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ON THE RECONSTRUCTION OF POLYTOPES

JOSEPH DOOLITTLE, ERAN NEVO, GUILLERMO PINEDA-VILLAVICENCIO, JULIEN UGON,

AND DAVID YOST

Abstract. Blind and Mani, and later Kalai, showed that the face lattice of a simple polytope is

determined by its graph, namely its 1-skeleton. Call a vertex of a d-polytope nonsimple if the

number of edges incident to it is more than d . We show that (1) the face lattice of any d-polytope

with at most two nonsimple vertices is determined by its 1-skeleton; (2) the face lattice of any

d-polytope with at most d − 2 nonsimple vertices is determined by its 2-skeleton; and (3) for any

d > 3 there are two d-polytopes with d − 1 nonsimple vertices, isomorphic (d − 3)-skeleta and

nonisomorphic face lattices. In particular, the result (1) is best possible for 4-polytopes.

1. Introduction

We say that a d-polytope P is reconstructible from its k-skeleton if the restriction of its face lattice

to the faces of dimension at most k determines the entire face lattice of P . It easily follows from a

generalisation of Jordan’s separation theorem1 that any d-polytope is reconstructible from its (d−2)-

skeleton [9, Thm. 12.3.1]. This is tight: for any d ≥ 4 Perles found d-polytopes which are not

combinatorially isomorphic but have isomorphic (d − 3)-skeleta [9, Sec. 12.3]. Call a vertex in a

d-polytope nonsimple if the number of edges incident to it is more than d ; call it simple otherwise.

Note that the d-bipyramid and the pyramid over the (d − 1)-bipyramid form an example of such a

pair with exactly d nonsimple vertices in each. The two polytopes in Fig. 1 correspond to the case

d = 4.

For 1 ≤ k ≤ d − 3, let βk,d denote the maximum number j such that any d-polytope with at most j

nonsimple vertices is reconstructible from its k-skeleton. The result of Blind and Mani [3], later proved

through a brilliant argument by Kalai [13], asserts 0 ≤ β1,d . Combined with the above example, the

following is known for d ≥ 4:

0 ≤ β1,d ≤ β2,d ≤ . . . ≤ βd−3,d ≤ d − 1.
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1Every subset of the d-sphere which is a homeomorphic image of the (d − 1)-sphere divides the d-sphere into two

connected components.
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(a) pyr(bipyr(T2)) (b) bipyr(T3)

Figure 1. A pair of 4-polytopes with four nonsimple vertices which are nonrecon-

structible from their graphs. The missing 2-face in the bipyramid bipyr(T2) is high-

lighted.

We obtain the following result.

Theorem 1.1 (Main Theorem). For any d ≥ 4,

(1) β2,d = . . . = βd−3,d = d − 2, and

(2) 2 ≤ β1,d ≤ d − 2, in particular β1,4 = 2.

Further, for any fixed d in the above theorem, with exception of the reconstruction from the 1-skeleton

of a polytope P with two nonsimple vertices, the reconstruction of the face lattice of the relevant

polytopes can be done in polynomial time in the number of vertices.

The proof of d − 2 ≤ β2,d , based on Kaibel’s [12, Prop. 1], is given in Section 3. We give two

proofs of 2 ≤ β1,d based on a restriction of Kalai’s good acyclic orientations [13] to a subfamily

with certain desired properties; see Lemma 4.3. In addition to this subfamily of orientations, the

second proof uses truncation of polytopes to reduce to the easier assertion 1 ≤ β1,d . The results on

polynomial complexity follow Friedman [6]. Pairs of polytopes with d − 1 nonsimple vertices showing

βd−3,d ≤ d − 2 are given in Section 2; these are constructed by induction on the dimension and

include the pair in Fig. 2, found in the database by Miyata-Moriyama-Fukuda [7]. Realisations of

these polytopes are provided via a polymake program, available online at [15] under the name of the

paper.

We still do not know the answer to the following problem.

Problem 1.2. Does β1,d < β2,d for some d ≥ 5?

2. Pairs of nonisomorphic d-polytopes with d −1 nonsimple vertices and isomorphic (d −3)-skeleton

In this section, for every dimension d ≥ 4 we construct pairs of nonisomorphic d-polytopes with d−1

nonsimple vertices and isomorphic (d − 3)-skeleta.
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(a) (b)

Figure 2. A pair of 4-polytopes with three nonsimple vertices which are nonrecon-

structible from their graphs. The missing 2-face of a bipyramid over a simplex is

highlighted in (b), while in (a) this bipyramid is split into two simplices. These poly-

topes form part of the database of 4-polytopes with 8 vertices by Miyata-Moriyama-

Fukuda [7].

First, some terminology, following [18, p. 241] (for undefined terminology on polytopes see e.g. the

textbooks [9, 18]). Let P ⊂ Rd be a d-polytope and let w be a point in Rd \ P . We say that a

facet F of P is visible from the point w with respect to a polytope P in Rd if w belongs to the open

halfspace determined by aff F which is disjoint from P . We don’t specify P or Rd when it is clear

from the context. If instead w belongs to the open halfspace which contains the interior of P , we say

that the facet F is nonvisible from w . Moreover, the point w is beyond a face G of P if the facets

of P containing G are precisely those that are visible from w .

Our construction relies on the following well-known theorem.

Theorem 2.1 ([9, Thm. 5.2.1]). Let P and P ′ be two d-polytopes in Rd , and let v be a vertex of P ′

such that v 6∈ P and P ′ = conv(P ∪ {v}). Then

(i) a face F of P is a face of P ′ if and only if there exists a facet of P containing F which is

nonvisible from v ;

(ii) if F is a face of P then F ′ := conv(F ∪ {v}) is a face of P ′ if

(a) either v ∈ aff F ;

(b) or among the facets of P containing F there is at least one which is visible from v and at

least one which is nonvisible.

Moreover, each face of P ′ is of exactly one of the above three types.

