be in a
stable state for the plane embedding. Plane drawings that fulfill this criterion for the interior
vertices can be computed as barycentric embeddings, i.e., by Tutte’s method [Tut60, Tut63].
The main difficulty is to guarantee the equilibrium condition for the boundary vertices as well,
because in general this goal is achievable only for certain locations of the outer face. The second
stage computes a 3-polytope by assigning every vertex a height expressed in terms of the spring
constants of the system of springs.

The two-stage approach finds application in a series of algorithms [CGT96, EG95, HK92, OS94,
MRS11, RG96, Sch11]. The first result that improves the induced grid embedding of Steinitz’s

construction is due to Onn and Sturmfels [OS94]; they achieved a grid size of O(n160n3

). Richter-

Gebert’s algorithm [RG96] uses a grid of size O(218n2

) for general 3-polytopes, and a grid of
size O(25.43n) if the graph of the polytope contains at least one triangle. These bounds were
improved by Ribó Mor [Rib06] and later on by Ribó Mor, Rote, and Schulz [MRS11]. The last
paper expresses an upper bound for the grid size in terms of the number of spanning trees of the
graph. Using the recent bounds of Buchin and Schulz [BS10] on the number of spanning trees, this
approach gives an upper bound on the grid size of O(27.21n) for general 3-polytopes and O(24.83n)
for 3-polytopes with at least one triangular face. These bounds are the best known to date for
the general case. Very recently, Pak and Wilson proved that every simplicial2 3-polytope can be
embedded on a grid of size 4n3 × 8n5 × (500n8)n [PW13].

Zickfeld showed in his PhD thesis [Zic07] that it is possible to embed very special cases of
stacked 3-polytopes on a grid polynomial in n. First, if each stacking operation takes place on
one of the three faces that were just created by the previous stacking operation (what might be
called a serpentine stacked polytope), then there is an embedding on the n×n×3n4 grid. Second,
if we perform the stacking in rounds, and in every round we stack on every face simultaneously
(what might be called the balanced stacked polytope), then there is an embedding on a 4

3n ×
4
3n × O(n2.47) grid. Zickfeld’s embedding algorithm for balanced stacked 3-polytopes constructs
a barycentric embedding. Because of the special structure of the underlying graph the plane
embedding remarkably fits on a small grid.

Every stacked polytope can be extended to a balanced stacked polytope at the expense of
adding an exponential number of vertices. By doing so, Zickfeld’s grid embedding for the balanced
case induces a O(23.91n) grid embedding for general stacked 3-polytopes.

Little is known about the lower bound of the grid size for embeddings of 3-polytopes. An
integral convex embedding of an n-gon in the plane needs an area of Ω(n3) [AŽ95, And61, Thi91].
Therefore, realizing a 3-polytope with an (n− 1)-gonal face requires at least one dimension of size
Ω(n3/2). For simplicial polytopes (and hence for stacked polytopes), this lower-bound argument
does not apply. However, there are planar 3-trees that require Ω(n2) area for plane straight-line
drawings [MNRA11]. We show in Sect. 4 how to get a lower bound of Ω(n3) volume for stacked
3-polytopes based on this 2d example.

2A polytope is simplicial if all its faces are simplices.
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Alternative approaches for realizing general 3-polytopes come from the original proof of Steinitz’s
theorem, as well as the Koebe–Andreev–Thurston circle-packing theorem, which induces a particu-
lar polytope realization called the canonical polytope [Zie95]. Das and Goodrich [DG97] essentially
perform many inverted edge contractions on many independent vertices in one step, resulting in
a singly exponential bound on the grid size. The proof of the Koebe–Andreev–Thurston circle-
packing theorem relies on nonlinear methods and makes the features of the 3-dimensional em-
bedding obtained from a circle packing intractable; see [Sch91] for an overview. Lovász studied
a method for realizing 3-polytopes using a vector of the nullspace of a Colin de Verdière matrix
of rank 3 [Lov00]. It is easy to construct these matrices for stacked polytopes; however, without
additional requirements, the computed grid embedding might again need an exponential-size grid.

Our contribution. At a high level, we follow the popular two-stage approach: we compute
a flat embedding in Rd−1 and then lift it to a d-polytope. Although this two-stage approach is
well known for realizing 3-polytopes, it cannot be easily extended to higher dimensions. There
exists a generalization of equilibrium stresses for polyhedral complexes in higher dimensions by
Rybnikov [Ryb99]. However, it is not straightforward to operate with the formalism used by
Rybnikov for our purposes. To overcome the difficulties of handling the more complex behavior of
the higher-dimensional polytopes and to keep our presentation self-contained, we develop our own
specialized methods to study liftings of stacked polytopes. Notice that our methods coincides with
the approach of Rybnikov, however, we omit the proof, since it is not required for this presentation.

Instead of specifying the stress and then computing the barycentric embedding we construct
the “stress” and the barycentric embedding in parallel. To specify the stress we define the heights
of the lifting (actually, the vertical movement of the vertices as induced by the stacking operation).
In our presentation the concept of stress is therefore reduced to a certificate for the convexity of
the lifting, but it is not defining the flat embedding. On the other hand we still use barycentric
coordinates to determine the flat embedding. A crucial step in our algorithm is the construction
of a balanced set of barycentric coordinates, which corresponds to face volumes in the flat em-
bedding. Initially, all faces have the same volume, but to prevent large heights in the lifting, we
increase the volumes of the small faces. To see which faces must be blown up, we make use of
a decomposition technique from data structural analysis called heavy path decomposition [Tar83].
Based on this decomposition, we subdivide the stacked polytope into a hierarchy of (serpentine)
stacked polytopes, which we use to define the barycentric coordinates. At this stage the lifting
of the flat embedding would result in a grid embedding with exponential coordinates. But since
we have balanced the volume assignments, we can allow a small perturbation of the embedding,
while maintaining its convexity. Analyzing the size of the feasible perturbations shows that we
can round to points on a polynomially sized grid.

A preliminary version of this work was presented at the 22nd ACM-SIAM Symposium on
Discrete Algorithms (SODA) in San Francisco [DS11]. In the preliminary version we were focused
on the more prominent 3-dimensional case and did not present any bounds for higher-dimensional
polytopes. For the sake of a unified presentation we changed the construction of the lifting slightly.
In the preliminary version we defined the constructed stress as a linear combination of stresses
defined on certain K4s. In this paper we specify the “movement” for every stacked vertex (its
vertical shift) directly. This can be considered as the dual definition of the lifting. Another
difference is the more careful analysis of the size of the z-coordinates in the final embedding. In
contrast to the preliminary version, where we presented bound of 224,000n18 for the z-coordinates,
we present a different method for bounding the height of the lifting, which yields an upper bound
of 18n7.76 instead. We remark also that the conference version contained a flaw in the area
assignment, which is now fixed by a slightly modified construction (Lemma 7). In a paper that
followed the preliminary version Igamberdiev and Schulz introduced a duality transformation for
3-polytopes that allows to control the grid size of the dual polytope [IS16]. By this our results
for stacked polytopes can be transferred to their dual polytopes (truncated 3-polytopes), which
shows that also this class can be realized on a polynomial-sized grid.
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2 Specifying the geometry of stacked polytopes

In this section we develop the necessary tools for defining an embedding of a stacked d-polytope
with the two-stage approach. We present the framework for our algorithm by defining its basic
construction and by identifying certificates to guarantee its correctness. The actual algorithm is
then presented in Section 3.

