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Abstract. An obstacle representation of a graph G is a set of points in the plane represent-
ing the vertices of G, together with a set of polygonal obstacles such that two vertices of G

are connected by an edge in G if and only if the line segment between the corresponding
points avoids all the obstacles. The obstacle number obs(G) of G is the minimum number
of obstacles in an obstacle representation of G.

We provide the first non-trivial general upper bound on the obstacle number of graphs
by showing that every n-vertex graph G satisfies obs(G) ≤ ndlog ne − n + 1. This refutes
a conjecture of Mukkamala, Pach, and Pálvölgyi. For n-vertex graphs with bounded
chromatic number, we improve this bound to O(n). Both bounds apply even when the
obstacles are required to be convex.

We also prove a lower bound 2Ω(hn) on the number of n-vertex graphs with obstacle
number at most h for h < n and a lower bound Ω(n4/3M2/3) for the complexity of a
collection of M ≥ Ω(n log3/2 n) faces in an arrangement of line segments with n endpoints.
The latter bound is tight up to a multiplicative constant.

1. Introduction

In a geometric drawing of a graph G, the vertices of G are represented by distinct points in
the plane and each edge e of G is represented by the line segment between the pair of points
that represent the vertices of e. As usual, we identify the vertices and their images, as well as
the edges and the line segments representing them.

Let P be a finite set of points in the plane in general position, that is, there are no three
collinear points in P . The complete geometric graph KP is the geometric drawing of the
complete graph K|P | with vertices represented by the points of P .

An obstacle is a polygon in the plane. An obstacle representation of a graph G is a geometric
drawing D of G together with a set O of obstacles such that two vertices of G are connected
by an edge e if and only if the line segment representing e in D is disjoint from all obstacles
in O. The obstacle number obs(G) of G is the minimum number of obstacles in an obstacle
representation of G. The convex obstacle number obsc(G) of a graph G is the minimum number
of obstacles in an obstacle representation of G in which all the obstacles are required to be
convex. Clearly, we have obs(G) ≤ obsc(G) for every graph G. For a positive integer n, let
obs(n) be the maximum obstacle number of a graph on n vertices.

In this paper, we provide the first nontrivial upper bound on obs(n) (Theorem 2). We also
show a lower bound for the number of graphs with small obstacle number (Theorem 4) and a
matching lower bound for the complexity of a collection of faces in an arrangement of line
segments that share endpoints (Theorem 5). All proofs of our results are based on so-called
ε-dilated bipartite drawings of Km,n, which we introduce in Section 2.

The first and the third author acknowledge the support of the project CE-ITI (GAČR P202/12/G061)
of the Czech Science Foundation, ERC Advanced Research Grant no 267165 (DISCONV), and the grant
GAUK 1262213 of the Grant Agency of Charles University. The first author was also supported by the grant
SVV–2016–260332. Part of the research was conducted during the workshop Homonolo 2014 supported by the
European Science Foundation as a part of the EuroGIGA collaborative research program (Graphs in Geometry
and Algorithms). An extended abstract of this paper appeared in Proceedings of the 23rd Symposium on
Graph Drawing, 2015.
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In the following, we make no serious effort to optimize the constants. All logarithms in this
paper are base 2.

1.1. Bounding the obstacle number. The obstacle number of a graph was introduced by
Alpert, Koch, and Laison [1] who showed, among several other results, that for every positive
integer h there is a graph G with obs(G) ≥ h. Using extremal graph theoretic tools, Pach and
Sarıöz [15] proved that the number of labeled n-vertex graphs with obstacle number at most h
is at most 2o(n2) for every fixed integer h. This implies that there are bipartite graphs with
arbitrarily large obstacle number.

Mukkamala, Pach, and Sarıöz [14] established more precise bounds by showing that the
number of labeled n-vertex graphs with obstacle number at most h is at most 2O(hn log2 n)

for every fixed positive integer h. It follows that obs(n) ≥ Ω(n/ log2 n). Later, Mukkamala,
Pach, and Pálvölgyi [13] improved the lower bound to obs(n) ≥ Ω(n/ logn). Currently, the
strongest lower bound on the obstacle number is due to Dujmović and Morin [7] who showed
obs(n) ≥ Ω(n/(log logn)2).

Surprisingly, not much has been done for the general upper bound on the obstacle number.
We are only aware of the trivial bound obs(G) ≤

(
n
2
)
for every graph G on n vertices. This

follows easily, as we can consider the complete geometric graph KP for some point set P of
size n and place a small obstacle Oe on every non-edge e of G such that Oe intersects only e
in KP . A non-edge of a graph G = (V,E) is an element of

(
V
2
)
\ E.

Concerning special graph classes, Fulek, Saeedi, and Sarıöz [9] showed that the convex
obstacle number satisfies obsc(G) ≤ 5 for every outerplanar graph G and obsc(H) ≤ 4 for
every bipartite permutation graph H.

Chaplick et al. [6] showed that obs(n) ≤ 1 whenever n ≤ 7 and that obs(8) ≥ 2. They also
found an 11-vertex graph G with obs(G) = 1 such that in every representation of G with a
single obstacle, the obstacle lies in one of the bounded cells of the drawing of G. Berman et
al. [5] constructed a 10-vertex planar graph G with obs(G) ≥ 2.

Alpert, Koch, and Laison [1] asked whether the obstacle number of every graph on n vertices
can be bounded from above by a linear function of n. We show that this is true for bipartite
graphs and split graphs, even for the convex obstacle number. A split graph is a graph for
which the vertex set can be partitioned into an independent subset and a clique.

Theorem 1. If G = (V,E) is a bipartite graph or a split graph, then we have

obsc(G), obsc(G) ≤ |V | − 1,

where G = (V,E \
(
V
2
)
) denotes the complement of G.

On the other hand, a modification of the proof of the lower bound by Mukkamala, Pach, and
Pálvölgyi [13] implies that there are bipartite graphs G on n vertices with obs(G) ≥ Ω(n/ logn)
for every positive integer n.

In contrast to the above question of Alpert, Koch, and Laison on the existence of a linear
upper bound, Mukkamala, Pach, and Pálvölgyi [13] conjectured that the maximum obstacle
number of n-vertex graphs is around n2. We refute this conjecture by showing the first
non-trivial general upper bound on the obstacle number of graphs. In fact, we prove a stronger
result that provides a general upper bound for the convex obstacle number.

Theorem 2. For every positive integer n and every graph G on n vertices, the convex obstacle
number of G satisfies

obsc(G) ≤ ndlogne − n+ 1.

The question whether the upper bound on obs(n) can be improved to O(n) remains open.
We can, however, prove obsc(G) ≤ O(n) provided that the chromatic number (or even the
subchromatic number) of G is bounded from above by a constant.
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Let G = (V,E) be a graph and let c : V → {1, . . . , k} be a function that assigns a color c(v)
to every vertex v of G. We call c a subcoloring of G if for every a ∈ {1, . . . , k} the color class
f−1(a) induces a disjoint union of cliques in G. The subchromatic number of G, denoted by
χs(G), is the least number of colors needed in any subcoloring of G.

We prove the following result that asymptotically implies Theorems 1 and 2.

