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Abstract. We introduce the notion of cylinder of a relation in the context of posets,
extending the construction of the mapping cylinder. We establish a local-to-global result
for relations, generalizing Quillen’s Theorem A for order preserving maps, and derive
novel formulations of the classical Nerve Theorem for posets and simplicial complexes,
suitable for covers with not necessarily contractible intersections.

1. Introduction

The mapping cylinder M(f) of a map f : X → Y between topological spaces is a tool
that allows one to replace, up to homotopy, any continuous function f by a nice inclusion,
namely the cofibration i : X ↪→M(f). The analogue of this construction in the context of
posets, called the non-Hausdorff mapping cylinder, was introduced in [3] to study simple
homotopy theory of polyhedra using the topology and combinatorics of finite topological
spaces. The (non-Hausdorff) mapping cylinder B(f) of an order preserving map f : X → Y
between posets has similar properties as its classical analogue: B(f) deformation retracts
onto Y (when they are viewed as finite topological spaces) and the inclusion i : X ↪→ B(f)
satisfies nice properties. In [2] Barmak used the poset version of the mapping cylinder
to give an alternative and simple proof of Quillen’s Theorem A for posets and to derive
stronger formulations of the Nerve Theorem and other related results.

An order preserving map f : X → Y is a particular case of a relation R ⊆ X × Y (a
subset of the Cartesian product of the underlying sets) and it is natural to ask whether
there exists a general construction of a cylinder of a relation that coincides with B(f) in
the case that the relation is the one induced by a poset map f . In this article we define the
cylinder B(R) of any relation R ⊆ X×Y and study its homotopical properties. Of course
one cannot expect that B(R) preserves the homotopy type of Y for a general relation R
but we will show that this is the case when the relation satisfies good local properties
(see Proposition 2.5). Analogously, under symmetric local hypotheses one can show that
B(R) preserves the homotopy type of X (Proposition 2.4). As an immediate consequence
we obtain a generalization of Quillen’s Theorem A for relations (Theorem 2.6). When
the relation is the one induced by an order preserving map f : X → Y , Theorem 2.6 is
precisely Quillen’s Theorem A for posets.

The Nerve Theorem, due to Borsuk [5], with alternative versions by Leray [11], Weil
[18] and McCord [13], and more recently Björner [4] and Barmak [2], is a powerful tool
widely used in Topology, Combinatorics, and, in the last years, in Computational and
Applied Topology (see [6, 8, 9, 14]). The theorem essentially affirms that under certain
hypotheses on a given space X, the nerve of a cover has the same homotopy type as X,
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provided that the cover is good. Which means that the intersection of any subfamily of the
cover is either empty or contractible. However the requirement of being a good cover is
somewhat restrictive and not always convenient. In Section 3 we prove generalizations of
this theorem for not necessarily good covers. This is accomplished by using a formulation
of the classical theorem in terms of posets (Theorem 3.2). The generalized versions of the
Nerve Theorem are deduced by applying Theorem 2.6 to suitable relations.

Suppose thatK is a simplicial complex and U = {Li}i∈I is a cover ofK by subcomplexes,
such that the intersections are not necessarily connected but the connected components
of the non-empty intersections are contractible (this kind of situation appears for example
in the study of point cloud data [6, 8, 16]). In this case the usual nerve N(U) is not in
general homotopy equivalent to K. In Section 3 we introduce the completion of the nerve
N̂(U), which is a regular CW-complex (not necessarily a simplicial complex) built from
the connected components of the non-empty intersections. Corollary 3.10 shows that the
completion has the same homotopy type as K.

2. The cylinder of a relation

Given a finite simplicial complex K (or more generally, a finite regular CW-complex),
its face poset will be denoted by X (K). This is the poset of simplices (or cells) of K
ordered by inclusion. Conversely, given a finite poset X, K(X) denotes its classifying
space (also called the order complex). This is the simplicial complex whose simplices are
the non-empty chains of X. A finite poset can be seen as a finite topological space whose
open subsets are the downsets (see [1, 3, 12, 17]). Its topology is related to the topology
of the order complex K(X) by means of the McCord map µ : K(X) → X which is a
weak (homotopy) equivalence (i.e. a continuous map which induces isomorphisms in all
homotopy groups) [12]. There exists also a weak equivalence ν̃ : K → X (K) associated to
the functor X . Although in this article we will not adopt explicitly the finite space point
of view, we will use reduction methods of finite spaces to study homotopy properties of
posets and complexes. We recall below the reduction methods that we will use and fix
some notations. For more details the reader may consult [1].