Proposition 2.2. For every dimension d ≥ 4 there is a pair of d-polytopes Q1d and Q2d with 2d

vertices, nonisomorphic face lattices and isomorphic (d −3)-skeleta, such that each has exactly d −1

nonsimple vertices. In particular, βd−3,d ≤ d − 2.

The proof of the proposition follows from the following two claims.
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Figure 3. The pair of 3-polytopes Q13 and Q
2
3 in (a) − (b), and Schlegel diagrams

of the pair of 4-polytopes Q14 and Q24, projected on the fact isomorphic to Q13 in

(c)− (d). The missing 2-face of the bipyramid face 02467 in Q24 is highlighted.

Claim 1. For every d ≥ 3 there is a d-polytope Q1d with 2d vertices labelled 0, . . . , 2d − 1 in such a

way that (1) the d − 1 nonsimple vertices of Q1d have positive even labels, and that (2) its 2d facets

are as follows. Let X denote the set of even-labelled vertices except 0.

Type A: A simplex: {0} ∪X;
Type B: d−1 facets of the form: {0}∪{2i+1 : i = 0, . . . , k−1}∪X\{2k} for k = 1, . . . , d−1;

Type C: d − 2 facets of the form: {2d − 1} ∪ {2i + 1 : i = k − 1, . . . , d − 2} ∪ X \ {2k} for
k = 1, . . . , d − 2;

Type D: A simplex: {2d − 3, 2d − 1} ∪X \ {2(d − 1)}; and
Type E: A simplex: {2d − 1} ∪X.

Proof. The construction of the polytope Q1d is by induction, with the base case d = 3 depicted in

Fig. 3 (a). We now construct Q1d+1 from Q1d .

(1) Construct a pyramid over Q1d and label the apex of the pyramid by 2d , and let X ′ := X∪{2d}.
(2) Take the convex hull with a new vertex v labelled 2d + 1 positioned on the affine hull of

the triangle {2d − 3, 2d − 1, 2d} in such a way that every facet not containing the edge

[2d − 1, 2d ] is nonvisible from the point v = 2d + 1, and the facet containing the edge but

not the triangle is visible from the point v . Note that this triangle is a proper face of the

pyramid because of the facet of Type D of Q1d .

The facets of the polytope Q1d+1 are as follows.

From Theorem 2.1(i) it follows that any facet of the pyramid not containing the edge [2d − 1, 2d ]

will remain a facet of the polytope. These are our facets of Types A-B.

Type A: A simplex: {0} ∪X ′;
Type B: d + 1 − 1 facets of the form: {0} ∪ {2i + 1 : i = 0, . . . , k − 1} ∪ X ′ \ {2k} for

k = 1, . . . , d + 1− 1;
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Theorem 2.1 (ii-a) gives that any facet F of the pyramid containing the triangle {2d − 3, 2d − 1, 2d}
is contained in the corresponding facet F ′ = conv(F ∪ {2d + 1}) in the new polytope. These new

facets are of Type C.

Type C: d+1−2 facets of the form: {2(d+1)−1}∪{2i+1 : i = k−1, . . . , d+1−2}∪X ′\{2k}
for k = 1, . . . , d + 1− 2;

Finally, Theorem 2.1 (ii-b) ensures that the union of the vertex v = 2d + 1 with every (d − 2)-face

not containing the edge [2d − 1, 2d ] of the only remaining facet of the pyramid, which is the simplex

{2d} ∪ {2d − 1} ∪X, will form a facet. There are exactly two such facets; the Types D-E.

Type D: A simplex: {2(d + 1)− 3, 2(d + 1)− 1} ∪X ′ \ {2d}; and
Type E: A simplex: {2(d + 1)− 1} ∪X ′;

It remains to show that the nonsimple vertices of Q1d+1 are exactly the elements of X ′. By induction,

the nonsimple vertices of Q1d form the set X, so in the pyramid over Q1d the nonsimple vertices form

the set X ′. Taking the convex hull with v = 2d + 1, the edge {2d − 1, 2d} disappears, and the edges

containing v are created, with one of them being {v , 2d}. Thus, it remains to check that v is simple;

indeed, v is adjacent to exactly the vertices in X ′ ∪ {2d − 1}, as Theorem 2.1 (ii-b) shows. This

completes the proof of the claim. �

Claim 2. For every dimension d ≥ 4 there is a polytope Q2d with the same (d − 3)-skeleton as Q1d ,

whose 2d vertices are labelled 0, . . . , 2d − 1 such that (1) the d − 1 nonsimple vertices of Q2d have

positive even labels, and (2) the 2d − 1 facets are as follows.

Type A’: A bipyramid over a simplex: {0, 2d − 1} ∪X;
Type B’: d−1 facets of the form: {0}∪{2i+1 : i = 0, . . . , k−1}∪X\{2k} for k = 1, . . . , d−1;

Type C’: d − 2 facets of the form: {2d − 1} ∪ {2i + 1 : i = k − 1, . . . , d − 2} ∪ X \ {2k} for
k = 1, . . . , d − 2; and

Type D’: A simplex: {2d − 3, 2d − 1} ∪X \ {2(d − 1)}.

In short, the polytope Q2d is created by gluing the simplex facets of Type A and Type E of Q1d along

the ridge with vertex set X to create a bipyramid of Q2d , the facet of Type A’. The ridge with vertex

set X of Q1d then becomes a missing ridge in Q2d .

Proof. We construct the d-polytope Q2d by taking the convex hull of Q1d and a new vertex v ∗.