Theorem 3. For every positive integer n and every graph G on n vertices, the convex obstacle
number of G satisfies

obsc(G) ≤ (n− 1)(dlogχs(G)e+ 1),

Note that we have χs(G) ≤ min{χ(G), χ(G)}, thus Theorem 3 gives the bound obsc(G) ≤
O(n) if the chromatic number of G or the chromatic number of its complement G is bounded
from above by a constant. Theorem 3 immediately implies an analogous statement for
cochromatic number of G, which is the least number of colors that we need to color G so that
each color class induces either a clique or an independent set in G. The cochromatic number
of a graph G was first defined by Lesniak and Straight [11] and it is at least χs(G) for every
graph G.

1.2. Number of graphs with small obstacle number. For positive integers h and n, let
g(h, n) be the number of labeled n-vertex graphs with obstacle number at most h. The lower
bounds on the obstacle number by Mukkamala, Pach, and Pálvölgyi [13] and by Dujmović and
Morin [7] are both based on the upper bound g(h, n) ≤ 2O(hn log2 n). In fact, any improvement
on the upper bound for g(h, n) will translate into an improved lower bound on the obstacle
number [7]. Dujmović and Morin [7] conjectured g(h, n) ≤ 2f(n)·o(h) where f(n) ≤ O(n log2 n).
We show the following lower bound on g(h, n).

Theorem 4. For every pair of integers n and h satisfying 0 < h < n, we have

g(h, n) ≥ 2Ω(hn).

This lower bound on g(h, n) is not tight in general. For example, it is not tight for
h ≤ o(logn), as we have g(h, n) ≥ g(1, n) and the following simple argument gives g(1, n) ≥
2Ω(n logn). For a given bijection f : {1, . . . , bn/2c} → {dn/2e + 1, . . . , n}, let Gf be the
graph on {1, . . . , n} that is obtained from Kn by removing the edges {i, f(i)} for every
i ∈ {1, . . . , bn/2c}}. We choose a geometric drawing of Kn where each vertex i is represented
by a point pi such that all line segments pipf(i) with i ∈ {1, . . . , bn/2c}} meet in a common
point that is not contained in any other edge of the drawing of Kn. Then we place a single
one-point obstacle on this common point and obtain an obstacle representation of Gf . Since
the number of the graphs Gf is (bn/2c)! ≥ 2Ω(n logn), the super-exponential lower bound on
g(1, h) follows.

1.3. Complexity of faces in arrangements of line segments. An arrangement A of line
segments is a finite collection of line segments in the plane. The line segments of A partition
the plane into vertices, edges, and cells. A vertex is a common point of two or more line
segments. Removing the vertices from the line segments creates a collection of subsegments
which are called edges. The cells are the connected components of the complement of the line
segments. A face of A is a closure of a cell.

Note that every geometric drawing of a graph is an arrangement of line segments and vice
versa. The edges of the graph correspond to the line segments of the arrangement and the
vertices of the graph correspond to the endpoints of the line segments.

A line segment s of A is incident to a face F of A if s and F share an edge of A. The
complexity of a face F is the number of the line segments of A that are incident to F . If F is
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M ≤ O(1) Ω(1) ≤M ≤ O(n) Ω(n) ≤M ≤ O(n log
3
2 n) Ω(n log

3
2 n) ≤M ≤ O(n4)

O(n logn) [2] O(nM logn) [3] O(n2 logM) [3] O(n4/3M2/3) [3]
Ω(n logn) [12] Ω(nM) Ω(n4/3M2/3) Ω(n4/3M2/3)

Table 1. A summary of the best known upper and lower bounds on the
complexity of M faces in an arrangement of segments with n endpoints.

a set of faces of A, then the complexity of F is the sum of the complexities of F taken over all
F ∈ F .

An arrangement of lines is a finite collection of lines in the plane with faces and their
complexity defined analogously.

Edelsbrunner and Welzl [8] constructed an arrangement of m lines having a set of M faces
with complexity Ω(m2/3M2/3 +m) for every m and M ≤

(
m
2
)

+ 1. Wiernik and Sharir [18]
constructed an arrangement of m line segments with a single face of complexity Ω(mα(m)).
These two constructions can be combined to provide the lower bound Ω(m2/3M2/3 +mα(m))
for the complexity of M faces in an arrangement of m line segments, where M ≤

(
m
2
)

+ 1.
The best upper bound for the complexity of M faces in an arrangement of m line segments is
O(m2/3M2/3 +mα(m) +m logM) by Aronov et al. [3].

Arkin et al. [2] studied arrangements whose line segments share endpoints. That is, they
considered the maximum complexity of a face when we bound the number of endpoints of the
line segments instead of the number of the line segments. They showed that the complexity of
a single face in an arrangement of line segments with n endpoints is at most O(n logn). An
Ω(n logn) lower bound was then proved by Matoušek and Valtr [12].

Arkin et al. [2] asked what is the maximum complexity of a set ofM faces in an arrangement
of line segments with n endpoints.

Since every arrangement of line segments with n endpoints contains at most
(
n
2
)
line

segments, the upper bound O(n4/3M2/3 +n2α(n) +n2 logM) can be deduced from the bound
by Aronov et al. [3]. Together with the upper bound O(nM logn), which follows from the
bound by Arkin et al. [2] on the complexity of a single face, we obtain an upper bound
O(min{nM logn, n4/3M2/3 + n2 logM}) on the complexity of M faces in an arrangement of
line segments with n endpoints.

We give the following lower bound.

Theorem 5. For every sufficiently large integer n, there is an arrangement A of line segments
with n endpoints such that for every M satisfying 1 ≤ M ≤ n4 there is a set of at most M
faces of A with complexity Ω(min{nM,n4/3M2/3}).

Whenever M ≥ n log3/2 n, this lower bound matches the upper bound up to a multiplicative
constant. For M < n log3/2 n, the lower bound differs from the upper bound by at most an
O(logn) multiplicative factor; see also Table 1.

2. Dilated bipartite drawings

For a point p ∈ R2, let x(p) and y(p) denote the x- and the y-coordinate of p, respectively.
An intersection point in a geometric drawing D of a graph G is a common point of two edges
of G that share no vertex.

Let m and n be positive integers. We say that a geometric drawing of Km,n is bipartite if
the vertices of the same color class of Km,n lie on a common vertical line and not all vertices
of Km,n lie on the same vertical line. For the rest of this section, we let D be a bipartite
drawing of Km,n and use P := {p1, . . . , pm} and Q := {q1, . . . , qn} with y(p1) < · · · < y(pm)
and y(q1) < · · · < y(qn) to denote the point sets representing the color classes of Km,n in D.
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We let `P and `Q be the vertical lines that contain the points of P and Q, respectively. The
width w of D is |x(q1) − x(p1)|. In the following, we assume that `P is to the left of `Q
and that p1 = (0, 0) and q1 = (w, 0). We set di := y(pi+1) − y(pi) for i = 1, . . . ,m − 1 and
hj := y(qj+1)− y(qj) for j = 1, . . . , n− 1. We call d1 the left step of D and h1 the right step
of D. An example can be found in part (a) of Figure 1.

q5

q4

q3

q2

q1

p5

p4

p3

p2

p1

d1

d2

d3

d4
h4

h3

h2

h1

`P `Q

w

(a) (b)

Figure 1. (a) A bipartite drawing of K5,5 that is not regular. (b) A regular
drawing of K5,5.

