
Computational Aspects of the Colorful
Carathéodory Theorem
Wolfgang Mulzer∗ and Yannik Stein†

Institut für Informatik, Freie Universität Berlin, Germany
{mulzer, yannikstein}@inf.fu-berlin.de

Abstract
Let P1, . . . , Pd+1 ⊂ Rd be d-dimensional point sets such that the convex hull of each Pi contains
the origin. We call the sets Pi color classes, and we think of the points in Pi as having color i. A
colorful choice is a set with at most one point of each color. The colorful Carathéodory theorem
guarantees the existence of a colorful choice whose convex hull contains the origin. So far, the
computational complexity of finding such a colorful choice is unknown.

We approach this problem from two directions. First, we consider approximation algorithms:
an m-colorful choice is a set that contains at most m points from each color class. We show
that for any fixed ε > 0, an dεde-colorful choice containing the origin in its convex hull can be
found in polynomial time. This notion of approximation has not been studied before, and it is
motivated through the applications of the colorful Carathéodory theorem in the literature. In
the second part, we present a natural generalization of the colorful Carathéodory problem: in
the Nearest Colorful Polytope problem (NCP), we are given sets P1, . . . , Pn ⊂ Rd that do not
necessarily contain the origin in their convex hulls. The goal is to find a colorful choice whose
convex hull minimizes the distance to the origin. We show that computing local optima for the
NCP problem is PLS-complete, while computing a global optimum is NP-hard.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Geometrical
problems and computations

Keywords and phrases colorful Carathéodory theorem, high-dimensional approximation, PLS

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.44

1 Introduction

Let P ⊂ Rd be a point set. Carathéodory’s theorem [6, Theorem 1.2.3] states that if
~0 ∈ conv(P), there is a subset P ′ ⊆ P of at most d+ 1 points with ~0 ∈ conv(P ′). Bárány [3]
gives a generalization to the colorful setting.

I Theorem 1.1 (Colorful Carathéodory Theorem [3]). Let P1, . . . , Pd+1 ⊂ Rd be point sets
(the color classes). If ~0 ∈ conv(Pi), for i = 1, . . . , d + 1, there is a colorful choice C with
~0 ∈ conv(C). Here, a colorful choice is a set with at most one point from each color class.

Theorem 1.1 implies Carathéodory’s theorem by setting P1 = · · · = Pd+1. Moreover,
there are many variants with weaker assumptions [7]. While Carathéodory’s theorem can be
cast as a linear system and thus be implemented in polynomial time, very little is known
about the algorithmic complexity of the colorful Carathéodory theorem [4]. This question

∗ Supported in part by DFG Grants MU 3501/1 and MU 3501/2.
† Supported by the Deutsche Forschungsgemeinschaft within the research training group ‘’Methods for
Discrete Structures” (GRK 1408).

© Wolfgang Mulzer and Yannik Stein;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 44–58

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

W. Mulzer and Y. Stein 45

is particularly interesting because Sarkaria’s proof [13] of Tverberg’s theorem1 [15] gives a
polynomial-time reduction from computing Tverberg partitions to computing a colorful choice
with the origin in its convex hull. Both problems lie in Total Function NP (TFNP), the
complexity class of total search problems that can be solved in non-deterministic polynomial
time. It is well known that no problem in TFNP is NP-hard unless NP = coNP [5]. Recently,
Meunier and Sarrabezolles [8] have shown that a related problem is complete for a subclass
of TFNP: given d+ 1 pairs of points P1, . . . , Pd+1 ∈ Qd and a colorful choice that contains
the origin in its convex hull, it is PPAD-complete [12] to find another colorful choice that
contains the origin in its convex hull.

Since we have no exact polynomial-time algorithms for the colorful Carathéodory theorem,
approximation algorithms are of interest. This was first considered by Bárány and Onn [4]
who described how to find a colorful choice whose convex hull is “close” to the origin. Let
ε, ρ > 0 be parameters. We call a set ε-close if its convex hull has distance at most ε to the
origin. Given sets P1, . . . , Pd+1 ∈ Qd s.t. (i) each Pi contains a ball of radius ρ centered at the
origin in its convex hull, (ii) all points p ∈ Pi fulfill 1 ≤ ‖p‖ ≤ 2, and (iii) the points in all sets
can be encoded using L bits, one can find a colorful choice C that is ε-close to the origin in
time poly(L, log(1/ε), 1/ρ) on the Word-Ram with logarithmic costs. If 1/ρ = O(poly(L)),
the algorithm actually finds a colorful choice with the origin in its convex hull.

However, when using the colorful Carathéodory theorem in the proof of another statement,
it is often crucial that the convex hull of the colorful choice contains the origin. Being “close”
is not enough. On the other hand, allowing multiple points from each color class may have a
natural interpretation in the reduction. For example, this is the case in Sarkaria’s proof [13]
of Tverberg’s theorem, in the proof of the First Selection Lemma2 [6, Theorem 9.1.1], and
in the proof of the colorful Kirchberger theorem3 [2]. This motivates a different notion
of approximation: we need a “colorful” set with the origin in its convex hull, but we may
take more than one point from each color. More formally, given a parameter m and sets
P1, . . . , Pd+1 ∈ Qd, find a set C s.t. ~0 ∈ conv(C) and s.t. for all Pi, we have |C ∩ Pi| ≤ m.
In contrast to the setting considered by Bárány and Onn, we have no general position
assumption. Surprisingly, this notion does not seem to have been studied before.

Coming from another direction, as a first step towards understanding what makes
the problem hard, we consider the Nearest Colorful Polytope (NCP) problem, a natural
generalization inspired by the proof of Theorem 1.1. Given color classes P1, . . . , Pn ⊂ Rd, not
necessarily containing the origin in their convex hulls, find a colorful choice whose convex hull
minimizes the distance to the origin. We study two variants: the local search problem, where
we want to find a colorful choice whose convex hull cannot be brought closer to the origin by
exchanging a single point with another point of the same color; and the global search problem,
where we want to compute a colorful choice with minimum distance to the origin. We refer
to these problems as L-NCP and G-NCP, respectively. L-NCP is particularly interesting
since Bárány’s proof of the colorful Carathéodory theorem gives a local search algorithm.
The NP-hardness proof of G-NCP settles an open problem by Bárány and Onn [4]. This
question was also answered independently by Meunier and Sarrabezolles [8].

1 Tverberg’s theorem states that a point set P ⊂ Rd can be partitioned into d|P |/(d + 1)e sets whose
convex hulls have a nonempty intersection.

2 Let P ⊂ Rd. Then, the First Selection Lemma guarantees that there is a point contained in “many”
simplices that are defined by d + 1 points in P .

