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A CENTER TRANSVERSAL THEOREM FOR AN IMPROVED RADO

DEPTH

PAVLE V. M. BLAGOJEVIĆ, ROMAN KARASEV, AND ALEXANDER MAGAZINOV

Abstract. A celebrated result of Dol’nikov, and of Živaljević and Vrećica, asserts that for every
collection of m measures µ1, . . . , µm on the Euclidean space R

n+m−1 there exists a projection
onto an n-dimensional vector subspace Γ with a point in it at depth at least 1

n+1
with respect

to each associated n-dimensional marginal measure Γ∗µ1, . . . ,Γ∗µm.
In this paper we consider a natural extension of this result and ask for a minimal dimension

of a Euclidean space in which one can require that for any collection of m measures there
exists a vector subspace Γ with a point in it at depth slightly greater than 1

n+1
with respect

to each n-dimensional marginal measure. In particular, we prove that if the required depth is
1

n+1
+ 1

3(n+1)3
then the increase in the dimension of the ambient space is a linear function in

both m and n.

1. Introduction

We start by introducing a notion of point depth with respect to a given measure in a Euclidean
space. For an analogous notion in a discrete setting, in case of point sets, consult for example [3,
Sec. 1.1].

An oriented affine hyperplane Hv,a = {x ∈ R
d : 〈x, v〉 = a} is given by a unit vector v ∈ S(Rd)

and a constant a ∈ R. It determines two closed half-spaces, which we denote by

H0
v,a = {x ∈ R

d : 〈x, v〉 ≥ a}, H1
v,a = {x ∈ R

d : 〈x, v〉 ≤ a}.

The notation 〈x, v〉 refers to the standard Euclidean scalar product in R
d. If the constant a is

zero then the hyperplane Hv,a is an oriented linear hyperplane.

Definition 1.1. Let N ≥ 1 be an integer, let x ∈ R
N be a point, and let µ be a Borel probability

measure on the same space R
N . The depth of the point x with respect to the measure µ is:

depthµ(x) := inf{µ(H0
v,a) : Hv,a is an oriented affine hyperplane with x ∈ H0

v,a}.

In order to distinguish just introduced notion of depth from other notions of depth we recall
that the depth we consider is also called the half-space depth, or the Tukey depth [17]. If the
measure is clear from the context we omit it from the notation and simply write depth(x).
Throughout the paper by “a measure” we always mean “a Borel probability measure”.

Next we introduce the notion of a marginal, or a projection, of a measure on the Euclidean
space R

N with respect to an affine subspace of RN .

Definition 1.2. Let Γ be an affine subspace of the Euclidean space RN , and let µ be a measure
on R

N . For every Borel set X ⊆ Γ define

(Γ∗µ)(X) := µ(π−1
Γ (X))

where πΓ : R
N −→ Γ denotes the orthogonal projection of RN onto Γ. Clearly, Γ∗µ is a proba-

bility measure on Γ, and is called a marginal, or a projection, of the measure µ with respect
to Γ.
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The motivation for the study of the point depth of measures comes from the following result
of Dol’nikov [4] [5], and Živaljević and Vrećica [18], and many of its applications.

Theorem 1.3 (Center transversal theorem). Let m ≥ 1, n ≥ 1 and N ≥ 1 be integers with
N ≥ m + n − 1. For every collection of m measures µ1, . . . , µm on R

N there exists an n-
dimensional linear subspace Γ and a point x ∈ Γ such that for every 1 ≤ i ≤ m:

depthΓ∗µi
(x) ≥

1

n+ 1
.

This theorem is a direct extension of the classical Rado theorem, also known as the centerpoint
theorem [14], which states that every measure µ on R

N has a point x with depthµ(x) ≥
1

N+1 .
The Rado theorem is a particular case of the center transversal theorem when m = 1.

A new way to extend the result of Rado was proposed in [3]. Namely, given a measure µ in
R
N , one may wish to find an n-linear subspace Γ and a point x ∈ Γ such that depthµΓ

(x) is

as large as possible. The Rado theorem immediately implies that depthΓ∗µ(x) ≥
1

N+1 is always

possible, and one may ask whether this estimate (called the Rado bound) can be improved.
Since the Rado theorem is optimal with respect to the dimension of the ambient space such an
improvement can only come from an increase in the dimension and careful choice of an affine
subsace Γ. Recently, it was demonstrated in [13, Thm. 2] how the Rado bound can indeed be
surpassed. Namely, the following so called Centerline theorem holds.

