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SIMION’S TYPE B ASSOCIAHEDRON IS A PULLING TRIANGULATION OF

THE LEGENDRE POLYTOPE

RICHARD EHRENBORG, GÁBOR HETYEI AND MARGARET READDY

Abstract. We show that Simion’s type B associahedron is combinatorially equivalent to a pulling
triangulation of a type B root polytope called the Legendre polytope. Furthermore, we show that
every pulling triangulation of the Legendre polytope yields a flag complex. Our triangulation refines
a decomposition of the Legendre polytope given by Cho. We extend Cho’s cyclic group action to
the triangulation in such a way that it corresponds to rotating centrally symmetric triangulations
of a regular (2n + 2)-gon. Finally, we present a bijection between the faces of the Simion’s type B

associahedron and Delannoy paths.

1. Introduction

Root polytopes arising as convex hulls of roots in a root system have become the subject of in-
tensive interest in recent years [1, 8, 10, 13, 17, 18]. Another important area where geometry meets
combinatorics is the study of noncrossing partitions, associahedra and their generalizations. In this
context Simion [20] constructed a type B associahedron whose facets correspond to centrally symmet-
ric triangulations of a regular (2n+2)-gon. Burgiel and Reiner [4] described Simion’s construction as
providing “the first motivating example for an equivariant generalization of fiber polytopes, that is,
polytopal subdivisions which are invariant under symmetry groups”. It was recently observed by Cori
and Hetyei [9] that the face numbers in this type B associahedron are the same as the face numbers
in any pulling triangulation of the boundary of a type B root polytope, called the Legendre polytope
in [13].

In this paper we show that the equality of these face numbers is not a mere coincidence. We prove
the type B associahedron is combinatorially equivalent to a pulling triangulation of the Legendre
polytope Pn. The convex hull of the positive roots among the vertices of the Legendre polytope and
of the origin is a type A root polytope P+

n . Cho [7] has shown that the Legendre polytope Pn may
be decomposed into copies of P+

n that meet only on their boundaries and that there is a Zn+1-action
on this decomposition. Our triangulation representing the type B associahedron as a triangulation
of the Legendre polytope refines Cho’s decomposition in such a way that extends the Zn+1-action
to the triangulation. The effect of this Zn+1-action on the centrally symmetric triangulations of the
(2n+ 2)-gon is rotation.
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Simion observed algebraically that the number of k-dimensional faces of the type B associahedron
is given by the number of lattices paths between (0, 0) and (2n, 0) taking k up steps (1, 1), k down
steps (1,−1), and n − k horizontal steps (2, 0). Such paths are known as balanced Delannoy paths.
In Section 8 we give a combinatorial proof by providing a bijection between the faces of the type B
associahedron and Delannoy paths. We give two presentations of this bijection, one recursive and one
non-recursive.

Our paper is structured as follows. In the preliminaries we discuss the Simion type B associahedron,
the Legendre polytope and pulling triangulations. In Section 3 we show that every pulling triangu-
lation of the Legendre polytope is a flag complex. We introduce an arc representation of Simion’s
type B diagonals in Section 4 and obtain conditions for when a pair of B-diagonals do not cross. A
bijection between the set of B-diagonals and the vertex set of the Legendre polytope is obtained by the
intermediary of our arc representation in Section 5. We characterize when B-diagonals cross in terms
of crossing and nesting conditions on the arrows associated to the vertices of the Legendre polytope.
This characterization is used in Section 6 to define a triangulation of the boundary of the Legendre
polytope where each face corresponds to a face in the type B associahedron. Since both complexes
are flag and have the same minimal non-faces, we conclude that they are the same polytope. We end
this section by describing the facets in our triangulation. In Section 7 we prove that our triangulation
refines Cho’s decomposition and that his Zn+1-action corresponds to rotating the regular (2n+2)-gon.
In Section 8 we present a bijection between faces of the type B associahedron and Delannoy paths.

We end the paper with comments and future research directions.

2. Preliminaries

2.1. Simion’s type B associahedron. Simion [20] introduced a simplicial complex denoted by ΓB
n

on n(n + 1) vertices as follows. Consider a centrally symmetric convex (2n + 2)-gon, and label its
vertices in the clockwise order with 1, 2, . . . , n, n + 1, 1, 2, . . . , n, n+ 1. The vertices of ΓB

n

are the B-diagonals, which are one of the two following kinds: diagonals joining antipodal pairs of
points, and antipodal pairs of noncrossing diagonals. The diagonals joining antipodal points are all
pairs of the form {i, i} satisfying 1 ≤ i ≤ n + 1. Simion calls such a B-diagonal a diameter. The
B-diagonals that are antipodal pairs of noncrossing diagonals are either of the form {{i, j}, {i, j}}
satisfying 1 ≤ i < i+ 1 < j ≤ n+ 1 or of the form {{i, j}, {i, j}} satisfying 1 ≤ j < i ≤ n+ 1.

The simplicial complex ΓB
n is the family of sets of pairwise noncrossing B-diagonals. Simion showed

the simplicial complex ΓB
n is the boundary complex of an n-dimensional convex polytope. This poly-

tope is also known as the Bott–Taubes polytope [3] and the cyclohedron [16]. Simion also computed
the face numbers and h-vector. See Theorem 1, Proposition 1 and Corollary 1 in [20], respectively.
These numbers turn out to be identical with the face numbers and h-vector of any pulling triangula-
tion of the Legendre polytope. We will discuss this polytope in the next subsection. We end with a
fact that is implicit in the work of Simion [20, Section 3.3].

Lemma 2.1 (Simion). Each facet ΓB
n of Simion’s type B associahedron contains exactly one B-

diagonal of the form {i, i} connecting an antipodal pair of points.
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2.2. The Legendre polytope or “full” type A root polytope. Consider an (n+1)-dimensional
Euclidean space with orthonormal basis {e1, e2, . . . , en+1}. The convex hull of the vertices ±2e1,
. . . , ±2en+1 is an (n + 1)-dimensional cross-polytope. The intersection of this cross-polytope with
the hyperplane x1 + x2 + · · · + xn+1 = 0 is an n-dimensional centrally symmetric polytope Pn first
studied by Cho [7]. It is called the Legendre polytope in the work of Hetyei [13], since the polynomial
∑n

j=0 fj−1 · ((x−1)/2)j is the nth Legendre polynomial, where fi is the number of i-dimensional faces
in any pulling triangulation of the boundary of Pn. See Lemma 2.7 below. Furthermore, it is called the
“full” type A root polytope in the work of Ardila–Beck–Hoşten–Pfeifle–Seashore [1]. It has n(n + 1)
vertices consisting of all points of the form ei − ej where i 6= j.

