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Abstract
We revisit the orthogonal range searching problem and the exact `∞ nearest neighbor searching
problem for a static set of n points when the dimension d is moderately large. We give the first
data structure with near linear space that achieves truly sublinear query time when the dimension
is any constant multiple of logn. Specifically, the preprocessing time and space are O(n1+δ) for
any constant δ > 0, and the expected query time is n1−1/O(c log c) for d = c logn. The data
structure is simple and is based on a new “augmented, randomized, lopsided” variant of k-d trees.
It matches (in fact, slightly improves) the performance of previous combinatorial algorithms that
work only in the case of offline queries [Impagliazzo, Lovett, Paturi, and Schneider (2014) and
Chan (SODA’15)]. It leads to slightly faster combinatorial algorithms for all-pairs shortest paths
in general real-weighted graphs and rectangular Boolean matrix multiplication.

In the offline case, we show that the problem can be reduced to the Boolean orthogonal vectors
problem and thus admits an n2−1/O(log c)-time non-combinatorial algorithm [Abboud, Williams,
and Yu (SODA’15)]. This reduction is also simple and is based on range trees.

Finally, we use a similar approach to obtain a small improvement to Indyk’s data structure
[FOCS’98] for approximate `∞ nearest neighbor search when d = c logn.
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1 Introduction

In this paper, we revisit some classical problems in computational geometry:
In orthogonal range searching, we want to preprocess n data points in Rd so that we can
detect if there is a data point inside any query axis-aligned box, or report or count all
such points.
In dominance range searching, we are interested in the special case when the query box is
d-sided, of the form (−∞, q1]× · · · × (−∞, qd]; in other words, we want to detect if there
is a data point (p1, . . . , pd) that is dominated by a query point (q1, . . . , qd), in the sense
that pj ≤ qj for all j ∈ {1, . . . , d}, or report or count all such points.
In `∞ nearest neighbor searching, we want to preprocess n data points in Rd so that we
can find the nearest neighbor to the given query point under the `∞ metric.

∗ A full version of the paper is available at http://tmc.web.engr.illinois.edu/high_ors3_17.pdf.
† This work was done while the author was at the Cheriton School of Computer Science, University of
Waterloo.
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27:2 Orthogonal Range Searching in Moderate Dimensions

All three problems are related. Orthogonal range searching in d dimensions reduces to
dominance range searching in 2d dimensions.1 Furthermore, ignoring logarithmic factors,
`∞ nearest neighbor searching reduces to its decision problem (deciding whether the `∞
nearest neighbor distance to a given query point is at most a given radius) by parametric
search or randomized search [7], and the decision problem clearly reduces to orthogonal range
searching.

The standard k-d tree [22] has O(dn logn) preprocessing time and O(dn) space, but
the worst-case query time is O(dn1−1/d). The standard range tree [22] requires O(n logd n)
preprocessing time and space and O(logd n) query time, excluding an O(K) term for the
reporting version of the problem with output size K. Much work in computational ge-
ometry has been devoted to small improvements of a few logarithmic factors. For exam-
ple, the current best result for orthogonal range reporting has O(n logd−3+ε n) space and
O(logd−3 n/ logd−4 logn+K) time [12]; there are also other small improvements for various
offline versions of the problems [12, 13, 2].

In this paper, we are concerned with the setting when the dimension is nonconstant. Tradi-
tional approaches from computational geometry tend to suffer from exponential dependencies
in d (the so-called “curse of dimensionality”). For example, the O(dn1−1/d) or O(logd n)
query time bound for range trees or k-d trees is sublinear only when d� logn/ log logn. By
a more careful analysis [10], one can show that range trees still have sublinear query time
when d� α0 logn for a sufficiently small constant α0. The case when the dimension is close
to logarithmic in n is interesting in view of known dimensionality reduction techniques [16]
(although such techniques technically are not applicable to exact problems and, even with
approximation, do not work well for `∞). The case of polylogarithmic dimensions is also
useful in certain non-geometric applications such as all-pairs shortest paths (as we explain
later). From a theoretical perspective, it is important to understand when the time complexity
transitions from sublinear to superlinear.

Previous offline results. We first consider the offline version of the problems where we
want to answer a batch of n queries all given in advance. In high dimensions, it is possible
to do better than O(dn2)-time brute-force search, by a method of Matoušek [21] using fast
(rectangular) matrix multiplication [20]; for example, we can get n2+o(1) time for d� n0.15.
However, this approach inherently cannot give subquadratic bounds.

In 2014, a surprising discovery was made by Impagliazzo et al. [17]: range-tree-like
divide-and-conquer can still work well even when the dimension goes a bit above logarithmic.
Their algorithm can answer n offline dominance range queries (and thus orthogonal range
queries and `∞ nearest neighbor queries) in total time n2−1/O(c15 log c) (ignoring an O(K)
term for reporting) in dimension d = c logn for any possibly nonconstant c ranging from 1 to
about log1/15 n (ignoring log logn factors). Shortly after, by a more careful analysis of the
same algorithm, Chan [8] refined the time bound to n2−1/O(c log2 c), which is subquadratic
for c up to about logn, i.e., dimension up to about log2 n.