3 The colorful Kirchberger theorem says that given “many” Tverberg partitions, there is a Tverberg
partition containing exactly one point from each Tverberg partition.

SoCG’15

46 Computational Aspects of the Colorful Carathéodory Theorem

1.1 Our Results
Given sets P1, . . . , Pn ⊂ Rd, we call a set C containing at most m points from each set Pi
an m-colorful choice. A 1-colorful choice is also called perfect colorful choice. All presented
algorithms are analyzed on the Real-Ram model with unit costs. We begin with an
approximation algorithm based on a simple dimension reduction argument.

I Proposition 1.2. Let P1, . . . , Pbd/2c+1 ⊂ Rd be bd/2c+ 1 sets of size at most d + 1 that
each contain the origin in their convex hulls. Then, a (dd/2e+ 1)-colorful choice containing
the origin in its convex hull can be computed in O(d5) time.

Generalizing the algorithm from Proposition 1.2, we can further improve the approximation
guarantee by repeatedly combining approximations for lower dimensional linear subspaces.
This can be seen as a counterpart to Mulzer and Werner’s approximation algorithm for
Tverberg partitions [11].

I Theorem 1.3. Let P1, . . . , Pd+1 ⊂ Rd be sets of size at most d+ 1 s.t. ~0 ∈ conv(Pi) for all
i = 1, . . . , d+ 1. Then, for any ε = Ω(d−1/6), an dεde-colorful choice containing the origin
in its convex hull can be computed in dO((1/ε) ln(1/ε)) time.

In particular, for any constant ε the algorithm from Theorem 1.3 runs in polynomial
time. Given Θ(d2 log d) color classes, we can also improve the naive dO(d) algorithm for
finding a perfect colorful choice. This algorithm follows the structure of Miller and Sheehy’s
approximation algorithm for Tverberg partitions [10].

I Proposition 1.4. Let P1, . . . , Pn ⊂ Rd be n = Θ(d2 log d) sets of size at most d + 1 s.t.
~0 ∈ conv(Pi), for i = 1, . . . , n. Then, a perfect colorful choice can be computed in dO(log d)

time.

On the other hand, if we are given only two color classes, we can achieve a d−Θ(
√
d)

approximation guarantee. Note that a d(d+ 1)/2e-colorful choice is the best possible in this
scenario if we assume general position.

I Proposition 1.5. Let P,Q ⊂ Rd be two sets of size at most d+ 1 that contain the origin
in their convex hulls. Then, a (d−Θ(

√
d))-colorful choice can be computed in O(d4) time.

On the hardness side, we show that a generalization of the colorful Carathéodory problem,
the Local Search Nearest Colorful Polytope (L-NCP) problem, is complete for the complexity
class polynomial-time local search (PLS). Using essentially the same reduction, we can also
prove that finding a global optimum for NCP (G-NCP) is NP-hard and answer a question
by Bárány and Onn [4].

I Theorem 1.6. L-NCP is PLS-complete.

I Theorem 1.7. G-NCP is NP-hard.

2 Approximating the Colorful Carathéodory Theorem

Throughout the paper, we denote for a given point set P = {p1, . . . , pn} ⊂ Rd by
span(P) = {

∑n
i=1 αipi | αi ∈ R} its linear span and by span(P)⊥ = {v ∈ Rd | ∀p ∈

span(P) : 〈v, p〉 = 0} the subspace orthogonal to span(P);
aff(P) = {

∑n
i=1 αipi | αi ∈ R,

∑n
i=1 αi = 1} its affine hull;

pos(P) = {
∑n
i=1 µipi | µi ≥ 0} all linear combinations with nonnegative coefficients;

W. Mulzer and Y. Stein 47

conv(P) = {
∑n
i=1 λipi | λi ≥ 0,

∑n
i=1 λi = 1} its convex hull; and by

dim(P) the dimension of span(P).
Furthermore, we say that a set P ⊂ Rd is in general position if for every k ≤ d, no k + 2
points lie in a k-flat and if no proper subset of P contains the origin in its convex hull. We
also use the following constructive version of Carathéodory’s theorem:

I Lemma 2.1. Let P ⊂ Rd be a set of O(d) points that contains the origin in its convex
hull. In O(d4) time, we can find a subset P ′ ⊆ P of at most d+ 1 points in general position
such that P ′ contains the origin in its convex hull.

2.1 Simple Approximations
Since there are no known approximation algorithms for computing m-colorful choices, even
simple ones are of interest to gain some intuition for the problem. It is a straightforward
exercise to show that a (d− 1)-colorful choice can be computed in polynomial time. However,
even m = d− 2 seems to be nontrivial.

In this section, we present two algorithms that both compute a (d+ 1)/2-colorful choice
in O(d5) time, but differ in the number of required color classes. The following lemma is
the key ingredient of both algorithms. It enables us to replace each color class Pi by two
points v1, v2, so that each point represents half of the points in Pi. We call the points v1, v2
representatives for Pi. Now, a perfect colorful choice for the representatives will correspond
to a d(d + 1)/2e-colorful choice for the original points. The presented algorithms differ
only in the way the perfect colorful choice is computed for this special case of the colorful
Carathéodory problem. The first one uses basic linear algebra, while the second one is based
on a simple dimension reduction argument.

I Lemma 2.2. Let P ⊂ Rd, 2 ≤ |P | ≤ d+ 1, be a set in general position that contains the
origin in its convex hull. Then, for every partition of P into two sets P1, P2, there is a vector
v 6= ~0 s.t. v ∈ pos(P1) and −v ∈ pos(P2). This vector can be found in O(d3) time.

Proof. Write ~0 as ~0 =
∑
p∈P λpp, such that λp ≥ 0 for all p ∈ P and such that

∑
p∈P λp = 1.

The coefficients λp can be computed in O(d3) time. Since P is in general position, we have
λp > 0 for all p ∈ P . Set v =

∑
p∈P1

λpp. By construction, we have v 6= ~0, v ∈ pos(P1), and
−v ∈ pos(P2). J

In the first algorithm, we partition each set Pi into two sets Pi,1, Pi,2 of equal size and
apply Lemma 2.2 to obtain d+1 representatives v1, . . . , vd+1. The set {v1, . . . , vd+1} must be
linearly dependent. Depending on the sign of the coefficients in the nontrivial ~0-combination,
we replace each representative vi by either Pi,1 or Pi,2.

I Proposition 2.3. Let P1, . . . , Pd+1 ⊂ Rd be d+ 1 sets s.t. |Pi| ≤ d+ 1 and s.t. Pi contains
the origin in its convex hull, for i = 1, . . . , d+ 1. Then, a d(d+ 1)/2e-colorful choice can be
computed in O(d5) time.