We use the shorthand notation (i, j) for the vertex ej − ei of the Legendre polytope Pn. We may
think of these vertices as the set of all directed nonloop edges on the vertex set {1, 2, . . . , n + 1}. A
subset of these edges is contained in some face of Pn exactly when there is no i ∈ {1, 2, . . . , n+1} that
is both the head and the tail of a directed edge. Equivalently, the faces are described as follows.

Lemma 2.2. The faces of the Legendre polytope Pn are of the form conv(I × J) = conv({(i, j) :
i ∈ I, j ∈ J}) where I and J are two non-empty disjoint subsets of the set {1, 2, . . . , n + 1}. The
dimension of a face is given by |I| + |J | − 2. A face is a facet if and only if the union of I and J is
the set {1, 2, . . . , n+ 1}.

Especially, when the two sets I and J both have cardinality two, the associated face is geometrically
a square. Furthermore, the other two-dimensional faces are equilateral triangles.

Affine independent subsets of vertices of faces of the Legendre polytope are easy to describe. A
set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is a (k − 1)-dimensional simplex if and only if, disregarding the
orientation of the directed edges, the set S contains no cycle, that is, it is a forest [13, Lemma 2.4].

The Legendre polytope Pn contains the polytope P+
n , defined as the convex hull of the origin and

the set of points ei − ej , where i < j. The polytope P+
n was first studied by Gelfand, Graev and

Postnikov [10] and later by Postnikov [19]. Some of the results on P+
n may be easily generalized to Pn.

2.3. Pulling triangulations. The notion of pulling triangulations is originally due to Hudson [14,
Lemma 1.4]. For more modern formulations, see [21, Lemma 1.1] and [2, End of Section 2]. We refer
to [13, Section 2.3] for the version presented here.

For a polytopal complex P and a vertex v of P, let P − v be the complex consisting of all faces of P
not containing the vertex v. Also for a facet F let P(F ) be the complex of all faces of P contained
in F .

Definition 2.3 (Hudson). Let P be a polytopal complex and let < be a linear order on the set V of
its vertices. The pulling triangulation △(P) with respect to < is defined recursively as follows. We
set △(P) = P if P consists of a single vertex. Otherwise let v be the least element of V with respect
to < and set

△(P) = △(P − v) ∪
⋃

F

{conv({v} ∪G) : G ∈ △(P(F ))} ,
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where the union runs over the facets F not containing v of the maximal faces of P which contain v.
The triangulations △(P−v) and △(P(F )) are with respect to the order < restricted to their respective
vertex sets.

Theorem 2.4 (Hudson). The pulling triangulation △(P) is a triangulation of the polytopal complex P
without introducing any new vertices.

In particular, any pulling triangulation of the boundary of Pn is compressed as defined by Stan-
ley [21], and has the same face numbers [13, Corollary 4.11]. This important fact and the analogous
statement for P+

n is a direct consequence of the following two fundamental results [11, 12, 21].

Proposition 2.5 (Stanley). Suppose that one of the vertices of a polytope P is the origin and that
the matrix whose rows are the coordinates of the vertices of P is totally unimodular. Let < be any
ordering on the vertex set of P such that the origin is the least vertex with respect to <. Then the
pulling order < is compressed, that is, all of the facets in the induced triangulation have the same
relative volume.

Theorem 2.6 (Heller). The incidence matrix of a directed graph is totally unimodular.

2.4. Face vectors of pulling triangulations of the Legendre polytope. Among all triangula-
tions of the boundary of the Legendre polytope Pn obtained by pulling the vertices, counting faces is
most easily performed for the lexicographic triangulation in which we pull (i, j) before (i′, j′) exactly
when i < i′ or when i = i′ and j < j′. Counting faces in this triangulation amounts to counting lattice
paths; see [13, Lemma 5.1] and [1, Proposition 17]. From this we obtain the following expression for
the face numbers [13, Theorem 5.2].

Lemma 2.7 (Hetyei). For any pulling triangulation of the boundary of Pn, the number fj−1 of (j−1)-
dimensional faces is

(2.1) fj−1 =

(

n+ j

j

)(

n

j

)

for 0 ≤ j ≤ n.

It was first noted in [9] that these face numbers are the same as that of Simion’s type B associahe-
dron ΓB

n . Theorem 6.1 will explicitly explain this fact by showing that ΓB
n can be realized as a pulling

triangulation of the Legendre polytope.

3. The flag property

Recall that a simplicial complex is a flag complex if every minimal nonface has two elements. The
main result of this section is the following.

Theorem 3.1. Every pulling triangulation of the boundary of the Legendre polytope Pn is a flag
simplicial complex.

To prove this theorem and Theorem 6.1, we need the following observation.
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Lemma 3.2. Let {x1, x2, y1, y2} be a four element subset of the set {1, 2, . . . , n + 1}. Then the set
{x1, x2}×{y1, y2} = {(x1, y1), (x1, y2), (x2, y2), (x2, y1)} is the vertex set of a square face of the Legendre
polytope Pn, and the sets {(x1, y1), (x2, y2)} and {(x1, y2), (x2, y1)} are the diagonals of this square.
For any pulling triangulation the diagonal containing the vertex that was pulled first is an edge of the
triangulation and the other diagonal is not an edge.

Theorem 3.1 may be rephrased as follows.

Theorem 3.3. Let < be any order on the vertices of the Legendre polytope Pn and consider the
pulling triangulation of the boundary of Pn induced by this order. Suppose we are given a set of
vertices {(u1, v1), (u2, v2), . . . , (uk, vk)} such that any pair {(ui, vi), (uj , vj)} is an edge in the pulling
triangulation. Then this set is a face of the pulling triangulation.

Proof. Assume that the pulling order on the set of vertices is given by (u1, v1) < (u2, v2) < · · · <
(uk, vk). We prove the statement by induction on k. The statement is directly true for k ≤ 2. Assume
from now on k ≥ 3. Observe first that the sets {u1, . . . , uk} and {v1, . . . , vk} must be disjoint. Indeed,
if for any i 6= j we have ui = vj then the pair of vertices {(ui, vi), (uj , vj)} is not an edge, contradicting
our assumption. Thus our set of vertices is contained in the face conv({u1, . . . , uk} × {v1, . . . , vk}) of
the polytope Pn. Note that the lists u1, . . . , uk and v1, . . . , vk may contain repeated elements.