2.1 Matrices, determinants, simplices

We start our presentation with introducing some notation. Assume that S = (s1, . . . , sk) is a
sequence of (k − 1)-dimensional vectors. Then we denote by (s1, . . . , sk) the matrix whose row
vectors (in order) are s1, . . . , sk. We define as

[S] = det

(
s1 s2 . . . sk
1 1 . . . 1

)
.

Notice that [S] equals (k−1)! times the signed volume of the simplex spanned by s1, . . . , sk. When
working with sequences we use the binary ◦ operator to concatenate two sequences. If there is no
danger of confusion we identify an element with the singleton set (or sequence) that contains this
element. If f is a function on U we extend f in the natural way to act on sequences on U , i.e., we
set f((a1, . . . , az)) := (f(a1), . . . , f(az)).

Throughout the paper we denote for a sequence X of affinely independent points the simplex
spanned by X by ∆X . If this simplex is the realization of some face of an embedding of a polytope
we denote this face by fX . For a d-polytope we call a (d − 1)-face a facet, and a (d − 2)-face a
ridge.

By convention, we understand as Rk the space spanned by the first k standard basis vectors.
In this sense we consider the subspace Rk−1 as space embedded inside Rk. Furthermore, when
we speak about hyperplanes in the following, we consider only those hyperplanes in Rk that are
not orthogonal to Rk−1.

2.2 Flat embedding

An important intermediate step in our embedding algorithm is the construction of a flat embed-
ding, which is a simplicial complex constructed by repeated weighted barycentric subdivisions of a
(d− 1)-simplex ∆B . The combinatorial structure of the flat embedding represents the face lattice
of the stacked polytope. Let ∆S be a (d−1)-simplex and let ∆1,∆2, . . . ,∆d be the (d−2)-simplices
that define its boundary. A barycentric subdivision adds a new point p in the interior of ∆S and
splits ∆S into d (d− 1)-simplices. For every simplex ∆i we obtain a new simplex ∆′i spanned by
∆i ∪ {p}. If the volume of all ∆′is are given such that they sum up to the volume of ∆S , then
there is one unique vertex p, such that the subdivision respects this volume assignment. We call
the volumes the ∆′is the barycentric coordinates of p with respect to ∆S .

We apply repeated barycentric subdivisions to create (a flat) embedding of a stacked polytope.
In particular, the subdivisions carry out the stacking operations geometrically (projected in the
z = 0 hyperplane). We start the subdivision process with two copies of a (d − 1)-simplex in the
z = 0 hyperplane glued along the boundary. One of these “initial” simplices will be the base
face fB , which remains unaltered during further modifications. The other face will be repeat-
edly subdivided such that the combinatorial structure of the stacked polytope is obtained. The
constructed realization is still flat, which means that it lies in the z = 0 hyperplane.

2.3 Liftings

Our algorithm for realizing stacked polytopes is based on the lifting technique. The assignment
of an additional coordinate to every vertex in the flat embedding is called a lifting. For the
assignment of a new coordinate z to the point p ∈ Rd−1 we use the shorthand notation (p, z).
The lifting is complemented by the projection function π : Rd → Rd−1 that simply removes the
d-th coordinate. As shortcut notation we write JSK for the expression [π(S)]. In the following we
refer to the d-th coordinate of a point in Rd as its z-coordinate.
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h(S) h(S)

π(S)

(p, zS(p))

(p, 0)

P1

P2

Figure 1: The simplices P1 and P2 as defined in the proof of Lemma 1. Both pyramids have the
same (absolute) volume.

A hyperplane h ⊂ Rd is characterized by a function zh : Rd−1 → R that assigns to every point
p ∈ Rd−1 a new coordinate, such that (p, zh(p)) lies on h. We denote by h(S) the hyperplane
spanned by S and use as shortcut notation zS for zh(S). The following lemma gives us a convenient
expression for the function zS .

Lemma 1 Let S be a set of d affinely independent points from Rd. For every point p ∈ Rd−1 we
have

zS(p) =
[S◦(p, 0)]

JSK
.

Proof. We give a geometric proof of the lemma. Consider the d-simplex P1 spanned by π(S) and
(p, zS(p)), and the d-simplex P2 spanned by S and (p, 0) as depicted in Fig. 1. Simplex P1 is
the affine image of P2, under the mapping (q, z) 7→ (q, zS(q)− z). Since this mapping is a linear
shear, it preserves the volumes of the simplices. The simplex P1 can be understood as a pyramid
with base JSK and height zS(p) and therefore its absolute volume vol equals

vol(P1) =

∣∣∣∣ 1

d(d− 1)!
JSKzS(p)

∣∣∣∣ .
On the other hand we can express the absolute volume of P2 using the determinant formula and
obtain

vol(P2) =

∣∣∣∣ 1

d!
[S◦(p, 0)]

∣∣∣∣ .
Setting vol(P1) = vol(P2) proves zS(p) = |[S◦(p, 0)]/JSK|. It remains to check if the sign of the
expression in the lemma is correct. By the geometric argument the correctness does not depend
on the actual configuration given by S and p. To see this note that for a fixed p a sign change
in [S◦(p, 0)] occurs if and only if it occurs in JSK. Moreover, if we keep S fixed, a sign change of
[S◦(p, 0)] can only happen if (p, 0) changes its location relative to h(S), which on the other hand
also changes the sign for zS(p). Hence, it suffices to look at a concrete example. Let S be given
by the standard basis of Rd, and let p be the origin in Rd−1. In this case, clearly, [S◦(p, 0)] = +1
and JSK = +1. Since zS(p) = 1 the sign is correct. 2

2.4 Creases and stresses

Let f, g be two hyperplanes in Rd. Furthermore, let S, resp. T , be a sequence of d affinely
independent points of f , resp. g, such that deleting the last element in S and T gives the same
subsequence X. It follows that f and g intersect in a flat of dimension d − 2 that contains the
simplex ∆X . Furthermore, we denote by sd the last point in the sequence S, that is the point not
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in T , and similarly we denote by td the point in T that is not in S. We also set r = π(sd). The
situation is depicted in Fig. 2. We define as creasing on X

c(f, g,X) :=
zT (r)− zS(r)

JSK
. (1)

Roughly speaking, the creasing is a measure for the intersection angle of f and g with respect to
the volume of ∆X .

z = 0

zS(r)

zT (r)

∆X

r

f

g

∆S

∆T

td

sd

Figure 2: The creasing on X is defined in terms of the objects depicted in the figure (for d = 3).

The following lemma shows that the function c is well-defined.

Lemma 2 Let c(f, g,X) be defined as above, i.e., S spans f , T spans g, such that S = X◦sd,
and T = X◦td.

(a) It holds that c(f, g,X) = −c(g, f,X).

(b) The value of c(f, g,X) is independent of the choice of sd and td.

Proof. Let T be the sequence (t1, . . . , td) and let zi be the z-coordinate of ti. We use Lemma 1
to rephrase c(f, g,X) by substituting zT (r) and obtain

c(f, g,X) =
zT (r)− zS(r)

JSK
=

[T ◦ (r, 0)]− zS(r)JT K
JSKJT K

. (2)

To further evaluate the last expression we notice that

[T◦(r, 0)]− [T◦(r, zS(r))] = zS(r)JT K.