Proof. First, prune each set Pi, i = 1, . . . , d+ 1, with Lemma 2.1. This requires O(d5) time.
Assume w.l.o.g. that all sets still contain at least two points (since otherwise at least one
set contains the origin). Partition each set Pi arbitrarily into two sets Pi,1, Pi,2 of equal size
and let v1, . . . , vd+1 be the vectors obtained by applying Lemma 2.2 to the partitions. Since
these vectors are linearly dependent, we can express ~0 as ~0 =

∑d+1
i=1 µivi where µj 6= 0 for at

least one j ∈ {1, . . . , d+ 1}. The coefficients µi can be computed in O(d3) time by solving a
linear system of equations. For each vector vi with µi > 0, take Pi,1 (since vi ∈ pos(Pi,1)),

SoCG’15

48 Computational Aspects of the Colorful Carathéodory Theorem

~0

p1

p2

p3

P1

q1 q2

q3

P2

r1

r2

r3

P3

v1

v2

v3

(a)

x

y

v

~0p1

p2

p3

P
Q

(b)

Figure 1 (a) Example of Proposition 2.3 in two dimensions. The color classes are partitioned into
P1 = {p1}∪̇{p2, p3}, P2 = {q3}∪̇{q1, q2}, and P3 = {r1}∪̇{r2, r3}. The set C = {p1}∪̇{q3}∪̇{r2, r3}
is a 2-colorful choice. (b) Example of Proposition 1.2 in two dimensions. The representative v is
computed for the partition P = {p2, p3}∪̇{p1}. W.l.o.g. assume v lies on the x-axis. The set Q is a
recursively computed approximation that contains the origin in its convex hull if projected onto the
y-axis. The set C = Q ∪ {p2, p3} is a 2-colorful choice containing the origin in its convex hull.

otherwise Pi,2 (since −vi ∈ pos(Pi,2)). Figure 1(a) shows an example in two dimensions. The
overall running time is dominated by the initial pruning step. J

Lemma 2.2 can also be used to reduce the dimension by one. We repeat this until
the dimension is small enough, i.e., dd/2e, and then simply apply Lemma 2.1 in the low
dimensional space. This algorithm requires only bd/2c+ 1 color classes instead of d+ 1. We
will generalize it in the next section.

Proof of Proposition 1.2. We prune P1 with Lemma 2.1. If |P1| = 1, we have P1 = {~0}, and
P1 is a valid approximation. If |P1| ≥ 2, we partition P1 arbitrarily into two sets P1,1, P1,2
of equal size. We apply Lemma 2.2 to obtain a vector v. We project the remaining color
classes onto the orthogonal subspace span(v)⊥ and recursively compute a (dd/2e+ 1)-colorful
choice C̃ for the projection. Let C ′ be the d-dimensional point set corresponding to C̃. If the
convex hull of C ′ intersects pos(v), we set C = C ′ ∪ P1,2 (since −v ∈ pos(Pi,2)), otherwise,
we set C = C ′ ∪ Pi,1 (since v ∈ pos(Pi,1)). In both cases, C is a (dd/2e+ 1)-colorful choice
with the origin in its convex hull. See Figure 1(b). If only one color is left, i.e., if we are
in dimension d − bd/2c = dd/2e, we prune this color with Lemma 2.1 and we return the
resulting set of size at most dd/2e+ 1.

Each invocation of Lemma 2.1 and of Lemma 2.2 takes O(d4) time. The recursion depth
is bounded by bd/2c+ 1, which results in a total running time of O(d5), as claimed. J

2.2 Approximation by Rebalancing
The algorithm from Proposition 1.2 prunes half of the points from each color class in a
complete run. We generalize this approach in two respects. First, we repeatedly prune points
to improve the approximation guarantee. Second, we reduce the dimensionality in each step
by more than one to improve the running time.

Let P1, . . . , Pd+1 ⊂ Rd be the color classes and dεde be the desired approximation guar-
antee. Throughout the execution of the algorithm, we maintain a temporary approximation
C ⊂ P1 ∪ · · · ∪Pd+1 that contains the origin in its convex hull, but may have more than dεde

W. Mulzer and Y. Stein 49

points of the same color. Initially, C is a complete color class. Using the following lemma,
we can replace a single point in C by an approximate colorful choice for the orthogonal space
span(C)⊥.

I Lemma 2.4. Let C ⊂ Rd, |C| = k ≤ d+ 1, be a set in general position that contains the
origin in its convex hull. Furthermore, let Q ⊂ Rd be a set of size O(d) whose orthogonal
projection onto span(C)⊥ contains the origin in its convex hull. Then, there is a point c ∈ C
computable in O(d4) time s.t. ~0 ∈ conv(Q ∪ C \ {c}).

Proof. Write Q as Q = {q1, . . . , ql}. Each qi can be expressed as q̃i + ĉi, where q̃i denotes
the orthogonal projection of qi onto span(C)⊥ and ĉi ∈ span(C). By our assumption, the
origin is a convex combination of q̃1, . . . , q̃l: ~0 =

∑l
i=1 λiq̃i, where λi ≥ 0 and

∑l
i=1 λi = 1.

Consider the convex combination q =
∑l
i=1 λiqi of points in Q with the same coefficients.

Since q =
∑l
i=1 λiqi =

∑l
i=1 λi(q̃i + ĉi) =

∑l
i=1 λiĉi, q is contained in span(C).

By our assumption, we have ~0 ∈ conv(C). Since C is in general position, this implies
pos(C) = span(C). Thus, there are k − 1 points cj1 , . . . , cjk−1 in C s.t. pos(cj1 , . . . , cjk−1)
contains −q. We can take c ∈ C as the single point that does not appear in cj1 , . . . , cjk−1 .

This point can be found in O(d4) time by solving k ≤ d + 1 linear equation systems
L1, . . . , Lk, where Lj is defined as

∑
ci∈C,i6=j αici = −q. Since C is in general position, all

(k − 1)-subsets of C are a basis for span(C). Thus, the linear systems have unique solutions.
Furthermore, because C contains the origin in its convex hull, one of the linear systems has
a solution with no negative coefficients. J

Unfortunately, we cannot control which point is replaced when applying Lemma 2.4. We
always want to replace a point whose color appears more than dεde times in C. Generalizing
Lemma 2.2, the next lemma enables us to compute representatives for partitions of arbitrary
size. Instead of applying Lemma 2.4 to C, we replace one of the representatives for C. By
choosing the partition for the representatives appropriately, we can influence the color of the
removed points.