Theorem 1.4 (Centerline theorem). Let N ≥ 3 be an integer, and set n := N − 1. For every
measure µ on R

N , there exists an n-dimensional linear subspace Γ, in this case a hyperplane,
and a point x ∈ Γ such that

depthΓ∗µ(x) ≥
1

n+ 1
+

1

3(n + 1)3
=

1

N
+

1

3N3
.

Remark 1.5. The theorem is given such a name because the line π−1
Γ (x) is a natural candidate

to play a role of a centerline.

At this point it is important to observe that the depth bound in the center transversal theorem
coincides with the Rado bound. In this paper we combine the features of the center transversal
theorem (several measures are considered at once) and of the centerline theorem (surpassing
the Rado bound at a cost of increasing the dimension of the ambient space). Motivated by the
previous attempt of the third author (see the first version of this paper [12]), using advanced
methods of algebraic topology, we prove in Section 4 the following center transversal theorem
with an improved Rado depth.

Theorem 1.6 (Center transversal theorem with an improved Rado depth). Let m ≥ 1, n ≥ 2
be integers, and let

• N ≥ 2m+ n− 1 if n+ 1 is not a power of 2, and
• N ≥ 3m+ n− 1 if n+ 1 is a power of 2.

For every collection of m measures µ1, . . . , µm on R
N , there exists an n-dimensional linear

subspace Γ and a point x ∈ Γ such that for every 1 ≤ i ≤ m:

depthΓ∗µi
(x) ≥

1

n+ 1
+

1

3(n+ 1)3
.

There are two alternative approaches that might be employed to obtain a similar result. One
approach is related the argument given by Bukh, Matoušek, and Nivasch in [3], and the other
one relies on the work of Klartag [10]. Both of them yield an estimate of the form N ≥ mf(n).
Using the topological approach of [3] one arrives to f(n) growing exponentially in n. Using the
method of “almost orthogonal decomposition” of a measure as in [10] one can obtain f(n) ∼ np,
where p is a sufficiently large constant (at least, p > 2).

Natural questions arise concerning the optimality of Theorem 1.6. Are the bounds of Theo-
rem 1.6 for N optimal? If they are not optimal, and there is a bound N > n+ cm+ c′, is it true
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that c > 1? (Note that the original Center transversal theorem features a bound of that form
with c = 1.) The author do not know the answers to these questions.

Acknowledgements. The authors are grateful to Vladimir Dol’nikov and Gaiane Panina
for suggesting the several-measure setup, and to Bo’az Klartag for pointing out some of the
needed constructions. Furthermore we want to express our gratitude to the referee for excellent
observations and many useful comments.

2. Structures assigned to a measure

All the results in the sections to come will be first established for nice measures. These
are measures with continuous density functions whose support is compact and connected. Then
we prove Theorem 1.6 for nice measures as well. After that the general case of Theorem 1.6
follows from the “nice” case by a classical approximation argument limiting the space of feasible
solutions to a compact set.

Definition 2.1. Let n ≥ 1 be an integer and let µ be a measure on the Euclidean space R
n.

The depth of the measure µ is:

depth(µ) := sup
x∈Rn

depthµ(x).

Definition 2.2. For a given nice measure µ on R
n, we specify the point c(µ) associated to the

measure µ as follows:
• If depth(µ) ≤ 1

n+1 + 1
3(n+1)3 then define c(µ) ∈ R

n to be the unique point of maximal

depth with respect to µ, that is depth(µ) = depthµ(c(µ)). (The existence and uniqueness
of such a choice was established in [13, Lemma3.1].)

• If depth(µ) > 1
n+1 +

1
3(n+1)3

consider the set

K(µ) =
{

x ∈ R
n : depthµ(x) ≥

1

n+ 1
+

1

3(n + 1)3

}

.

It is a convex n-dimensional body as a complement of a union of open half-spaces. Now
we define c(µ) to be the barycenter of K(µ).

The point c(µ) ∈ R
n depends continuously on the measure µ. In order to verify this at the

measure µ0 we consider three cases depending on the depth of the measure µ0:
(1) If depth(µ0) <

1
n+1 +

1
3(n+1)3

, then continuity is proved in [13, Lemma 4].

(2) If depth(µ0) >
1

n+1 +
1

3(n+1)3 , then the following pointwise convergence holds:

1K(µ)∪∂K(µ0)

vol K(µ)
−→

1K(µ0)

vol K(µ0)
, for µ −→ µ0.

The Bounded convergence theorem for integrals [16, Ex. 1.5.18] of the above functions
implies the continuity of c(µ).