Given a finite poset X and x ∈ X, we denote by Ux ⊆ X the subposet of elements which
are smaller than or equal to x (this is the minimal open subset containing x, if we view
X as a finite space). Analogously, we denote by Fx the subposet of elements of X which
are greater than or equal to x (this corresponds to the closure of {x} in the finite space
X). When a point x belongs to different posets X,Y , sometimes we write UXx , UYx (resp.
FXx , F

Y
x ) to distinguish whether the subposets are considered in X or in Y .

Note that a poset X is homotopically trivial (which means that all its homotopy groups
are trivial) if and only if K(X) is a contractible polyhedron. A finite poset is called a
finite model of a CW-complex K if its order complex K(X) is homotopy equivalent to K.
The first reduction method for finite spaces was introduced by Stong [17]. Given a finite
poset X, an element x ∈ X is called an up beat point if F̂x = Fx r {x} has a minimum,
i.e. there is a unique element y ∈ X which covers x. Similarly x is called a down beat
point if Ûx = Ux r {x} has maximum (there is a unique y covered by x). If x is a beat
point (up or down), X r {x} ⊆ X is a strong deformation retract. This reduction (i.e. the
removing of the point x) is denoted by X↘↘ X r {x}. Stong proved that a finite poset
X is contractible if and only if one can remove beat points from X, one by one, to obtain
a poset with only one element (this is also called dismantlable, see for example [10]). If
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X is contractible then it is homotopically trivial, but the converse does not hold (see [1,
Section 1.3] for more details). Note that the classical Whitehead’s Theorem is not valid
in the context of finite spaces (there are finite spaces which are weak equivalent but not
homotopy equivalent).

The notion of collapse in the context of posets was introduced by Barmak and Minian
in [3] and it corresponds to Whitehead’s notion of simplicial collapse [7, 19]. Recall that
a simplex σ of a simplicial complex K is a free face of K if there is a unique simplex
τ ∈ K containing σ properly. In that case, there is a collapse from K to the subcomplex
L = K \ {σ, τ} (this is denoted by K↘ L), and two simplicial complexes K,T are simple
homotopy equivalent if one can obtain one from the other by performing collapses and
expansions (we denote K�↘ T following the standard notation). If K�↘ T , they are in
particular homotopy equivalent. A point x of a finite poset X is a down weak point if Ûx
is contractible, and it is an up weak point if F̂x is contractible. An elementary collapse is
the deletion of a weak point. The inverse operation is called an elementary expansion. We
say that X collapses to Y (or Y expands to X), and write X↘ Y , if there is a sequence of
elementary collapses which starts in X and ends in Y . A poset X is said to be collapsible if
it collapses to a point. Note that any beat point is in particular a weak point (since posets
with maximum or minimum are contractible). Therefore if X is a contractible poset then
it is collapsible. In [1, Sections 4.2 and 4.3] there are various examples of collapsible posets
which are not contractible. Finally, we say that X is simply equivalent to Y if there exists
a sequence of collapses and expansions that starts in X and ends in Y . This is denoted by
X�↘ Y . In [3] it is proved that X�↘ Y if and only if the associated order complexes
are simple homotopy equivalent. Moreover, if X↘ Y then K(X) simplicially collapses to
K(Y ). Conversely, K�↘ L if and only if X (K)�↘ X (L). It can be also shown that if
Ûx or F̂x is a collapsible poset then K(X)↘ K(X r {x}) (see [3, Remark 4.3.1]).

Finally, an element x ∈ X is called a γ-point if Ûx or F̂x is homotopically trivial. In
[1] it is proved that, in this case, the inclusion induces a simple homotopy equivalence
K(X)�↘ K(X r {x}). This reduction in denoted by X↘γ X r {x}.

The relationship between the homotopy theory and simple homotopy theory of posets
and polyhedra is summarized in the following theorem. The proof can be found in [1, 3].
We will use this relationship throughout the paper to derive results on complexes using
posets and vice-versa.

Theorem 2.1. Let X and Y be finite posets and K and L be finite simplicial complexes
(or more generally, finite regular CW-complexes).