First consider the edge e = [2d − 3, 2d − 1] of Q1d and the unique facet F containing the vertex

2d − 1 but not 2d − 3; note that the vertex 2d − 1 is simple. The facet F is a simplex with vertices

{2d − 1} ∪ X. Place the vertex v ∗ beyond the facet F along the the ray emanating from the point

2d − 3 and containing the edge [2d − 3, 2d − 1] so that v ∗ lies on the first hyperplane H encountered

which supports some facet F̄ . This ensures that any facet of Q1d different from F , F̄ or the d−1 facets

F e1 , . . . , F
e
d−1 containing the edge e is nonvisible from the vertex v ∗. To show that the hyperplane H
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above exists, note that in the construction of Q1d we can place the vertex v labeled 2d − 1 arbitrarily

close to the vertex 2d − 2, thereby ensuring that the ray emanating from 2d − 3 and containing the

edge e intersects a hyperplane which supports a facet containing the vertex 2d − 2 but not the edge

e. Such a facet exists; for example, the facet with vertex set {0}∪X.The polytope Q2d is the convex

hull of Q1d and v ∗; thus, the vertex set of Q2d is obtained from the vertex set of Q1d by deleting v and

adding v ∗, which we also label as 2d − 1.

Since v ∗ ∈ H, there is at least one ridge R of F̄ which is visible from v ∗ with respect to F̄ in H. This

implies that the other facet containing R is visible from v ∗ with respect to Q1d in Rd . Since there is

exactly one facet of Q1d visible from v ∗ (with respect to Q1d), namely, F , we must have R = F ∩ F̄
in Q1d and R is unique.

In addition to F̄ not containing the edge [2d−3, 2d−1], it does not contain the vertex 2d−1 either.

This implies that the set of vertices of R is X. In particular, the facet F̄ must be the facet with

vertex set {0} ∪X of Q1d .

From Theorem 2.1 (ii-a) it follows that the facet F̄ of Q1d is replaced by the facet with vertex set

{0, v ∗} ∪ X, which is a bipyramid over the simplex R with vertex set X. Combinatorially, with the

exception of the ridge R, this bipyramid has the same face lattice as the boundaries of the union of

the two simplex facets F and F̄ (Types A and E) of Q1d .

Now consider any face J of Q1d not contained in F̄ . We have three possibilities: (1) the face is

contained in a facet nonvisible from the vertex v ∗, (2) the face contains the edge e = [2d−3, 2d−1],

and (3) the face does not contain the edge and it is not contained in a facet nonvisible from the

vertex v ∗. In the first case, by Theorem 2.1 (i), this face is also a face of Q2d . In the second case,

the vertex v ∗ is in the affine hull of the face and by Theorem 2.1 (ii-a), the corresponding face J ′ in

Q2d has the same dimension as J and the form conv(J ∪ {v ∗}). In the third case, the face J must

be contained in intersections involving the facet F and some facets in {F e1 , . . . , F ed−1}. In this case

Theorem 2.1 (i) assures us that J is not a face of Q2d . In summary, the two simplex facets F and F̄

in Q1d are replaced by a bipyramid in Q2d with the same (d − 3)-skeleton as F ∪ F̄ , and every other

facet of Q1d falls into the first or second cases: a facet of Q1d falling in the first case remains a facet

of Q2d and a facet J of Q1d falling into the second case is replaced by the facet J ′ = J ∪ {v ∗} \ {v} in
Q2d .

Note that X remains the set of nonsimple vertices in Q2d as well. This completes the proof of the

claim. �

Refer to Fig. 3 (c)-(d) for Schlegel diagrams of the polytopes Q14 and Q
2
4, where the projection facet

is isomorphic to Q13.

polymake script [8] implementing the ideas presented in Proposition 2.2 is available online at [15].

Refer to the polymake script for information on how to run the program. Note that, in addition to
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the polytopes Q1d and Q2d , this program constructs other pairs of polytopes with d − 1 nonsimple

vertices and the same k-skeleton for a given k ≥ 1 based on the ideas put forward in Proposition 2.2.

3. Reconstruction from 2-skeletons

Theorem 3.1. For any fixed d ≥ 3, let P be a d-polytope with at most ν nonsimple vertices in each

facet. If ν ≤ d − 2 then P is reconstructible from its 2-skeleton. Furthermore, all the facets can be

found in linear time in the number of vertices of the graph.

This result is best possible as the pair Q1d and Q
2
d constructed in Section 2 is an example of d-polytopes

with ν = d − 1 and with isomorphic (d − 3)-skeleton, but with a different number of facets.

For the proof we need the notion of frames, and a useful observation of Kaibel about them (cf. [12,

Prop. 1]), to be spelt out in Proposition 3.2. Define a k-frame as a subgraph of G(P ) isomorphic to

the star K1,k , where the vertex of degree k is called the root or centre of the frame. If the root of a

frame is a simple vertex of P , we say that the frame is simple. For a simple vertex v in a k-face F

of a polytope P , we say that the k-frame tv defines F if tv is the unique k-frame with root v that is

contained in F .

We next rephrase [12, Prop. 1] to suit our needs and provide a proof.

Proposition 3.2. Let uv be an edge of a d-polytope P with u and v being simple vertices in P . Let

F be a facet of P containing both u and v , with tu being the frame centred at u which defines F . If

u′ is the unique neighbour of u not in tu and v ′ is the neighbour of v , other than u, which is contained

in the 2-face of P defined by the 2-frame (u, u′, v) with root u, then v ′ is not in F .

Proof. Suppose, by way of contradiction, that v ′ is in F . Denote by tv the (d−1)-frame of v defining

F . Let W be the 2-face of P defined by the 2-frame (u, u′, v) with root u. That is, v ′ is in tv and in

W . Since v is in F and every vertex in tv is in F , the 2-face W , which is also defined by the 2-frame

(v , u, v ′) with root v , would be contained in F , a contradiction. �

Proof of Theorem 3.1. We show that a modification of Friedman’s algorithm [6, Sec. 7] gives a proof

of the theorem. Assume that we are given the 2-skeleton of P . Repeat the following routine, until

all simple (d − 1)-frames in G(P ) are visited.

(1) Pick a simple vertex u (it exists) and select any simple (d − 1)-frame tu centred at u. Let u′

be the unique vertex adjacent to u which is not in that frame. The frame tu is contained in

a unique facet in P , denote it by Fu.