(3) If depth(µ0) =
1

n+1 + 1
3(n+1)3

then we can repeat the argument of [13, Lemma 4] to show

that the point c(µ) cannot escape from any fixed neighborhood of c(µ0) provided that the
measure µ is sufficiently close to the measure µ0.

Furthermore, it is shown in [13, Lemma 5] that, if a nice measure µ on R
n has insufficient

depth, that is,

depth(µ) <
1

n+ 1
+

1

3(n + 1)3
⇐⇒ depthµ c(µ) <

1

n+ 1
+

1

3(n + 1)3
,

then it is possible to construct a set of points {v0(µ), v1(µ), . . . , vn(µ)} in R
n, that depends

continuously on the measure µ, satisfying

0 ∈ relint
(

conv{v0(µ), v1(µ), . . . , vn(µ)}
)

.



A CENTER TRANSVERSAL THEOREM FOR AN IMPROVED RADO DEPTH 4

The intuition behind this phenomenon might become more evident by considering a “typical”
measure of insufficient depth. Let points e0, e1, . . . , en ∈ R

n satisfy 0 ∈ relint
(

conv{e0, e1, . . . , en}
)

,
and let

µ = 1
d+1 (ν0 + ν1 + · · ·+ νn),

where νi is a nice measure sharply concentrated around ei. (We also require o(ν) = 0, but this
can also be settled by the particular choice of νi.) It is not hard to check that depthν(0) is close
to 1

d+1 , so µ is indeed a measure of insufficient depth. If we were restricted only to this type of
measures, then it would have been natural to put vi = ei.

Given a set {v0(µ), v1(µ), . . . , vn(µ)}, there is a unique, up to multiplying by a common
positive factor, positive dependence

λ0v0(µ) + λ1v1(µ) + · · ·+ λnvn(µ) = 0, λi > 0.

The additional condition that vol
(

conv{λivi : 0 ≤ i ≤ n}
)

= 1 determines a unique simplex
Σ(µ) = conv{λivi : 0 ≤ i ≤ n}, which depends continuously on µ.

Let Aµ be a linear map such that Σ(µ) = Aµ∆n, where ∆n is the standard regular unit
simplex in R

n. (Aµ is thus not unique; it is defined up to a permutation of the vertices of ∆n.)
Consider the polar decomposition Aµ = SµRµ, where Sµ and Rµ are, respectively, the symmetric

part and the orthogonal part. The identities Sµ =
√

AµAt
µ and Rµ = AµS

−1
µ show that the

polar decomposition depends continuously on the non-degenerate linear map Aµ.

Definition 2.3. Let µ be a nice measure on R
n with insufficient depth. Using already introduced

notation set:
∆(µ) := Rµ(∆n).

Since Rµ is an orthogonal operator, the simplex ∆(µ) is regular and unit. Moreover, the
simplex ∆(µ) does not depend on the choice of the simplex ∆n, because if we choose another
T (∆n), with T orthogonal, instead of ∆n then Aµ(∆n) = A′(T (∆n)) implies that the polar
decompositions are Aµ = SµRµ and A′ = SµRµT

−1, so RµT
−1T (∆n) = Rµ(∆n). Hence ∆(µ) is

indeed only a function of µ. Finally, since Rµ depends continuously on µ, the same is true for
the simplex ∆(µ).

If we restrict ourselves to nice measures, then Theorem 2.4 below is a stronger statement than
our main result Theorem 1.6. Theorem 2.4 will be proved in Section 4.

Theorem 2.4. Let m ≥ 1, n ≥ 2 be integers, and let
• N ≥ 2m+ n− 1 if n+ 1 is not a power of 2, and
• N ≥ 3m+ n− 1 if n+ 1 is a power of 2.

For every collection of m nice measures µ1, . . . , µm on R
N , there exists an n-dimensional linear

subspace Γ with the property that all marginal measures Γ∗µ1, . . . ,Γ∗µm have sufficient depth,
that is,

depth(Γ∗µ1) ≥
1

n+ 1
+

1

3(n + 1)3
, . . . , depth(Γ∗µm) ≥

1

n+ 1
+

1

3(n+ 1)3
,

and in addition
c(Γ∗µ1) = · · · = c(Γ∗µm).

Indeed, by taking x = c(Γ∗µ1) we immediately prove Theorem 1.6 for nice measures. As
mentioned before, the case of nice measures implies Theorem 1.6 in general.