We say that D is regular if we have d1 = · · · = dm−1 and h1 = · · · = hn−1; see part (b) of
Figure 1 for an example. Note that every regular drawing of Km,n is uniquely determined
by its width, left step, and right step. A regularization of a (possibly non-regular) bipartite
drawing D is the regular bipartite drawing of Km,n with the vertices π(pi) := (0, (i− 1)d1)
and π(qj) := (w, (j − 1)h1) for i = 1, . . . ,m and j = 1, . . . , n.

For 1 ≤ k ≤ m+ n− 1, the kth level of D is the set of edges piqj with i+ j = k + 1; see
Figure 2. Note that the levels of D partition the edge set of Km,n and that the kth level of D
contains min{k,m, n,m + n − k} edges. If D is regular, then, for every 1 < k < m + n − 1,
the edges of the kth level of D share a unique intersection point that lies on the vertical line
{ d1
d1+h1

w} × R.

1st level 2nd level 3rd level 4th level 5th level

Figure 2. The partitioning of the edges of a regular drawing of K3,3 into
levels. The edges in the same level are denoted by black line segments.

For an integer l ≥ 2, an ordered l-tuple (pi1qj1 , . . . , pilqjl
) of edges of D is uniformly crossing

if we have 0 < i2 − i1 = · · · = il − il−1 and j2 − j1 = · · · = jl − jl−1 < 0. In particular, a set
of edges forming a level of D, ordered by their decreasing slopes, is uniformly crossing. Note
that if (pi1qj1 , . . . , pilqjl

) is uniformly crossing, then the edges π(pi1)π(qj1), . . . , π(pil)π(qjl
) of

the regularization of D share a common intersection point, which we call the meeting point of
(pi1qj1 , . . . , pilqjl

). Note that this point does not necessarily lie in D; see Figure 3. In the other
direction, if D is regular and (e1, . . . , el) is a maximal set of edges of D that share a common
intersection point and are ordered by their decreasing slopes, then (e1, . . . , el) is uniformly
crossing.

Let ε > 0 be a real number. We say thatD is ε-dilated if we have d1 < · · · < dm−1 < (1+ε)d1
and h1 < · · · < hn−1 < (1 + ε)h1; see part (a) of Figure 4.
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(a) (b)q5

q3

q1

p4

p3

p2

π(q5)

π(q3)

π(q1)

π(p4)

π(p3)

π(p2)

Figure 3. (a) A uniformly crossing triple T = (p2q5, p3q3, p4q1) in a bipartite
drawing D of K5,5. (b) The meeting point of T in the regularization of D.

In a geometric drawing D′ of a (not necessarily bipartite) graph, let (e1, . . . , el) be an
ordered l-tuple of edges of D′ with finite slopes and such that ei and ei+1 share an intersection
point ri for i = 1, . . . , l − 1. We say that (e1, . . . , el) forms a cap, if x(r1) < · · · < x(rl−1) and
the slopes of e1, . . . , el are strictly decreasing. For every i, the segment ei is the graph of a
linear function fi : π(ei) → R, where π(ei) is the projection of ei on the x-axis. The lower
envelope of (e1, . . . , el) is the graph of the function defined on the union of these intervals as
the pointwise minimum of the functions fi and is undefined elsewhere. That is, the lower
envelope is a union of finitely many piecewise linear curves, called components. The cap C
formed by (e1, . . . , el) is the component of the lower envelope that contains r1, . . . , rl−1. The
points ri are vertices of C and e1 ∩ C, . . . , el ∩ C are edges of C; see part (b) of Figure 4. A
cap C is good in D′, if the edges of C are incident to the same bounded face of D′ or if C has
only one edge. If D′ is bipartite and the edges of one of its levels form a cap C, then we call
C a level-cap of D′.

(b)(a)

e1
e2

e3

e4

e5
e6

C

Figure 4. (a) An ε-dilated drawing of K5,5. (b) An example of a cap C

formed by (e1, . . . , e6) with vertices denoted by empty circles. Note that the
lower envelope of (e1, . . . , e6) is not connected.

The following lemma is crucial in the proofs of all our main results.

Lemma 6. Let D be a bipartite drawing of Km,n.
(i) If D satisfies d1 < · · · < dm−1 and h1 < · · · < hn−1, then, for every l ≥ 2, every

uniformly crossing l-tuple of edges of D forms a cap.
(ii) For all w, d1, h1, δ ∈ R+ and m,n ∈ N, there is an ε0 = ε0(m,n,w, d1, h1, δ) > 0

such that for every positive ε ≤ ε0 the following statement holds. If D is an ε-dilated
bipartite drawing of Km,n with width w, left step d1, and right step h1, then the
intersection point between any two edges piqj and pi′qj′ of D lies in distance less than
δ from the intersection point π(pi)π(qj) ∩ π(pi′)π(qj′).

(iii) For all w, d1, h1 ∈ R+ and m,n ∈ N, there is an ε0 = ε0(m,n,w, d1, h1) > 0 such that
for every positive ε ≤ ε0 the following statement holds. If D is an ε-dilated bipartite
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drawing of Km,n with width w, left step d1, and right step h1, then for every l ≥ 2
every uniformly crossing l-tuple of edges of D forms a good cap in D.

Proof. For part (i), let (e1, . . . , el) be a uniformly crossing l-tuple of edges ofD with ek := pikqjk

for every k = 1, . . . , l. Consider edges ek, ek+1, ek+2 and let rk and rk+1 be the points ek∩ek+1
and ek+1 ∩ ek+2, respectively. The points rk and rk+1 exist, as y(pik ) < y(pik+1) < y(pik+2)
and y(qjk+2) < y(qjk+1) < y(qjk

).
Consider the midpoint p of pikpik+2 and the midpoint q of qjk

qjk+2 . Since (e1, . . . , el) is
uniformly crossing and d1 < · · · < dm−1 and h1 < · · · < hn−1, we have y(pik+1) < y(p) and
y(qjk+1) < y(q); see part (a) of Figure 5. The edges pq, ek, and ek+2 share a common point
that lies above ek+1. Since rk and rk+1 lie on ek+1, we obtain x(rk) < x(rk+1). The slopes of
ek, ek+1, ek+2 are strictly decreasing, thus (e1, . . . , el) forms a cap.

p

pik+1

pik+2

qjk+2

qjk+1

q

pik

qjk

rk+1

`P `Q

rk

ek

ek+1

ek+2

(a) (b)

s

B

C

K

Figure 5. (a) A situation in the proof of part (i) of Lemma 6. (b) A
situation in the proof of part (iii) of Lemma 6.

Part (ii) follows from the fact that for fixed w, d1, h1, all ε′-dilated drawings of Km,n with
width w, left step d1, and right step h1 converge to their common regularization as ε′ > 0
tends to zero.