(2) Consider any other simple vertex u′′ in the frame tu with u′′ 6= u (it exists). Then there exists

another simple (d − 1)-frame tu′′ centered at u′′ in the facet Fu.

(3) Consider the neighbour û of u′′, different from u, which is present in the 2-face W that

contains the 2-frame (u, u′, u′′) with root u. We know all the vertices of W . Then, applying
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Proposition 3.2 to the edge uu′′ gives that the frame tu′′ is formed by all the vertices adjacent

to u′′ other than û.

(4) Continue this process, always moving along edges formed by simple vertices, and stop when

no new simple (d − 1)-frame can be visited.

We show that when (4) stops the obtained graph spans the facet Fu. The conditions of the theorem

guarantee that, in any facet Fu of P , we can go from any simple vertex to any other simple vertex

through a path only formed of simple vertices, since G(Fu) is (d−1)-connected by Balinski’s Theorem

[18, Sec. 3.5]. Thus, after Step (4) finishes, the vertex set of the graph obtained is the vertex set of

the facet Fu.

Repeating this process for all simple (d − 1)-frames will then reveal all the facets of P .

Finally, we show that this process, with a little preprocessing, runs in linear time in the number of

vertices. The number of simple (d − 1)-frames is d times the number of simple vertices of P , thus

linear, and each such frame is visited once. It remains to check that the move from one simple

(d − 1)-frame, tu, to the next, tu′′ , can be done in constant time (depending on d): checking if the

degree of a vertex (neighbour of u) is d takes only constant time, and in case it is d we need to find

û in step (3) in constant time. For this, preprocess the data of the 2-skeleton, to construct the graph

GT (following Friedman [6]) whose vertices are the 2-frames, and two of them are connected by an

edge iff the root of one is a vertex of the other and both belong to the same 2-face. Move along

edges of GT , from the 2-frame (u, u′, u′′) with root u to (u′′, u, û) with root u′′, to find û in constant

time. As the number of faces in the 2-skeleton is linear in the number of vertices (cf. Remark 3.3),

constructing GT takes linear time. Thus, the complexity result follows. �

Remark 3.3. For k ∈ [1, d − 1] the number of k-faces in a d-polytope with at most f (d) nonsimple

vertices is linear in the number f0 of vertices of the polytope. Here f is a function in d independent

of f0. To see this, note that the number of k-faces involving a simple vertex is at most f0
(
d
k

)
, and

the number of k-faces all whose vertices are nonsimple is at most
(
f (d)
k+1

)
; the assertion follows.

Remark 3.4. Let P be a d-polytope with exactly d − 1 nonsimple vertices, denote their set by N.

Apply the above algorithm to obtain a collection of graphs Gi . The vertex sets V (Gi) are exactly the

vertex sets of the facets of P , providing reconstruction, unless the following happens: there is a single

facet F which contains N and N separates G(F ), in which case there are two subgraphs G and G′

obtained by the algorithm such that G ∪ G′ spans F and V (G ∩ G′) = N. The only case where we

cannot reconstruct is in case the induced graph G(P )[N] on N is complete, and there is ambiguity

whether P has two facets corresponding to V (G) and V (G′) intersecting on a common ridge with

vertex set N, or P has a facet with vertex set V (G ∪ G′) (all other facets are determined); this is

demonstrated in the constructions of Section 2. Thus, if the parity of the number of facets is also

given, we can reconstruct.

Combining Proposition 2.2 and Theorem 3.1 gives

Corollary 3.5. β2,d = . . . = βd−3,d = d − 2.
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4. Reconstruction from graphs

In this section we prove that, like simple polytopes, d-polytopes with at most two nonsimple vertices

are reconstructible from their graphs; see Theorem 4.8. This is best possible for d = 4, as the

4-polytopes Q14 and Q
2
4 in Fig. 2 have three nonsimple vertices and the same graph. In case of one

nonsimple vertex the reconstruction can be done in polynomial time, following Friedman [6].

We start with some preparations.

4.1. Special good orientations. Following Kalai [13], call an acyclic orientation of G(P ) good if

for every nonempty face F of P the graph G(F ) of F has a unique sink2. Actually, we only need that

the acyclic orientation has a unique sink in every facet, so for us this possibly larger set represents

the good orientations. The following remark is simple but important.

Remark 4.1. Let P be a polytope, O an acyclic orientation of G(P ), F a k-face of P with k ≥ 2,

and let w be any vertex in G(F ). Then there is a directed path in G(F ) from w to some sink in F

and a directed path in G(F ) from some source3 in F to w .

Define an initial set with respect to some orientation as a set such that no edge is directed from a

vertex not in the set to a vertex in the set. Similarly, a final set with respect to some orientation is a

set such that no edge is directed from a vertex in the set to a vertex not in the set.

We proceed with a remark where initial sets play an important role.

Remark 4.2. Let P be a d-polytope, let F be a face of P and let O be a good orientation of G(P )

in which V (F ) is initial. Further, denote by O|F the good orientation of G(F ) induced by O. If O′F
is a good orientation of G(F ) other than O|F , then the orientation O′ of G(P ) obtained from O by

directing the edges of G(F ) according to O′F is a also good orientation.

The next lemma establishes the existence of good orientations with some special properties.

Lemma 4.3. Let P be a polytope. For every two disjoint faces Fi and Fj of P , there is a good

orientation of G(P ) such that (1) the vertices in Fi are initial, (2) the vertices in Fj are final, and

(3) within the face Fi , any two vertices (if they exist) can be chosen to be the (local) sink and the

(global) source.

Proof. We first preprocess the given d-polytope P to obtain a projectively equivalent polytope P ′

in which the supporting hyperplanes of the faces Fi and Fj are parallel. We provide the relevant

transformation next.