I Lemma 2.5. Let C ⊂ Rd, |C| ≤ d+ 1, be a set in general position that contains the origin
in its convex hull and let C1, . . . , Cm be a partition of C. Then, we can find in O(d3) time a
set C ′ = {c′1, . . . , c′m} ⊂ Rd with the following properties:
1. ∀i = 1, . . . ,m: c′i ∈ pos(Ci) \ {~0}
2. ~0 ∈ conv(C ′)
3. dim(C ′) = m− 1
We call the points in C ′ representatives for C with respect to the partition C1, . . . , Cm.

Proof. Since C contains the origin in its convex hull, we can write ~0 as ~0 =
∑
c∈C λcc, where

all λc > 0, since C is in general position. Define c′j as c′j =
∑
c∈Cj

λcc for all i = 1, . . . ,m.
Properties 1. and 2. can be easily verified for the set C ′ = {c′1, . . . , c′m}. Furthermore, c′1 can
be expressed as a linear combination of the other points in C ′: c′1 = −(c′2 + · · ·+ c′m). Thus,
dim(C ′) < m. On the other hand, we have dim(C ′) ≥ m− 1 due to general position. This
proves Property 3. J

Now, we are ready to put everything together. The algorithm repeatedly replaces points
in C by a recursively computed approximate colorful choice for a linear subspace. We are
given as input the color classes P1, . . . , Pd+1 ⊂ Rd, each containing the origin in its convex
hull, a recursion depth threshold jmax ∈ N and two parameter functionsM,D : N0 → N that
control the dimension reduction. The first function returns for a given recursion depth the
desired approximation guarantee. After completion, the algorithm outputs anM(0)-colorful

SoCG’15

50 Computational Aspects of the Colorful Carathéodory Theorem

choice. The second function, D : N0 → N, controls the dimension reduction. It returns for a
given recursion depth j the desired dimension of the problem. We require the parameter
functions to have the following properties.

I Definition 2.6 (Feasible Parameter Functions). LetM,D : N0 → N be two functions. We
call (M,D) jmax-feasible if the functions fulfill the following conditions
1. M and D are strictly decreasing over the interval [0, jmax − 1] and can be computed in

O(d4) time;
2. D(0) = d; and
3. for all j < jmax, the following inequalities hold⌊

D(j) + 1
M(j)−M(j + 1)

⌋
(i)
≤ D(j)−D(j + 1)

(ii)
≤ M(j).

Suppose we have a jmax-feasible pair (M,D) of parameter functions and we are at
recursion depth j. As long as the parameter functions are feasible, that is j < jmax, we
apply our dimension reduction argument. Otherwise, we compute a perfect colorful choice
by brute-force.

Assume we have not yet reached the recursion depth threshold (j < jmax). That is, the
input points are D(j)-dimensional and we want to compute anM(j)-colorful choice. We
initialize the temporary approximation C with a complete color class and prune it with
Lemma 2.1. As long as C is not an M(j)-colorful choice, we repeat the following steps:
we partition C into k = D(j) − D(j + 1) + 1 sets C1, . . . , Ck, where the points from each
color in C are distributed evenly among the k sets. Let ni = |Pi ∩ C| denote the number
of points from Pi in C. Since the parameter functions are feasible, we have k ≤M(j) + 1.
Hence, each set in the partition contains at least one point from each color class Pi for which
ni ≥M(j) + 1. Applying Lemma 2.5, we compute representatives C ′ = {c′1, . . . , c′k} for this
partition. Note that dim(C ′) = k − 1 and that dim(span(C ′)⊥) = D(j)− k + 1 = D(j + 1).

We call a color class Pi light if ni ≤M(j)−M(j + 1); otherwise we call Pi heavy. Light
color classes can be reused in the recursion since adding anM(j + 1)-colorful choice that
consists of points from light color classes to our temporary approximation C does not increase
the amount of points from any color class over the desired approximation guaranteeM(j).
We find D(j + 1) + 1 light color classes and project these orthogonally onto span(C ′)⊥. Let
P̃j1 , . . . , P̃jD(j+1)+1 denote the projections. Next, we recursively compute anM(j+1)-colorful
choice Q̃ for the space orthogonal to span(C ′) with (P̃j1 , . . . , P̃jD(j+1)+1 , j + 1,M,D, jmax)
as input. Let Q be the point set whose projection gives Q̃. Using Lemma 2.4, we compute
a point c′j ∈ C ′ s.t. conv(Q ∪ C ′ \ c′j) contains the origin. We replace the subset Cj of C
by Q and prune C again with Lemma 2.1. Since each representative c′i is contained in the
cone pos(Ci), Q ∪ C \ Cj still contains the origin in its convex hull and hence the invariant
is maintained. Thus, in one iteration of the algorithm, at least one point from each color
class Pi for which ni >M(j) is replaced by points from light color classes. This is repeated
until no color class appears more thanM(j) times in C. See Algorithm 2.1 for pseudocode.

We first prove correctness and afterwards analyze the running time for a specific pair of
feasible parameter functions.

I Lemma 2.7 (Correctness of Algorithm 2.1). Let P1, . . . , Pd+1 ⊂ Rd be sets s.t. |Pi| ≤ d+ 1
and s.t. ~0 ∈ conv(Pi), for i = 1, . . . , d + 1. Furthermore, let M,D : N0 → N be a pair
of jmax-feasible parameter functions. On input (P1, . . . , Pd+1, 0,M,D, jmax), Algorithm 2.1
returns anM(0)-colorful choice.

W. Mulzer and Y. Stein 51

Algorithm 2.1: Approximation by Rebalancing
input: P1, . . . , Pd′+1 ⊂ Rd′ s.t. ~0 ∈ conv(Pi) for all i = 1, . . . , d′ + 1, recursion depth

j ∈ N0 (initially 0), approximation parameter functionM : N0 → N, dimension
parameter function D : N0 → N, recursion depth threshold jmax

1 if j = jmax then
2 return brute force computed perfect colorful choice
3 C ← P1
4 Prune C with Lemma 2.1.
5 d′′ ← D(j + 1); k ← d′ − d′′ + 1
6 while C is not anM(j)-colorful choice do
7 Partition C into k sets C1, . . . , Ck s.t. for all color classes Pi and all pairs of indices

1 ≤ l1, l2 ≤ k, we have |#(Pi ∩ Cl1)−#(Pi ∩ Cl2 |)| ≤ 1.
8 Apply Lemma 2.5 to C1, . . . , Ck. Let C ′ = {c′1, . . . , c′k} be the set of the

representatives.
9 Find d′′ + 1 color classes Pj1 , . . . , Pjd′′+1 s.t. |C ∩ Pji | ≤ M(j)−M(j + 1).