Since [T◦(r, zS(r))] = [T◦sd], we obtain that [T ◦ (r, 0)] − zS(r)JT K = [T◦sd]. Plugging the last
equation into (2) gives

c(f, g,X) =
zT (r)− zS(r)

JSK
=

[T ◦ (r, 0)]− zS(r)JT K
JSKJT K

=
[T◦sd]
JT KJSK

. (3)

Notice that [T◦sd] = −[S◦td], since both underlying matrices differ only by one column swap (the
sequence of the first d− 1 members of S and T coincide). As a consequence, exchanging S and T
in the right hand side of (3) changes only the sign, which proves statement (a).

To prove statement (b) we argue as follows. Assume we have replaced td in T (that is the only
point in T not in X) by some other point on h(T ). The replacement of td does not change zT (r)
in Equation (1), and all other parts of the equation only depend on S. Therefore, the expression
given in (1) does not depend on td. It remains to show, that also changing the last point in S,
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does not change the creasing of X. However, this follows easily since by statement (a) we can
interchange the roles of S and T (this results in a sign change), then we apply the above argument,
and then we change S and T back (which cancels the sign change). 2

Based on the concept of creasing we are now ready to define the crucial concept of stress.
Let us first introduce the notion of right and left facet. We assume that we have given a flat
embedding at this point. Let X be the set of vertices of some ridge fX of P . We fix an arbitrary
order for X, and do so also for the vertex sets of the other ridges. The ridge fX separates two
facets of P , say fS and fT . As usual, S = X ∪ sd is the vertex set of fS . If JX◦sdK > 0 then
fS is called left of fX , if JX◦sdK < 0 then fS is called right of fX . We have one exception from
this rule: for the special (base) face fB the notion of left and right is interchanged. Note that the
definitions left/right are independent of the choice of the z-coordinates, and only depend on the
flat embedding. Note also, that every ridge has a right and a left incident facet.

Definition 1 (stress) Let P be stacked d-polytope obtained by lifting a flat embedding and let X
be a sequence of vertices which defines a ridge. We define as stress on X

ωX := c(hl, hr, X), (4)

where hr contains the facet right of X and hl contains the facet left of X.

We can immediately deduce the following property for the stress along X.

Lemma 3 The stress on X is not affected by the order of the elements in X.

Proof. When reordering the elements of X, only the sign of a creasing along X might change.
When it flips then our notion of left and right face will also be exchanged, which means that the
left face becomes the right face with respect to X and vice versa. Let X̄ be a reordering of X,
such that the creasing along X changes it sign and the right/left position of the faces is swapped.
Suppose that f contains the face left of X̄ and right of X, and that g contains the other face
incident to X. Then we have by Lemma 2

ωX̄ = c(f, g, X̄) = −c(f, g,X) = c(g, f,X) = ωX .

2

We remark that the stress that we define is an equilibrium stress in the classical sense. In
fact, in three dimensions it corresponds to the stress that is given by the Maxwell–Cremona
correspondence. In particular, the formulation based on (1) can be found in a similar form in
Hopcroft and Kahn [HK92, Equation (11)].

2.5 Convexity

The difficult part for the height assignment is to choose the heights such that the resulting lifting
gives a convex realization of the simplicial complex. To guarantee the convexity of the final
embedding we use the stresses induced by the lifting as a certificate. By knowing the signs of all
stresses we can determine if the selected z-coordinates produce a convex embedding with help of
the following lemma.

Lemma 4 Let P be the lifting of a flat embedding, such that all vertices have been assigned with
a nonnegative z-coordinate. If

• for all fX incident to fB we have ωX < 0 and

• for all other fX we have ωX > 0,

then P is a convex polytope.

Proof. As a preliminary step we show that P is locally convex. By this we mean that for every
facet fT 6= fB of P spanned by T , all adjacent facets lie “below” the hyperplane spanned by T .
Let fS be a face that is adjacent to fT along the ridge fX . The sequences S and T are ordered
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such that they coincide on the first d− 2 elements, that is X. We assume for now that fT is right
of fX , which implies JT K < 0.
Case 1 (S 6= B): We denote by r the vertex in S that is not in T projected into the z = 0
hyperplane. By definition fS is left of fX and hence JSK > 0. Since ωX > 0, we know that
c(fS , fT , X) > 0. This leads to

ωX > 0 ⇐⇒ c(fS , fT , X) > 0 ⇐⇒ zT (r)− zS(r)

JSK
> 0 ⇐⇒ zT (r) > zS(r).

Hence the interior of fS lies below h(T ).
Case 2 (S = B): The only difference here is that by assumption ωX < 0 and that JSK and JT K
have the same sign, i.e., JSK < 0. Therefore,

ωX < 0 ⇐⇒ c(fS , fT , X) < 0 ⇐⇒ zT (r)− zS(r)

JSK
< 0 ⇐⇒ zT (r) > zS(r).

Again, the interior of fS lies below h(T ).
For both cases we have assumed that fT is right of fX . If fT would be left of fX instead, then

the sign of JSK would change and furthermore, ωX = c(fT , fS , X) = −c(fS , fT , X) by Lemma 2.
Both effects cancel, i.e., for case 1 we have

ωX > 0 ⇐⇒ c(fS , fT , X) < 0 ⇐⇒ zT (r)− zS(r)

JSK
< 0 ⇐⇒ zT (r) > zS(r),

and the same “cancellation” happens in case 2.
We have shown that P is locally convex and will extend this to global convexity. This follows

in our setting by Theorem 2.3.20 from the book of De Loera, Rambau and Santos [DLRS10]. For
completeness we also give the detailed argument in this place. In particular, we show that for
every facet fT 6= fB all other vertices of P lie below h(T ). We first generalize the observations
that proved the local convexity. In the above estimations we can pick as r any vertex that lies in
the halfspace of Rk−1 that is bounded by the supporting hyperplane of π(fX) and that does not
contain π(T ). It still holds that zT (r) > zS(r).

We are now ready to prove that P is a convex polytope. Let p be a vertex of P not in T
with z-coordinate zp and let π(p) = r. Consider a segment ` in Rk−1 that connects r with
a point on π(T ). We can assume that ` avoids the vertices of π(P ) in its interior, otherwise
we perturb ` slightly. Let the supported hyperplanes of the facets visited when traversing ` be
(in order) h(T ) = h(1), h(2), . . . h(k). Due to the local convexity we have for r = π(p) that
zh(k)(r) < zh(k−1)(r). Furthermore, due to the generalized observation in the previous paragraph
we have for all j ≤ k that zh(j)(r) < zh(j−1)(r). This yields

zT (r) = zh(1)(r) > zh(2)(r) > · · · > zh(k)(r) = zp,

which proves the assertion for fT 6= fB . The base face fB lies in the z = 0 hyperplane, which is
clearly a bounding hyperplane since all vertices have positive z-coordinates. Thus all supporting
hyperplanes of the facets of P are bounding hyperplanes and therefore P is convex. 2

2.6 Keeping track of the stresses while stacking

We discuss next how a stacking operation changes the associated stresses in a lifted barycentric
subdivision. Let ∆D be a (d − 1)-simplex of a simplicial complex embedded in Rd. We stack
the new vertex p on top of D. To determine the stacking geometrically, we describe the location
of r := π(p) inside π(∆D) with barycentric coordinates, that is we specify the absolute areas
of the (d − 1)-simplices containing r in the projection. Additionally, we describe how far the
z-coordinate zp of p lies above h(D). This will be denoted by ζ := zp − zD(r). We refer to ζ as
the vertical shift. For convenience we assume that the stacking process increases the z-coordinate
of the stacked point, since this will always be the case in the following. However, the following
observations can be easily generalized for stacking operations that decrease the z-coordinates of
the stacked point.
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zh(1)(r) = zT (r)

zh(2)(r)

zh(3)(r) = zp

r

fT

`

Figure 3: Proof of Lemma 4: A cascading sequence of inequalities (coming from the local convexity
of P ) shows that every vertex of P lies below the supporting hyperplane of a facet fT 6= fB .