We now show part (iii). We let δm,n(w, d1, h1) = δ > 0 be the half of the minimum distance
between two intersection points of the regular drawing D′ of Km,n with width w, left step
d1, and right step h1. We take ε = ε0(m,n,w, d1, h1, δ) from part (ii) and we let D be an
ε-dilated drawing of Km,n with width w, left step d1, and right step h1. According to (i),
every uniformly crossing l-tuple (e1, . . . , el) of edges of D forms a cap.

Let s be the meeting point of {π(e1), . . . , π(el)} in the regular drawing D′. Let B be the
open disc with the center s and the radius δ. Let R be the set of edges that intersect some
other edge inside B. By the choice of δ, R is the set of edges that correspond to the edges of the
regular drawing D′ that contain s. In particular, {e1, . . . , el} ⊆ R (note that {e1, . . . , el} might
be, for example, a subset of a level of D and thus we do not necessarily have {e1, . . . , el} = R).
By part (i), the edges of R form a cap. All the vertices of this cap lie inside B. Since no edge
outside R crosses any edge of R inside B, there is a face K in D incident to all edges of R.
Since l ≥ 2, R contains at least two edges and thus K is bounded; see part (b) of Figure 5. �

3. Proof of Theorem 1

Let G ⊆ Km,n be a bipartite graph and G be its complement. Using Lemma 6, we can
easily show obsc(G) ≤ m+ n− 1. Let ε > 0 be chosen as in part (iii) of Lemma 6 for Km,n

and w = d1 = h1 = 1. Consider an ε-dilated drawing D of Km,n with w = d1 = h1 = 1,
p1 = (0, 0), and q1 = (1, 0). Since edges of every level of D are uniformly crossing, part (iii)
of Lemma 6 implies that the edges of the kth level of D form a good level-cap Ck in D for
every 1 ≤ k ≤ m+ n− 1. That is, there is a bounded face Fk of D such that each edge of Ck
is incident to Fk or Ck contains only one edge.
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For every integer k such that Ck contains a non-edge of G, we construct a single convex
obstacle Ok. If Ck contains only one edge e, the obstacle Ok is an arbitrary inner point of e.
Otherwise every edge piqk+1−i of the kth level of D shares a line segment sik of positive length
with Fk. The obstacle Ok is defined as the convex hull of the midpoints of the line segments
sik where piqk+1−i is not an edge of G; see Figure 6.

Fk

Ok

Figure 6. Placing a convex obstacle Ok that blocks three edges of Km,n.

The levels partition the edge set of Km,n, therefore we block every non-edge of G. Since
every bounded face of D is convex, we have Ok ⊆ Fk. Therefore no edge of G is blocked and
we obtain an obstacle representation of G. In total, we produce at most m+ n− 1 obstacles.

To show obsc(G) ≤ m+n−1, we proceed analogously as above, except the vertices of D are
suitably perturbed before obstacles Ok are defined, which allows to add two (long and skinny)
convex obstacles OP and OQ blocking all the edges pipi′ and qjqj′ , respectively. The addition
of the obstacles OP and OQ may be compensated by using a single convex obstacle to block
non-edges in the first and the second level and in the (m+ n− 2)nd and the (m+ n− 1)st
level.

If G is a split graph, then we add only one of the obstacles OP and OQ depending on
whether P or Q, respectively, represents an independent set in G.

4. Proof of Theorem 2

Proof. We show that the convex obstacle number of every graph G on n vertices is at most
ndlogne−n+1. The high-level overview of the proof is as follows. We partition the edges of G
to edge sets of O(n) induced bipartite subgraphs of G by iteratively partitioning the vertex
set of G into two (almost) equal parts and considering the corresponding induced bipartite
subgraphs of G. For every j = 0, . . . , blognc, the number of such bipartite subgraphs of size
about n/2j is 2j . Then we construct an obstacle representation of G whose restriction to every
such bipartite subgraph resembles the obstacle representation from the proof of Theorem 1.
Since the obstacle representation of every bipartite subgraph of size about n/2j uses about
n/2j obstacles, we have O(n logn) obstacles in total.

Let m be a positive integer and let S be a finite set of m points on a vertical line. The
bottom half of S is the set of the first dm/2e points of S in the ordering of S by increasing
y-coordinates. The set of bm/2c remaining points of S is called the top half of S.

Let δ ∈ (0, 1/8) and let ε > 0 be a number smaller than ε0 from part (iii) of Lemma 6 for
Kn,n and w = d1 = h1 = 1. We also assume that ε is smaller than ε0 from part (ii) of Lemma 6
for Kn,n, w = d1 = h1 = 1, and δ. Let D be an ε-dilated bipartite drawing of Kn,n with
width, left step, and right step equal to 1 and with di = hi for every i = 1, . . . , n − 1. We
let P := {p1, . . . , pn} and Q := {q1, . . . , qn} be the color classes of D ordered by increasing
y-coordinates such that p1 = (0, 0) and q1 = (1, 0). By part (iii) of Lemma 6, edges of each
level of D form a good cap in D. For the rest of the proof, the y-coordinates of all points
remain fixed.

Let L be a level of D with at least two edges. Since the edges of L form a good cap, there is
a face FL of D such that all edges of L are incident to FL. If L contains an edge piqi for some
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1 ≤ i ≤ n, we let `L be the horizontal line containing piqi. Otherwise L contains edges piqi−1
and pi−1qi for some 1 < i ≤ n and we let `L be the horizontal line R× {(y(pi−1) + y(pi))/2}.
No vertex of the level-cap formed by the edges of L lies strictly above `L and thus whenever
two edges of L intersect above `L, one of them has a positive slope and the other one negative.
Thus there is αL = αL(ε) > 0 such that every edge of L with positive slope is incident to a
part of FL that is in the vertical distance larger than αL below `L; see Figure 7. We choose
α = α(ε) to be the minimum of αL over all levels L of D with at least two edges. We may
assume α ≤ δ. Note that α depends only on ε.

L
αL

FL

`L

Figure 7. All edges of a level L with positive slope are incident to a part of
a face FL strictly below `L. Empty circles represent vertices of the level-cap
formed by the edges of the level L. Grey area represents the face FL.

As the first step in our construction, we let D1 be the drawing obtained from D by removing
the top half of P and the bottom half of Q. We forget about the part D \D1, as it will not be
used in the obstacle representation of G. We use P 1

1 and P 2
1 to denote the left and the right

color class of D1, respectively. We map the vertices of G to the vertices of D1 arbitrarily. Let
C1 be the set of the level-caps of D1. Since every level-cap in D is good in D, every cap in C1
is good in D1. Let V 1

1 be the vertical strip between P 1
1 and P 2

1 .
We now give a brief overview of the next steps. The drawing D1 is the first step towards

making an obstacle representation of G. In fact, we can now block a large portion of non-edges
of G by placing obstacles in D1 as in the proof of Theorem 1. Then we take care of the edges
between vertices in the left color class P 1

1 of Kdn/2e,bn/2c as follows (edges between vertices in
the right color class P 2

1 of Kdn/2e,bn/2c are dealt with analogously). We slightly shift the top
half of P 1

1 horizontally to the right. Only some of the edges of a copy of Kddn/2e/2e,bdn/2e/2c
between the top and the bottom half of P 1

1 belong to G. In the same way as in the bipartite
case, we place convex obstacles along the level-caps of this copy. To take care of the edges
between vertices in the same color class of Kddn/2e/2e,bdn/2e/2c, and for each of the color classes
we proceed similarly as above.