We next show that (u1, v1) is the least element with respect of the order < in the set {u1, . . . , uk}×
{v1, . . . , vk}. To prove this, suppose (ui, vj) is the least element. If i = j then either i = 1 or we
may use that we were given (u1, v1) < (ui, vi) for all i > 1. If i 6= j but ui = uj then we have
(ui, vj) = (uj , vj) and again we are done since (uj , vj) > (u1, v1) if j > 1. Similarly, if i 6= j but vi = vj
then we may use (ui, vj) = (ui, vi). Finally if i 6= j, ui 6= uj and vi 6= vj hold, then apply Lemma 3.2 to
the square with vertex set (ui, vi), (ui, vj), (uj , vj) and (uj, vi). Since (ui, vj) is the least with respect
to the pulling order, the diagonal {(ui, vi), (uj , vj)} is not an edge of the triangulation, contradicting
our assumption. Hence we conclude (u1, v1) is the least vertex in the set {u1, . . . , uk} × {v1, . . . , vk}.

We claim the smallest face of the boundary of Pn containing the vertex set {(u2, v2), . . . , (uk, vk)}
does not contain the vertex (u1, v1). Assume, by way of contradiction, that {u1, u2, . . . , uk} =
{u2, . . . , uk} and {v1, v2, . . . , vk} = {v2, . . . , vk} hold. Then there is an index i > 1 and an index j > 1
such that u1 = ui and v1 = vj hold. Note that we must also have v1 6= vi and u1 6= uj . Consider the
square face with the following four vertices: (u1, v1), (u1, vi) = (ui, vi), (uj , vi) and (uj , vj) = (uj , v1).
The first vertex that was pulled is (u1, v1). By Lemma 3.2 the edge {(ui, vi), (uj , vj)} is not an edge
in the pulling triangulation, contradicting our assumptions.

By the induction hypothesis the set {(u2, v2), . . . , (uk, vk)} is a face in the polytopal complex ∂Pn−
{w : w ≤ (u1, v1)}. By definition, we obtain that {(u1, v1)} ∪ {(u2, v2), . . . , (uk, vk)} is a face of the
pulling triangulation. �

Since the Cartesian product of an m-dimensional simplex and an n-dimensional simplex is a face
of the Legendre polytope of dimension m+ n+ 1, we obtain the following corollary.

Corollary 3.4. Every pulling triangulation of the Cartesian product of two simplices is a flag complex.
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Figure 1. The arc representation of the B-diagonal consisting of the two diagonals
{2, 5} and {2, 5} = {10, 13} is the two arcs [2, 4] and [2, 4] = [10, 12]. By considering
the arcs modulo n + 1 = 8 (see the second circle) we obtain that this B-diagonal is
represented by the arrow (4, 2).

4. The arc representation of ΓB
n

In this section we describe a representation of ΓB
n as a simplicial complex whose vertices are centrally

symmetric pairs of “arcs” on a circle. This representation has a natural circular symmetry.

Consider a regular (2n + 2)-gon whose vertices are labeled 1, 2, . . . , n + 1, 1, 2, . . . , n + 1 in the
clockwise order. Identify each vertex i with n+1+i for i = 1, 2, . . . , n+1. Subject to this identification,
each B-diagonal, that is, a pair of diagonals, may be represented as an unordered pair of diagonals
of the form {{u, v}, {u + n + 1, v + n + 1}} for some {u, v} ⊆ {1, 2, . . . , 2n + 2}, where addition is
modulo 2n+2. For B-diagonals {k, k} joining antipodal points, the unordered pair {{k, k+n+1}, {k+
n+ 1, k + 2n+ 2}} contains two copies of the same two-element set.

For any two points x and y on the circle R/(2n+2)Z which are not antipodal, let [x, y] denote the
shortest arc from x to y.

Definition 4.1. We define the arc-representation on the vertices of ΓB
n as follows. Subject to the above

identifications, represent the B-diagonal {{u, v}, {u + n+ 1, v + n+ 1}} with the centrally symmetric
pair of arcs {[u, v − 1], [u + n+ 1, v + n]} on the circle R/(2n + 2)Z.

The representation above is well-defined: for any pair of vertices u and v, the arc [u, v − 1] and
the arc [u + n + 1, v + n] form a centrally symmetric pair, so the definition is independent of the
selection of the element of {{u, v}, {u + n + 1, v + n + 1}}. Note that for B-diagonals of the form
{{k, n+1+k}, {k, n+1+k}} corresponding to antipodal pairs of points, the union of the arcs [k, k+n]
and [k + n+ 1, k − 1] is not the full circle.

See Figure 1 for an example where n = 7 with the B-diagonal {{2, 5}, {2, 5}}.
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Lemma 4.2. The arc-representation of the vertices of ΓB
n is one-to-one: distinct B-diagonals are

mapped to distinct centrally symmetric pairs of arcs.

Indeed, the pair {[u, v−1], [u+n+1, v+n]} can only be the image of the unordered pair {{u, v}, {u+
n+ 1, v + n+ 1}}.

The following theorem plays an important role in connecting the type B associahedron with the
Legendre polytope.

Theorem 4.3. The B-diagonal represented by the pair of arcs {[u1, v1−1], [u1+n+1, v1+n]} and the
B-diagonal represented by the pair of arcs {[u2, v2−1], [u2+n+1, v2+n]} are noncrossing if and only if
for either arc I ∈ {[u1, v1−1], [u1+n+1, v1+n]} and for either arc J ∈ {[u2, v2−1], [u2+n+1, v2+n]},
the arcs I and J are either nested or disjoint.

Proof. Assume first that the two B-diagonals cross. Since we may replace {ui, vi} with {ui+n+1, vi+
n + 1} if necessary, without loss of generality we may assume that the diagonal {u1, v1} crosses the
diagonal {u2, v2}. Exactly one of the endpoints of the diagonal {u2, v2} must then belong to the arc
[u1 +1, v1 − 1] and the other one does not belong even to the larger arc [u1, v1]. If u2 ∈ [u1 +1, v1 − 1]
and v2 6∈ [u1, v1] then we have

[u1, v1 − 1] ∩ [u2, v2 − 1] = [u2, v1 − 1].

This arc contains u2, but does not contain u1 (since u2 ∈ [u1 + 1, v1 − 1]), nor does it contain
v2 − 1 6∈ [u1, v1 − 1]. The arcs [u1, v1 − 1] and [u2, v2 − 1] do not contain each other and they are not
disjoint.

If v2 ∈ [u1 + 1, v1 − 1] and u2 6∈ [u1, v1] then we have

[u1, v1 − 1] ∩ [u2, v2 − 1] = [u1, v2 − 1].

Similar to the previous case, we obtain that the arcs [u1, v1 − 1] and [u2, v2 − 1] do not contain each
other and they are not disjoint.

Assume next that the two diagonals do not cross. If u2 ∈ [u1 + 1, v1 − 1] then we must have
v2 ∈ [u2 + 1, v1], implying

[u1, v1 − 1] ∩ [u2, v2 − 1] = [u2, v2 − 1].