The addition of p has two effects. First of all, by stacking p we create new ridges, furthermore,
the existing ridges at the boundary fD are now incident to new facets and hence the corresponding
stress is altered. We refer to the newly introduced ridges as the interior ridges, and to the ridges
on the boundary of fD as the exterior ridges of the stacking operation.

We discuss first how the stresses on the exterior ridge are altered.

Lemma 5 Assume that we have stacked a new vertex p on a convex polytope realized in Rd with
stress ω as described in Lemma 4. Let X be the point set of an exterior ridge fX (as defined
above). After the stacking the new stress ω̂ equals

ω̂X := ωX −
ζ

|JSK| ,

where S = X◦p and ζ is the vertical shift of the stacking.

Proof. Let T be the ordered point set, such that fT and fS are adjacent after stacking p, and
fX is the intersection of fS and fT . We denote as h the hyperplane that contains the face fD on
which p was stacked onto; see Fig. 4.
Assume for now that fS is left of fX , which implies that JSK > 0. This gives for r = π(p)

ω̂X = c(fS , fT , X) =
zT (r)− zS(r)

JSK
=
zT (r)− (zh(r) + ζ)

JSK
= ωX −

ζ

JSK
= ωX −

ζ

|JSK| .

If fS is however right of fX we obtain

ω̂X = −c(fS , fT , X) = −zT (r)− zS(r)

JSK
= −zT (r)− (zh(r) + ζ)

JSK
= ωX +

ζ

JSK
= ωX −

ζ

|JSK| ,

since JSK < 0. 2

Lemma 6 Assume we have stacked a vertex p on top of some face fD. Let X be the point set
of an interior ridge fX as defined above. Furthermore, let S := X◦sd and T := X◦td be the
sequence of vertices of the faces separated by X. After the stacking the stress on X equals the
positive number

ωX := ζ

∣∣∣∣ JDK
JSKJT K

∣∣∣∣ .
Proof. Fig. 5 depicts the situation described in the lemma. The facet fS might be either left or
right of fX . Due to Equation (3) we have

ωX = ±c(fS , fT , X) = ± [T◦sd]
JT KJSK

.
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zS(r)

p

fT

fS
ζ

zh(r)

zT (r)

0

fX

Figure 4: The situation (for d = 3) as discussed in Lemma 5: the effect of stacking the vertex p
for an exterior ridge.

Assume we have doubled fD and stack with an ε-small ζ at the “top side” of the induced complex.
This will surely generate a convex d-simplex, and by the computations in the proof of Lemma 4
the sign of the induced ωX is positive. Clearly, the sign of ωX does not change if we increase the
vertical shift.

We know that |[T◦sd]| is d! times the volume of the corresponding simplex. This volume on
the other hand can be expressed as ζ · |vol(π(∆D))|/d, and |JDK| equals (d− 1)! times the volume
of π(∆D). Hence we have |[T◦sd]| = ζ · |JDK| and the statement of the lemma follows. 2

p

fT

fS

ζ

sd

fX

td

π(∆D)

Figure 5: The situation (for d = 3) for an interior ridge as discussed in Lemma 6.

2.7 The tree-representation of a stacked polytope

The combinatorial structure of a polytope is typically encoded by its face lattice. If the polytope is
a stacked polytope, we can also describe its structure by “recording” in which way we have carried
out the stacking operations. The most natural way to keep track of the stacking operations is an
ordered rooted tree. Let P be a stacked polytope, then the tree-representation of P is a d-ary tree
T (P ), which is defined as follows: The leaves of the trees are in one-to-one correspondence to the
facets of P , with the exception of the face fB , which is not present in the tree. Interior nodes
correspond to d-cliques in the graph of P that used to be facets at some point during the stacking
process.3 The root represents the initial copy of fB in the beginning. The children of a node
v represent the faces that were introduced by stacking a vertex onto the face associated with v.

3 When considering an intermediate configuration in the stacking process, we refer to the d-cliques of P that
are faces in the intermediate polytope also as facets, although they are not necessarily facets of P .
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To reproduce the combinatorial structure from T (P ) we fix an ordering for the edges emanating
from an interior node v, such that it is possible to map the children of v to the faces generated
by stacking onto v’s face in a unique way. By this the mapping between the faces of P and the
nodes of T (P ) can be reproduced. If P has n vertices, then T (P ) has (n − d)(d − 1) + 1 leaves
and n− d interior nodes.

We will use the tree-representation of P to specify the geometry of the flat embedding of P .
This can be achieved by assigning for every leaf v of T (P ) a rational number (weight), which
corresponds to the volume of v’s face in the flat embedding of P . More precisely, the weight
specifies the volume of v’s face times (d− 1)!. To emphasize this relationship, we call the weights
face-weights. We extend the face-weight assignments for the interior nodes by summing for every
node the face-weights of its children recursively up. After we have determined the location of fB ,
such that its volume is (d− 1)! times the face-weight of the root of T (P ), the coordinates of the
whole flat embedding are determined. In particular, for every stacking operation, the (normalized)
face-weights specify the location of the stacked vertex since they denote its barycentric coordinates.
Thus, by traversing T (P ) we can produce the flat embedding incrementally in a unique way.

3 The embedding algorithm

We assume that the combinatorial structure of the stacked polytope is given in form of its tree-
representation T (P ). The embedding algorithm works in three steps. First we generate the
face-weights for T (P ) and fix the coordinates for the face fB . This will give us a flat embedding
of the polytope. In the next step we “lift” the polytope, by defining for every vertex vi the vertical
shift ζi. Assume that we have stacked vi onto the face f . By construction we pick always positive
vertical shifts. By carefully choosing the right vertical shifts we obtain an embedding of P as a
convex polytope, however this embedding does not fit on a polynomial grid. In the final step we
round the points to appropriate grid points, while maintaining convexity.