For an integer j with 2 ≤ j ≤ dlogne, we now formally describe the jth step of our
construction. Having chosen the drawing Dj−1, the set Cj−1, and point sets P 1

j−1, . . . , P
2j−1

j−1 ,
we define P 1

j , . . . , P
2j

j as follows. For 1 ≤ k ≤ 2j−1, let P 2k−1
j be the bottom half of P kj−1 and

let P 2k
j be the top half of P kj−1. Let εj > 0 be a small real number to be specified later. If

k is odd and |P kj−1| > 1, we move the points from P 2k
j to the right by εj . If k is even and

|P kj−1| > 1, we move the points from P 2k−1
j to the left by εj ; see Figure 8 for an illustration.

This modified drawing is D′j−1 and Cj−1 is transformed into C′j−1.
For 1 ≤ k ≤ 2j−1, we add all edges between points from P 2k−1

j and P 2k
j to create a bipartite

drawing Dk
j of Ka,b for some integers a, b satisfying |a − b| ≤ 1 and a, b ≤ dn/2je. Let V kj

be the vertical strip between P 2k−1
j and P 2k

j . That is, V kj contains Dk
j . We let Cj be the

union of C′j−1 with a set of level-caps of the drawings Dk
j for 1 ≤ k ≤ 2j−1. We also set

Dj := D1
j ∪ · · · ∪D2j−1

j ∪D′j−1.
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D

p1

p2

p3

p4

p5

p6

p7

p8

q1

q2

q3

q4

q5

q6

q7

q8 D1 D2

. . .

P 1
1

P 2
1

P 1
2

P 2
2

P 3
2

P 4
2

Figure 8. The initial drawing D and the first two iterations in the construc-
tion of the drawing of K8 in the proof of Theorem 2. The edges added in the
current iteration are denoted by black segments. Note that the vertical strip
between P 1

2 and P 4
2 in D2 is the same as the vertical strip between P 1

1 and
P 2

1 in D1.

We choose εj small enough so that each good cap C ∈ Cj−1 is transformed to a good cap
C ′ ∈ C′j−1. Such εj exists, as every geometric drawing of a graph is compact and the distance
of two points is a continuous function.

We also choose εj small enough so that the following holds for every edge e of D′j−1. Let
γ ≤ j − 1 be the smallest index such that e ∈ D′γ . For every vertical strip V k′j′ intersecting e
and with γ < j′ ≤ j and 1 ≤ k′ ≤ 2j′−1, the portion of e in the vertical strip V k′j′ is contained
in the horizontal strip R× (y(p)− α, y(p) + α) for some endpoint p of e. This can be done, as
α depends only on ε and the endpoints of e move by at most εj . We also use the facts that the
vertical strips V k′j′ , for 1 ≤ j′ < j and 1 ≤ k′ ≤ 2j′−1, do not change during the translations
by εj and that each vertical strip V k′j′ , for 2 ≤ j′ ≤ j and 1 ≤ k′ ≤ 2j′−1, is contained in the
vertical strip V dk

′/2e
j′−1 ; see Figure 9 for an illustration.

εj εj εj εj

2αp

e2

P 2k−1
j P 2k

j

p

e2

P k−1
j−1 P k

j−1

2α εj−1

εj−1

εj−1

εj−1

V
k/2
j−1

V k
j

e1 e1

V k−1
j

V k+1
j V k+2

j

q1 q2q1 q2
V

k/2+1
j−1

Figure 9. An example of conditions posed on the edges e ∈ D′j−1 while
choosing εj . In the example, j ≥ 2, k is even, e1 ∈ D′j−1 and e2 ∈ D′j−2. The
portions of e1 in V k−1

j and V kj are contained in the horizontal strips of height
2α around p and q1, respectively. The portions of e2 in V k/2j−1 , V

k−1
j , and V kj

are contained in the horizontal strips of height 2α around p. The portions of
e2 in V k/2+1

j−1 , V k+1
j , and V k+2

j are contained in the horizontal strips of height
2α around q2.

After dlogne steps, the drawings Dk
dlogne contain at most two vertices and the construction

stops. We show that we can add at most ndlogne − n + 1 convex obstacles to the drawing
Ddlogne to obtain an obstacle representation of G.
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For 2 ≤ j ≤ dlogne and 1 ≤ k ≤ 2j−1, let fj,k : R2 → R2 be the affine mapping fj,k(x, y) :=
(x/εj− cj,k, y) where cj,k ∈ R is chosen such that the left color class of fj,k(Dk

j ) lies on {0}×R.
Note that the drawing fj,k(Dk

j ) is contained in the drawing D and thus edges of the levels of
fj,k(Dk

j ) form good caps in fj,k(Dk
j ); see Figure 10. Since fj,k does not change the edge-face

incidences in Dk
j , edges of the levels of Dk

j form good caps in Dk
j .

Let C be a level-cap of Dk
j . Let L be the level of fj,k(Dk

j ) whose edges form the level-cap
fj,k(C) of fj,k(Dk

j ). Edges of L are also edges of a level L′ of D and we let `C be the horizontal
line `L′ . All edges of L have positive slope in D. Thus it follows from the definition of α
that there is a bounded face of fj,k(Dk

j ) such that all edges of fj,k(C) are incident to the part
of this face below `C in the vertical distance larger than α. Since fj,k does not change the
y-coordinates, we get that for every level-cap C of Dk

j , there is a bounded face FC of Dk
j such

that all edges of C are incident to the part of FC that lies below `C in the vertical distance
larger than α.

f2,2(D
2
2)

f2,1(D
1
2)

Figure 10. An example of the drawings f2,1(D1
2) and f2,2(D2

2) (denoted by
black segments) in the ε-dilated drawing D of K8,8.

By induction on j, 1 ≤ j ≤ dlogne, we show that every cap from Cj is good in Dj in the
jth step of the construction. We already observed that this is true for j = 1. Suppose for a
contradiction that there is a cap C ∈ Cj that is not good in Dj for j > 1. Using the inductive
hypothesis and the choice of εj , we see that C is not in C′j−1. Therefore there is a drawing Dk

j

for 1 ≤ k ≤ 2j−1 such that C is a level-cap of Dk
j . Since C is good in Dk

j , all edges forming C
are incident to a single bounded face FC of Dk

j . The drawings D1
j , . . . , D

2j−1

j are contained in
pairwise disjoint vertical strips, thus C is good in D1

j ∪ · · · ∪D2j−1

j .
It follows from our choice of δ and ε and from part (ii) of Lemma 6 that all edges of C

are incident to FC in a 1/8-neighborhood of `C . Moreover, all edges of C are incident to the
part of FC that lies below `C in the vertical distance larger than α. Therefore all edges of C
are incident to the part of FC that is in the horizontal strip H between the horizontal lines
`C − 1/8 and `C − α. Because C is not good in Dj , some edge e of D′j−1 intersects H in the
vertical strip V kj . By the choice of εj , the portion of e inside V kj is contained in the horizontal
strip R × (y(p) − α, y(p) + α) for an endpoint p of e. However, the horizontal line `C is by
definition either at distance at least 1/2 from every point of P or it contains some edge piqi
with 1 ≤ i ≤ n. In any case, since α ≤ δ < 1/8, the strip H is disjoint with all the horizontal
strips R× (y(p)− α, y(p) + α) for all endpoints p in D′j−1 and we obtain a contradiction.