Embed P in a hyperplane Hemb of Rd+1 not passing through the origin, say Hemb := {~x ∈ Rd+1 :

xd+1 = 1}. Within Hemb consider affine (d−1)-spaces Ki and Kj supporting the faces Fi and Fj of P ,

2 A sink is a vertex with no directed edges going out.
3 A source is a vertex with no directed edges coming in.
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respectively. The intersection of Ki and Kj in Hemb is an affine (d−2)-space which is disjoint from P .

Consider a hyperplane H∞ in Rd+1 through the origin whose intersection with Hemb contains Ki ∩Kj
and whose positive half-space H+∞ contains P in its interior. Finally, let Hproj be any hyperplane in

H+∞ parallel to H∞ and disjoint from P but not coinciding with H∞. Following Ziegler [18, Sec. 2.6],

the hyperplane Hproj is called admissible for P . The projective d-space can be thought of as the

union Hproj ∪ H∞, where H∞ collects the points at ∞. We map Hemb \ H∞ onto Hproj by sending

each point in Hemb \ Hproj to the point in Hproj lying on the same line through the origin, while the

points in Hemb ∩ Hproj remain fixed. The image of P under this map is a polytope P ′ in Hproj which

is combinatorially equivalent to P . Since the intersection of the spaces Ki and Kj lies in H∞, their

projections on Hproj are parallel. This completes this transformation. We may therefore assume that

P has undergone the transformation we have just described.

Now back in Rd consider a hyperplane Ki which supports the face Fi of P and is parallel to a hyperplane

supporting Fj . Let g be a linear function which vanishes on Ki and whose value on Kj is positive.

Perturb g slightly so that the resulting linear function f attains different values on the vertices of P .

The function f ensures the existence of a good orientation O in which the vertices in Fi are initial

while the vertices in Fj are final; this proves the conditions (1) and (2).

To get the condition (3), consider the polytope Fi in aff Fi (forgetting about P ), and let s and t be

two arbitrary vertices in Fi , if they exist. Performing the aforementioned projective transformation to

Fi in aff Fi , we can assume that the vertices s and t admit parallel supporting hyperplanes in the space

aff Fi . Reasoning as before gives a good orientation Oi of Fi in which s is a sink and t is a source.

If, in the orientation O, we reorient the edges of Fi according to Oi , the resulting orientation O′ of

G(P ) remains good since Fi is initial (c.f. Remark 4.2), thereby satisfying all the three conditions.

This completes the proof of the lemma. �

Any induced (d − 1)-connected subgraph of G(P ) where simple vertices in the polytope have each

degree d − 1 and nonsimple vertices have each degree ≥ d − 1 is called a feasible subgraph. We say

that a k-frame with root x is valid if there is a facet of P containing x and the edges of the frame

and no other edge incident to x . Thus, if x is a simple vertex then any of its (d − 1)-frames is valid.

Lemma 4.4. Let P be a d-polytope, and let H be a feasible subgraph of G(P ) containing at most

d − 2 nonsimple vertices. If the graph G(F ) of some facet F is contained in H, then H = G(F ).

Proof. If vertF = V (H), then G(F ) = H, as G(F ) is an induced subgraph of G(P ). Otherwise,

vertF ( V (H), in which case any path from a vertex in H \ G(F ) to a vertex in G(F ) must pass

through a nonsimple vertex, since simple vertices of the polytope have the same degree in both H and

G(F ). Consequently, the nonsimple vertices would disconnect H, contradicting its (d−1)-connectivity.

�

4.2. Polytopes with one nonsimple vertex.
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Theorem 4.5. Let d ≥ 3. Every d-polytope with at most one nonsimple vertex can be reconstructed

from its graph, in polynomial time in the number of vertices.

The proof is an adaptation of proofs from [11] and [6] to the case when one nonsimple vertex exists.

As such we only provide a sketch with the main ingredients.

Sketch of proof of Theorem 4.5. First, we consider only the set A of acyclic orientations of the

polytope graph in which the nonsimple vertex, if present, has indegree 0. The existence of good

orientations in A follows from Lemma 4.3. Second, we need a slight generalisation of the 2-systems

of [11]. A set S of subsets of vertP is called a 2-system of G(P ) if for every set S′ ∈ S the subgraph

induced by S′ is 2-regular and if the vertex set of every 2-frame of P with a simple vertex as a root is

contained in a unique set of S. Notice that the set V2(P ) of vertex sets of 2-faces of P is a 2-system

of G(P ). Then a result, namely Lemma 4.6, in the same vein as [11, Thm. 1] and [12, Thm. 4] can

be obtained, following their proofs.

Lemma 4.6. Let P be a d-polytope with at most one nonsimple vertex, S a 2-system of G(P ) and

O an acyclic orientation of A. Then, as argued there,

|S| ≤ f2(P ) ≤ f O2 :=

d∑
i=0

hOi

(
i

2

)
,

where hOk denotes the number of vertices of G with indegree k . The first inequality holds with equality

iff S = V2(P ), and the second inequality holds with equality iff O is a good orientation of A.

Next we present all the relevant programs to compute V2(P ), which are those presented in [6, Sec. 4],

with some changes.

Let t denote the 2-frame (t0, t1, t2) with root t0 and let T denote the set of all 2-frames in G in

which the nonsimple vertex v is not a root. Let W be the set of 2-regular induced subgraphs in G.

The integer program IP-S finds a 2-system of maximum cardinality.

(IP-S) max
∑
w∈W

xw

s.t. ∀t ∈ T,
∑
w∈δ(t)

xw = 1,

xw ∈ {0, 1}.

(LP-S) max
∑
w∈W

xw

s.t. ∀t ∈ T,
∑
w∈δ(t)

xw ≤ 1,

xw ≥ 0.

Here δ(t) is the set of all elements in W containing the 2-frame t. As in [6, Sec. 4], we allow 2-regular

induced subgraphs which are union of cycles, since the maximum will inevitably occur with positive

weight only on single cycles. Note that in IP-S the set W may have exponential size, but the set T ,

and hence the number of equations, has only polynomial size. We relax and dualise IP-S, obtaining
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LP-S and LP-SD, respectively.