Similarly, if v2 ∈ [u1 + 1, v1 − 1] then we must have u2 ∈ [u1, v2], implying

[u1, v1 − 1] ∩ [u2, v2 − 1] = [u2, v2 − 1].

Finally, if neither u2 nor v2 belongs to [u1 + 1, v1 − 1] then either the arc [u2, v2 − 1] contains the arc
[u1, v1 − 1] or it is disjoint from it. The above argument remains valid if we replace either (or both)
of [u1, v1 − 1] and [u2, v2 − 1] with the arc [u1 + n+ 1, v1 + n] or [u2 + n+ 1, v2 + n], respectively. �

Corollary 4.4. The B-diagonal represented by the pair of arcs {[u1, v1 − 1], [u1 + n+ 1, v1 + n]} and
the B-diagonal represented by the pair of arcs {[u2, v2 − 1], [u2 +n+1, v2 +n]} are noncrossing if and
only the set [u1, v1 − 1]∪ [u1 + n+1, v1 + n] and the set [u2, v2 − 1]∪ [u2 + n+1, v2 + n] are nested or
disjoint.
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5. Embedding ΓB
n as a family of simplices on ∂Pn

In this section we describe a way to represent the boundary complex ΓB
n of Simion’s type B asso-

ciahedron as a family of simplices on the vertex set of the Legendre polytope Pn. We do this so that
each simplex is contained in a face of the boundary ∂Pn of Pn. In Section 6 we will prove that our
map represents the boundary complex of the type B associahedron as a pulling triangulation of ∂Pn.

We begin by defining a bijection between the vertex set of ΓB
n and that of Pn. Recall that we use

the shorthand notation (i, j) for the vertex ej − ei of Pn. We refer to (i, j) as the arrow from i to j.
Using the term “arrow” as opposed to “directed edge” will eliminate the confusion that ej − ei is a
vertex of Pn. Instead we think of it as an arrow from i to j in the complete directed graph on the
vertex set {1, 2, . . . , n+ 1} having no loops.

Definition 5.1. Let {[i, j], [i, j]} be the arc representation of a B-diagonal in ΓB
n , where 1 ≤ i ≤ n+1

and i < j. Define the arrow representation of this B-diagonal in Pn to be the arrow (j, i).

In other words, the arrow encodes the complement of the image of the arcs in the circle R/(n+1)Z.
We refer to the second circle in Figure 1 for the continuation of the example of the B-diagonal
{{2, 5}, {2, 5}}.

When making this definition explicit for a B-diagonal {{i, j}, {i, j}}, we obtain several cases:

(1) For each i satisfying 2 ≤ i ≤ n+1, represent the B-diagonal {i, i} connecting two antipodal points
with the arrow (i− 1, i). Represent the B-diagonal {1, 1} with the arrow (n+ 1, 1).

(2) For each i and j satisfying 1 ≤ i < i+1 < j ≤ n+1, represent the B-diagonal {{i, j}, {i, j}} with
the arrow (j − 1, i).

(3) For each i and j satisfying 2 ≤ j < i ≤ n + 1, represent the B-diagonal {{i, j}, {i, j}} with the
arrow (j − 1, i). For each i satisfying 2 ≤ i ≤ n+ 1, represent the B-diagonal {{1, i}, {1, i}} with
the arrow (n+ 1, i).

This representation yields a bijection between B-diagonals and arrows. The inverse map is given
as follows:

(a) For i satisfying 1 ≤ i ≤ n, the arrow (i, i + 1) represents the B-diagonal {i + 1, i+ 1} and the
arrow (n+ 1, 1) represents the B-diagonal {1, 1}.

(b) For each i and j satisfying 1 ≤ i < j ≤ n, the arrow (j, i) represents the B-diagonal {{i, j +
1}, {i, j + 1}}.

(c) For each i and j satisfying 1 ≤ j < i − 1 < i ≤ n + 1, the arrow (j, i) represents the B-diagonal
{{i, j + 1}, {i, j + 1}}, and for 2 ≤ i ≤ n + 1, the arrow (n + 1, i) represents the B-diagonal
{{1, i}, {1, i}}.

The B-diagonals in item (1) of Definition 5.1 may be thought of as a “degenerate case” of the
B-diagonals in item (3). In the case when i = j, the set {{i, j}, {i, j}} becomes a singleton, and the
rules in item (1) may be obtained by extending the rules in item (3) in an obvious way. On the other
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hand, Definition 5.1 has a simpler form in terms of the arc-representation described in Section 4 and
in terms of the following continuous map.

Definition 5.2. Define the map π : R/(2n + 2)Z −→ R/(n + 1)Z to be the modulo n + 1 map.
Furthermore, identify the circle R/(n + 1)Z with the half-open interval (0, n + 1]. Thus π sends each
x ∈ (0, n + 1] to x and each x ∈ (n+ 1, 2n + 2] to x− n− 1.

Observe that the map π depends on n. However, we suppress this dependency by not writing πn.
Also observe that the map π is a two-to-one mapping: for each y ∈ R/(n+1)Z we have |π−1(y)| = 2.

Remark 5.3. For any pair of arcs {[u, v − 1], [u + n+ 1, v + n]} there is a unique way to select u to
be an element of the set {1, 2, . . . , n+ 1}, that is, π(u) = u. We may distinguish two cases depending
upon whether the arc [u, v − 1] is a subset of the arc [u, n+ 1] or not.

(i) If [u, v−1] ⊆ [u, n+1] then visualize the set π([u, v−1]) = π([u+n+1, v+n]) as the subinterval
[u, v − 1] of (0, n+ 1]. The direction of both arcs [u, v − 1] and [u+ n+ 1, v + n] corresponds to
parsing the interval [u, v−1] in increasing order. Adding the associated backward arrow (v−1, u)
closes a directed cycle with this directed interval.

0 1 2 3 4 5 6 7 8

As an example, when n = 7 then the B-diagonal {{2, 5}, {2, 5}} is represented by the backward
arrow (4, 2) as drawn above on the interval (0, 8].

(ii) If the arc [u, v−1] is not contained in the arc [u, n+1] then n+1 < v−1 < u+n+1. The integer
π(v−1) = v−1− (n+1) is congruent to v−1 modulo (n+1) and satisfies 1 ≤ π(v−1) < u. The
image of the arc [u, v− 1] under π, that is, π([u, v− 1]) = π([u+n+1, v+n]) is then the subset
(0, π(v) − 1] ∪ [u, n + 1] of the interval (0, n + 1]. We may consider (0, π(v) − 1] ∪ [u, n + 1] as a
“wraparound interval” modulo n+1 from u to π(v−1). The direction of both pieces corresponds
to listing the elements of this “wraparound interval” in increasing order modulo n + 1. Adding
the associated forward arrow (π(v − 1), u) closes a directed cycle with the directed wraparound
interval.