Let D̂k
j be the part of the drawingDdlogne transformed fromDk

j in the steps j+1, . . . , dlogne.
For every D̂k

j , we place the obstacles to its good level-caps as in the first part of the proof of
Theorem 1. Using the fact that bounded faces of every geometric drawing of Kn are convex, it
follows from the construction of Ddlogne that we obtain an obstacle representation of G.
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The total number of obstacles that we use can be estimated recursively. Every drawing D̂k
j

is a bipartite drawing of Ka,b for some integers a, b satisfying |a − b| ≤ 1 and a, b ≤ dn/2je.
For such D̂k

j we use a+ b− 1 obstacles. It follows from the construction that the maximum
number of obstacles that we use for an n-vertex graph can be estimated from above by a
function h(n) that is given by a recursive formula h(n) = h(dn/2e) + h(bn/2c) + n− 1 with
h(1) = 0.

Now it suffices to show h(n) ≤ ndlogne − n + 1. We proceed by induction on n. The
inequality is trivially satisfied for n = 1. For n > 1, we have

h(n) = h
(⌈n

2

⌉)
+ h

(⌊n
2

⌋)
+ n− 1

≤
⌈n

2

⌉ ⌈
log
(⌈n

2

⌉)⌉
−
⌈n

2

⌉
+ 1 +

⌊n
2

⌋ ⌈
log
(⌊n

2

⌋)⌉
−
⌊n

2

⌋
+ 1 + n− 1.

We have dlogdαee = dlogαe for every real number α ≥ 1 and thus dlog(dn/2e)e = dlog(n/2)e =
dlogne − 1, since n ≥ 2. Therefore

h(n) ≤
⌈n

2

⌉
(dlogne − 1) +

⌊n
2

⌋
(dlogne − 1) + 1 = ndlogne − n+ 1.

This finishes the proof of Theorem 2. � �

An alternative construction, in which the underlying point set is a variant of the well-known
Horton sets [17], can be found in the conference version of this paper [4].

Let P be a finite set of points of the plane, let G be a graph with vertex set V , |V | = |P |,
and let f : V → P be a one-to-one correspondence. An obstacle representation of G is induced
by f if every vertex v of G is represented by the point f(v) ∈ P . The proof of Theorem 2 gives
the following stronger claim.

Corollary 7. For every positive integer n, there is a set P of n points in the plane such that
for every graph G = (V,E) on n vertices and for every one-to-one correspondence f : V → P

there is an obstacle representation of G induced by f with at most ndlogne − n + 1 convex
obstacles. �

We also note that the vertices of the drawing Ddlogne can be perturbed so that the vertices
of the resulting drawing are in general position. When the perturbation is small enough, the
obstacles can be modified to block exactly the same set of edges that they blocked before the
perturbation.

5. Proof of Theorem 3

To prove Thoerem 3, we start with the same ε-dilated drawing D of Kn,n and use P and Q
to denote the left and the right color class of D, respectively. Again, by part (iii) of Lemma 6,
edges of each level of D form a good cap in D.

For a finite set S of points on a vertical line `, an interval in S is a subset I of S such that
there is no point of S \ I lying between two points of I on `. If S is partitioned into intervals
I1, . . . , Im, then the bottom part of S with respect to I1, . . . , Im is the set of points of S that
are contained in the intervals I1, . . . , Idm/2e. The set of remaining points of S is called the top
part of S with respect to I1, . . . , Im.

Let c be a subcoloring of G with χs(G) colors. We map the vertices of G to the points of P
such that the color classes of c form intervals in P ordered by increasing y-coordinates and
such that in each color class the vertex sets of the disjoint cliques also form intervals in P
ordered by increasing y-coordinates. We map the vertices of G to Q in the same order by
increasing y-coordinate. Let P 1

1 be the bottom part of P and let P 2
1 be the top part of Q with

respect to the partitioning of P and Q into the color classes of c. We let D1 be the drawing of
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the complete bipartite graph with the bottom part of P as the left color class of D1 and with
the top part of Q as the right color class of D1.

The construction of the obstacle representation of G then proceeds analogously as in the
proof of Theorem 2 with only one difference. Instead of partitioning the set P kj−1 into the
bottom and the top half, we partition P kj−1 into the bottom and the top part with respect to
the partitioning of P kj−1 into the color classes of c. If all points of P kj−1 are contained in the
same color class of c, then we do not partition P kj−1 at all.

For every drawing Dk
j , we place the obstacles to block non-edges of G in the same way as

in the proof of Theorem 2. We place obstacles only to block non-edges of G between vertices
from different color classes of c.

We now estimate the number of obstacles used so far. The number of steps is at most
dlogχs(G)e, as the number of intervals in the partitioning of P kj is at most dχs(G)/2je. We
place at most n− 1 obstacles in every step, as the number of obstacles used in a drawing Dk

j

is less than the number of vertices in Dk
j and the total number of vertices in the drawings Dk

j

is at most n for a fixed j. Thus the total number of obstacles is at most (n− 1)dlogχs(G)e.
It remains to block non-edges within each color class of the subcoloring c. Let P kj be a set

that forms a color class of C. We define a single-point obstacle Ou,v for every pair {u, v} of
consecutive vertices of P kj that are not contained in a common clique of the color class P kj
such that Ou,v blocks no edge of G. Since the cliques in the color class P kj form intervals and
all vertices from each color class lie on a common line, the obstacles Ou,v exist. This gives
us less than n additional obstacles, as there is at most n− 1 such pairs {u, v} of consecutive
vertices of G.

Note that the construction from the proof of Theorem 2 is a special case of this construction,
in which the color classes of c consist of a single point. The vertices of the final drawing in
the obstacle representation of G are not in general position. However, they can be perturbed
to be in general position and the obstacles can be modified to keep blocking the same set of
edges, in particular, the one-point obstacles can be replaced by short horizontal segments.

Remark 1. There are graphs G for which the bound obsc(G) ≤ (n − 1)(dlogχs(G)e + 1)
from Theorem 3 is significantly better than obsc(G) ≤ (n − 1)(dlogχ0e + 1) where χ0 :=
min{χ(G), χ(G)}. For example, if G is a disjoint union of t cliques, each of size t for some
positive integer t, then the first bound gives obsc(G) ≤ n− 1 for n := t2, as χs(G) = 1. On
the other hand, we have χ(G) = t = χ(G) and thus the latter bound gives only obsc(G) ≤
(n− 1)dlog te+ 1 = Θ(n logn).