10 for i = 1 to d′′ + 1 do
11 P̃ji

← orthogonal projection of Pji
onto span(C ′)⊥

12 Q← recurse(P̃j1 , P̃j2 , . . . , P̃jd′′+1 , j + 1,M, D, jmax)
13 Apply Lemma 2.4 to C ′ and Q to find a point c′i ∈ C ′ s.t. ~0 ∈ conv(Q ∪ C ′ \ {c′i}).
14 C ←

(⋃k+1
j=1,j 6=i Cj

)
∪Q

15 Prune C with Lemma 2.1.
16 return C

Proof. We prove correctness by showing that the algorithm respects the parameter functions
D andM. By our discussion above it is clear that the dimension in the jth recursion is D(j)
for j < jmax. Next, we show that in the jth recursion, the returned colorful choice is an
M(j)-colorful choice. The prove is by induction on the recursion depth. We have two base
cases. First, if j = jmax, a perfect colorful choice is computed in line 2. SinceM(j) ≥ 1, a
perfect colorful choice is always anM(j)-colorful choice. Second, if C pruned with Lemma 2.1
in line 4 or line 15 is already anM(j)-colorful choice, the algorithm terminates, too. Hence,
the induction hypothesis holds in both base cases. Assume now that the current recursion
depth is j < jmax and the induction hypothesis holds for all j′ > j. Let C(t) denote the set
C after t iterations of the while-loop in the jth recursion. We show the following invariant:
(α) ~0 ∈ conv(C(t)),
(β) for all color classes Pi, i = 2, . . . , d+ 1, we have |C(t) ∩ Pi| ≤ M(j), and
(γ) |C(t−1) ∩ P1| > |C(t) ∩ P1|, for t ≥ 1.
The invariant implies that the while-loop terminates and anM(j)-colorful choice is returned.
Before the first iteration, the invariant holds since C(0) = P1. Assume we are now in iteration
t and the invariant holds for all previous iterations. Due to Lemmas 2.5 and 2.4, we have
~0 ∈ conv(C(t)) and thus Property (α) holds. By the induction hypothesis, the recursively
computed set Q in line 12 is anM(j+ 1)-colorful choice. Since we use only light color classes
in the recursion, adding the points from Q to C(t) does not violate Property (β) of the
invariant. It remains to show that we can always find D(j + 1) + 1 light color classes. Since
C is pruned to at most D(j) + 1 points at the end of each while-loop iteration, the number
of heavy color classes is upper bounded by

⌊
D(j)+1

M(j)−M(j+1)

⌋
. This is at most D(j)−D(j + 1)

sinceM,D are feasible in the current recursion depth. Therefore, there are always at least
D(j + 1) + 1 light color classes.

SoCG’15

52 Computational Aspects of the Colorful Carathéodory Theorem

Finally, we need to check that the number of points from P1 in C(t) is strictly less
than in C(t−1). Again, sinceM,D are feasible in recursion depth j, we haveM(j) + 1 ≥
D(j) − D(j + 1) + 1 = k. Since C(t−1) was not an M(j)-colorful choice (otherwise the
while-loop would have terminated), C(t−1) contains at leastM(j) + 1 points from P1. Hence,
each set Ci in line 7 contains at least one point from P1. Since one of these sets is removed
in line 14 and Q does not contain the color P1, Property (γ) of the invariant also holds. J

I Remark. Before the applications of Lemmas 2.4 and 2.5 in Algorithm 2.1, we ensure general
position by pruning the points with Lemma 2.1. Hence although Lemmas 2.4 and 2.5 require
general position, the input of Algorithm 2.1 does not need to be in general position.

Proof of Theorem 1.3. We use Algorithm 2.1 with parameter functions M(j) = dε(1 −
ε/2)j/2de and D(j) = d(1−ε/2)jde. In particular, we reduce the dimension by (ε/2)d in each
step of the recursion. However, in the jth recursion, we do not compute an dεD(j)e-colorful
choice, but a d(1 − ε)−j/2εD(j)e-colorful choice. This “slack” increases throughout the
recursion. It can be shown thatM and D are

(4
3ε (ln(ε3d)−O(1))

)
-feasible. The proof is

rather tedious and thus omitted from this extended abstract due to the space limitation. It
can be found in the full version. Now, Lemma 2.7 guarantees correctness.

It remains to analyze the running time. If the dimension becomes smaller than the
desired approximation guarantee, that is D(j) + 1 ≤ M(j), pruning C with Lemma 2.1
in line 4 already gives a valid approximation. For ε = Ω(d−1/5), it can be shown that
M(j∗) ≥ D(j∗) + 1 for j∗ = d(4/ε) ln(2/ε)e. Now, for ε = Ω(d−1/6), the parameter functions
are feasible up to recursion depth j∗. Hence, the algorithm does not terminate with computing
a perfect colorful choice by brute force in line 2, but always with a pruning step.

During each iteration of the while-loop, the maximum number of points from each color
class is reduced by one until the desired approximation guarantee is reached. Thus, the
total number of iterations is bounded by D(j) + 1−M(j) = O(d). Each iteration requires
O(D(j)4) = O(d4) time. This results in dO((1/ε) ln(1/ε)) total running time as claimed. J

2.3 Varying the Number of Color Classes
First, we consider the case that we have “many” color classes: given Θ(d2 log d) color classes,
our algorithm computes a perfect colorful choice in dO(log d) time by repeatedly combining
m-colorful choices (for some m) to one dm/2e-colorful choice. The algorithm follows the
structure of the Miller-Sheehy approximation algorithm for Tverberg partitions [10] and
improves the brute force dO(d) algorithm. Second, we present an algorithm that computes a
(d−Θ(

√
d))-colorful choice given only two color classes in O(d4) time.

I Lemma 2.8. Let C1, . . . , Cd+1 ⊂ Rd be m-colorful choices s.t. |Ci| ≤ d + 1 and s.t.
~0 ∈ conv(Ci) for i = 1, . . . , d+ 1. Furthermore, no color appears in more than one set Ci.
Then, a dm/2e-colorful choice C s.t. ~0 ∈ conv(C) can be computed in O(d5) time.