(1) X and Y are weak equivalent if and only if K(X) and K(Y ) are homotopy equiva-
lent.

(2) X�↘ Y if and only if K(X)�↘ K(Y ). Moreover, X↘ Y implies K(X)↘ K(Y ).
(3) X�↘ X ′ = X (K(X) (the barycentric subdivision of the poset X).
(4) K and L are homotopy equivalent if and only if X (K) and X (L) are weak equiva-

lent.
(5) K�↘ L if and only if X (K)�↘ X (L). Moreover, K↘ L implies X (K)↘ X (L).
(6) K�↘ K ′ = K(X (K)) (the barycentric subdivision of K).

The opposite of a poset X will be denoted by Xop. This is the poset with the same
underlying set as X but with the opposite partial order. Note that X�↘ Xop since
their order complexes are isomorphic. A linear extension of a poset Y is a total ordering
y1, y2, . . . , yr of the elements of Y such that, if yi ≤ yj , then i ≤ j.
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The non-Hausdorff mapping cylinder of an order preserving map f : X → Y between
finite posets is the poset B(f) with underlying set the disjoint union X t Y , and order
relation defined by keeping the original ordering in X and Y , and setting for each x ∈ X
and y ∈ Y , x ≤ y in B(f) if f(x) ≤ y in Y . The mapping cylinder B(f) has similar
properties as the classical mapping cylinder. It is not difficult to see that B(f)↘↘ Y and
therefore, to study homotopy properties of posets, one can replace any order preserving
map f : X → Y by the inclusion i : X ↪→ B(f). Under nice properties on f , B(f) has the
same topological properties as X.

Given two finite posets X and Y , a relation R ⊆ X × Y will mean a relation between
their underlying sets (i.e. a subset R ⊆ X × Y of the Cartesian product). We write xRy
if (x, y) ∈ R.

Definition 2.2. Given a relation R ⊆ X × Y between two finite posets, we define the
cylinder of the relation B(R) as the following finite poset. The underlying set is the disjoint
union X t Y . We keep the given ordering in both X and Y , and for every x ∈ X and
y ∈ Y we set x ≤ y in B(R) if there are points x′ ∈ X and y′ ∈ Y such that x ≤ x′ in X,
y′ ≤ y in Y and x′Ry′ (i.e. we take the order relation generated by x ≤ y if xRy).

For A ⊆ X and B ⊆ Y , we set

R(A) = {y ∈ Y : xRy for some x ∈ A},
R−1(B) = {x ∈ X : xRy for some y ∈ B}.

Remark 2.3. An order preserving map f : X → Y induces a relation R ⊆ X × Y defined
by xRf(x) for every x ∈ X. In this case, the relation cylinder B(R) coincides with the
non-Hausdorff mapping cylinder B(f). Note also that, in this case, R(A) = f(A) and
R−1(B) = f−1(B).

Let A be a subposet of X, we denote

A = {x ∈ X : x ≥ a for some a ∈ A} =
⋃
a∈A

Fa (the closure of A), and

A = {x ∈ X : x ≤ a for some a ∈ A} =
⋃
a∈A

Ua (the open hull of A).

The next results relate the homotopy properties of B(R) with those of X and Y . As a
corollary we obtain a generalization of Quillen’s Theorem A. The proofs are based on the
standard reduction methods of finite spaces mentioned above.

Proposition 2.4. Let R ⊆ X × Y be a relation between finite posets. If the open hull
R−1(Uy) is homotopically trivial for every y ∈ Y , then B(R) and X are weak equivalent.
Moreover the inclusion X ↪→ B(R) induces a simple homotopy equivalence. In particular,
the order complexes K(B(R)) and K(X) are (simple) homotopy equivalent. Further, if for
every y ∈ Y , R−1(Uy) is collapsible, then K(B(R))↘ K(X).

Proof. Let y1, y2, · · · , yn be a linear extension of the poset Y . We will show that

B(R)↘γ B(R)r {y1}↘γ · · · ↘γ B(R)r {y1, y2, · · · , yn} = X.

For 2 ≤ i ≤ n,
Û
B(R)r{y1,y2,··· ,yi−1}
yi = ÛB(R)

yi r Y = R−1(UYyi ),
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which is homotopically trivial by hypothesis. It follows that yi is a γ-point of the poset
B(R)r{y1, y2, · · · , yi−1}. Therefore, the inclusion induces a simple homotopy equivalence
B(R)�↘ X.