Remark 2. Note that we can choose vertices and obstacles in the obstacle representation O
of a graph G = (V,E) from Theorem 3 in such a way that every non-edge of G intersects
exactly one obstacle and it intersects the obstacle in exactly one point. In particular, if we add
a non-edge e of a graph G to G, then by removing the point e ∩ O from the obstacle O that
intersects e, we construct an obstacle representation of G+ e := (V,E ∪ {e}) with at most one
additional obstacle when compared to O.

Motivated by this observation, we pose the following problem. If G is a graph and e is
a non-edge of G, how much larger can obs(G + e) be when compared to obs(G)? The same
question can be also asked for the convex obstacle number. Note that obs(G+ e) ≥ obs(G)− 1
and obsc(G+ e) ≥ obsc(G)− 1 for every graph G and every non-edge e of G.

6. Proof of Theorem 4

Let h and n be given positive integers with h < n. We show that the number g(h, n) of
labeled n-vertex graphs of obstacle number at most h is at least 2Ω(hn).
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For a point set P ⊆ R2 in general position, let e(h, P ) be the maximum integer for which
there is a set F of at most h bounded faces of KP and a set of e(h, P ) edges of KP that are
incident to at least one face from F . Let e(h, n) be the maximum of e(h, P ) over all sets P of
n points in the plane in general position.

Claim 8. We have g(h, n) ≥ 2e(h,n).

To prove the claim, let P be a set of n points in the plane in general position for which
e(h, P ) = e(h, n). Let F be the set of at most h bounded faces of KP such that e(h, n) edges
of KP are incident to at least one face from F . For a face F ∈ F , let EF denote the set of
edges of KP that are incident to F . We use G to denote the graph with vertex set P and
with two vertices connected by an edge if and only if the corresponding edge of KP is not in
∪F∈FEF .

We show that every subgraph G′ of KP containing G satisfies obs(G′) ≤ h. The claim then
follows, as the number of such subgraphs G′ is 2e(h,n).

Let G′ be a subgraph of KP such that G ⊆ G′. For every face F ∈ F , we define a convex
obstacle OF as the convex hull of midpoints of line segments e ∩ F for every e ∈ EF that
represents a non-edge of G′. Note that, since all bounded faces of KP are convex, the obstacle
OF is contained in F and thus OF blocks only non-edges of G′. Since every non-edge of G′ is
contained in EF for some F ∈ F , we obtain an obstacle representation of G′ with at most h
convex obstacles. This finishes the proof of the claim. �

Since h < n, the following and the previous claim give Theorem 4.

Claim 9. For n ≥ 3, we have e(h, n) ≥ 2hn−h2−1
4 .

Let ε > 0 be chosen as in part (iii) of Lemma 6 for Kdn/2e,bn/2c and w = d1 = h1 = 1. Let
D be an ε-dilated drawing of Kdn/2e,bn/2c with w = d1 = h1 = 1, p1 = (0, 0), and q1 = (1, 0).
By part (iii) of Lemma 6, the edges of the kth level of D form a good cap Ck in D for every
k = 1, . . . , n− 1.

We perturb the vertices of D such that the vertex set of the resulting geometric drawing D′
of Kdn/2e,bn/2c is in general position. We let KP be the geometric drawing of Kn obtained
from D′ by adding the missing edges. Note that if the perturbation is sufficiently small, then
every good cap Ck in D corresponds to a good cap C ′k in KP .

Let F := {F1, . . . , Fh} be the set of (not necessarily distinct) bounded faces of KP such
that, for i = 1, . . . , h, all edges of the cap C ′bn/2c−dh/2e+i are incident to Fi. That is, F1, . . . , Fh
are faces incident to edges of h middle caps C ′k; see Figure 11. Since caps C ′bn/2c−dh/2e+i are
good in KP and n ≥ 3, the faces Fi exist.

KP

Figure 11. A situation in the proof of Theorem 4 for n = 10 and h = 4.
The faces F1, . . . , Fh of KP are denoted gray.

Every cap C ′k is formed by min{k, n− k} edges for every k = 1, . . . , n− 1. Therefore, for
every i = 1, . . . , h, the face Fi is incident to at least min{bn/2c− dh/2e+ i, dn/2e+ dh/2e− i}
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edges of KP . Summing over i = 1, . . . , h, we obtain the following expression for the number of
edges of KP incident to at least one face of F :

e(h, n) ≥
dh/2e∑
i=1

(⌊n
2

⌋
−
⌈
h

2

⌉
+ i

)
+

h∑
i=dh/2e+1

(⌈n
2

⌉
+
⌈
h

2

⌉
− i
)

=

=
dh/2e∑
j=1

(⌊n
2

⌋
− j + 1

)
+
bh/2c∑
j=1

(⌈n
2

⌉
− j
)
.

If h is even, we have

e(h, n) ≥
h/2∑
j=1

(⌊n
2

⌋
+
⌈n

2

⌉
− 2j + 1

)
= nh

2 + h

2 − 2
h/2∑
j=1

j

= 1
4 (2nh+ 2h− h · (h+ 2)) > 1

4(2nh− h2 − 1).

If h is odd, we have

e(h, n) ≥
(h−1)/2∑
j=1

(⌊n
2

⌋
+
⌈n

2

⌉
− 2j + 1

)
+
⌊n

2

⌋
− h− 1

2

= n(h− 1)
2 − 2

(h−1)/2∑
j=1

j

+ h− 1
2 +

⌊n
2

⌋
− h− 1

2

≥ 1
4 (2nh− 2n− (h− 1)(h+ 1) + 2(n− 1))

= 1
4(2nh− h2 − 1).

This implies e(h, n) ≥ (2hn− h2 − 1)/4 and proves the claim. �

7. Proof of Theorem 5

For a sufficiently large constant C and every sufficiently large integer n, we find a bipartite
drawing D of Kn,n such that for every integer M satisfying Cn ≤M ≤ n4/C there is a set of
at most M faces of D with complexity at least Ω(n4/3M2/3). When M = Cn, we obtain a set
of at most Cn faces with complexity at least Ω(n2). For M ≤ Cn, it suffices to take only the
faces with the highest complexity from this set to obtain the lower bound Ω(nM). Theorem 5
then follows, as D can be treated as an arrangement of n2 line segments with 2n endpoints.

Let D′ be the regular bipartite drawing of Kn,n with width, left step, and right step equal
to 1, p1 = (0, 0), and q1 = (1, 0). For all coprime integers i and k satisfying 1 ≤ i < k ≤ n/2,
every intersection point of a uniformly crossing l-tuple of edges (pi1qj1 , . . . , pilqjl

) of D′ with
i2 − i1 = i and j2 − j1 = i− k is called a uniform (i, k)-crossing; see part (a) of Figure 12. A
point that is a uniform (i, k)-crossing for some integers i and k is called a uniform crossing.

Note that all uniform (i, k)-crossings lie on the vertical line { ik} × R and that no uniform
(i, k)-crossing is a uniform (i′, k′)-crossing for any pair (i′, k′) 6= (i, k), as i and k are coprime.
Since the y-coordinate of every uniform (i, k)-crossing equals j/k for some 0 ≤ j ≤ kn − k,
the number of uniform (i, k)-crossings is at most kn. We now show that there are at least
n2 − 2in > n2 − 2kn edges of D′ that contain a uniform (i, k)-crossing. This follows from the
condition k ≤ n/2, as for every edge pi′qj′ of D′ with i < i′ ≤ n − i and 1 ≤ j′ ≤ n either
pi′−iqj′+k−i or pi′+iqj′−k+i is an edge of D′ and forms a uniform (i, k)-crossing with pi′qj′ .