(LP-SD) min
∑
t∈T

yt

s.t. ∀w ∈ W,
∑
t∈w

yt ≥ 1,

yt ≥ 0.

(IP-f2) min
∑
t∈T

yt

s.t. ∀w ∈ W,
∑
t∈w

yt ≥ 1,

yt ∈ {0, 1},

yt arises from O ∈ A.

Let IP-SD be the related binary-integer program for LP-SD: replace yt ≥ 0 with yt ∈ {0, 1}.

Consider an acyclic orientation O ∈ A and let yt = 1 represent the case where the root of the 2-frame

t is a sink of t. Then, according to Lemma 4.6, the integer program IP-f2 finds an AOF-orientation

O ∈ A of G.

As in [6, Thm. 2], applying Lemma 4.6 and the strong duality theorem of linear programming to this

sequence of optimisation problems gives the following similar result, with the same proof.

Lemma 4.7. Let P be a d-polytope with at most one nonsimple vertex and let G denote its graph.

Then the aforementioned optimisation problems IP-S, LP-S, LP-SD, IP-SD and IP-f2 all have the

same optimal value.

We proceed by solving LP-SD. The program LP-SD has a polynomial number of variables, an expo-

nential number of constraints and all the constraints with polynomially bounded size. As in [6, Sec. 5],

this problem can be solved using the ellipsoid method. An important feature of the ellipsoid method

is that it is not necessary to have an explicit list of all inequalities ready at hand. It suffices to have

a “separation oracle” which, given a vector ~y , decides whether or not ~y is a solution of the system.

If ~y is a solution, it returns “yes”, otherwise it returns one (arbitrary) inequality of the system that

is violated by ~y , that is, an inequality which separates ~y from the solution set. Furthermore, if the

separation oracle runs in polynomial time then so does the ellipsoid method.

Our separation algorithm reduces to that of Friedman’s [6, Sec. 5] after we produce a new linear

program LP-SD-A equivalent to LP-SD. The new program LP-SD-A considers the set T ′ of all 2-

frames in G, not only those in which a simple vertex is a root. It adds a new variable yt and a new

constraint yt = 0 for every 2-frame t with the nonsimple vertex v as the root.

(LP-SD-A) min
∑
t∈T ′

yt

s.t. ∀w ∈ W,
∑
t∈w

yt ≥ 1,

∀t ∈ T ′such that t has v as a root, yt = 0,

yt ≥ 0.
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It is not difficult to see that LP-SD-A is equivalent to LP-SD; that is, any feasible solution of LP-SD-A

corresponds to a feasible solution of LP-SD, and vice versa.

With a separation algorithm running in polynomial time at hand, we have that the program LP-SD,

and thus, the programs LP-S and IP-S, can be solved in polynomial time.

It would only remain to show that the solution obtained by the program LP-S is unique and thus a

solution vector ~x∗ corresponds to the incidence vector of the 2-faces of the polytope. The proof of

this fact proceeds mutatis mutandis as in the proof of [6, Thm. 4].

Finally, with the 2-faces available, we can reconstruct the vertex-facet incidences of the polytope

using Theorem 3.1 in linear time. �

4.3. Polytopes with two nonsimple vertices.

Theorem 4.8. If P is a d-polytope with two nonsimple vertices, then the graph of P determines the

entire combinatorial structure of P .

In this case the reconstruction algorithms we suggest run only in exponential time. Here is our first

proof.

Proof of Theorem 4.8. Let us assume that d ≥ 4, as the result is trivial for smaller d . Denote by u

and v the nonsimple vertices of P . Partition the facets of P into four families: let Fu−v (resp. Fv−u)
denote the family of facets containing u and not v (resp. v and not u) and F∅ (resp. Fvu) the family

of facets containing none of (resp. both) u and v . We find these families in the order Fu−v , Fv−u,
F∅, Fvu, from first to last, as given in the following four Claims.

Denote by Hu the set of feasible subgraphs of G(P ) which contain u but not v . Denote by Au the

set of all acyclic orientations of G(P ) in which (1) the nonsimple vertex u has indegree 0, (2) the

nonsimple vertex v has outdegree 0, and (3) some subgraph Hu in Hu is initial. It follows that Hu
has a sink which is a simple vertex.

Claim 1 (find Fu−v ). A feasible subgraph Hu in Hu is the graph of a facet of P containing u but

not v iff (1) Hu is initial with respect to a good orientation O in Au, and (2) Hu has a unique sink

which is a simple vertex.

Proof. First consider a facet Fu containing u but not v (such facet clearly exists). Applying Lemma 4.3

to the faces Fu and v we get a good orientation of G(P ) in which the vertices of Fu are initial, u is

the global minimum and v is the global maximum. Under this orientation, taking Hu = G(Fu) ensures

that Au is nonempty.

We prove the converse. Let O ∈ Au and let hOk denote the number of simple vertices of G with

indegree k w.r.t. O. Define

f Ou := hOd−1 + dhOd .
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The function f Ou counts the number of pairs (F,w), where F is a facet of P and w is a simple sink

in F w.r.t. the orientation O in Au. If w is a simple vertex in P with indegree k , then w is a sink in(
k
d−1
)
facets of P . Since the orientation is acyclic, every facet has a sink. Furthermore, every facet

containing v has v as a sink, and u is not a sink in any facet.

Let Hu ∈ Hu, and let x be the simple sink in Hu with respect to O. Suppose Hu does not represent

the facet F of P containing x and the d − 1 edges in Hu incident to x , namely Hu 6= G(F ). Then,

by Lemma 4.4, there is a vertex of F not in Hu. Since Hu is initial with respect to O, the facet F

would contain two sinks, one of them being x . Consequently, as there is a good orientation in Au and
a subgraph in Hu representing a facet, we have that

min
O∈Au

f Ou = fd−1 − f vd−1,

where fd−1 (resp. f vd−1) denotes the number of facets in P (resp. containing v). Also, the orientations

in Au minimising f Ou are exactly the good orientations in Au.