If for every y ∈ Y , R−1(Uy) is collapsible, then the previous collapses induce collapses
between the associated simplicial complexes by [1, Remark 4.3.1]. �

Analogously one can prove the following.

Proposition 2.5. Let R ⊆ X × Y be a relation. If the closure R(Fx) is homotopically
trivial for every x ∈ X, then B(R)�↘ Y . In particular, K(B(R)) and K(Y ) are simple
homotopy equivalent. Moreover, if for every x ∈ X, R(Fx) is collapsible, then K(B(R))↘
K(Y ).

As a corollary of the previous results we obtain a generalization of Quillen’s Theorem
A for relations R ⊆ X × Y .

Theorem 2.6. Let R ⊆ X ×Y be a relation between finite posets. If R−1(Uy) and R(Fx)

are homotopically trivial for every x ∈ X and y ∈ Y , then X�↘ Y . In particular, K(X)
and K(Y ) are (simple) homotopy equivalent.

If R is the relation associated to an order preserving map f : X → Y , then R−1(Uy) =

f−1(Uy) and R(Fx) = F Yf(x). Note that, for any x, F Yf(x) is contractible since it has a
minimum. Therefore, the hypotheses of Proposition 2.5 are automatically fulfilled and one
can deduce Quillen’s Theorem A [15] (cf. [2, Thm.1.2]).

Theorem 2.7 (Quillen’s Theorem A for posets). Let f : X → Y be an order preserving
map between finite posets. If f−1(Uy) is homotopically trivial for every y in Y , then
K(f) : K(X)→ K(Y ) is a simple homotopy equivalence.

By relaxing the hypotheses on R, we obtain weaker versions of Theorem 2.6.

Proposition 2.8. Let R ⊆ X × Y be a relation between posets. If R−1(Uy), R(Fx) are
n-connected (resp. have trivial reduced k-homology groups for all k ≤ n) for every x ∈ X
and y ∈ Y , then πi(X) = πi(Y ) (resp. Hi(X) = Hi(Y )) for all 0 ≤ i ≤ n.

Proof. We follow the proofs of Propositions 2.4 and 2.5. If R−1(Uyi) is n- connected, then
the inclusion i : B(R)r{y1, · · · , yi} ↪→ B(R)r{y1, · · · , yi−1} is an (n+1)- equivalence by
[2, Lemma 6.2]. Then i : X ↪→ B(R) is an (n+ 1)- equivalence. Similarly, j : Y ↪→ B(R)
is an (n+ 1)- equivalence.

The homology case is similar, using [2, Lemma 6.3]. �

3. Generalizations of the Nerve Theorem

Recall that the nerve of a family U = {Ui}i∈I of subsets of a set X is the simplicial
complex N(U) whose simplices are the finite subsets J ⊆ I such that

⋂
i∈J

Ui 6= ∅.

There exist different versions of the Nerve Theorem, involving open sets of topological
spaces, subcomplexes of CW-complexes, etc. We mention here one version suitable for our
purposes (see [2]).

Theorem 3.1 (Nerve Theorem for complexes). Let K be a finite simplicial complex (or
more generally, a regular CW-complex) and let U = {Li}i∈I be a family of subcomplexes
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which cover K (i.e.
⋃
i∈J Li = K). If every intersection of elements of U is empty or

contractible, then K and N(U) have the same homotopy type. Moreover K�↘ N(U).

The previous theorem can be restated in terms of finite posets by means of the functors
X and K. The equivalence between both formulations follows from Theorem 2.1. Note
that covers by subcomplexes correspond to open covers of posets. Recall that a subposet
of a poset X is open if it is a downset. Given an open cover U = {Ui}i∈I of a finite poset
X, we write X (U) = X (N(U)). Note that the elements of the poset X (U) are the subsets
J ⊆ I and the partial order is given by the inclusion.

Theorem 3.2 (Nerve Theorem for posets). If X is a finite poset and U = {Ui}i∈I is an
open cover of X such that every intersection of elements of U is empty or homotopically
trivial, then X and X (U) are weak equivalent. Moreover X�↘ X (U).

Covers satisfying the hypotheses of Theorem 3.1 or Theorem 3.2 are called good. We
use the formulation of the Nerve Theorem in terms of posets and Theorem 2.6 to derive
generalizations of the result for covers which are not necessarily good. We introduce first
some notations.