We choose ε > 0 as in part (iii) of Lemma 6 for Kn,n and w = d1 = h1 = 1. Let D be an
ε-dilated drawing of Kn,n with width, left step, and right step equal to 1, with the left lowest
point (0, 0), and with the right lowest point (1, 0). By part (iii) of Lemma 6, every uniformly
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crossing l-tuple of edges of D forms a good cap in D. In particular, every uniform crossing c
in D′ is the meeting point of edges of D that form a good cap Cc. Let Fc be the bounded face
of D such that all edges of Cc are incident to Fc and all vertices of Cc are vertices of Fc; see
part (b) of Figure 12.

x = 1
2

x = 1
3

(b)

D

x = 2
3

(a)

D′

Figure 12. (a) Uniform (1, 3)-crossings (denoted light gray), (1, 2)-crossings
(gray), and (2, 3)-crossings (dark gray) in the regular drawing D′ of K6,6.
(b) Faces corresponding to the (1, 3)-crossings (light gray), to the uniform
(1, 2)-crossings (gray), and to the (2, 3)-crossings (dark gray) in the ε-dilated
drawing D.

Let c be the meeting point of a maximal uniformly crossing l-tuple L of edges from D′ for
some l ≥ 2 . Similarly, let c′ be the meeting point of a maximal uniformly crossing l′-tuple L′
of edges from D′ for some l′ ≥ 2. Let Fc and Fc′ be the faces of D that are incident to all
edges of L and L′, respectively, in D. We show that the faces Fc and Fc′ of D are distinct.

Let F ′c and F ′c′ be the faces that correspond to Fc and Fc′ in D′. It suffices to show that
F ′c and F ′c′ are distinct, so suppose for a contradiction that F ′c = F = F ′c′ . We can assume
without loss of generality that c and c′ lie on a common edge e = prqs of D′, since all vertices
d of F with F = F ′d are meeting points of a maximal uniformly crossing tuple of edges from
D′ and they form an interval on F . Therefore we can choose c and c′ to be two such vertices
of F that share an edge of F . We also assume that c is to the left of c′ on e. Then e has the
smallest slope among edges that contain c. We let pr−iqs+k−i be the edge that contains c and
that has the second smallest slope among edges that contain c. Similarly, e has the largest
slope among edges that contain c′ and we let pr+i′qs−k′+i′ be the edge that contains c′ and
that has the second largest slope among edges that contain c′; see part (a) of Figure 13. Note
that 1 ≤ i < k < n and 1 ≤ i′ < k′ < n. Without loss of generality, we assume that k ≤ k′.

Let x be the point on `P above pr with |prx| = |prpr−i| and let y be the point on `Q
below qs with |qsy| = |qsqs+k−i|. Observe that c is the common point of e and xy. The point
x is below pr+i′ , since otherwise we have |prx| = i ≥ i′ = |prpr+i′ | and, since c ∈ e ∩ xy,
k− i > k′− i′. This implies k > k′, which contradicts our assumption. Therefore x lies between
pr and pr+i′ on `P and, in particular, x ∈ P . The point y lies below qs−k′+i′ , since otherwise
y ∈ Q and c ∈ e ∩ xy implies that xy gives F ′c 6= F ′c′ . However, if y is below qs−k′+i′ , then the
edge xqs−k′+i′ gives F ′c 6= F ′c′ and we obtain a contradiction; see part (b) of Figure 13.

Let K ≤ n/2 be a positive integer whose value we specify later. For coprime integers i and
k satisfying 1 ≤ i < k ≤ K, let Fi,k be the set of faces Fc where c is a uniform (i, k)-crossing
in D′. It follows from our observations that Fi,k contains at most kn faces and that the
complexity of Fi,k is at least n2 − 2kn. We let F :=

⋃
i,k Fi,k where the union is taken over
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pr
qs

pr+i′

qs−k′+i′

pr−i

qs+k−i

c
c′

c
c′

(a) (b)

pr
qs

pr+i′

qs−k′+i′
pr−i

qs+k−i
x

y

i

i′
k − i

k′ − i′

Figure 13. Situations in the proof of Theorem 5.

all coprime integers i and k satisfying 1 ≤ i < k ≤ K. Then F contains at most

K∑
k=2

k−1∑
i=1

gcd(i,k)=1

kn <
nK3

2

faces. The inequality follows from kn ≤ Kn and from the fact that there are at most(
K
2
)
< K2/2 pairs (i, k) with 1 ≤ i < k ≤ K.

Since the sets Fi,k are pairwise disjoint, the complexity of F is at least

K∑
k=2

k−1∑
i=1

gcd(i,k)=1

(n2 − 2kn) =
K∑
k=2

ϕ(k − 1)(n2 − 2kn) > n2
K−1∑
j=1

ϕ(j)− nK3,

where ϕ(j) denotes the Euler’s totient function. The totient summatory function satisfies∑m
j=1 ϕ(j) ≥ 3m2

π2 − O(m logm) [10, pages 268–269]. Thus the complexity of F is at least
3n2K2

π2 − nK3 −O(n2K logK).
Let M be a given integer that satisfies 8n ≤M ≤ n4/8. We set K := (M/n)1/3. We may

assume that K is an integer, as it does not affect the asymptotics. For 8n ≤M ≤ n4/8, we
have 2 ≤ K ≤ n/2. The set F then contains at most M faces and its complexity is at least

3
π2n

4/3M2/3 −M −O(M1/3n5/3 log (M/n)),

which is Ω(n4/3M2/3) for a sufficiently large absolute constant C and Cn ≤M ≤ n4/C.

Remark 3. We let k,M ∈ N, n = k2 and assume that Ω(
√
n) ≤M ≤ O(n2). If we expand

the edges of a regular bipartite drawing Kk,k to lines, we obtain a set of n lines and M points
with Ω((Mn)2/3) incidences, which is the maximum possible number, up to a multiplicative
constant. This construction is, however, only a transformation of the construction of Erdős
described for example in a paper of Pach and Tóth [16].

Geometric duality is a mapping from points and lines in the plane to lines and points,
respectively, where the lines are restricted to those with finite slope. A point (a, b) ∈ R2 is
mapped to the line whose every point (x, y) satisfies y = ax − b. Notice that the duality
preserves point-line incidences. Let li,j be the line passing through the points (0, i) and (1, j).
Its dual is the point (j − i,−i). Thus, the set of lines li,j with i, j ∈ {0, . . . , k − 1} is mapped
to the set of points with integer coordinates inside the quadrangle with vertices (k − 1, 0),
(0, 0), (−(k − 1),−(k − 1)) and (0,−(k − 1)). This point set can be transformed by a linear
transformation of the plane into the set {0, 1, . . . , k − 1}2, which is the point set used in the
construction of Erdős.
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