0 1 2 3 4 5 6 7 8

For instance, when n = 7 the B-diagonal {{4, 6}, {4, 6}} yields the forward arrow (3, 6).

Proposition 5.4. The B-diagonal represented by the arrow (π(v1 − 1), π(u1)) and the B-diagonal
represented by the arrow (π(v2 − 1), π(u2)) are noncrossing if and only if the images π([u1, v1 − 1])
and π([u2, v2 − 1]) are disjoint or contain each other.

Proof. The statement is an easy consequence of the following observation. Both arcs of the arc
representation {[u, v−1], [u+n+1, v+n]} of a B-diagonal are mapped onto the same arc [π(u), π(v−1)]
by π and [u, v − 1] ∪ [u+ n+ 1, v + n] = π−1([π(u), π(v − 1)]). �
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Next we translate the noncrossing conditions for B-diagonals into conditions for the arrows repre-
senting them.

Proposition 5.5. Suppose a pair of B-diagonals is represented by a pair of arrows as defined in
Definition 5.1. These B-diagonals cross if and only if one of the following conditions is satisfied:

(1) Both arrows are backward and they cross.
(2) Both arrows are forward and they do not nest.
(3) One arrow is forward, the other one is backward, and the backward arrow nests or crosses the

forward arrow.
(4) The head of one arrow is the tail of the other arrow.

Proof. Suppose the arc representations of the two B-diagonals are {[u1, v1 − 1], [u1 + n + 1, v1 + n]}
and {[u2, v2 − 1], [u2 + n + 1, v2 + n]}, respectively. By Proposition 5.4, the represented B-diagonals
are crossing if and only if the images π([u1, v1 − 1]) and π([u2, v2 − 1]) are not disjoint and do not
contain each other.

We will consider three cases, depending on the direction of the two arrows (π(v1 − 1), π(u1)) and
(π(v2 − 1), π(u2)). These arrows are either both forward, both backward or have opposite directions.

If both arrows are backward then neither the image π([u1, v1 − 1]) nor the image π([u2, v2 − 1])
contain the point n + 1. Two such intervals intersect nontrivially in an interval of positive length
exactly when the corresponding arrows cross. They intersect in a single point exactly when there is a
vertex that is the tail of one of the arrows and the head of the other arrow.

If both arrows are forward then both images π([u1, v1 − 1]) and π([u2, v2 − 1]) contain the point
n + 1, so they cannot be disjoint. They do not contain each other exactly when the corresponding
arrows are not nested. Note that a pair of forward arrows such that the head of one arrow is the same
as the tail of the other is particular example of a pair of nonnested arrows.

Assume finally that one of the arrows, say (π(v1−1), π(u1)), is a backward arrow and the other one,
say (π(v2−1), π(u2)), is a forward arrow. The image π([u2, v2−1]) cannot be a subset of π([u1, v1−1])
as the first image contains the point n+1 whereas the second does not. The image π([u1, v1−1]) is the
interval [π(u1), π(v1 − 1)], whereas the image π([u2, v2 − 1]) is the union (0, π(v2 − 1)]∪ [π(u2), n+1].
The intersection of these two sets has either zero, one or two connected components. If one component
is a single point then this point is the head of one arrow and the tail of the other. If both components
are non-trivial intervals then the backward arrow nests the forward arrow. If they intersect in one
interval but the image π([u1, v1 − 1]) does not contain the image π([u2, v2 − 1]) then the two arrows
cross. Finally, if the image π([u1, v1−1]) does contain the image π([u2, v2−1]) then the arrows neither
cross nor nest. �

An immediate consequence of Proposition 5.5 and Lemma 2.2 is the following corollary.

Corollary 5.6. Noncrossing sets of B-diagonals correspond to subsets of vertices contained in a facet
of the Legendre polytope Pn.
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Order of nodes Arrow first pulled Edge Not an edge

x1 < x2 < y1 < y2 (x2, y1) x1 x2 y1 y2 x1 x2 y1 y2

x1 < y1 < x2 < y2 (x2, y1) x1 y1 x2 y2 x1 y1 x2 y2

x1 < y1 < y2 < x2 (x2, y2) x1 y1 y2 x2 x1 y1 y2 x2

y1 < x1 < x2 < y2 (x1, y1) y1 x1 x2 y2 y1 x1 x2 y2

y1 < x1 < y2 < x2 (x1, y1) or (x2, y2) y1 x1 y2 x2 y1 x1 y2 x2

y1 < y2 < x1 < x2 (x1, y2) y1 y2 x1 x2 y1 y2 x1 x2

Table 1. Pairs of arrows that are edges or minimal nonfaces

6. The type B associahedron represented as a pulling triangulation

In this section we show that the arc representation given in Definition 5.1 constitutes Simion’s
type B associahedron ΓB

n as a pulling triangulation of the boundary of the Legendre polytope Pn.
Our main result is the following.

Theorem 6.1. Let < be any linear order on the vertex set of Pn subject to the following conditions:

(1) (x1, y1) < (x2, y2) whenever x1 − y1 > 0 > x2 − y2.
(2) On the subset of vertices (x, y) satisfying x < y, we have (x1, y1) < (x2, y2) whenever the

interval [x1, y1] = {x1, x1 + 1, . . . , y1} is contained in the interval [x2, y2].
(3) On the subset of vertices (x, y) satisfying x > y, we have (x1, y1) < (x2, y2) whenever the

interval [y1, x1] is contained in the interval [y2, x2].

Then the arc representation of ΓB
n given in Definition 5.1 is a pulling triangulation of the boundary

of the Legendre polytope Pn with respect to <.

Proof. Fix any pulling order < satisfying the above conditions. The first condition requires all back-
ward arrows to precede all forward arrows. The next two conditions require that for a pair of nested
arrows of the same direction the nested arrow should precede the nesting arrow.

Recall that ΓB
n is a flag complex and its minimal nonfaces are the pairs of crossing B-diagonals. By

Theorem 3.1 the pulling triangulation we defined is also a flag complex. It suffices to show that the
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minimal nonfaces are in bijection. Equivalently, for any pair of arrows {(x1, y1), (x2, y2)} that form an
edge in the pulling triangulation of Pn, these arrows correspond to a pair of noncrossing B-diagonals
in ΓB

n . By Proposition 5.5 this amounts to showing the following: backward arrows cannot cross,
forward arrows must nest, and for a pair of arrows of opposite direction the backward arrow cannot
cross or nest the forward arrow.

Given a four-element subset {x1, x2, y1, y2} of {1, 2, . . . , n+1}, where x1 < x2 and y1 < y2, consider
the four arrows in the set {x1, x2}×{y1, y2}. As seen in Lemma 3.2, these four arrows form the vertex
set of a square face of the Legendre polytope Pn, and only the diagonal which contains the first vertex
to be pulled is an edge of the pulling triangulation. Table 1 lists all six possible orderings of this four
element set.