Proof. First, we prune each set Ci with Lemma 2.1. This requires O(d5) time. Next, we
proceed as in the proof of Proposition 2.3 where we treat the sets Ci as the color classes.
This time however, we do not partition a set Ci into two arbitrary sets Ci,1, Ci,2 of equal
size, but we distribute the points from each color class in Ci evenly among the both sets. J

Proof of Proposition 1.4. Let A be an array of size k = Θ(log d). We set c0 = d + 1 and
ci = dci−1/2e, for i = 1, . . . , k − 1. The ith cell of A stores a collection of ci-colorful choices,
such that each color class appears in exactly one colorful choice in A. Initially, A[0] contains
all Θ(d2 log d) color classes. We repeat the following steps, until we have computed a perfect

W. Mulzer and Y. Stein 53

colorful choice: let i be the maximum index s.t. A[i] contains some d+ 1 sets C1, . . . , Cd+1.
We apply Lemma 2.8 to obtain one ci+1-colorful choice C. Let C ′ be the set C pruned
with Lemma 2.1. If C ′ is a perfect colorful choice, we return it. Otherwise, we add it to
A[i+ 1]. Furthermore, we add all colors that were removed during the pruning to A[0]. As
these colors do not appear anywhere else in A, the invariant is maintained. We claim that
a combination of d + 1 sets in A[k] for k = dlog(d + 1)e + 1 results in a perfect colorful
choice. We have cj ≤ d+1

2k + 2. Thus, sets in A[dlog(d + 1)e] are 3-colorful choices, sets
in A[dlog(d + 1)e + 1] = A[k] are 2-colorful choices and the combination of d + 1 sets in
A[k] gives a perfect colorful choice. It remains to show that we can always make progress.
The array has k = Θ(log d) levels and each colorful choice has at most d colors. Thus, for
d2k + 1 = Θ(d2 log d) colors, the pigeonhole principle implies that there is a cell with d+ 1
sets.

Let us consider the running time. One combination step takes O(d5) time. To compute a
set in level i, we have to compute d+ 1 sets in level i− 1. Hence, computing one set in level
k + 1 takes dO(log d) time. J

Proof of Proposition 1.5. Let P and Q be the two color classes. Let k be a parameter to
be determined later. We prune P with Lemma 2.1 and partition it into k sets P1, . . . , Pk of
equal size. We apply Lemma 2.5 to obtain representatives P ′ = {p′1, . . . , p′k} for these sets
and project Q onto the (d − k + 1)-dimensional subspace span(P ′)⊥. Again, we prune Q
with Lemma 2.1 and apply Lemma 2.4 to replace one point p′i of P ′ with Q. Thus, the set
C =

⋃k
j=1,j 6=i Pi ∪Q contains the origin its convex hull and has at most max{d(d+ 1)(1−

1/k)e, d− k + 2} points of each color. Setting k = Θ(
√
d) gives the result. J

3 The Nearest Colorful Polytope Problem

The complexity class Polynomial-Time Local Search (PLS) contains local search problems
for which a single improvement step can be carried out in polynomial time. In contrast to
complexity classes for decision problems such as P and NP, the existence of a solution (a
local optimum) to a PLS problem is always guaranteed. Instead, the difficulty lies in finding
the solution. Mathematically, a PLS problem A is a relation A ⊆ I × S, where I is the set
of problem instances and S is the set of candidate solutions. The relation A is in PLS if

problem instances I ∈ I and candidate solutions s ∈ S are polynomial-time verifiable and
the size of the valid candidate solutions for an instance I is polynomial in the size of I;
there is a polynomial-time computable function B : I → S that returns some candidate
solution (the base solution) for each instance;
there is a polynomial-time computable function C : I × S → N that assigns costs to each
instance-solution pair;
there is a polynomial-time computable neighborhood function N : I × S → 2S assigning
each candidate solution a set of neighboring candidate solutions; and
for every instance I ∈ I, A contains exactly the pairs (I, s) so that s is a local optimum
for I; i.e., all elements in N (I, s) have smaller costs in a maximization problem and larger
costs in a minimization problem.

The computational problem modeled by A is: given I ∈ I, find an s ∈ S s.t. (I, s) ∈ A.
The following algorithm is called the standard algorithm: start with the base solution B(I)
and use N to improve until a local optimum is reached. Each iteration takes polynomial
time, but the total number of iterations may be exponential. There are examples where it is
PSPACE-hard to find the solution given by the standard algorithm [1, Chapter 2].

SoCG’15

54 Computational Aspects of the Colorful Carathéodory Theorem

To define hardness with respect to PLS, we need an appropriate notion of reduction. A
PLS-reduction from a PLS-problem A to a PLS-problem B is given by two polynomial-time
computable functions f : IA → IB and g : IA × SB → SA such that f maps A-instances to
B-instances and g maps local optima for B to local optima for A. Thus, if A is PLS-reducible
to B, we can convert any algorithm for B into an algorithm for A with polynomial-time
overhead. We call B PLS-complete if all problems in PLS are PLS-reducible to B.

Like PPAD, PLS is a subset of the class Total Function NP (TFNP). TFNP contains
search problems whose solution can be verified in polynomial time. No problem in TFNP can
be NP-hard unless NP = coNP [5]. On the other hand, it is not believed that PLS-complete
problems can be solved in polynomial time, although this would not break any assumptions
on complexity classes. For more information see one of the several main publications on the
topic [1, 9, 14, 5]. In the language of PLS, L-NCP is defined as follows:

I Definition 3.1 (L-NCP).
Instances INCP. Set families P = {P1, . . . , Pn} in Rd, where each Pi ⊂ Rd is a color.
Solutions SNCP. All perfect colorful choices, i.e., sets with exactly one point of each color.
Cost function CNCP. Let SNCP be a colorful choice. Then, CNCP(SNCP) = ‖ conv(SNCP)‖1,

where ‖ conv(SNCP)‖1 = min{‖q‖1 | q ∈ conv(SNCP)}. We want to minimize CNCP.
Neighborhood NNCP. The neighbors NNCP(SNCP) of a colorful choice SNCP are all colorful

choices that can be obtained by swapping one point with another point of the same color.
We reduce the following PLS-complete problem [14, Corollary 5.12] to L-NCP.

I Definition 3.2 (Max-2SAT/Flip).
Instances IM2SAT. All weighted 2-CNF formulas

∧d
i=1 Ci, where each clause Ci is the dis-

junction of at most two literals and has weight wi ∈ N+.
Solutions SM2SAT. Let x1, x2, . . . , xn be the variables appearing in the clauses. Then, every

complete assignment A : {x1, . . . , xn} → {0, 1} of these variables is a solution.
Cost function CM2SAT. The cost of an assignment is the sum of the weights of all satisfied

clauses. We want to maximize the cost function.
Neighborhood NM2SAT. The neighbors NM2SAT(A) of an assignment A are all assignments

obtained by flipping (i.e., negating) a single variable in A.

Proof of Theorem 1.6. Let IM2SAT = (C1, . . . , Cd, w1, . . . , wd, x1, . . . , xn) be an instance of
M2SAT. We construct an instance INCP of L-NCP in which each colorful choice encodes
an assignment to the variables in IM2SAT. Furthermore, the distance to the origin of the
convex hull of a colorful choice in INCP will be the total weight of all unsatisfied clauses of
the encoded assignment for IM2SAT.