3.1 Balancing face-weights

We apply a technique from data structure analysis called the heavy path decomposition (see Tar-
jan [Tar83]). Roughly speaking, it decomposes a tree into paths, such that the induced hierarchical
structure of the decomposition is balanced. We continue with a brief review of the heavy path
decomposition. Let u be a non-leaf of a rooted tree T with root r (r = u is possible). We denote
by Tu the subtree of T rooted at u. Let v be the child of u such that Tv has the largest number
of nodes (compared to the subtrees of the other children of u), breaking ties arbitrarily. We call
the edge (u, v) a heavy edge, and the edges to the other children of u light edges. The heavy edges
induce a decomposition of T into paths, called heavy paths, and light edges; see Fig. 6. The node
on a heavy path that is closest to the root is called its top node. We call a heavy path with its
incident light edges (ignoring the possible edge from its top node to its parent) a heavy caterpillar.
The heavy path decomposition decomposes the edges of T into heavy caterpillars. We say that two
heavy caterpillars are adjacent if their graphs would be adjacent subgraphs in T . This adjacency
relation induces a hierarchy, which we represent as a rooted tree H(T ). The nodes in H(T ) are
the heavy caterpillars, and its edges represent the adjacency relation between caterpillars. The
root of H(T ) is the heavy caterpillar that includes the root of T . When (u, v) is a light edge and u
is the parent of v then the size of Tv is at most half as big as the size of Tu. Hence, every root-leaf
path in T can visit at most log t light edges for t being the size of T . Fig. 6 shows an example of
a tree-representation and its associated hierarchy as a tree.

The assignment of the face-weights is guided by the heavy path decomposition of T (P ). We
call a node v balanced if (1) the face-weights of v’s light-edge children are all the same and (2) the
face-weight of the heavy edge child is not smaller than the face-weight of every light edge child.
If every node is balanced we call the face-weight assignment balanced. An example of a balanced
tree-representation is depicted in Fig. 8.

Lemma 7 We can find a balanced set of integer face-weights for T (P ) such that the face-weight
associated with the root is at most dnlog 2d and no face-weight is less than 1. Here, n denotes the
number of vertices in the corresponding graph of the stacked polytope.
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(a) (b)

Figure 6: A tree-representation T of a stacked 3-polytope (a) and the corresponding hierarchy
based on the caterpillars as tree H(T ) (b).

Proof. Let H = H(T ) be the tree representing the hierarchy of the heavy caterpillars for some
d-ary tree T . The height of H is the length (number of edges) of its longest root-leaf path. For T
we call the height of H(T ) its hpd-height.

To prove the lemma we use the following claim. Since the proof of the claim will be constructive
it will also induce a strategy of how to set the face-weights.

Claim: For all k ≥ 0 the following holds: If T is a d-ary tree with m leaves and hpd-height k
then we can find a set of balanced face-weights, such that the face-weight of the root is at
most mdk.

We prove the claim by induction on k. A tree with hpd-height 0 is a heavy caterpillar, whose
subtrees on the light edges are leaves. In this case it suffices to set the face-weights of all leaves to 1
and then propagate the face-weights to the interior nodes. Clearly, this face-weight assignment is
balanced and the face-weight of the root equals the number of leaves. Thus, the claim holds for
this (base) case.

We continue with the induction step. Assume that the claim holds for all trees with hpd-height
less then k. We can now balance the face-weights of any tree of hpd-depth k as follows (see also
Fig. 7 for an illustration): Let the heavy path incident to the root be h. The subtrees connected
to h via a light edge have all depth less than k. For these subtrees we use our induction hypothesis
and (recursively) determine the corresponding face weights and propagate these weights to h. If
a subtree is a single leaf it will be assigned with a face-weight of 1. We are left with balancing the
nodes of h. So let v be a node on h and let u+

v be one of its light edge children with the largest
face-weight. We will now make each light child u 6= u+

v as “heavy” as u+
v . To do so, we determine

the difference δ between the face-weight of u+
v and the face-weight of u. Next, we increase the

face-weight of every node on the heavy path with top node u by δ. Notice that this keeps the
face-weights in the subtree rooted at u balanced. To make the updates consistent we also increase
the face-weight on h from v to its root by δ. We continue with the other children of u in the same
fashion and then repeat this for every node on h. We also have to guarantee that the face-weight
of every light edge child is not larger than the face-weight of its heavy edge child. To ensure this,
we increase the face-weight of the leaf of h by δr and propagate this weight along h, where δr is
the largest face-weight of one of the light edge subtrees hanging off of h. Note that this is done
only once for the heavy path h. By this we have obtained a balanced set of face-weights for T .

We are left with bounding the new face-weight of the root. Let S be the sum of the face-weights
of all the light edge subtrees of h before balancing the nodes of h, which is also the face-weight of
the root minus 1 at this time. By the induction hypothesis we have S ≤ mdk−1. When balancing
the light subtrees on a vertex v we increased the face-weight of the root by some δ at most d− 2
times. The “charge” δ was not larger than the face-weight of the corresponding u+

v . The total
increment at this stage is therefore less than (d− 2)S. The final increment by δr is at most S− 1.
Therefore, we have that the face-weight of the root is at most

(S + 1) + (d− 2)S + (S − 1) = dS ≤ dmk
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and the proof of the claim follows.
The statement of the lemma follows now from the claim. According to Subsec. 2.7 the tree

T (P ) has less than (d − 1)n leaves. When traversing a light edge (u, v) the number of interior
nodes is at least halved. The tree T (P ) has less than n interior nodes. Thus, every path in T (P )
from the top node of a heavy path to the root of T (P ) visits at most log n light edges. As a
consequence, the maximal hpd-height is bounded by log n. The total face-weight of the root is
therefore at most (d− 1)n · dlogn < dn · nlog d = dnlog 2d. 2

u

v

u+v

+δ

+δ

+δ

+δr

+δr

+δr

face-weight δr

(a) (b)

Figure 7: Modifications of the face-weight as done in the proof of Lemma 7. (a) Sketch how to
make all light children have the same face-weight. (b) Sketch how to keep the heavy edge child
the child with largest face-weight.

In the following we denote the face-weight of the root as R. To finish the definition of the flat
embedding we fix the shape of fB as follows: One of the vertices of B lies at the origin. We set
L = d−1

√
R and place the other vertices of B at L · ei, for ei being a vector of the standard basis

of Rd−1, such that B spans the (d − 1)-simplex ∆B . By construction the volume of the simplex
equals 1/(d − 1)! times the face-weight of the root of T (P ). Without loss of generality we also
assume for the remainder that JBK > 0. It follows that

JBK = R ≤ dnlog(2d).

By our choice of fB the volume of every face in the flat embedding equals (d−1)! times the volume
of its face-weight.

57

29

3 23 3

1 1 1 1 1 1

14

8 3 3

1 6 1 1 1 1

14

1 12 1

17 3 3

1 1 15 1 1 1 1 1 4

Figure 8: The tree-representation of Fig. 6 with balanced face-weights, denoted in the nodes.
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3.2 Assigning heights

After we have assigned the face-weights we specify the heights of the lifting by determining the
vertical shift ζi for every vertex vi based on the face-weights. Let us assume vertex vi was stacked
as p onto some face fD. Let the boundary of fD be formed by the ridges fX1

, . . . , fXd
. The

stacking introduces the new facets fY1 , . . . , fYd
, where for 1 ≤ j ≤ d we have Yj := Xj◦p. The

nodes of the faces fYj in T (P ) that are connected to the node of fD via a light edge have all
the same face-weight. Let this weight be Bi. The only (possible) other face-weight for a node
associated with one of the faces fYj

is denoted by Ai. We set as the vertical shift for the vertex vi

ζi := Ai ·Bi. (5)

Note that Ai ≥ Bi, since the face-weights were balanced.

Lemma 8 The embedding induced by the face-weights and the vertical shifts ζi guarantees:

1.) For every ridge fX not on fB we have ωX ≥ 1.

2.) For every ridge fX on fB we have 0 > ωX ≥ −R ≥ −d · nlog(2d).