In each of the six cases we note which vertex is pulled first, which diagonal of the square becomes
an edge in the triangulation and which diagonal does not become an edge. Note that in the fifth row
of Table 1 we have two possibilities for selecting the vertex to be pulled first. However, these two
vertices belong to the same diagonal. In every case we obtain that none of the pairs of arrows with
distinct heads and tails that is an edge corresponds to a pair of crossing B-diagonals. �

As a corollary we obtain Simion’s polytopal result.

Corollary 6.2 (Simion). The Simion type B associahedron ΓB
n is the boundary complex of a simplicial

polytope.

Since the associahedron of type A is the link of a B-diagonal of the form {i, i}, we obtain the
following classical result; see the work of Haiman, Lee [15] and Stasheff. For a brief history, see the
introduction of [5].

Corollary 6.3. The associahedron is the boundary complex of a simplicial polytope.

We end this section by describing the structure of all facets of the Simion’s type B associahedron
in terms of arrows.

Theorem 6.4. A set of arrows S = {(x1, y1), . . . , (xn, yn)} represents a facet of Simion’s type B
associahedron ΓB

n if and only if the following conditions are satisfied:

(1) There is exactly one k satisfying 1 ≤ k ≤ n + 1 such that (k − 1, k) (or (n + 1, 1) if k = 1)
belongs the set S. We call this k the type of the facet.

(2) Backward arrows do not nest any forward arrow, in particular, they cannot nest (k − 1, k) if
k > 1.

(3) If k = 1 then there is no forward arrow in the set S.
(4) Forward arrows must nest. In particular, if k > 1 then for each each forward arrow (x, y) ∈ S

must satisfy x ≤ k − 1 and y ≥ k. (Forward arrows must nest (k − 1, k).)
(5) No head of an arrow in the set S is also the tail of another arrow in S.
(6) No two arrows cross.
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Proof. Condition (1) is equivalent to Lemma 2.1. Except for Condition (3), the remaining conditions
are stated for all faces in Proposition 5.5. To prove Condition (3), observe that k = 1 implies that
the backward arrow (n+ 1, 1) belongs to S. This arrow would nest any forward arrow, contradicting
Condition (3) in Proposition 5.5. �

7. Triangulating Cho’s decomposition

The type A root polytope P+
n is the convex hull of the origin and the set of points {ei − ej : 1 ≤

i < j ≤ n+ 1}. Cho [7] gave a decomposition of the Legendre polytope Pn into n+ 1 copies of P+
n as

follows. The symmetric group Sn+1 acts on the Euclidean space R
n+1 by permuting the coordinates,

that is, the permutation σ ∈ Sn+1 sends the basis vector ei into eσ(i). Hence the permutation σ
acts on the Legendre polytope Pn by sending each ei − ej into eσ(i) − eσ(j). Cho’s main result [7,
Theorem 16] is the following decomposition.

Theorem 7.1 (Cho). The Legendre polytope Pn has the decomposition

Pn =
n
⋃

k=0

ζk(P+
n )

where ζ is the cycle (1, 2, . . . , n+1). Furthermore, for 0 ≤ k < r ≤ n the polytopes ζk(P+
n ) and ζr(P+

n )
have disjoint interiors.

In this section we show that each copy ζk(P+
n ) of P+

n is the union of simplices of the triangulation
given in Definition 5.1, representing the boundary complex ΓB

n of Simion’s type B associahedron.

Theorem 7.2. Every facet F of the arc representation of ΓB
n given in Definition 5.1 is contained in

ζk−1(P+
n ) where k is the unique arrow of the form (k−1, k) in F or (n+1, 1) if k = 1. Equivalently, the

facet F is contained in ζk(P+
n ) exactly when it represents a facet of ΓB

n that contains the diagonal {k, k}.

Proof. The polytope P+
n is the convex hull the origin and of all vertices that are represented by

backward arrows. The facets of type 1 (as defined in Theorem 6.4) form a pulling triangulation of the
part of the boundary of P+

n that does not contain the origin. In fact, the restriction of the pulling
order to the backward arrows may be taken in the revlex order, as defined in [13, Definition 4.5], giving
rise to the standard triangulation described in [10]. A facet in our triangulation of Pn belongs to the
standard triangulation of the boundary of the part of P+

n not containing the origin exactly when it
has type 1.

Observe next that the effect of ζ on the arrows (considered as vertices of Pn) is adding 1 modulo
n + 1 to the head and to the tail of each arrow. Taking into account Definition 5.1 and Remark 5.3,
it is not difficult to see that the induced effect on the arc representation is adding 1 modulo n + 1,
that is, a rotation. It is worth noting that to rotate each vertex of a regular (2n + 2)-gon into itself
requires increasing each index by one 2n + 2 times. However, a centrally symmetric pair of arcs
{[u, v − 1], [u + n + 1, v + n]} is taken into itself already by n + 1 such elementary rotations. In the
arc representation the facets containing only backward arrows corresponding to facets containing the
pair of arcs {[1, n+1], [n+2, 2n+2]}. The induced action of ζk−1 takes this pair into {[k, n+ k], [n+
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k+1, 2n+1+ k]}. The conditions stated in Theorem 4.3 are rotation-invariant, so the induced action
of ζk−1 takes the family of all facets containing {[1, n+ 1], [n+ 2, 2n+ 2]} into the family of all facets
containing {[k, n + k], [n + k + 1, 2n + 1 + k]}. �

8. A bijection between the faces of ΓB
n and Delannoy paths

In Simion’s original paper, the nontrivial computation of the f -vector of the type B associahe-
dron ΓB

n used the recursive structure of the B-diagonals. Simion asked if there is a direct way to
obtain this f -vector. Due to the unimodularity of the Legendre polytope Pn, all pulling triangulations
of the boundary give the same f -vector. A direct enumeration in the case of the lexicographic pulling
order, also known as the anti-standard triangulation, is straightforward and well-known; see [1, 13].

In this section we establish a bijection between the faces of ΓB
n and balanced Delannoy paths of

length 2n in such a way that (k− 1)-dimensional faces correspond to Delannoy paths with k up steps,
thus answering Simion’s question.

Definition 8.1. A balanced Delannoy path of length 2n is a lattice path starting at (0, 0), ending at
(2n, 0) and using only steps of the following three types: up steps (1, 1), down steps (1,−1) and hori-
zontal steps (2, 0). A Schröder path is a balanced Delannoy path that never goes below the horizontal
axis.

More generally, a Delannoy path is a path taking the steps (1, 1), (1,−1) and (2, 0) with no ending
condition. In this paper we will only work with balanced Delannoy paths.