3. Sections of the space of centered regular simplices

The problem in question makes us study the space of all centered regular simplices of fixed
size contained in the fibers of a real vector bundle. Let ξ be the n-dimensional real vector bundle
F −→ E −→ B endowed with a Euclidean metric on fibers. Now we want to identify the space
of all centered regular simplices of fixed size contained in the fibers of ξ. Let us pass to the
universal situation, consider ξ = f∗γn as the pullback of the tautological n-dimensional real
vector bundle γn along a classifying map f : B −→ BO(n). The classifying space BO(n) can be
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identified with the infinite Grassmann manifold Gn(R
∞), and a model for EO(n) can be taken

to be the Stiefel manifold Vn(R
∞) of all orthonormal n-frames in R

∞.
The space of all centered regular simplices of fixed size contained in the fibers of the tautolog-

ical bundle γn with ordered vertices is parameterized by the Stiefel manifold Vn(R
∞). Indeed,

we can identify Vn(R
∞) with the space of all isometries R

n −→ R
∞. Now fix a unit centered

regular n-simplex ∆n ⊂ R
n and make the correspondence ϕ 7−→ ϕ(∆n) where ϕ ∈ Vn(R

∞).
This identifies Vn(R

∞) with the space of all centered regular simplices of fixed size contained in
the fibers of γn.

If the orientation on the vertices is dropped then the resulting space is parameterized by
Vn(R

∞)/Sn+1, where the symmetric group Sn+1 action is fiberwise, and on a fiber it is given by
the permutation of vertices on the fixed regular simplex in R

n (a model of the fiber). The action
of Sn+1 on the Stiefel manifold Vn(R

∞) is extended from the action on R
n in the standard way.

In particular, the quotient space Vn(R
∞)/Sn+1 is also a model for BSn+1.

Thus, the space of all centered regular simplices of fixed size contained in the fibers of γn
with unordered vertices is, a model for, BSn+1 and can also be seen as a total space of the fiber
bundle η : O(n)/Sn+1 −→ BSn+1 −→ BO(n). The projection map σn : BSn+1 −→ BO(n) is
induced by the representation ρ : Sn+1 −→ O(n) obtained from the permutation of the vertices
of the regular simplex. This representation can also be described as the Sn+1-representation
Wn+1 := {(x1, . . . , xn+1) ∈ R

n+1 :
∑

xi = 0} where the action of Sn+1 is given by coordinate
permutation. Such a representation is typically called the reduced regular representation.

Now we study the (non-)existence of a continuous selection of the centered regular simplices
of fixed size contained in the fibers of ξ. Thus we want to answer a question of the non-)existence
of a section of the pullback bundle

O(n)/Sn+1
// E(f∗η) // B.

Here E(f∗η) denotes the total space of the pullback bundle f∗η. What can obstruct the existence
of such a section?

Let us consider the following pullback square and its associated diagram in cohomology:

E(f∗η)
f̂

//

σ

��

BSn+1

σn

��

H∗(E(f∗η);F2) H∗(BSn+1;F2)
f̂∗

oo

B
f

// BO(n) H∗(B;F2)

σ∗

OO

H∗(BO(n);F2).
f∗

oo

σ∗

n

OO

We claim that: If there exists a cohomology class o ∈ H∗(BO(n);F2) with the property that

σ∗

n(o) = 0 and f∗(o) 6= 0,

then there cannot be any continuous section s : B −→ E(f∗η) of the bundle f∗η. Indeed, let us
assume the opposite, that there exists a continuous section s : B −→ E(f∗η). Since σ ◦ s = idB
and consequently s∗ ◦ σ∗ = idH∗(B;F2) we reached the following contradiction

0 6= f∗(o) = (s∗ ◦ σ∗)(f∗(o)) = (s∗ ◦ σ∗ ◦ f∗)(o) = (s∗ ◦ (f̂∗ ◦ σ∗

n))(o) = 0.

Thus, assuming the notions already introduced, we have obtained the following criterion.

Lemma 3.1. If there exists a cohomology class o ∈ H∗(BO(n);F2) with the property that

σ∗

n(o) = 0 and f∗(o) 6= 0,

then there cannot exist a section of the fiber bundle f∗η of all centered regular simplices of fixed
size contained in the fibers of the vector bundle ξ.

Now consider a more general situation. Starting with the vector bundle ξ we want to cover
the base space B = U1∪ · · · ∪Um by m open sets and have for each set Ui a continuous (partial)
section si over Ui of the fiber bundle f∗η of centered regular simplices of fixed size contained in
the fibers of ξ. What can be used for obstruction the existence of such a covering?
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Lemma 3.2. Let o ∈ H∗(BO(n);F2) be a cohomology class with the property that σ∗
n(o) = 0

and f∗(o)m 6= 0. Then there cannot exist m continuous (partial) sections of the fiber bundle f∗η
over m open sets U1, . . . , Um covering B.