Let x be the simple sink in Hu with respect to a good orientation O in Au. Then x defines a unique

facet F of P , and all the other vertices of F are smaller than x with respect to the ordering induced

by O. Since Hu is an initial set in O and since there is a directed path in G(F ) from any vertex of

G(F ) to x (cf. Remark 4.1), we must have vertF ⊆ V (Hu), and we are done by Lemma 4.4. �

Exchanging the roles of u and v , define Hv and Av similarly to Hu and Au. By symmetry we also

get the following claim.

Claim 2 (find Fv−u). A feasible subgraph Hv ∈ Hv is the graph of a facet of P containing v but not

u iff (1) Hv is initial with respect to some good orientation O ∈ Av and (2) has a unique sink which

is a simple vertex.

Running through all the good orientations in Au or Av , we recognise all the graphs of facets in Fu−v
and in Fv−u. Let f u−vd−1 := |Fu−v |, f v−ud−1 := |Fv−u |, f ∅d−1 := |F∅| and f uvd−1 := |Fuv |. Clearly,

(1) fd−1 = f u−vd−1 + f v−ud−1 + f vud−1 + f ∅d−1.

Since the number fd−1 − f vd−1 is known (it is the minimum of f Ou over O ∈ Au), and since f vd−1 =

f vud−1 + f v−ud−1 , it follows that the number f ∅d−1 is known; if f
∅
d−1 = 0 then F∅ = ∅.

Assume then f ∅d−1 > 0. We show next how to recognise the facets in F∅. Denote by H∅ the set of

feasible subgraphs of G(P ) which contain neither u nor v , and by A∅ the set of all acyclic orientations
of G(P ) in which (1) the nonsimple vertex v has outdegree 0, and (2) some subgraph H∅ in H∅ is
initial. It follows that H∅ has a sink which is a simple vertex.

Define an almost good orientation as an acyclic orientation in which every facet with a simple sink

has a unique sink.
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Claim 3 (find F∅). Let f ∅d−1 > 0. A feasible subgraph H∅ ∈ H∅ is the graph of a facet of P containing

neither u nor v iff (1) H∅ is initial with respect to some almost good orientation O ∈ A∅ and (2) H∅
has a unique sink which is a simple vertex.

Proof. Consider a facet F∅ containing neither u nor v ; such facet exists by assumption. Applying

Lemma 4.3 to the faces F∅ and v , we get a good orientation of G(P ) in which the vertices of F∅ are

initial and v is the global maximum. This proves the “only if” part of the claim.

Let O ∈ A∅, and as before hOk denote the number of simple vertices of G with indegree k . Let tOu−v
denote the number of valid (d − 1)-frames of u which are contained in facets which do not contain

v and have u as a sink. Since we know all the facets containing u but not v , we can compute tOu−v
from O. Define

f O∅ := hOd−1 + dhOd + tOu−v .

The function f O∅ counts the number of pairs (F,w), where F is a facet of P , w is sink of F and

either w is simple or w = u. Any facet containing v has v as a sink. Consequently, as there is a good

orientation in A∅ and a subgraph H∅ ∈ H∅ representing a facet, we have that

min
O∈A∅

f O∅ = fd−1 − f vd−1.

Note that an orientation O of A∅ minimising f O∅ is not necessarily a good orientation; there may be a

facet in which both u and v are sinks, but facets with a simple sink or facets not containing v must

have a unique sink.

The proof now proceeds mutatis mutandis as in the proof of Claim 1. Let x be the simple sink in H∅
with respect to O, then x together with the d − 1 edges in H∅ incident to x define a unique facet

F of P , where all the other vertices of F are smaller than x with respect to the ordering induced by

O. Since H∅ is an initial set in O and since there is a directed path in G(F ) from any other vertex

of G(F ) to x (cf. Remark 4.1), and we must have vertF ⊆ V (H∅), with the result following from

Lemma 4.4. �

Running through all the orientations in A∅ minimising f O∅ we recognise F∅.

It remains to recognise Fuv . We first find out whether or not the number f vud−1 = 0. Note that each

facet contains a simple (d − 1)-frame, and any simple (d − 1)-frame is contained in a (unique) facet.

Thus, f vud−1 > 0 iff there exists a simple (d−1)-frame not contained in any of the graphs of the facets

in Fu−v ∪ Fv−u ∪ F∅.

Assume f vud−1 > 0. Recognising the facets in Fuv is done similarly to the previous cases. Denote

by Hvu the set of feasible subgraphs which contain both u and v , and by Avu the set of all acyclic

orientations of G(P ) in which some subgraph Hvu in Hvu is initial with a unique sink which is a simple

vertex.
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Claim 4. Assume f vud−1 > 0. Then a feasible subgraph Hvu ∈ Hvu is the graph of a facet containing

both u and v iff (1) Hvu is initial with respect to some good orientation O in Avu, and (2) has a

unique sink which is a simple vertex.

Proof. Applying Lemma 4.3 to a facet Fvu ∈ Fvu, we get a good orientation in which the vertices of

Fvu are initial and the sink in Fvu is a simple vertex. This proves the “only if” part.

For the “if” part, for any O ∈ Auv consider the function

f Ovu := hOd−1 + dhOd .

Its minimum value over Avu is fd−1. Any orientation minimising f Ovu must be good. For any orientation

O minimising f Ovu, proceed as in the “if” part in the proof of Claim 1 to conclude the proof. �

Thus, by Claims 1–4 we have found all the facets of P from G(P ). �

Corollary 4.9. β1,4 = 2, and for any d > 4, β1,d ≥ 2.

Problem 4.10. Can the proof of Theorem 4.8 be modified to reconstruct the 2-faces in polynomial

time, as in the case of one nonsimple vertex (Theorem 4.5)? This would give a polynomial time

reconstruction algorithm for the facets, in the presence of two nonsimple vertices.