For each variable xi, we introduce a color class Pi = {pi, pi} consisting of two points in Rd
that encode whether xi is set to 1 or 0. We assign the jth dimension to the jth clause and set
(pi)j = −nwj , if xi = 1 satisfies clause j, and (pi)j = wj , otherwise. Similarly, (pi)j = −nwj ,
if xi = 0 satisfies Cj , and (pi)j = wj otherwise. A colorful choice S of P1, . . . , Pn corresponds
to the assignment in IM2SAT where xi is 1 if pi ∈ S and 0 if pi ∈ S. More formally, we define
a mapping g : IM2SAT × SNCP → SM2SAT between the solutions of the L-NCP instance and
the M2SAT instance in the following way:

g(IM2SAT, SNCP)(xi) =
{

1 if pi ∈ SNCP, and
0 if pi ∈ SNCP.

The main idea is to construct an instance of L-NCP in which the convex hull of a colorful
choice S contains the origin if projected onto the dimensions corresponding to the satisfied

W. Mulzer and Y. Stein 55

x

y

p1, p2 = (−9, 6)

p2, p3 = (3,−18)

p1, p3, h3 = (3, 6) h1 = (39, 6)

h2 = (3, 78)

Figure 2 Construction of the point sets corresponding to the M2SAT instance (x1∨x2)∧ (x2∨x3)
with weights 3 and 6, respectively.

clauses. Furthermore, if projected onto the subspace corresponding to the unsatisfied clauses,
the distance of conv(S) to the origin will be equal to the total weight of those clauses.

We introduce additional helper color classes to decrease the distance to the origin in
dimensions that correspond to satisfied clauses. In particular, we have for each clause Cj a
color class Hj = {hj} consisting of a single point, where

(hj)k =

(d+ 1)
(

(n+ 2)− d
d+1

)
wj if k = j, and

wk otherwise.

The last helper color class Hd+1 = {hd+1} again contains a single point, but now all
coordinates are set to the clause weights, i.e., (hd+1)j = wj for j = 1, . . . , d. See Fig. 2.

The remaining proof is divided into two parts: (i) for every colorful choice SNCP of the
L-NCP problem instance {P1, . . . , Pn, H1, . . . ,Hd+1}, the cost CNCP(SNCP) is lower-bounded
by the total weight of unsatisfied clauses in g(SNCP); and (ii) this lower bound is tight, i.e.,
the distance of the convex hull of any colorful choice SNCP to the origin is at most the total
weight of unsatisfied clauses in g(SNCP).

Both claims together imply that CNCP(SNCP) equals the total weight of unsatisfied clauses
for the assignment g(SNCP), which proves the theorem. Consider some local optimum S∗NCP
of the L-NCP instance. By definition, the costs of all other colorful choices that can be
obtained from S∗NCP by exchanging one point with another of the same color are greater or
equal to CNCP(S∗NCP). That is, the total weight of unsatisfied clauses in g(S∗NCP) cannot be
decreased by flipping a variable, which is equivalent to g(S∗NCP) being a local optimum of
the M2SAT instance.
(i) Let SNCP be a colorful choice and assume some clause Cj is not satisfied by g(SNCP).

By construction, the jth coordinate of each point q in SNCP is at least wj . Thus, the
jth coordinate of every convex combination of the points in SNCP is at least wj . This
implies (i).

(ii) Given a colorful choice SNCP, we construct a convex combination of SNCP that gives a
point p whose distance to the origin is exactly the total weight of unsatisfied clauses in
g(SNCP). Let in the following part Ak denote the set of clauses Cj that are satisfied
by exactly k literals with respect to g(SNCP), for k = 0, 1, 2. As a first step towards
constructing p, we show the existence of an intermediate point in the convex hull of the
helper classes.

I Lemma 3.3. There is a point h ∈ conv(H1, . . . ,Hd+1) whose jth coordinate is (n+ 2)wj
if j ∈ A2 and wj otherwise.

SoCG’15

56 Computational Aspects of the Colorful Carathéodory Theorem

Proof. Take h =
∑
a∈A2

1
d+1ha +

(
1− |A2|

d+1

)
hd+1. Then, for j ∈ A0 ∪A1, we have

(h)j =
∑
a∈A2

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

j /∈A2=
∑
a∈A2

1
d+ 1wj +

(
1− |A2|

d+ 1

)
wj = wj .

And for j ∈ A2, we have

(h)j =
∑
a∈A2

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

= 1
d+ 1hj +

∑
a∈A2\{j}

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

=
(

(n+ 2)− d

d+ 1

)
wj + d

d+ 1wj = (n+ 2)wj ,

as desired. J

Let li ∈ Pi be the point from Pi in SNCP. Consider p =
∑n
i=1

1
n+1 li + 1

n+1h. We show
that (p)j = wj , for j ∈ A0, and (p)j = 0, otherwise. Let us start with j ∈ A0. Since g(SNCP)
does not satisfy Cj , the jth coordinate of the points l1, . . . , ln is wj . Also, (h)j = wj , by
Lemma 3.3. Thus, (p)j = wj . Consider now some j ∈ A1 and let b be s.t. the point lb
corresponds to the single literal that satisfies Cj .

(p)j =
n∑
i=1

1
n+ 1(li)j + 1

n+ 1(h)j

= 1
n+ 1(lb)j +

n∑
i=1,i6=b

1
n+ 1(li)j + 1

n+ 1(h)j = −n
n+ 1wj + n

n+ 1wj = 0.

Finally, consider some j ∈ A2 and let b1, b2 be the indices of the two literals that satisfy Cj .

(p)j =
n∑
i=1

1
n+ 1(li)j + 1

n+ 1(h)j

= 1
n+ 1(lb1)j + 1

n+ 1(lb2)j +
n∑

i=1,i/∈{b1,b2}

1
n+ 1(li)j + 1

n+ 1(h)j

= −2n
n+ 1wj + n− 2

n+ 1wj + n+ 2
n+ 1wj = 0

This concludes the proof of (ii). J

Proof of Theorem 1.7. The proof of Theorem 1.6 can be adapted easily to reduce 3SAT
to G-NCP. Given a set of clauses C1, . . . , Cd, we set the weight of each clause to 1 and
construct the same point sets as in the PLS reduction. Additionally, we introduce for each
clause Cj a new helper color class H ′j = {h′j}, where

(h′i)j =

(d+ 1)
(

(2n+ 2)− d
d+1

)
if i = j, and

1 otherwise.

Let S now be any colorful choice and A = g(S) the corresponding assignment. As in the
PLS-reduction, we define the sets Ak, k = 0, . . . , 3, to contain all clauses that are satisfied

W. Mulzer and Y. Stein 57

by exactly k literals in the assignment A. Then, the following point h is contained in the
convex hull of the helper points:

h =
∑
a∈A2

ha
d+ 1 +

∑
a′∈A3

h′a′

d+ 1 +
(

1− |A2|
d+ 1

)
hd+1.