Proof. We use the property of cohomology multiplication in a way that goes back to classical
work of Lusternik, Schnirelmann, and Schwarz see for example [15, Thm. 4]. From the assump-
tion that f∗(o)m 6= 0 we have that f∗(o) 6= 0 when restricted to some of Ui. Now Lemma 3.1
applied to this Ui and the cohomology class o yields the proof of lemma. �

In the next step we identify suitable cohomology classes that can be used as obstructions for
the existence of partial sections of the bundle f∗η.

Lemma 3.3. If n+ 1 ≥ 4 is a power of 2 then σ∗
n(w1(γ

n)wn(γ
n)) = 0.

Proof. Let n+ 1 = 2k ≥ 4, and let wi := σ∗
n(wi(γ

n)) for all i ≥ 0. As before, ρ : Sn+1 −→ O(n)
denotes the representation given by permuting the vertices of a regular simplex in R

n, and
σn : BSn+1 −→ BO(n) is the corresponding map of classifying spaces. The cohomology classes
wi are called the Stiefel–Whitney classes of the representation ρ, since the vector bundle σ∗

nγ
n

has a description

Wn+1
// ESn+1 ×Sn+1 Wn+1

// ESn+1/Sn+1 = BSn+1,

where the action of Sn+1 on Wn+1 = {(x1, . . . , xn+1) ∈ R
n+1 :

∑

xi = 0} given by ρ is just the
coordinate permutation.

Furthermore, let Ek
∼= (Z/2)k be the elementary abelian subgroup of S2k given by the regular

embedding (reg) : Ek −→ S2k , [1, Ex. III.2.7]. The regular embedding is given by the left
translation action of Ek on itself. According to [1, Cor.VI.1.4] the subgroups S2k−1 ×S2k−1 and
Ek detect the cohomology H∗(BS2k ;F2), that is, the homomorphism

res
S

2k

S
2k−1×S

2k−1
⊕ res

S
2k

Ek
: H∗(BS2k ;F2) −→ H∗(B(S2k−1 ×S2k−1);F2)⊕H∗(BEk;F2)

is an injection. The image of the restriction of H∗(S2k ;F2) from S2k to Ek is the ring of

GLk(F2)-invariants H
∗(Ek;F2)

GLk(F2), [1, Ex. III.2.7]. There are specific elements

dk,s ∈ H2k−2s(Ek;F2)
GLk(F2)

for 0 ≤ s ≤ k − 1, called the Dickson invariants, such that H∗(Ek;F2)
GLk(F2) is isomorphic to

F2[dk,k−1, . . . , dk,0] as a graded F2-algebra, [1, Thm. III.2.4]. From [11, Lemma3.26, p. 59] we

have that res
S

2k

Ek
(w2k−2s) = dk,s for 0 ≤ s ≤ k − 1. Thus, w1 ∈ ker

(

res
S

2k

Ek

)

. On the other hand,

from [11, Cor. 3.30, p. 61], the kernel of the second restriction is

ker
(

res
S

2k

S
2k−1×S

2k−1

)

= w2k−1 · F2[w2k−1, . . . , w2k−2k−1 ].

In particular we have that w2k−1 ∈ ker
(

res
S

2k

S
2k−1×S

2k−1

)

. Combining these facts, we have that

w1w2k−1 ∈ ker
(

res
S

2k

S
2k−1×S

2k−1
⊕ res

S
2k

Ek

)

, and consequently w1w2k−1 = 0. This concludes the

proof of the lemma.

Assuming the “detection” property, a more direct explanation of the fact w1w2k−1 = 0 can
be given as follows. After restricting to Ek the representation ρ becomes orientable (we use
k ≥ 2), hence the class w1 vanishes after restriction to Ek. After restricting to S2k−1 ×S2k−1

the representation ρ gets a non-zero invariant vector, for example (1, . . . , 1,−1, . . . ,−1) where
1 and −1 appear the same number of times. Consequently, the corresponding vector bundle
will have a trivial summand implying that the top Stiefel–Whitney class wn vanishes under the
restriction to S2k−1 ×S2k−1 . Hence, again w1w2k−1 = 0. �

Notice that in the proof of the previous lemma we could have identified all the monomials in
the Stiefel–Whitney classes of the bundle γn that vanish in H∗(BS2k ;F2).

