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Abstract

In 1935, Erdős and Szekeres proved that every set of n points in general
position in the plane contains the vertices of a convex polygon of 1

2
log2(n)

vertices. In 1961, they constructed, for every positive integer t, a set of
n := 2t−2 points in general position in the plane, such that every convex
polygon with vertices in this set has at most log2(n) + 1 vertices. In this
paper we show how to realize their construction in an integer grid of size
O(n2 log2(n)3).

1 Introduction

A set of points in the plane is in general position if no three of its points are
collinear. Let S be a set of n points in general position in the plane. A convex
k-gon of S is a convex polygon of k vertices whose vertices are points of S.
Erdős and Szekeres [7] proved that every set of

(
2k−4
k−2

)
+ 1 points in general

position in the plane contains a convex k-gon. Using Stirling’s approximation
this bound can be rephrased as follows.

Theorem 1 (Erdős and Szekeres 1935)
Every set of n points in general position in the plane has a convex k-gon of

at least 1
2 log2(n) vertices.

More than quarter of a century afterwards, Erdős and Szekeres [8] provided
a construction of a set of points in general position such that every convex k-gon
of this set has logarithmic size. Specifically, they showed the following.

Theorem 2 (Erdős and Szekeres 1961)

∗Departamento de Matemáticas, CINVESTAV.
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For every integer t ≥ 2, there exists a set of n := 2t−2 points in general
position in the plane such that every k-gon of this set has at most t − 1 =
log2(n) + 1 vertices.

Some inaccuracies in the construction of Erdős and Szekeres were corrected
by Kalbfleisch and Stanton in [12]. The Erdős-Szekeres construction as de-
scribed in [12] uses integer-valued coordinates. The size of these coordinates
grows quickly with respect to n. This has led some researchers to conjecture
that the Erdős-Szekeres construction cannot be carried out with small integer
coordinates.

As an example here are some excerpts from the book “Research Problems in
Discrete Geometry” [4] by Brass, Moser and Pach regarding the Erdős-Szekeres
construction.

“The complexity of this construction is reflected by the fact that
none of the numerous papers on the Erdős-Szekeres convex poly-
gon problem includes a picture of the 16-point set without a convex
hexagon.”

“Kalbfleisch and Stanton [12] gave explicit coordinates for the 2t−2

points in the Erdős-Szekeres construction. However, even in the case
of t = 6 the coordinates are so large that they cannot be used for a
reasonable illustration.”

“The exponential blowup of the coordinates in the above lower bound
constructions may be necessary. It is possible that all extremal con-
figurations belong to the class of order types that have no small
realizations.”

Also, in the survey [16] on the Erdős-Szekeres problem by Morris and Soltan we
find the following.

“The size of the coordinates of the points in the configurations given
by Kalbfleisch and Stanton [12] that meet the conjectured upper
bound on N(n) grows very quickly. A step toward showing that this
is unavoidable was taken by Alon et al. [1].”

In this paper we prove that the Erdős-Szekeres construction can be realized in
a rather small integer grid of size. Our main result is the following.

Theorem 15 The Erdős-Szekeres construction of n = 2t−2 points can be real-
ized in an integer grid of size O(n2 log2(n)3).

This solves an open problem of [4], which we discuss, together with other
problems, in Section 4.

To finish this section we mention the rich history behind the improvements
on the upper bound on the Erdős-Szekeres theorem. Let n(k) be the smallest
integer such that every set of n(k) points in general position in the plane contains
a convex k-gon.

2



The upper bound given by Erdős and Szekeres is of

n(k) ≤
(

2k − 4

k − 2

)
+ 1.

It took 63 years for an improvement to be found, but in the course of one year
many of them followed: Chung and Graham [5] proved that n(k) ≤

(
2k−4
k−2

)
;

Kleitman and Pachter [13] proved that n(k) ≤
(
2k−4
k−2

)
− 2k + 7; Tóth and

Valtr [20] improved this bound roughly by a factor of 2, they showed that
n(k) ≤

(
2k−5
k−2

)
+ 2. Eight years later in 2006, Tóth and Valtr [21] further im-

proved this bound by 1.
Very recently there has been a new set of improvements. Vlachos [24] proved

that

n(k) ≤
(

2k − 5

k − 2

)
−
(

2k − 8

k − 3

)
+

(
2k − 10

k − 7

)
+ 2.