Proof. We first bound the stresses on faces not on fB . Recall that by construction the face-weight
of a facet fD coincides with |JDK|. We study how the stress on ωX evolves during the stacking
process. The initial value of ωX is assigned by some stacking operation that introduced fX . We
assume that this stacking operation stacked a vertex on the face fD. The face-weights of the
new facets introduced by the stacking are all the same, namely Bi, except for one possible larger
face-weight, namely Ai. Let fS and fT be the two facets incident to fX such that |JSK| ≥ |JT K|.
By Lemma 6, we have that at this moment

ωX = ζi

∣∣∣∣ JDK
JSKJT K

∣∣∣∣ = AiBi

∣∣∣∣ JDK
JSKJT K

∣∣∣∣ ≥ |JDK| ,

since |JSK| ≤ Ai and |JT K| = Bi.
This positive initial stress decreases when stacking on a facet that has fX on the boundary. So

assume we stacked pk on such a facet. Let CX(k) denote the amount of the decrement due to this
stacking. By Lemma 5 we have CX(k) = ζk/|JSkK|, where Sk = X◦pk. Recall that ζk = AkBk,
where Ak and Bk are the two different values of face-weights of faces introduced by stacking pk.
It follows that |JSkK| ∈ {Ak, Bk}, and therefore CX(k) = {Ak, Bk} \ {|JSK|} equals either Ak or
Bk, and hence, is an integer. We charge the value of CX(k) to a face-weight of a face fYk

6= fSk

that was introduced when stacking pk. Stacking operations that decrease ωX further, stack either
onto fSk

, or onto the opposite facet incident to fX (see Fig. 9). As a consequence, the projected
facets {π(fYj

) | stacking of pj decrements ωX} have disjoint interiors and are properly contained
inside π(∆D). Since it is not possible to cover π(∆D) with these faces completely, the difference
|JDK| −∑j CX(j) is at least 1 and therefore ωX ≥ |JDK| −∑j CX(j) ≥ 1.

For the stresses on the boundary we can argue as follows. The stress on X is a combination of
several negative charges, but without having an initial positive charge. By the above argument,
the negative charges are attributed to faces with disjoint interiors. All these faces are contained
inside π(∆B) and hence |ωX | is at most JBK. By Lemma 7 we have that JBK = R ≤ d · nlog(2d),
and the lemma follows. 2

3.3 Rounding to grid points

Let us wrap up what we have constructed so far. Based on the tree-representation we have defined
weights for each face. This gave rise to a realization of a projection of the stacked polytope. As
a next step we have computed a lifting based on the face-weights. This construction produces a
convex realization of the desired stacked polytope, we even know that the stresses are polynomially
related. However, the realization does not lie on a polynomial grid yet. To obtain an integer
realization we round the coordinates of the points down. The rounding will be carried out in
two steps. First we perturb all coordinates such that they are multiples of some parameter α,
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fS

fYk
? π(∆D)

fT

pk

fYk
?

fSk

fX

pi

Figure 9: When stacking pk the stress on X is decreased by at most the face-weight charged to
fYk

. There are two candidates for fYk
. All further negative charges will be attributed to “volumes”

contained inside Sk and T . The face with the crossed-line pattern will never be charged to ωX .

resp. αz for the z-coordinates. In a second step we scale the perturbed embedding by multiplying
all coordinates with 1/α, resp. with 1/αz, for the z-coordinates. The details for the rounding
procedure are little bit more subtle: We start with rounding the coordinates in the flat embedding,
then we update the vertical shifts ζi slightly. The z-coordinates are rounded with respect to the
lifting defined by the modified vertical shifts.

Since projected volumes play an important role in our construction we discuss as a first step
how the rounding will effect these volumes.

Lemma 9 If we round the coordinates of the flat embedding down, such that every coordinate is
a multiple of α we have that for every facet fX

|JXK− JX ′K| ≤ αd2Ld−2,

where X ′ denotes the points X after the rounding.

Proof. Remember that the points X are contained inside the simplex ∆B , which is spanned by
the standard basis vectors of Rd−1 scaled by L = d−1

√
R and the origin. We first show how the

rounding of the first coordinate for every x ∈ X effects JXK. The point set X after rounding
the first coordinate is named X1. Let E(1) denote the change of JXK in the worst case, that is,
E(1) = maxX

∣∣JXK− JX1K
∣∣. We denote by xi ∈ R the first coordinate (the x-coordinates) of the

ith point in X, and for a point sequence X we denote by X−i the set with removed x-coordinates
and without the ith point of X. Note that X−i = X1

−i. Let the change of the coordinates xi be
εi ≤ α. We estimate E(1) using the Laplace expansion for the determinants (along the row for
the x-coordinates) by

E(1) =
∣∣JXK− JX1K

∣∣ ≤ ∣∣∣∣∣
d∑
i=1

(−1)ixiJX−iK−
d∑
i=1

(−1)i(xi + εi)JX1
−iK

∣∣∣∣∣
≤
∣∣∣∣∣
d∑
i=1

(−1)ixiJX−iK−
d∑
i=1

(−1)i(xi + εi)JX−iK

∣∣∣∣∣
≤

d∑
i=1

|αJX−iK|

≤ dαLd−2.

For the last transition we upper bounded the determinants JX−iK by Ld−2. This bound follows,
since the maximal volume of a (d− 2)-simplex in ∆B is spanned by the d− 1 points of B \0. This
point set would also maximize JX−iK and hence this determinant is at most Ld−2.
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Note that there was nothing special in rounding the first coordinate (while keeping the others
fixed). If we would round only the kth coordinate, we obtain the same estimation. Thus, we
can apply the rounding of a single coordinate one by one for each of the (d − 1)-coordinates of
Rd−1. Every time we round in one coordinate we introduce an additive “error” of dαLd−2 to
|JXK− JX ′K|. Thus in total we get the asserted bound of |JXK− JX ′K| ≤ αd2Ld−2. 2

In the following we use JX ′K and similar expressions to denote the corresponding determinants
after rounding.

Corollary 1 If we round the coordinates of the flat embedding down, such that every coordinate
is a multiple of α, we have for every facet fX in the flat embedding

1− αd2Ld−2 ≤ JX ′K
JXK

≤ 1 + αd2Ld−2.

Proof. The statement follows from Lemma 9 and the observation that for any facet fX in the
flat embedding we have 1 ≤ |JXK|. 2

As a next step we discuss, how to set the parameter α, such that the perturbed flat embedding
will still have a positive stress. To describe the lifting (stress) we defined for every vertex in the
flat embedding a vertical shift ζi, as given in (5). The definition of ζi was based on the face-
weights obtained from the balanced tree-representation. We adjust the vertical shifts after the
perturbation slightly. When stacking pi we introduced d new faces. Let the faces fAi

and fBi
be

the two faces out of the d newly introduced faces with the largest volume. We define

ζ ′i := |JA′iKJB′iK|.

Lemma 10 When we pick as the perturbation parameter α = 1/(10d2Ld−2R) then the perturbed
flat embedding with the vertical shifts ζ ′i induces an embedding, whose interior stresses are at least
4/5, and whose boundary stresses are negative and larger than −2R.