Lemma 3.4. If n+ 1 is not a power of 2 then σ∗
n(wn(γ

n)) = 0.
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Proof. Now n+1 is not a power of 2. As in the proof of the previous lemma set wi := σ∗
n(wi(γ

n))
for all i ≥ 0. Again ρ : Sn+1 −→ O(n) denotes the representation given by permuting the vertices
of a regular simplex in R

n, and σn : BSn+1 −→ BO(n) is the corresponding map of classifying
spaces. The cohomology classes wi are Stiefel–Whitney classes of the vector bundle σ∗

nγ
n:

Wn+1
// ESn+1 ×Sn+1 Wn+1

// ESn+1/Sn+1 = BSn+1.

The Stiefel–Whitney classes wn live in Hn(Sn+1;F2).

Now consider an arbitrary Sylow 2-subgroup S
(2)
n+1 of the symmetric group Sn+1. The inclu-

sion map αn : S
(2)
n+1 −→ Sn+1 induces the map βn : BS

(2)
n+1 −→ BSn+1 between the classifying

spaces that in turn induces the restriction map

res
Sn+1

S
(2)
n+1

: H∗(Sn+1;F2) −→ Hn(S
(2)
n+1;F2).

The restriction map res
Sn+1

S
(2)
n+1

is injective, see [2, Prop. III.9.5(ii) and Thm. III.10.3]. Thus it

suffices to prove that

res
Sn+1

S
(2)
n+1

(σ∗

n(wn(γ
n))) = res

Sn+1

S
(2)
n+1

(wn(σ
∗

nγ
n)) = wn(β

∗

nσ
∗

nγ
n) = 0.

Since n+1 is not a power of 2 the Sylow 2-subgroup S
(2)
n+1 does not act on the set {1, . . . , n+1}

transitively. Thus the fixed point set W
S

(2)
n+1

n+1 with respect to the action of the Sylow 2-subgroup

S
(2)
n+1 onWn+1 is a vector space of positive dimension. Consequently, the pull-back vector bundle

β∗
nσ

∗
nγ

n can be decomposed into a Whitney sum of two vector bundles of positive dimensions
where one of them is a trivial one. Hence, the top Stiefel–Whitney class wn(β

∗
nσ

∗
nγ

n) of the
pull-back vector bundle β∗

nσ
∗
nγ

n has to vanish implying that σ∗
n(wn(γ

n)) = 0. �

4. Proof of Theorem 1.6 and Theorem 2.4

We have shown in Section 2 that Theorem 1.6 follows from Theorem 2.4. In turn, we prove
Theorem 2.4 by contradiction. If a collection of nice measures µ1, µ2, . . . , µm provides a coun-
terexample to Theorem 2.4, then for any n-dimensional linear subspace Γ ∈ Gn(R

N ) the follow-
ing holds:

• the points c(Γ∗µ1), . . . , c(Γ∗µm) associated to the measures Γ∗µ1, . . . ,Γ∗µm do not all
coincide, or

• at least one of the measures, for example Γ∗µi, induces a regular simplex ∆(Γ∗µi) con-
tained in the flat Γ centered at its origin in a continuous way.

In other words, the Grassmannian Gn(R
N ) can be covered by m+1 open subsets U0, U1, . . . , Um

satisfying the conditions:
(1) The restriction of the Whitney power (γnN )⊕(m−1) to U0 has a continuous nonzero section.
(2) The restriction of the bundle i∗η to each Ui, 1 ≤ i ≤ m, has a continuous section. Here

i : Gn(R
N ) −→ GN (R∞) denotes the natural inclusion.

Indeed, let U0 be the subset of Gn(R
N ) where the points c(Γ∗µ1), . . . , c(Γ∗µm) do not all coincide.

Then the (m− 1)-tuple of vectors
(

c(Γ∗µi+1)− c(Γ∗µi)
)m−1

i=1

gives a section required in (1). Next, let Ui be the open subset of all Γ ∈ Gn(R
N ) such that

depth(Γ∗µi) ≥
1

n+1 +
1

3(n+1)3 . Then the related measure Γ∗µi defines a regular simplex ∆(Γ∗µi)

creating a section required in (2). Finally, since µ1, µ2, . . . , µm is a counterexample to Theo-
rem 2.4, the collection U0, U1, . . . , Um is an open cover of Gn(R

N ).

We will show that such a covering cannot exist by proving that appropriate characteristic
classes do not vanish.

For the rest of the proof we use Čech cohomology for its continuity property: The cohomology
of a closed set is a limit of cohomology of its open neighborhoods.