This implies that

lim sup
k→∞

n(k)(
2k−5
k−2

) ≤ 29

32
.

Afterwards, Norin and Yuditsky [18] improved this to

lim sup
k→∞

n(k)(
2k−5
k−2

) ≤ 7

8
.

Mojarrad and Vlachos [15] made a furthter improvement and showed that
n(k) ≤

(
2k−5
k−2

)
−
(
2k−8
k−3

)
+2. Finally, in 2016, Suk [19] made a huge improvement;

he proved that
n(k) ≤ 2k+o(k).

The best lower bound is the one given by the Erdős-Szekeres construction.
It implies that

n(k) ≥ 2k−2 + 1.

This is conjectured to be value of n(k).
This paper is organized as follows. In Section 2 we describe in detail the

Erdős-Szekeres construction and show how to realize it in a small integer grid.
Based on the description of Section 2, we implemented an algorithm to compute
the Erdős-Szekeres construction. In Section 3 we discuss optimizations made
on our implementation to further reduce the size of the integer coordinates; we
also provide figures of the Erdős-Szekeres construction for t = 6 and t = 7. In
Section 4 we finalize the paper by proposing Erdős-Szekeres type problems for
point sets with integer coordinates.

2 The Erdős-Szekeres Construction

The Erdős-Szekeres construction is made from smaller point sets which we now
describe.
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Figure 1: A 4-cup and a 4-cap

2.1 Cups and Caps

A k-cup of S is a convex k-gon of S bounded from above by a single edge;
similarly a k-cap of S is a convex k-gon of S bounded from below by a single
edge; see Figure 1. Let X and Y be two sets of points in the plane. We say that
X is high above Y if: every line determined by two points in X is above every
point in Y , and every line determined by two points in Y is below every point
in X.

The building blocks of the Erdős-Szekeres construction are point sets Sk,l;
which are constructed recursively as follows.

• Sk,l := {(0, 0)} if k ≤ 2 or l ≤ 2;

• Sk,l := Lk,l ∪Rk,l;
where:

Lk,l := Sk−1,l;

Rk,l := {(x+ δk,l, y + δ′k,l) : (x, y) ∈ Sk,l−1};

δk,l is chosen large enough so that Rk,l is to the right of Lk,l;

and δ′k,l is chosen large enough with respect to δk,l so that Rk,l is high
above Lk,l.

It can be shown by induction on k + l that Sk,l has
(
k+l−4
k−2

)
points, and that

Sk,l does not contain a k-cup nor a l-cap.
In Matoušek’s book [14] it is left as an exercise to show that Sk,l can be

realized in an integer grid of polynomial size. According to Matoušek this was
noted by Valtr. We follow a different approach; we prove that a superset of Sk,l
can be realized with small positive integer coordinates; even though for some
values of k and l this implies a realization of Sk,l with integer coordinates of
exponential size.
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2.2 A Superset of Sk,l

Let r ≥ 1 be an integer. In this section we construct a point set Pr in general
position in the plane with integer coordinates such that Pr has 2r points, and
for r = k + l − 1, Pr contains Sk,l as a subset.1

We define Pr recursively as follows.

• P0 := {(0, 0)};

• Pr := Lr ∪Rr;
where:

Lr := Pr−1

Rr := {(x+ δr, y + δ′r) : (x, y) ∈ Lr}
δr := 3 · 4r−1; (1)

δ′r := (3r + 1) · 4r−1. (2)

Let Xr be the value of the largest x-coordinate of Pr; note that for r ≥ 1

Xr = Xr−1 + δr.

Since X0 = 0, by induction we have that

Xr = 4r − 1. (3)

Let Yr be the value of the largest y-coordinate of Pr; note that for r ≥ 1

Yr = Yr−1 + δ′r.

Since Y1 = 0, by induction we have that

Yr = r · 4r. (4)

Since
δr > Xr−1,

every point of Lr is to the left of every point of Rr.
For r ≥ 2, let pr be the rightmost point of Lr and let qr be the leftmost

point of Rr; let `r be the straight line passing through pr and qr; see Figure 2.
By construction of Pr, the point pr is the point of Lr of largest y-coordinate,
and the point qr is the point of Rr of smallest y-coordinate; therefore, the slope
mr of `r is given by

mr =
Yr − 2Yr−1
Xr − 2Xr−1

=
r4r − 2(r − 1)4r−1

4r − 1− 2(4r−1 − 1)

1More accurately, Pr contains a subset with the same order type as Sk,l.
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Figure 2: Pr

=
2r · 4r−1 + 2 · 4r−1

2 · 4r−1 + 1

= r + 1− r + 1

2 · 4r−1 + 1
. (5)

The mr are increasing, since

mr −mr−1 = 1 +
r

2 · 4r−2 + 1
− r + 1

2 · 4r−1 + 1
> 0;

the last inequality follows from the fact that r+1
2·4r−1+1 ≤

1
3 for r ≥ 2.