Let U = {Ui}i∈I be an open cover of X. Given J ⊆ I we denote by WJ the intersection⋂
i∈J Ui. Note that WJ is open in X for every J ⊆ I. We denote by X0(U) the subposet

of X (U) consisting of all J ⊆ I such that WJ is homotopically trivial. Note that X0(U) =
X (U) if and only if U is a good cover. If x ∈ X we denote by Ix the subposet of X0(U)
consisting of all J ∈ X0(U) such that x ∈WJ . Note that Ix is open in X0(U).

Theorem 3.3. Let X be a finite poset and let U = {Ui}i∈I be an open cover of X. If for
every x ∈ X, the subposet Ix of X0(U) is homotopically trivial, then X�↘ X0(U).

Proof. Consider the opposite poset X0(U)op and the relation R ⊆ X×X0(U)op defined by:

x R J if x ∈WJ .

Let J ∈ X0(U)op. If J ′ ∈ UJ , then J ⊆ J ′ and hence WJ ′ ⊆ WJ . It follows that
R−1 (UJ) = WJ = WJ , which is homotopically trivial by definition of X0(U).

On the other hand, for every x ∈ X, R(Fx) = Iopx = Iopx , which is homotopically trivial
by hypothesis. By Theorem 2.6, X�↘ X0(U)op. Since X0(U)op�↘ X0(U), we deduce
that X�↘ X0(U). �

Remark 3.4. Note that the Nerve Theorem 3.2 is a particular case of Theorem 3.3. If
U = {Ui}i∈I is a good open cover of a finite poset X (i.e X (U) = X0(U)), then for every
x ∈ X the subposet Ix has a maximum element, namely J = {j ∈ I, x ∈ Uj}. In particular
every Ix is homotopically trivial and Theorem 3.3 applies.

By relaxing the hypothesis on the subposets Ix, one can obtain variations of Theorem
3.3 using Proposition 2.8.

Suppose now that we are given a cover such that the intersections consist of disjoint
unions of contractible subcomplexes (or homotopically trivial open subposets). For exam-
ple, let K be the boundary of the 2-simplex with vertices u, v, w. Let L be the subcomplex
of K consisting of the edges {u,w} and {v, w} and let T be the edge {u, v}. The cover
U = {L, T} is not good and clearly N(U) is not homotopy equivalent toK, but the intersec-
tion L∩T is the union of two contractible subcomplexes (in this case, two points). We will
show that in this situation we can replace the nerve N(U) by a regular CW-complex N̂(U),
which is homotopy equivalent to K (see Example 3.11 below). The regular CW-complex
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N̂(U) will be the completion of the nerve. We study first the problem in the context of
posets and then we derive the result for complexes.

Definition 3.5. A cover U of open subposets (or subcomplexes) is called quasi-good if
every non-empty intersection of a subfamily of U has homotopically trivial connected com-
ponents.

Definition 3.6. Let X be a finite poset and let U = {Ui}i∈I be an open cover of X. Recall
that for each J ⊆ I, WJ denotes the intersection

⋂
i∈J Ui. The completion of the nerve

X̂ (U) is the poset whose elements are the pairs

X̂ (U) = {(J,C) : J ⊆ I with Wj 6= ∅, C a connected component of WJ}.
The order is given by (J,C) ≤ (J ′, C ′) if J ⊆ J ′ and C ′ ⊆ C.

Remark 3.7. If all non-empty intersections of the cover U are connected, then X̂ (U) =
X (U). In particular, if U is a good cover, X (U) coincides with its completion.

Theorem 3.8. Let X be a finite poset and let U be a quasi-good cover of X. Then,
X�↘ X̂ (U).

Proof. Consider the opposite poset X̂ (U)op and the relation R ⊆ X × X̂ (U)op defined by:

x R (J,C) if x ∈ C.