Proof. We mimic the strategy of the proof of Lemma 8. Again, all faces in this proof are
considered as projected into the z = 0 hyperplane. For the proof of the lemma the sign of the
determinants J·K is not important. For the sake of a simple presentation we misuse notation and
simply write J·K instead of |J·K| in this proof.

Every stress ωX is a combination of a positive stress and several negative stresses attributed
to different stacking operations. Let ω+

X be the positive stress, that is the initial nonzero stress
with respect to the stacking sequence, and let ω−X the absolute value of the sum of all negative
stresses, such that ωX = ω+

X − ω−X . To bound ωX we derive bounds for ω+
X and ω−X . We start

with the bound on the positive stress. Assume ω+
X was introduced by stacking pi at some face

fD, such that due to Lemma 6 we have

ω+
X = ζ ′i

∣∣∣∣ JD′K
JS′KJT ′K

∣∣∣∣ .
Here, fS and fT are the two faces introduced by stacking pi that contain fX . The height ζ ′i is
defined as the product of two face-weights corresponding to fAi

and fBi
. Assume that JA′iK ≥ JB′iK

and that JS′K ≥ JT ′K. By the definition of ζ ′i we have that JA′iK ≥ JS′K and JB′iK ≥ JT ′K. Therefore,
ωX ≥ JD′K.

The value of ω−X is composed of several “charges”. Whenever we stack inside a face that
contains fX we increase ω−X . Let us study now one of these situations. Assume we stack pk inside
a face that contains fX . Let fSk

be the new face that contains fX . By Lemma 5 we increase ω−X
by |ζ ′j/JS′kK| := incX,k. Due to the balanced face-weights we had in the unperturbed setting only
two different new “face volume values” when stacking a vertex. Hence for ζ ′i := |JA′kKJB′kK|, we
had either JSkK = JAkK, or JSkK = JBkK. We define

Ck :=

{
Bk if JSkK = JAkK
Ak if JSkK = JBkK
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and set δ+ := 1+αd2Ld−2 and δ− = 1−αd2Ld−2. If JSkK = JAkK we have according to Corollary 1

incX,k =

∣∣∣∣JA′kKJS′kK
JB′kK

∣∣∣∣ ≤ ∣∣∣∣δ+JAkK
δ−JSkK

JB′kK
∣∣∣∣ =

δ+
δ−

JB′kK =
δ+
δ−

JC ′kK.

The remaining case JSkK = JBkK is completely symmetric and does also give incX,k ≤ δ+
δ−

JC ′kK.
Let K be the set of vertex indices, whose stacking contributed to ω−X . As noticed in Lemma 8
(see also Fig. 9), for any two distinct s, t ∈ K we have that fCs

and fCt
have disjoint interiors,

and furthermore the set
⋃
k∈K fCk

is contained in the perturbed simplex π(∆D), but “misses” at
least one face. By Corollary 1 the face-weight of the missing face is at least δ−. Therefore,

ω−X =
∑
k∈K

incX,k ≤
∑
k∈K

δ+
δ−

JC ′kK =
δ+
δ−

∑
k∈K

JC ′kK ≤
δ+
δ−

(JD′K− δ−) =
δ+
δ−

JD′K− δ+.

We finish the proof by combining the bounds for ω+
X and ω−X . When we pick α = 1/(10d2Ld−1R)

as specified in the lemma then we get δ+ = 1 + 1
10R and δ− = 1 − 1

10R . We can now obtain the
following bound for ωX when X is an interior ridge (note that π(∆D′) ⊆ π(∆B)) :

ωX ≥ ω+
X − ω−X

≥ JD′K−
(
δ+
δ−

JD′K− δ+
)

= δ+ − JD′K
(
δ+
δ−
− 1

)
≥ δ+ − JBK

(
δ+
δ−
− 1

)
= δ+ − δ+R

(
δ+
δ−
− 1

)
=

80R2 − 2R− 1

100R2 − 10R

≥ 4

5

If X is a boundary face we have ω+
X = 0. Notice that for our choice of α we have δ+/δ− ≤ 2, for

R ≥ 3. We conclude that for a boundary face we have

ωX ≥ −
(
δ+
δ−

JB′K + δ+

)
≥ −δ+

δ−
JB′K ≥ −2JB′K ≥ −2R.

2

The choice of the parameter α = 1/(10d2Ld−2R) ensures, that no volume of a face will flip its
sign. In particular, by Lemma 9, the change of volume is less than 1/(10JBK).

To construct an integer realization we need to round the z-coordinates as well. We round
the z-coordinates such that every z-coordinate is a multiple of αz, where αz is some value to be
determined later. The final analysis requires an upper bound for the maximal z-coordinate before
rounding, which we give in the following lemma.

Lemma 11 For zmax being the maximal z-coordinate in the lifting of the perturbed flat embedding
induced by the vertical shifts ζ ′i we have that

0 < zmax < 2R2.

Proof. The z-coordinates of all vertices not on fB are positive since all vertical shifts are positive.
We consider the perturbed flat embedding. Take any boundary ridge fX of fB . By Lemma 10 we
have that −ωX < 2R. Let pi be the vertex with the highest z-coordinate zmax and set r = π(pi).
Now take the facet fY adjacent to fB via fX (we let Y and B coincide on the first d− 2 vertices).
Due to the convexity of the lifting fY supports a bounding hyperplane, and therefore zY (r) ≥ zmax.
By Equation (1) we have ωXJY K = zB(r)− zY (r) = −zY (r). Since fY is properly contained inside
fB it follows that

zmax ≤ zY (r) = −ωXJY K < −ωXJBK ≤ 2R2.
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By rounding the z-coordinates we might violate the convexity of the lifting. The following
lemma shows us how to carry out the rounding of the z-coordinates after we have rounded the
coordinates of the flat embedding, such that the resulting embedding remains a convex polytope.

Lemma 12 By setting αz = 1/(3R) and rounding such that all z-coordinates are multiples of αz
the lifting defined by ζ ′i and the perturbed flat embedding will remain an embedding of a convex
polytope.

Proof. Let z′i be the coordinate zi after rounding and, similarly, let ω′X be the stress after rounding
the z-coordinates. We have that 0 ≤ zi−z′i ≤ αz. By Lemma 10 the interior ridges in the perturbed
flat embedding have a stress ωX that is at least 4/5. Let fX be any interior ridge that is incident
to the facets fS and fT . By Equation (3) we can express ω′X in terms of [T ′], JS′K, and JT ′K, where
T ′ is formed by the point set S′∪T ′. The value of [T ′] can be expressed as

∑
i∈I z

′
iJA′iK, where I is

the index set of the vertices of T ′ and A′i is given by T ′ \ {p′i} in some appropriate order (Laplace
expansion). We split the set I into I+ := {i ∈ I | JAiK ≥ 0} and I− := I \ I+. As usual fB denotes
the boundary face. Note that the projections of the simplices spanned by the sets A′i double-cover
the projection of T ′ into the z = 0 hyperplane, and therefore

∑
i∈I |JA′iK| ≤ 2JB′K ≤ 2JBK ≤ 2R.