Let L′r−1 and R′r−1 be the translations of Lr−1 and Rr−1 in Rr, respectively.
Let `′r−1 be the line defined by the rightmost point of L′r−1 and the leftmost
point of R′r−1. Thus, `′r−1 is the translation of `r−1 in Rr. We now prove some
properties of Pr.

Lemma 3 Among the lines passing through two points of Pr, `r is the line with
the largest slope.

Proof. We proceed by induction on r. For r = 0 and r = 1, the lemma holds
trivially. So assume that r > 1 and that the lemma holds for smaller values of
r. Let ` be a line passing through two points of Pr.

Suppose that ` passes through two points of Lr or through two points of Rr.
By induction the slope of ` is at most mr−1. Since mr > mr−1, the slope of `r
is larger than the slope of `.

Suppose that ` passes through a point p of Lr and a point q of Rr. Consider
the polygonal chain C := (p, pr, qr, q). Since p is to the left of pr and qr is to
the left of q, the slope of ` is at most the maximum of the slopes of the edges
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of C. By induction each of these edges has slope at most mr. Therefore, the
slope of ` is at most the slope of `r. �

Lemma 4 The rightmost point of Pr is above `r−1 and the leftmost point of
Pr is below `′r−1.

Proof. The result holds trivially for r = 0 and r = 1; assume that r ≥ 2.
First we prove that the rightmost point p of Pr is above `r−1. Note that

p = (Xr, Yr). Let q be the point in `r−1 with x-coordinate equal to Xr; note
that since `r−1 contains the point (Xr−2, Yr−2), the y-coordinate of q is equal
to Yr−2 +mr−1(Xr −Xr−2). Therefore, it is sufficient to show that:

Yr > Yr−2 +mr−1(Xr −Xr−2).

Equivalently that
Yr − Yr−2
Xr −Xr−2

> mr−1.

This follows from

Yr − Yr−2
Xr −Xr−2

=
r4r − (r − 2)4r−2

4r − 1− (4r−2 − 1)

=
15r · 4r−2 + 2 · 4r−2

15 · 4r−2

= r +
2

15
,

and that by (5)

mr−1 = r − r

2 · 4r−2 + 1
.

Now we prove that the leftmost point of Pr is below `′r−1. Note that (0, 0) is
the leftmost point of Pr. Let q′ be the point in `′r−1 with x-coordinate equal to
0; note that since `′r−1 contains the point (Xr−2+δr, Yr−2+δ′r), the y-coordinate
of q′ is equal to Yr−2 + δ′r −mr−1(Xr−2 + δr). Therefore, it is sufficient to show
that:

Yr−2 + δ′r −mr−1(Xr−2 + δr) > 0.

Equivalently that
Yr−2 + δ′r
Xr−2 + δr

> mr−1.

This follows from

Yr−2 + δ′r
Xr−2 + δr

=
(r − 2)4r−2 + (3r + 1)4r−1

4r−2 − 1 + 3 · 4r−1

=
13r · 4r−2 + 2 · 4r−2

13 · 4r−2 − 1

7



= r +
2 · 4r−2 + r

13 · 4r−2 − 1
,

and that by (5)

mr−1 = r − r

2 · 4r−2 + 1
.

�

Lemma 5 The following properties hold.

(a) Rr is above `r−1;

(b) Lr is below `′r−1;

(c) no point of Lr−1 is below `r−1;

(d) no point of L′r−1 is below `′r−1;

(e) no point of Rr−1 is above `r−1; and

(f) no point of R′r−1 is above `′r−1.

Proof. For r = 0, 1, 2 the lemma can be verified directly or holds trivially;
assume that r > 2.

(a) By Lemma 4, the rightmost point of Rr is above `r−1. If a point p of Rr is
below `r−1, then the line defined by p and the rightmost point of Rr has
slope larger than mr−1— a contradiction to Lemma 3 and the fact that
Rr is a translation of Pr−1.