Denote the up, down and horizontal steps by U , D and H, respectively. We say that the length
of the letters U and D is 1, whereas the length of the letter H is 2. A Delannoy path is uniquely
encoded by a word in these three letters. We call the associated word a Delannoy word. A balanced
Delannoy path of length 2n corresponds to a word in which the number k of the occurrences of U is
the same as the number of occurrences of D, and the number of occurrences of H is n − k. We call
such a word balanced. Hence the number of Delannoy paths of length n with k up steps is given by the
multinomial coefficient

(

n+k
k,k,n−k

)

=
(

n+k
k

)(

n
k

)

which is the same as the number of (k − 1)-dimensional

faces in any pulling triangulation of the boundary of Pn; see Lemma 2.7.

We represent the faces of ΓB
n as a digraph on the set of nodes {1, 2, . . . , n + 1}. A contrapositive

formulation of Proposition 5.5 is the following.

Proposition 8.2. A digraph represents a face of Simion’s type B associahedron ΓB
n exactly when the

following conditions are satisfied:

(1) There are no crossings between arrows.
(2) Forward arrows nest.
(3) A backward arrow cannot nest a forward arrow.
(4) No head of an arrow is the tail of another arrow.
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1 2 3 4 5 6 7 8 9 10 11

Figure 2. A valid digraph on 11 nodes.

See also Table 1 occurring in the proof of Theorem 6.1. Call such a set of arrows a valid digraph.
An example of a valid digraph is shown in Figure 2.

For W a subset of V let AW denote the induced subgraph on W . Let α ·β denote the concatenation
of the two words α and β.

Let A be a valid digraph of backward arrows on a non-empty finite set of nodes V ⊆ P and let v be
the minimal element of V . We define the Schröder word SP(A) by the following recursive definition.

(i) If the set V only consists of one node, that is, V = {v}, let SP(A) be the empty word ǫ.
(ii) If the minimal node v is an isolated node of A, let SP(A) be the concatenation H ·SP(AV −{v}).
(iii) Lastly, when the node v is not isolated then since v is the least element, there is necessarily

a backward arrow (x, v) going into v. Let w the smallest node with an arrow to v, that is,
w = min({x ∈ V : (x, v) ∈ A}). Define SP(A) by

SP(A) = U · SP(AV ∩(v,w]) ·D · SP(AV −(v,w]).

Lemma 8.3. Let A be a valid digraph on a set of nodes of size n+1 consisting of exactly k backward
arrows. The Schröder word SP(A) then has length 2 · n and has exactly k copies of the letters U and
k copies of the letters D.

Proof. Both statements follow by induction on n. The first statement follows from the fact that the
two sets of nodes V ∩ (v,w] and V − (v,w] are complements of each other. The second statement
follows by observing the noncrossing property ensures each arrow in A is either the arrow (w, v), an
arrow in AV ∩(v,w], or an arrow in AV−(v,w]. �

Proposition 8.4. The map SP is a bijection between the set of all valid digraphs consisting only of
backward arrows on the set of n+ 1 nodes and all Schröder words of length 2n.

Proof. Given a Schröder word α of length 2n and a node set V = {v1 < v2 < · · · < vn+1}, the inverse
map is computed recursively as follows. If α is the empty word ǫ then the inverse image is the isolated
node v1. If the word α begins with H, that is, α = H · β where β has length 2n − 2, compute the
inverse image of β on the nodes {v2, v3, . . . , vn+1} and add the node v1 as an isolated node. Otherwise
factor α uniquely as U · β · D · γ, where β and γ are Schröder words of lengths 2p and 2n − 2p − 2,
respectively. Compute the inverse image of β on the nodes {v2, v3, . . . , vp+2}. Similarly, compute the
inverse image of γ on the nodes {v1, vp+3, vp+4, . . . , vn+1}. Take the union of these two digraphs and
add the backward arrow (vp+2, v1). �
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We now extend the bijection SP to all valid digraphs. In order to do this we introduce a twisting
operation tw on each digraph A that has a forward arrow from the least element v ∈ V to the largest
element w ∈ V . The twisted digraph tw(A) is a digraph on the node set V − {v} with arrow set

tw(A) = AV−{v} ∪ {(w, z) : (v, z) ∈ A}.

In other words, we remove the least node v and replace each forward arrow (v, z) starting at v with a
backward arrow (w, z). Note that there is no backward arrow (z, v) in A as v is the tail of the forward
arrow (v,w).

Lemma 8.5. Let V be a node set of smallest node v and largest node w. The twisting map is a
bijection from the set of valid digraphs on the set V containing the forward arrow (v,w) to the set of
valid digraphs on the set V − {v}.

Proof. We claim that the twisted digraph tw(A) is a valid digraph. Begin to note that the restric-
tion AV−{v} is a valid digraph. If there are no forward arrows in A of the form (v, z) where z < w,
the equality tw(A) = AV−{v} holds and the claim is true. Hence assume that there are forward ar-
rows of the form (v, z). We need to show that adding the backward arrow (w, z) the digraph is still
valid. We verify conditions (1) through (4) of Proposition 8.2 in order. If the arrow (w, z) crosses an
arrow (x, y) then the arrow (v, z) already crossed this arrow in A, verifying condition (1). Since we
did not introduce any new forward arrows, condition (2) holds vacuously. Assume that the backward
arrow (w, z) nests a forward arrow (x, y). Then the two forward arrows (v, z) and (x, y) did not nest
in A, verifying (3). The last condition (4) holds directly, proving the claim.

The twisting map is one-to-one. Its inverse is given by

tw−1(B) = {(v,w)} ∪BV ∩(v,w) ∪ {(v, z) : (w, z) ∈ B}.

Note that in case the node w was a ‘tail node’ the inverse map switches it back to being a ‘head
node’. �

We now extend the bijection SP to a map DP which applies to all valid digraphs.

(i) If the valid digraph A has no forward arrows, let DP(A) = SP(A).
(ii) If the valid digraph A has a forward arrow, let (x, y) be the forward arrow which nests the

other forward arrows. Let v and w be the minimal, respectively, the maximal node of the node
set V , that is, v = min(V ) and w = max(V ). Observe that v ≤ x < y ≤ w, that is, the two
digraphs AV ∩[v,x] and AV ∩[y,w] have no forward arrows. Define DP(A) to be the concatenation

DP(A) = SP(AV ∩[v,x]) ·D · DP(tw(AV ∩[x,y])) · U · SP(AV ∩[y,w]).

As an extension of Lemma 8.3 we have the following lemma.