Again, the convex combination p =
∑n
i=1

1
n+1 li + 1

n+1h results in a point in the convex
hull of S whose distance to the origin is the number of unsatisfied clauses, where li ∈ Pi
denotes the point from Pi that is contained in S. Together with Claim (i) from the proof of
Theorem 1.6, 3SAT can be decided by knowing a global optimum S∗ to the NCP problem: if
the distance from conv(S∗) to the origin is 0, g(S∗) is a satisfying assignment. If not, there
exists no satisfying assignment at all. J

As mentioned in the introduction, we can adapt the proof of Theorem 1.7 to answer a
question by Bárány and Onn [4]. Again, this result was obtained independently by Meunier
and Sarrabezolles [8].

I Corollary 3.4. Let P1, . . . , Pn ⊂ Rd be an input for G-NCP. Then, G-NCP is still NP-hard
if we require n = d+ 1.

Proof. Let F be a 3SAT formula with d clauses and n variables. As in the proof of
Theorem 1.7, we construct n+ 2d+ 1 =: d′ + 1 point sets in Rd s.t. there is a colorful choice
containing the origin in its convex hull if and only if F is satisfiable. Since d′ > d, we can lift
the point sets to Rd′ by appending 0-coordinates. Then, we have d′ + 1 point sets s.t. there
is a colorful choice containing the origin in its convex hull if and only if F is satisfiable. J

4 Conclusion

We have proposed a new notion of approximation for the colorful Carathéodory theorem and
presented an abstract approximation scheme. By choosing the parameters carefully, we obtain
a polynomial-time algorithm that computes dεde-colorful choices for any constant ε > 0.
One of the key motivations for studying this kind of approximation was the tight connection
to approximating Tverberg’s theorem. Here, approximation means computing a Tverberg
partition of smaller size than guaranteed by Tverberg’s theorem. Unfortunately, if we convert
the algorithm from Theorem 1.3 to an approximation algorithm for Tverberg’s theorem using
Sarkaria’s proof, we obtain an algorithm with a trivial approximation guarantee. However,
the approximation guarantee of the algorithm from Theorem 1.3 is right at the threshold:
any efficient algorithm computing an dµ-colorful choice for some µ < 1 results in a nontrivial
efficient approximation algorithm for Tverberg’s theorem. This is particularly interesting
as no deterministic nontrivial efficient approximating algorithm for Tverberg’s theorem is
known. The existence of such an algorithm was conjectured by Miller and Sheehy [10].

In the second part, we have studied the complexity of a natural generalization of the
colorful Carathéodory theorem, the Nearest Colorful Polytope problem, in two settings. First,
we proved that the corresponding local search problem L-NCP is PLS-complete by a reduction
to Max2SAT. Using an adaptation of this reduction, we proved that the problem becomes
NP-hard if we restrict the solutions to global optima. Although the PLS-completeness of
L-NCP together with Bárány’s proof indicate that PLS is the right complexity class to show
hardness of the colorful Carathéodory problem, there is a striking difference between the
colorful Carathéodory problem and any known PLS-complete problem: the costs of local
optima are known a-priori. While a PLS-complete problem with this property would not lead
to a contradiction, this creates a major stumbling block in the construction of a reduction.

SoCG’15

58 Computational Aspects of the Colorful Carathéodory Theorem

We conclude with open problems.
The algorithm from Theorem 1.3 computes in polynomial time an dεde-colorful choice
for any fixed ε. A more careful analysis shows that the algorithm needs only cε color
classes, where cε > 0 is a constant depending on ε. Hence, the algorithm does not use its
complete input. Can this be used to further improve the approximation guarantee?
Is it possible to compute an o(d)-colorful choice in polynomial time and in particular, is
it possible to compute an O(1)-colorful choice in polynomial time?
On the other hand, can it be shown that computing an O(1)-colorful choice is as hard as
computing a perfect colorful choice?
In Section 2.3, we show that many color classes help to find a perfect colorful choice. Can
a perfect colorful choice be computed in polynomial time if we have poly(d) color classes?

Acknowledgements. We would like to thank Fréderic Meunier and Pauline Sarrabezolles
for interesting discussions on the colorful Carathéodory problem and for hosting us during a
research stay at the École Nationale des Ponts et Chaussées. Furthermore, we would like to
thank the anonymous reviewers for their helpful and encouraging comments.

References
1 Emile Aarts and Jan Karel Lenstra, editors. Local search in combinatorial optimization.

Princeton University Press, 2003.
2 Jorge L. Arocha, Imre Bárány, Javier Bracho, Ruy Fabila, and Luis Montejano. Very

colorful theorems. Discrete Comput. Geom., 42(2):142–154, 2009.
3 Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2–3):141–152,

1982.
4 Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives. Math. Oper.

Res., 22(3):550–567, 1997.
5 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local

search? J. Comput. System Sci., 37(1):79–100, 1988.
6 Jiří Matoušek. Lectures on discrete geometry. Springer, 2002.
7 Frédéric Meunier and Antoine Deza. A further generalization of the colourful Carathéodory

theorem. In Discrete geometry and optimization, volume 69 of Fields Inst. Commun., pages
179–190. Springer, New York, 2013.

8 Frédéric Meunier and Pauline Sarrabezolles. Colorful linear programming, Nash equilib-
rium, and pivots. arxiv:1409.3436, 2014.

9 Wil Michiels, Emile Aarts, and Jan Korst. Theoretical aspects of local search. Monographs
in Theoretical Computer Science. Springer, Berlin, 2007.

10 Gary L. Miller and Donald R. Sheehy. Approximate centerpoints with proofs. Comput.
Geom., 43(8):647–654, 2010.

11 Wolfgang Mulzer and Daniel Werner. Approximating Tverberg points in linear time for
any fixed dimension. Discrete Comput. Geom., 50(2):520–535, 2013.

12 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. System Sci., 48(3):498–532, 1994.

13 Karanbir S. Sarkaria. Tverberg’s theorem via number fields. Israel J. Math., 79(2–3):317–
320, 1992.

14 Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard
to solve. SIAM J. Comput., 20(1):56–87, 1991.

15 Helge Tverberg. Further generalization of Radon’s theorem. J. London Math. Soc., 43:352–
354, 1968.

	Introduction
	Our Results

	Approximating the Colorful Carathéodory Theorem
	Simple Approximations
	Approximation by Rebalancing
	Varying the Number of Color Classes

	The Nearest Colorful Polytope Problem
	Conclusion