(b) By Lemma 4, the leftmost point of Lr is below `′r−1. If a point p of Lr
is above `′r−1, then the line defined by p and the leftmost point of Lr has
slope larger than the slope of `′r−1— a contradiction to Lemma 3 and the
fact that `′r−1 is parallel to `r−1.

(c) If a point p of Lr−1 is below `r−1, then the line defined by p and the
rightmost point of Lr−1 has slope larger than mr−1— a contradiction to
Lemma 3.

(d) Follows from (c) and the fact that Rr is a translation of Lr.

(e) If a point p of Rr−1 is above `r−1, then the line defined by p and the
leftmost point of Rr−1 has slope larger than mr−1— a contradiction to
Lemma 3.

(f) Follows from (e) and the fact that Rr is a translation of Lr.

�

Lemma 6 Rr is high above Lr.
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Proof. For r = 0, 1, 2 the lemma holds trivially or can be verified directly;
assume that r > 2 and that lemma holds for smaller values of r. We proceed
by induction on r.

We first prove that Rr is above every line ` defined by two points of Lr. By
(a) of Lemma 5, Rr is above `r−1. By Lemma 3, the slope of ` is at most the
slope of `r−1. Thus we may assume that ` does not contain the rightmost point
of Lr−1 nor the leftmost point of Rr−1. Suppose that ` passes through a point
of Rr−1; then, by (e) of Lemma 5, this point is below `r−1. Since the slope of
` is at most the slope of `r−1, Rr is above ` in this case. Suppose that ` passes
through two points of Lr−1. Then, by induction the leftmost point of Rr−1 is
above `. Since the slope of ` is at most the slope of `r−1, Rr is above ` in this
case.

We now prove that Lr is below every line ` defined by two points of Rr.
By (b) of Lemma 5, Lr is below `′r−1. Since Rr is a translation of Pr−1, by
Lemma 3, we have that the slope of ` is at most the slope of `′r−1. Thus we may
assume that ` does not contain the rightmost point of L′r−1 nor the leftmost
point of R′r−1. Suppose that ` passes through a point of L′r−1; then, by (d) of
Lemma 5, this point is above `′r−1. Since the slope of ` is at most the slope of
`r−1, Lr is below ` in this case. Suppose that ` passes through two points of
R′r−1. Since Rr is translation of Pr−1, by induction we have that the rightmost
point of L′r−1 is below `. Since the slope of ` is at most the slope of `′r−1, Rr is
above ` in this case. The result follows. �

Proposition 7 Pr can be realized with non-negative integer coordinates of size
at most r4r.

Proof. This follows from Xr = 4r − 1 and Yr = r4r. �

Proposition 8 Let k, l be positive integers. If r := k + l − 1 then Sk,l is a
subset of Pr.

Proof. The result holds for k ≤ 2 or l ≤ 2, since in these cases Sk,l = {(0, 0)}.
Therefore, the result holds for r ≤ 4. Assume that k, l ≥ 2, r ≥ 5 and that
the result holds for smaller values of r. By induction Sk−1,l and Sk,l−1 are
subsets of Pr−1. The result follows from Lemma 6 and by setting δk,l := δr and
δ′k,l := δ′r. �

2.3 The Erdős-Szekeres Construction with Small Integer
Coordinates

In this section we use the set of points described in Section 2.2 to realize, with
small integer coordinates, the construction given by Erdős and Szekeres in [8].
The Erdős-Szekeres construction is made from a small number of translations of
Sk,l (for the pairs (k, l), where k+l is fixed). We first describe these translations.

Let t > 0 be an integer and let n := 2t−2. For every integer 1 ≤ i ≤ t− 2 we
define the vector

vi := (3(t− i),−3i).
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Using these vectors, we define a set of t − 1 points w0, . . . , wt−2 recursively as
follows.

• w0 := (0, 0);

• wi+1 := wi + vi for i = 0, . . . , t− 3.

For i = 0, . . . , t− 2, let Ci be the unit square whose lower left corner is equal to
wi.

Lemma 9 The union,
⋃
Ci, of the squares Ci lies in a 3t2 × 3t2 integer grid.