Lemma 8.6. Let A be a valid digraph on a set V of n + 1 nodes and assume that A consists of
k arrows. Then the balanced Delannoy word DP(A) has length 2n and has exactly k copies of the
letters U and D, respectively.
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1 2 3 4 5 6 7 8 9 10 11

Figure 3. The modified set of arrows obtained from the set in Figure 2.

Proof. We only have to check the second case of the map DP. Assume that V ∩[v, x] and V ∩[y,w] have
cardinalities a, respectively b. Then the middle part V ∩ [x, y] has size n−a− b+3. Thus tw(AV ∩[x,y])
has n− a− b+2 nodes. Hence the total length is 2 · (a− 1) + 2 · (n− a− b+1) + 2 · (b− 1) + 2 = 2n.
For the second statement it is again enough to check the second case. Assume that the restricted
digraphs AV ∩[v,x] and AV ∩[y,w] have c, respectively d arrows. Since there is no arrow nesting the
forward arrow (x, y), the middle digraph has k − c− d arrows. Thus the twisted digraph has one less
arrow, namely k − c− d− 1. Hence the total number of U letters is c+ (k − c− d− 1) + d+ 1 = k,
proving the second claim. �

We now extend Proposition 8.4 to all valid digraphs.

Theorem 8.7. The map DP is a bijection between the set of all valid digraphs on a set of n+1 nodes
and the set of all balanced Delannoy words of length 2n.

Proof. The inverse is computed as follows. Let α be a balanced Delannoy word of length 2n and V be
a node set {v1 < v2 < · · · < vn+1}. If the Delannoy word α is a Schröder word, apply the inverse map
of Proposition 8.4. Otherwise, we can factor the Delannoy word α uniquely as β ·D · γ ·U · δ, where γ
is a balanced Delannoy word, and β and δ are Schröder words. Note that the factor β ·D is uniquely
determined by the fact it is the shortest initial segment in which the number of D letters exceeds the
number of U letters, in other words, the encoded path ends with the first down step going below the
horizontal axis. By a symmetric argument, U · δ is the shortest final segment with one more U than
the number of D’s. Assume that β, γ and δ have lengths 2p, 2q and 2n − 2p − 2q − 2, respectively.
Apply the inverse map from the proof of Proposition 8.4 to the words β and δ to obtain digraphs on
{v1, v2, . . . , vp−1}, respectively {vp+q+2, vp+q+3, . . . , vn+1}.

By recursion, apply the inverse of DP to γ to obtain a valid digraph on the node set {vp+2, vp+3, . . .,
vp+q+2}. Then apply the inverse of the twisting map to the digraph thus obtained. Finally, take the
union of these three digraphs. �

We now give non-recursive description of the bijection DP. First we encode a valid digraph with
a multiset of indexed letters. Recall that a weakly connected component of a digraph is a connected
component in the graph obtained by disregarding the direction of the arrows. In our valid digraphs,
the weakly connected components are trees where each node is either a source or a sink.

Definition 8.8. Given a valid digraph A on the node set V , define the associated multiset M(A) with
elements from the set of indexed letters {Dx, Ux,Hx : x ∈ P} by the following three steps:

(1) For each x < max(V ) which is a maximum element in a weakly connected component we add
the letter Hx to the multiset M(A).
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(0,0)
(4,0)

(16,0) (20,0)

Figure 4. The lattice path associated to the digraph in Figure 2.

(2) For each tail x of a forward arrow, consider the set Head(x) = {y > x : (x, y) ∈ A}, that is,
the set of heads of forward arrows with tail x. Add a copy of the letter Dx to M(A), also add
a copy of the letter Uw for w = max(Head(x)). Remove the forward arrow (x,w). For each
remaining y ∈ Head(x) that is less than w, replace the forward arrow (x, y) with the backward
arrow (w, y). The resulting set of arrows has only backward arrows.

(3) For each head y of a backward arrow, consider the set Tail(y) = {x > y : (x, y) ∈ A}, that is,
the set of tails of backward arrows with head y. Add a copy of Uy to M(A). Also add a copy
of Dx for x ∈ Tail(y) and add a copy of Ux for all but the maximum element of Tail(y).

Example 8.9. For the valid set of arrows A shown in Figure 2, in the first step we add the letters H2

and H7 to M(A). In the second step we add the letters D3, U9, D4, and U7 to M(A), and we remove
the forward arrows (3, 9) and (4, 7). We also replace (3, 8) with (9, 8) and (4, 5) with (7, 5). We obtain
the set of backward arrows shown in Figure 3. Note that this set of arrows does not need to be valid
anymore: in our example, 9 is the head of (10, 9) and (11, 9) and it is also the tail of (9, 8). Finally,
in step three we add the letters U1, D3, U5, D6, U6, D7, U8, D9, U9, D10, U10, and D11 to M(A). We
end up with the multiset

M(A) = {U1,H2,D3,D3,D4, U5,D6, U6,D7, U7,H7, U8,D9, U9, U9,D10, U10,D11}.

Define a linear order on the indexed letters by the inequalities Dx < Ux < Hx < Dx+1 for all
positive integers x. We obtain the lattice path as follows.

Proposition 8.10. The balanced Delannoy word DP(A) is obtained from the multiset M(A) by reading
the indexed letters in order and then omitting the subscripts.

For the set of arrows shown in Figure 2, we obtain the word UHDDDUDUDUHUDUUDUD.
The lattice path encoded by this word is shown in Figure 4.

A quick outline of a proof of Proposition 8.10 is as follows. First prove the statement when there
are no forward arrows. In this case, each nonmaximal element y of Tail(x) contributes two consecutive
lettersDyUy. Next, observe that a digraph and and its twisted digraph have the same weakly connected
components. Furthermore, the arrows that moved under the twisted operation still have the same set
of heads. Hence, after recording the horizontal steps in step (1) we may perform all twisting operations
simultaneously in step (2). We leave the remaining details to the reader.

9. Concluding Remarks

In recent paper, Cellini and Marietti [6] used abelian ideals to produce a triangulation for various
root polytopes. In the case of type A, their construction yields once again a lexicographic triangulation
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of each face. Restricting to the positive roots yields Gelfand, Graev and Postnikov’s anti-standard tree
bases for the type A positive root polytope. Is there an ideal corresponding to the reverse lexicographic
triangulation?

The h-vector of Simion’s type B associahedron may be computed from the f -vector using elementary
operations on binomial coefficients; see [20, Corollary 1].

Lemma 9.1 (Simion). The h-vector (h0, h1, . . . , hn) of Simion’s type B associahedron ΓB
n satisfies

hi =

(

n

i

)2

for 0 ≤ i ≤ n.

One would like to find a bijective proof of this result. One plausible way of attack would be to find
an explicit shelling of ΓB

n .

Finally, are there other interesting simplicial polytopes that can be better understood as pulling
triangulations of less complicated polytopes?
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