4.4. Reconstruction via truncation. We now present a second proof of Theorem 4.8, again suffering

an exponential running time, based on truncation of polytopes.

Let P be a polytope with face F . P truncated at F [4, p. 76] is the polytope P ′ obtained by

intersecting P with a halfspace H+ which does not contain the vertices of F and whose interior

contains the vertices of P that are not contained in F . Let H denote the hyperplane bounding H+.

The face lattices of P and of P ′ determine each other; for our purposes, we need the following parts

of this statement, collected in a lemma. For a polytope P let V (P ) and E(P ) denote the sets of its

vertices and edges, respectively.

Lemma 4.11. Let P ′ be the d-polytope P truncated at a face F .

(a) The vertices of P ′ are of two types: the vertices in V (P ) \ V (F ) and a vertex wxy for each edge

xy of P with a vertex x in V (F ) and a vertex y in V (P ) \ V (F ).

(b) The edges of P ′ are of three types: (1) the edges y1y2 in P with y1, y2 ∈ V (P ) \ V (F ), (2)

the edges ywxy with y ∈ V (P ) \ V (F ) and wxy ∈ H ∩ P , and (3) the edges wx1y1wx2y2 with

x1, y1, x2, y2 contained in a 2-face of P . In particular, G(P ) and the 2-faces of P containing at

least one vertex from F are enough to determine G(P ′).

(c) The facets of P ′ are of two types: The facet H ∩ P and the “old” facets of P , except F if it is

indeed a facet; that is, the facets J ′ := H+ ∩ J, where J is a facet of P possibly other than F .

Hence, given the vertex set of a facet J ′ of P ′ other than H ∩ P , we obtain the vertex set of the

corresponding facet J of P by replacing each vertex wxy in J ′ with the corresponding vertex x in

F . Consequently, all facets of P are thus obtained.
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(d) For any vertex wxy ∈ P ′ with x ∈ V (F ) and y ∈ V (P ) \ V (F ), if y has degree d in G(P ) then

wxy has degree d in G(P ′).

Let u and v be the two nonsimple vertices of P . Our goal now is to find G(P ′) where P ′ is the

truncation of P at the edge uv in case uv ∈ E(P ), or the truncation of P at u in case uv /∈ E(P ).

Once we succeed in this goal, we are done by Lemma 4.11(d): in the former case since P ′ would be

simple, and in the later case since P ′ would have exactly one nonsimple vertex. So in either case we

can reconstruct the facets of P ′ (in polynomial time). Then by Lemma 4.11(c) we reconstruct the

facets of P (again in polynomial time).

By Lemma 4.11(a-b), to achieve this goal it is enough to determine all 2-faces of P containing at

least one of u and v (this we do in exponential time); then we can construct G(P ′) (in polynomial

time).

First we determine the 2-faces of P containing exactly one of u and v : each such 2-face is contained

in a facet containing exactly one of u and v ; those facets we find, for example, by Claims 1 and 2 from

the first proof of Theorem 4.8. Then we find the relevant 2-faces in such facet T by reconstructing

the face lattice of T from the subgraph of G(P ) induced by V (T ), which has at most one vertex of

degree > d − 1. Next, we aim to determine the 2-faces of P containing both u and v .

Case uv ∈ E(P ). For any 2-face S containing uv there is a linear functional lS that orders V (P ) with

u first, v second and S initial; to achieve this, start with a linear function that attains its minimum

over V (P ) exactly at V (S) (cf. Lemma 4.3), then perturb it so that it is minimised exactly on the

edge vu, and finally perturb the resulting linear function again so that it is minimised on u only. Using

the original objective function of Kalai f O :=
∑

w∈V (P ) 2indegO(w), where O is an acyclic orientation,

the functionals lS show, as in Kalai’s proof (see [13] or [18, Sec. 3.4]), that the vertex sets of 2-faces

of P containing u and v are exactly the vertex sets of induced 2-regular graphs in G(P ) containing u

and v which are initial w.r.t. some acyclic orientation O′ minimising f O, and such that indegO′(u) = 0

and indegO′(v) = 1. Thus, we can construct G(P ′), where P ′ is P truncated at uv .

Case uv /∈ E(P ). Then there is at most one 2-face of P containing both u and v . Thus, when

constructing G(P ′), with P ′ being P truncated at u, if we know G(P ) and the 2-faces of P containing

u and not v , then we may miss at most one edge, one of the form wuy1wuy2 . However, if we missed

such edge, as wuy1 and wuy2 have degree d in G(P ′), we would be able to recover that edge: simply

connect the unique two vertices of degree d−1 in G(P ′) by an edge. To summarise, we can construct

G(P ′) in this case as well, completing the second proof of Theorem 4.8.

5. Concluding remarks

In this paper we measured the deviation from being a simple polytope by counting the number of

nonsimple vertices, which is perhaps the most natural way. Other measures of such deviation were

considered or suggested in the literature. Blind et al. [2] thought of an “almost” simple polytope
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as a d-polytope having only vertices of degree d or d + 1, while in [6, Sec. 8], Friedman suggested

that d-polytopes with few nonsimple vertices of degree at most d + k may be considered close to

being simple. In terms of reconstruction, Friedman’s and Blind’s suggestions are too weak. Perles’

construction already gives examples of polytopes which are not combinatorially isomorphic but share

the same (d − 3)-skeleta, having exactly d vertices of degree d + 1 while the rest of the vertices are

simple.

The last three authors considered in [16, 17] yet another measure of deviation from being a simple

polytope, the excess, defined as ξ(P ) :=
∑

v (deg(v) − d), where deg(v) denote the number of

edges incident to the vertex v . Simple polytopes have excess zero. The paper [17] then studied

reconstructions of polytopes with small excess and of polytopes with a small number of vertices (at

most 2d).
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