Proof. Note that the largest absolute value of the x-coordinates of the wi’s is
equal to

t−3∑
i=0

(3t− i) < 3t2;

and the largest absolute value of the y-coordinates of the wi’s is equal to

t−3∑
i=0

3i < 3t2.

Therefore,
⋃
Ci lies in a 3t2 × 3t2 integer grid. �

Let Di be the square Ci scaled by factor of (t+ 1)4t+1, that is

Di := {
(
(t+ 1)4t+1x, (t+ 1)4t+1y

)
: (x, y) ∈ Ci}.

Lemma 10 Let 0 ≤ i < j < k ≤ r − 2 be three integers; let pi, pj , and pk be
three points in Di, Dj and Dk, respectively. Then (pi, pj , pk) is a right turn.

Proof. For i = 0, . . . , t− 3, let Wi be the set of vectors of the form u := q − q′
where q is a point of Ci+1 and q′ is a point of Ci. Note that the endpoints of
these vectors lie in a 2 × 2 square centered at vi; let γi be the smallest cone
with apex at the origin and that contains Ci. By the previous observation the
γi only intersect at the origin; see Figure 3.

Let mi−1,i be the slope of a line passing through a point of Ci−1 and a point
of Ci and let mi,i+1 be the slope of a line passing through a point of Ci and a
point of Ci+1. The vector defining mi−1,i lies in γi−1 and the vector defining
mi,i+1 lies in γi. This implies that mi−1,i > mi,i+1. Let 0 ≤ i < j < k ≤ r − 2
be three integers. Let mi,j be the slope of a line passing through a point of Ci
and a point of Cj and let mj,k be the slope of a line passing through a point of
Cj and a point of Ck. Thus, we have that

mi,j > mj,k. (6)

Note that (6) also holds for the lines defined by pairs points in the Di’s. There-
fore, (pi, pj , pk) is a right turn. �
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Figure 3: The vectors vi, the cones γi and the points wi, for t = 6

Let qi be the lower left corner of Di, and let S′t−i,i+2 be the translation of
St−i,i+2 by qi. That is

S′t−i,i+2 := {p+ qi : p ∈ St−i,i+2}.

The Erdős-Szekeres construction is given by

St =

t−2⋃
i=0

S′t−i,i+2.

Note that

|St| =
t−2∑
i=0

|St−i,i+2| =
t−2∑
j=0

(
t− 2

j

)
= 2t−2 = n.

Proposition 11 St lies in an integer grid of size in an integer grid of size
O(n2 log2(n)3).

Proof. Recall that Di is a scaling of Ci by a factor of (t + 1)4t+1. Therefore,
by Lemma 9, St lies in an integer grid of size

3t2(t+ 1)4t+1 = 192n2 log2(4n)2 log2(8n) = O(n2 log2(n)3).

�

Proposition 12 St is in general position.

Proof. Let p1, p2, p3 be three points of St. If these three points are contained
in a same Di, then they are not collinear since Sk,l is in general position. If
the three of them are in different Di, then by Lemma 10 they are not collinear.
If two of them lie on a same Di and one of them in some Dj , then they are
not collinear since the slope of a line joining a point in Di and a point in Dj

is negative, while the slope of a line defined by two points in Sk,l is greater or
equal to zero. Therefore, St does not contain three collinear points. �
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Theorem 13 Every convex k-gon of St has at most t− 1 vertices.

Proof. Let P be a convex k-gon of St. Let U and L be the upper and lower
polygonal chains of P , respectively. Let s be the index such that the leftmost
point of U (and L) is in Ds, and let r be the index such that the rightmost
point of U (and L) is in Dr.

Note that for all 0 ≤ i < j ≤ t − 2, the slopes of an edge joining a point
of Di with a point of Dj are negative; since the slope of an edge defined by a
pair of points in S′t−i,i+2 is greater or equal to zero, neither U nor L contain
two consecutive vertices in Di for s < i < r. By Lemma 10 such a Di cannot
contain a vertex of L. Therefore, P contains at most r − s − 1 vertices not in
Ds ∪Dr.

The vertices of P contained in Ss must form a cap and thus consists of at
most s+1 vertices. Similarly, the vertices of P contained in Sr must form a cup
and therefore consists of at most t − r − 1 vertices. Therefore, P has at most
(r − s− 1) + (s+ 1) + (t− r − 1) = t− 1 vertices; the result follows. �

To summarize, we have the following.