Moreover, by Corollary 1 and our choice of α, we have |JS′KJT ′K| ≥ (1− 1/(10R))2. The stress on
an interior ridge fX after rounding (ω′X) can be bounded as follows

ω′X =
[T ′]

JS′KJT ′K
=

∑
i∈I z

′
iJA′iK

JS′KJT ′K
=

∑
i∈I+ z

′
i|JA′iK|

JS′KJT ′K
−
∑
i∈I− z

′
i|JA′iK|

JS′KJT ′K

≥
∑
i∈I+(zi − αz)|JA′iK|

JS′KJT ′K
−
∑
i∈I− zi|JA′iK|
JS′KJT ′K

=

∑
i∈I ziJA

′
iK

JS′KJT ′K︸ ︷︷ ︸
t1

−
∑
i∈I+ αz|JA′iK|
JS′KJT ′K︸ ︷︷ ︸

t2

We observe that the
∑
i∈I ziJA

′
iK = [T ′z ], where T ′z denotes T after rounding in the flat embedding,

but before rounding the z-coordinates. This gives us t1 ≥ [T ′z ]/(JS′KJT ′K) = ωX ≥ 4/5. Moreover,
as already noticed,

∑
i∈I+ |JA′iK| ≤

∑
i∈I |JA′iK| ≤ 2R. After plugging in our choice for αz and our

bound for JS′KJT ′K we obtain t2 ≤ 2R/(3R(1− 1/(10R))2). This yields

ω′X ≥ t1 − t2 ≥
4

5
− 2R

3(1− 1/(10R))2R
=

4

5
− 200R2

3(10R− 1)2
.

Note that the last expression is a monotone increasing function which is positive for R ≥ 3.
We are left with checking the sign for the stresses on the ridges that define the boundary of

fB . The stresses for these faces have to remain negative. Note that this is certainly the case,
if all z-coordinates after the rounding remain positive. Before rounding the z-coordinates, every
z-coordinate of a vertex not on fB was at least as large as the smallest vertical shift ζ ′i. Since the
vertical shifts are defined as the sum of two face-weights, we have that the nonzero z-coordinates
are at least (1 − 1/(10R))2. As observed earlier, rounding the z-coordinates decreases the z-
coordinates by at most 1/(3R). Therefore we have for every pi 6∈ B

z′i ≥
(

1− 1

10R

)2

− 1

3R
> 1− 1

5R
− 1

3R
> 0,

for every R ≥ 3. Hence, after rounding the z-coordinates the sign pattern of the stresses verifies
the convexity of the perturbed realization. 2

We now summarize our analysis and state the main theorem.

Theorem 1 Every d-dimensional stacked polytope can be realized on an integer grid, such that
all coordinates have size at most 10d2R2, except for one axis, where the coordinates have size at
most 6R3, for R = dnlog(2d).
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Proof. To get integer coordinates we multiply all coordinates after the rounding with 1/α, except
the z-coordinates, which we multiply with 1/αz. Since the maximal z-coordinate is by Lemma 11
at most 2R2, and we scale by 1/αz = 3R the bound for the z-coordinates in the theorem follows.
All other coordinates are positive and smaller then L before rounding. Hence by scaling with 1/α =
10d2Ld−2R we get that all coordinates are integers (Lemma 10) and the maximum coordinate has
size 10d2Ld−1R. Plugging in the definition of L gives as upper bound 10d2R2 as asserted. 2

By expressing the quantity R in terms of n we can restate Theorem 1 as the following corollary.

Corollary 2 For a fixed d, every d-dimensional stacked polytope can be realized on an integer
grid polynomial in n. The size of the largest z-coordinate is bounded by O(n3 log(2d)), all other
coordinates are bounded by O(n2 log(2d)).

Table 1 lists the induced grid bounds for d = 3, . . . , 10.

d exponent largest non-z-coordinate exponent largest z-coordinate

3 5.17 7.76
4 6 9
5 6.65 9.97
6 7.17 10.76
7 7.62 11.43
8 8 12
9 8.34 12.51
10 8.65 12.97

Table 1: The induced grid bounds in terms of n up to dimension 10.

4 A simple lower bound

In this section we present a simple lower bound. The basis of our construction is the following
graph. Take the tetrahedron and stack a vertex in every face, then take the resulting graph and
stack again a vertex in every face. We call this graph B3; see Fig. 4 for an illustration.

Figure 10: The graph B3. It has 36 faces and 20 vertices, 12 of them having degree 3.

Lemma 13 Let P be any embedding of B3 as a stacked 3-polytope. Then there is at least one
face with no boundary edge in the orthogonal projection of P into the xy-plane.

Proof. Let σ be the boundary of π(P ), which is a polygon. We proceed with a case distinction
on the size of σ.
Case 1: σ contains less than 18 vertices.
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Every edge on σ is a boundary edge of two faces. Hence in this case we can have at most 34
faces with a boundary edge, but there are 36 faces in B3. So we have at least two faces without a
boundary edge in the projection.
Case 2: σ contains at least 18 vertices.
The cycle σ splits B3 into two triangulations (interior+cycle and exterior+cycle). Let us now
have a look what happens at a degree 3 vertex of B3 on σ. Two of its incident edges have to be
in σ, which means it is the “tip” of an ear in one of the triangulations. Since we have 12 degree 3
vertices and at most two vertices are not on σ, one of the triangulations, say Q, has more than
two ears. Now we look at the dual graph of Q in which we removed the vertex for the outer face.
Clearly, this graph is connected (since B3 is 3-connected) and it has as many degree 1 vertices as
Q has ears. Hence, there has to be a vertex in the dual graph with degree 3. This means that
there is a face in Q, whose adjacent faces are interior faces in Q. Therefore, we have a face in the
projection without a boundary edge as asserted. 2

There are planar 3-trees that require Ω(n2) area for plane straight-line drawings [MNRA11].
Let Gm be such a planar 3-tree with m vertices that needs Ω(m2) area. For simplicity we assume
that n is a multiple of 36. We glue a copy of Gn/36 in each of the 36 faces of B3. This yields
another planar 3-tree with n vertices, which we call Γn.

Lemma 14 The embedding of Γn as a convex 3-polytope requires a bounding box of Ω(n3) volume.

Proof. Let P be an embedding of Γn as a 3-polytope. By restricting the 1-skeleton of P to B3

and taking the convex hull, we get an embedding of B3 as a 3-polytope PB . Due to Lemma 13,
there has to be one face, say f , which has no boundary edge on π(PB). The face f defines in π(P )
a triangle, which contains the graph G′ = Gn/36. The supporting planes of the faces adjacent to
f in PB define a cone C. We denote with C0 the part C \ P that contains the apex of C. Since
none of the edges of f are on the boundary of π(PB) we have that π(C0) = π(f). Hence, π(P )
contains a noncrossing drawing of Gn/36, namely π(G′), inside π(f). Therefore, π(P ) needs at
least area Ω(n2).

There was nothing special with choosing the projection into the xy-plane. By the same argu-
ments we can show, that also the projections into the xz- and yz-plane require Ω(n2) area.

Let dx, dy, dz denote the dimensions of the bounding box of P along the x-, y-, and z-axis.
The volume of the bounding box can be estimated by

dxdydz =
√
d2
xd

2
yd

2
z =

√
(dxdy)(dxdz)(dydz) = Ω(n3).

2
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[MRS11] Ares Ribó Mor, Günter Rote, and André Schulz. Small grid embeddings of 3-polytopes.
Discrete & Computational Geometry, 45(1):65–87, 2011.

[OS94] Shmuel Onn and Bernd Sturmfels. A quantitative Steinitz’ theorem. In Beiträge zur
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