A CENTER TRANSVERSAL THEOREM FOR AN IMPROVED RADO DEPTH 8

4.1. Let n+ 1 be not a power of 2, and let m ≥ 1 be an integer. Without loss of generality we
can assume that N = 2m+ n− 1. Consider the subset of the Grassmannian Gn(R

N ) where all
points c(Γ∗µ1), . . . , c(Γ∗µm) coincide, that is

X = {Γ ∈ Gn(R
N ) : c(Γ∗µ1) = · · · = c(Γ∗µm)}.

From [7, Lemma 1.2] we have that the cohomology class wn(γ
n
N )N−n does not vanish. Con-

sequently, the cohomology class wn(γ
n
N )N−n−m+1 does not vanish along the restriction map

H∗(Gn(R
N );F2) −→ H∗(X;F2).

Now, according to our assumption, the subspace X is covered by the open sets U1, . . . , Um

that allow sections of the bundle i∗η over each Ui. On the other hand, since n+1 is not a power
of 2, using Lemma 3.2 and Lemma 3.4, we have that X cannot be covered by N−n−m+1 = m
such open subsets. We have reached a contradiction. Thus, such a covering does not exist and
the proof of the theorem in the case n+ 1 is a power of 2 is complete.

4.2. Assume n+1 is not a power of 2 and let m ≥ 1 be an integer. Without loss of generality we
assume that N = 3m+ n− 1. Let us consider the cohomology class w1(γ

n
N )mwn(γ

n
N )2m−1. The

cohomology class wn(γ
n
N )m−1 vanishes along the restriction H∗(Gn(R

N );F2) −→ H∗(U0;F2),
and according to Lemma 3.1 the cohomology class w1(γ

n
N )wn(γ

n
N ) vanishes along any of the

restrictions H∗(Gn(R
N );F2) −→ H∗(Ui;F2) for 1 ≤ i ≤ m. Since U0, U1, . . . , Um is a covering of

the Grassmannian Gn(R
N ) the product class w1(γ

n
N )mwn(γ

n
N )2m−1 = 0 vanishes over Gn(R

N ).
We reach a contradiction with the assumption of the existence of a cover by proving that
w1(γ

n
N )mwn(γ

n
N )2m−1 6= 0. This will conclude the proof of the theorem. For this fact we offer

two different proofs.

4.2.1. Let us first argue in terms of intersections of the Poincaré duals to the classes wn(γ
n
N )2m−1

and w1(γ
n
N )m in the homology modulo two. A Poincaré dual of the class wn(γ

n
N )2m−1 is presented

by the space X where 2m − 1 generic sections of γnN intersect. Following the framework of the

proof of [9, Lemma 8] we choose 2m − 1 last basis vectors eN−2m+2, . . . , eN of RN and project
them onto a subspace Γ ∈ Gn(R

N ). They produce 2m−1 sections of the vector bundle γnN . The

space where all the sections are zero is the naturally embedded Grassmannian Gn(R
N−2m+1) ⊆

Gn(R
N ), and it is easy to check that the intersection is non-transversal.

Next we consider a piece-wise smooth modulo 2 cycle Y that represents the Poincaré dual
of the class w1(γ

n
N )m in Gn(R

N ) that is transversal to the submanifold Gn(R
N−2m+1). We

have to show that the intersection Y ∩ Gn(R
N−2m+1) represents a non-zero homology class

in H∗(Gn(R
N );F2). It is sufficient to prove that it represents a non-zero homology class in

H∗(Gn(R
N−2m+1);F2). Indeed, since the Schubert cell decomposition of Gn(R

N−2m+1) is a
part of the Schubert cell decomposition of Gn(R

N ) with every cell representing an independent
generator in mod 2, implies that the natural homology map

H∗(Gn(R
N−2m+1);F2) −→ H∗(Gn(R

N );F2)

is an injection.
Applying the Poincaré duality once again we need to prove that the class w1(γ

n
N−2m+1)

m is

non-zero in H∗(Gn(R
N−2m+1);F2). A simple sufficient condition for this (see [7, Thm. 3.4] or

[6, Sec. 2]) is the inequality

N − 2m− n+ 1 ≥ m ⇐⇒ N = 3m+ n− 1.

Thus, w1(γ
n
N )mwn(γ

n
N )2m−1 6= 0.