Theorem 14 The Erdős-Szekeres construction of n = 2t−2 points can be real-
ized in an integer grid of size O(n2 log2(n)3).

3 Implementation

A direct implementation of Section 2.3 gives way to an efficient algorithm to
compute the Erdős-Szekeres construction. By Proposition 14, the size of the
grid needed by this algorithm is asymptotically small; however, there are large
constants hidden in such an implementation. In this section we mention some
optimizations we have done to further reduce the size of the integer grid needed
for the Erdős-Szekeres construction.

• Decrease the horizontal distance between left and right parts of
Sk,l.

In Section 2.2, to construct Pr, we gave explicit values to δr and δ′r. This
allowed us to show that Lr is to the left of Rr and that Rr is high above
Lr. However, it is enough to show that Lr is to the left of Rr and that
the rightmost point of Rr is above `r. That is that

Yr >
Yr − Yr−2
Xr −Xr−2

(Xr −Xr−2) + Yr−2. (7)

Let c > 0 be a constant and set Xr = (2 + c)r. It can be shown that if we
replace inequality (7) by an equality and solve for Yr, then Yr is of order
O
((

2 + 3
c

)r)
. Therefore, if we set c =

√
3, then both Xr and Yr are of

order O
((

2 +
√

3
)r)

. In the actual implementation we choose δr so that

Xr =
⌈(

2 +
√

3
)r⌉

.

12



Then we choose δ′r so that

Yr =

⌈
Yr − Yr−2
Xr −Xr−2

(Xr −Xr−2) + Yr−2 + 1

⌉
.

The addition of the ceiling functions has prevented us from proving that
Yr is of order O

((
2 + 3

c

)r)
. If this is the case then Pr can be realized in

an integer grid of size O
(
nlog2(2+

√
3)
)

= O
(
n1.8999...

)
. In Section 2.2, we

opted to avoid using ceiling functions at the expense of being able to show
a slightly worse upper bound.

Inspired by this, we do likewise when constructing Sk,l. First we construct
Sk−1,l and Sk,l−1. Let Xk,l be the horizontal length of Sk,l. We choose

δk,l :=

⌈(
1 +
√

3
)(Xk−1,l +Xk,l−1

2

)⌉
.

For any two positive integers k and l, let `k,l be the straight line passing
through the rightmost point of Sk−1,l and the leftmost point of the copy
of Sk,l−1 in Sk,l. (This definition is similar to the definition of `r for Pr.)
We choose δ′k,l so that; the rightmost point in the translation of Sk,l−1 is
above `k−1,l; and the leftmost point of Sk−1,l is below the corresponding
translation of `k,l−1 in Rk,l.

• Separate the left and right parts of Sk,l by one in the last step
of the recursion.

The reason for choosing a relatively large horizontal separation between
the left and right parts of Sk,l is so that the slope of `k, does not increase
too quickly. We do not need to do this in the last step of the construction.
At each step in the construction of Si,j for 2 ≤ i ≤ k, 2 ≤ j ≤ k and
i+ j < k, we separate the corresponding left and right parts as before. In
the last step, when constructing Sk,l, we separate Sk−1,l from the copy of
Sk,l−1 by one.

• Decrease the size of the squares (rectangles) Di.

In Section 2.3, for i = 0, . . . , t − 2 we defined a square Di, inside which
we placed a copy of St−i,i+2. Di was chosen large enough so that Pr fits
inside Di for r = t + 1. Since we only need to fit St−i,i+2 we replace Di

by a rectangle of length Xt−1,i+2 and height Yt−i,i+2. The definitions of
the vi’s and wi’s are changed accordingly.

In Figure 4 we show S5,5 in 55 × 109 integer grid; in Figure 5 we show S6

in a 58 × 62 integer grid; and in Figure 6 we show S7 in a 230 × 310 integer
grid. For a comparison, we note that Kalbfleisch and Stanton [12] realize S6 in
a 6970× 1828 integer grid.