Let (J,C) ∈ X̂ (U)op. If (J ′, C ′) ∈ U(J,C) then J ⊆ J ′ and C ′ ⊆ C. It follows that
R−1

(
U(J,C)

)
= C = C, which is homotopically trivial by hypothesis. Note that C is open

since it is a connected component of an open subposet.
On the other hand, for every x ∈ X, take (J,C) ∈ X̂ (U) where J ⊆ I is the maximum

subset of I such that x ∈WJ and C is the unique component of WJ containing x. We will
show that R(Fx) = F(J,C) the closure of the element (J,C) in X̂ (U)op, which is contractible
(since it has a minimum). To see this, note first that (J,C) ∈ R(Fx) and therefore the
closure F(J,C) is contained in R(Fx). The other inclusion follows by the choice of (J,C).
If y ∈ Fx then x ≤ y. Therefore for any (J ′, C ′) such that y ∈ C ′ we have (J,C) ≤ (J ′, C ′)

in X̂ (U)op since C ′ is open. It follows that R(Fx) ⊆ F(J,C) and therefore R(Fx) ⊆ F(J,C).
By Theorem 2.6, X�↘ X̂ (U)op, and thus X�↘ X̂ (U). �

From Theorem 3.8 we can derive a similar result for polyhedra. Note first that for any
open cover U of a finite poset X, the completion X̂ (U) is the face poset of a regular CW-
complex (not necessarily a simplicial complex) whose cells are simplices. To see this, note
that for every (J,C) ∈ X̂ (U) the subposet U(J,C) is the face poset of a simplex (of dimension
#J −1) since for any J ′ ⊆ J there exists a unique component C ′ ⊆WJ ′ such that C ⊆ C ′.
The n-cells of this regular CW-complex correspond to the connected components of the
WJ with #J = n+ 1.

Definition 3.9. Let K be a simplicial complex (or more generally, a regular CW-complex)
and let U = {Li}i∈I be a cover of K by subcomplexes. Consider the open cover UX =

{X (Li)}i∈I of the face poset X (K). We define the completion N̂(U) as the regular CW-
complex satisfying X (N̂(U)) = X̂ (UX ). Concretely, N̂(U) is the regular CW-complex
whose cells (simplices) correspond to the connected components of the intersections of the
elements of U .
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Corollary 3.10. Let K be a finite simplicial complex (or a regular CW-complex) and let
U = {Li}i∈I be a quasi-good cover of K. Then K�↘ N̂(U).

Proof. Consider the open cover UX = {X (Li)}i∈I of the face poset X (K). By Theorem
3.8, X (K)�↘ X̂ (UX ). Then

K ′ = K(X (K))�↘ K(X̂ (UX )) = K(X (N̂(U))) = (N̂(U))′.

Therefore K�↘ N̂(U). �

The following simple example illustrates the difference between the nerve and its com-
pletion.

Example 3.11. If K is the boundary of the 2-simplex and the cover U = {L, T} is
defined as in the paragraph preceding Definition 3.5, the completion N̂(U) is the regular
CW-complex homeomorphic to S1 with two 0-cells and two 1-cells

Figure 1. The completion of the nerve of a quasi-good cover.

Remark 3.12. The completion of the nerve of a cover is related to the Mapper algorithm
introduced in [16] for the shape recognition of data (see also [6, Section 3.2]). The Mapper
algorithm uses the following construction. Suppose we are given a topological space X
and a continuous map f : X → Z where Z is a metric space (usually R or Rd) and U
is an open cover of Z (when Z = R, U is usually taken as a family of overlapping open
intervals). By pulling back the cover U , we obtain an open cover V = f∗U of X. Note
that the elements of V are not necessarily path connected. Consider the open cover V of
X consisting of the path connected components of the elements of V and take the nerve
N(V). As it is explained in [6, Section 3.2], the nerve N(V) (denoted by Čπ0(V) in [6])
gives a better approximation of X than the usual nerve N(V). This construction provides
a way to obtain a cover of X by means of f : X → Z, even when we have incomplete
information about the topology of X. It is commonly used in data analysis, when we are
only given a finite sample of X and we want to deduce the homotopy type of X from this
sample. Our construction of the completion of the nerve goes in this direction. Moreover,
Corollary 3.10 suggests that a better approximation of X is obtained if one takes N̂(V) (i.e.
considering the components of all non-empty intersections). When the nerve of the cover
is 1-dimensional (for example when Z = R and U is a family of intervals with no threefold
overlaps), the completion is attained by considering the components of the elements of the
cover and the components of the intersection of each pair of elements. In Example 3.11 the
nerve of the cover U coincides with the usual nerve N(U) (since L and T are connected),
but the completion N̂(U) provides a better approximation.
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