4.2.2. For the second proof we use Pieri’s formula and presentation of Stiefel–Whitney classes
of the tautological bundle γnN over Gn(R

N ) in the form of Schubert cocycles (a1, . . . , an) where
1 ≤ a1 ≤ · · · ≤ an ≤ N − n. Following the presentation in [7] we have that

• wi(γ
n
N ) = (0, . . . , 0, 1, . . . , 1) where 1 occurs i times for 1 ≤ i ≤ n,

• w̄j(γ
n
N ) = (0, . . . , 0, j) for 1 ≤ j ≤ N − n,

• ([7, Lemma1.2]) wn(γ
n
N )k = (k, . . . , k),
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• (Pieri’s formula) (a1, . . . , an) w̄j(γ
n
N ) =

∑

(b1, . . . , bn) where the sum is over all (b1, . . . , bn)
with the property that

– ai ≤ bi ≤ ai+1 for all 1 ≤ i ≤ n, where
– an+1 = N − n, and
– b1 + · · ·+ bn = j + a1 + · · ·+ an.

Using these facts we compute:

w1(γ
n
N )mwn(γ

n
N )2m−1 = (2m− 1, . . . , 2m− 1, 2m− 1)w1(γ

n
N )m

= (2m− 1, . . . , 2m− 1, 2m− 1) w̄1(γ
n
N )m

= (2m− 1, . . . , 2m− 1, 2m) w̄1(γ
n
N )m−1

=
(

(2m− 1, . . . , 2m, 2m) + (2m− 1, . . . , 2m− 1, 2m + 1)
)

w̄1(γ
n
N )m−2

= . . .

= A+ (2m− 1, . . . , 2m− 1, 3m − 1).

whereA is a sum of some Schubert cocycles different from the cocycle (2m−1, . . . , 2m−1, 3m−1).
Since 3m − 1 = N − n the cocycle (2m − 1, . . . , 2m − 1, 3m − 1) is not zero and consequently
w1(γ

n
N )mwn(γ

n
N )2m−1 6= 0.

Thus we have concluded the proof of Theorem 1.6 and Theorem 2.4.

5. Concluding remarks

The last step in the proof of Theorem 1.6 can be further improved using the following results
of Hiller [7] [8].

Lemma 5.1. Let 2n ≤ N , otherwise replace n by N − n in practical applications. Let 2s be the
minimal power of two, satisfying 2s ≥ N . Then

(1) if n = 1 then w1(γ
n
N )N−1 6= 0,

(2) if n = 2 then w1(γ
n
N )2

s−2 6= 0,

(3) if n > 2 then in the case N = 2n = 2s we have w1(γ
n
N )2

s−1
6= 0 and w1(γ

n
N )2

s−2 6= 0 in
other cases.

In all cases w1(γ
n
N )N−n 6= 0 and this cannot be improved for n = 1, n = 2 and N = 2s.

This improvement is not a content of our main result since it would require a complicated
statement.

Finally we discuss the relationship of our main result with the result of Magazinov and Pór
[13]. A careful reader might have noticed that Theorem 1.6 does not contain Theorem 1.4 as
a particular case in the case when n + 1 is a power of 2. Indeed, when n + 1 is a power of 2
the proof presented in Section 4 cannot be used because the class w1(γ

n
n+1)wn(γ

n
n+1) vanishes

for dimension reasons, that is Gn(R
n+1) ∼= RPn has dimension n. Nevertheless, this case can be

dealt with by a modified argument that follows.
Assume that a section of the regular unit simplex bundle i∗η over Gn(R

n+1) is given. Recall
that we consider simplices with unordered vertices. Over each Γ ∈ Gn(R

n+1) we have n + 1
vertices of the simplex in the fiber of γnn+1; in total the set of vertices of all simplices in all fibers

produces an (n + 1)-sheet covering C −→ Gn(R
n+1). Since π1(Gn(R

n+1)) ∼= Z/2 the covering
space C must split into connected components

C = C1 ∪ · · · ∪ Cm

such that every projection Ci −→ Gn(R
n+1) is a covering with either one or two sheets.

If some Ci −→ Gn(R
n+1) is a one sheet covering then it just means that the corresponding

vertex produces a section of the canonical bundle γnn+1. This cannot be because wn(γ
n
n+1) 6= 0.

If, on the other hand, some Ci −→ Gn(R
n+1) has two sheets then we have a continuous

selection of a pair of vertices v1, v2 from the regular simplex in every fiber. Of course, the pair
{v1, v2} is defined up to the order. But then, in case n ≥ 2, we may take v1+ v2 as a continuous
nonzero section of γnn+1 and obtain a contradiction with wn(γ

n
n+1) 6= 0 as well.
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Thus a section of the regular unit simplex bundle i∗η over Gn(R
n+1) cannot exist. This

concludes the argument.
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