Our implementations are freely available as part of “Python’s Discrete and
Combinatorial Geometry Library” at www.pydcg.org. They are included in the
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points module. In that module the following constructions are also included:
Convex Position and the Double Circle as described in [3]; the Horton Set as
described in [2] and the Squared Horton set (this set was first defined by Valtr
in [22]).
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Figure 4: S5,5
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Figure 5: S6
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Figure 6: S7

17



4 Erdős-Szekeres Type Problems in Restricted
Planar Point Sets

In this section we propose some open Erdős-Szekeres type problems on point
sets in integer grids. Let diam(S) be the maximum distance between a pair
of points of S, and let mindist(S) be the minimum distance between a pair
of points of S. Alon, Katchalski and Pulleyblank [1], showed that if for some
constant α > 0, S satisfies

diam(S)

mindist(S)
≤ αn 1

2 ,

then S contains a convex k-gon of Ω
(
n

1
4

)
vertices; in [22], Valtr improved this

bound to Ω
(
n

1
3

)
. He also showed that if for some constant α > 0, S satisfies

diam(S)

mindist(S)
≤ α
√
n,

then S contains a convex k-gon of Ω
(
n

1
3

)
vertices. That is, metric restrictions

on S may force large convex polygons.
This prompted the following two problems in [4].

Problem 1 Does there exist, for every β ≥ 1, a suitable constant ε(β) > 0
with the following property: any set of S of n points in general position in the

plane with diam(S)
mindist(S) < nβ contains a convex nε(β)-gon?

Problem 2 Does there exist, for every γ ≥ 1, a suitable constant ε(γ) > 0
with the following property: any set of n points in the general position in the
plane with positive integer coordinates that do not exceed nγ contains a convex
nε(γ)-gon?

Valtr in his PhD thesis [23] showed that the answer for Problem 1 is “yes”
for β < 1. He also noted, in passing, in page 55 of his thesis the following.

“If τ = 1/2 then it is possible to construct an (nτ =
√
n)-dense set

of size n which contains no more than O(log n) vertices of a convex
polygon. Such a set can be obtained by an affine transformation
from the construction of Erdős and Szekeres [8]...”

S is said to be α-dense if diam(S)
mindist(S) ≤ α

√
n. So this observation solves Problem 1

for β ≥ 1 as well. Problem 2 appeared first in Valtr’s thesis (Problem 10), where
it is attributed to Welzl.

In this paper we have shown that the answer to Problem 2 is “No” for all
γ > 2. We conjecture that the answer to Problem 2 is “No” for all γ ≥ 1.
However, we conjecture that there exists a γ ∈ (1, 2) such that the Erdős-
Szekeres construction cannot be realized in an nγ×nγ integer grid. We propose
the following alternative to Problem 2.
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Problem 3 Does there exist, for every γ ≥ 1 and every n > 0, a suitable
constant ε(γ) > 0 and a set S of n points in general position in the plane with
the following property? S has positive integer coordinates not exceeding nγ ,
and S does not contain a convex ε(γ) log2(n)-gon.

4.1 Empty k-gons

A convex k-gon of S is empty if it does not contain a point of S in its interior.
In 1978, Erdős [6] asked whether an analogue of the Erdős-Szekeres theorem
holds for empty convex k-gons. That is, if for every k, every sufficiently large
point set in general position in the plane contains an empty k-gon.

Every set of at least three points contains an empty triangle; Esther Klein [7]
proved that every set of five points contains an empty convex 4-gon; Har-
borth [10] proved that every set of 10 points contains an empty convex 5-gon;
and Horton [11] constructed arbitrarily large point sets without empty con-
vex 7-gons. (His construction is now known as the Horton Set.) The question
for convex 6-gons remained open for more than a quarter of a century until
Nicolás [17] and independently Gerken [9] showed that every sufficiently large
set of points contains a convex empty 6-gon.

Alon et al. posed a problem in [1], similar to Problem 1, but for empty convex
k-gons. They asked whether if for some constant α > 0 every sufficiently large
α-dense set of points contains an empty convex 7-gon. Valtr in [22] showed that

there exist arbitrarily large
√

2
√

3/π-dense point sets not containing an empty

convex 7-gon. His construction is based on the Horton set.
The same question can be asked for point sets in an integer grid.

Problem 4 Does the following hold for every constant γ ≥ 0? Every suffi-
ciently large set of n points in the general position in the plane with positive
integer coordinates that do not exceed nγ contains an empty convex 7-gon.

As far as we know all constructions without an empty convex 7-gons are based
on the Horton set. This is particularly relevant for Problem 4 for the following
reason. In [2], Barba, Duque, Fabila-Monroy and Hidalgo-Toscano proved that
the Horton set cannot be realized in an integer grid of polynomial size.
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[7] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio
Math., 2:463–470, 1935.
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