At SODA’15, Abboud, Williams, and Yu [1] obtained an even better time bound for
dominance range detection in the Boolean special case, where all coordinate values are 0’s and
1’s (in this case, the problem is better known as the Boolean orthogonal vectors problem2).

1 (p1, . . . , pd) is inside the box [a1, b1] × · · · × [ad, bd] iff (−p1, p1, . . . ,−pd, pd) is dominated by
(−a1, b1, . . . ,−ad, bd) in R2d.

2 Two vectors (p1, . . . , pd), (q1, . . . , qd) ∈ {0, 1}d are orthogonal iff
∑d

i=1 piqi = 0 iff (p1, . . . , pd) is
dominated by (1− q1, . . . , 1− qd) (recalling that our definition of dominance uses non-strict inequality).



T.M. Chan 27:3

The total time for n offline Boolean dominance range detection queries is n2−1/O(log c). The
bound n2−1/O(log c) is a natural barrier, since a faster offline Boolean dominance algorithm
would imply an algorithm for CNF-SAT with n variables and cn clauses that would beat
the currently known 2n(1−1/O(log c)) time bound [1]; and an O(n2−δ)-time algorithm for any
c = ω(1) would break the strong exponential-time hypothesis (SETH) [24]. Abboud et al.’s
algorithm was based on the polynomial method pioneered by Williams [23] (see [4, 3] for other
geometric applications). The algorithm was originally randomized but was subsequently
derandomized by Chan and Williams [9] in SODA’16 (who also extended the result from
detection to counting).

Abboud et al.’s approach has two main drawbacks, besides being applicable to the Boolean
case only: 1. it is not “combinatorial” and relies on fast rectangular matrix multiplication,
making the approach less likely to be practical, and 2. it only works in the offline setting.

Impagliazzo et al.’s range-tree method [17] is also inherently restricted to the offline
setting – in their method, the choice of dividing hyerplanes crucially requires knowledge of
all query points in advance. All this raises an intriguing open question: are there nontrivial
results for online queries in d = c logn dimensions?

New online result. In Section 2, we resolve this question by presenting a randomized data
structure with O(n1+δ) preprocessing time and space that can answer online dominance range
queries (and thus orthogonal range queries and `∞ nearest neighbor queries) in n1−1/O(c log2 c)

expected time for any d = c logn� log2 n/ log logn and for any constant δ > 0. (We assume
an oblivious adversary, i.e., that query points are independent of the random choices made
by the preprocessing algorithm.) The total time for n queries is n2−1/O(c log2 c), matching the
offline bound from Impagliazzo et al. [17] and Chan [8]. The method is purely combinatorial,
i.e., does not rely on fast matrix multiplication.

More remarkable than the result perhaps is the simplicity of the solution: it is just a
variant of k-d trees! More specifically, the dividing hyperplane is chosen in a “lopsided”
manner, along a randomly chosen coordinate axis; each node is augmented with secondary
structures for some lower-dimensional projections of the data points. The result is surprising,
considering the longstanding popularity of k-d trees among practitioners. Our contribution
lies in recognizing, and proving, that they can have good theoretical worst-case performance.
(Simple algorithms with nonobvious analyses are arguably the best kind.)

In Appendix A.1, we also describe a small improvement of the query time to n1−1/O(c log c).
This involves an interesting application of so-called covering designs (from combinatorics),
not often seen in computational geometry.

Applications. By combining with previous techniques [10, 8], our method leads to new
results for two classical, non-geometric problems: all-pairs shortest paths (APSP) and Boolean
matrix multiplication (BMM).

We obtain a new combinatorial algorithm for solving the APSP problem for arbitrary
real-weighted graphs with n vertices (or equivalently the (min,+) matrix multiplication
problem for two n×n real-valued matrices) in O((n3/ log3 n) poly(log logn)) time; see Ap-
pendix A.2. This is about a logarithmic factor faster than the best previous combinatorial
algorithm [11, 15, 8], not relying on fast matrix multiplication à la Strassen. It also extends
Chan’s combinatorial algorithm for Boolean matrix multiplication from SODA’15 [8],
which has a similar running time (although for Boolean matrix multiplication, Yu [26]
has recently obtained a further logarithmic-factor improvement).
This extension is intriguing, as (min,+) matrix multiplication over the reals appears
tougher than other problems such as standard matrix multiplication over F2, for which the
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27:4 Orthogonal Range Searching in Moderate Dimensions

well-known “four Russians” time bound of O(n3/ log2 n) [6] has still not been improved
for combinatorial algorithms.
We obtain a new combinatorial algorithm to multiply an n × log2 n and a log2 n × n
Boolean matrix in O((n2/ logn) poly(log logn)) time, which is almost optimal in the
standard word RAM model since the output requires Ω(n2/ logn) words; see the full
paper. The previous combinatorial algorithm by Chan [8] can multiply an n× log3 n and
a log3 n×n Boolean matrix in O(n2 poly(log logn)) time. The new result implies the old,
but not vice versa.

New offline result. Returning to the offline dominance or orthogonal range searching prob-
lem, Abboud, Williams, and Yu’s non-combinatorial algorithm [1] has a better n2−1/O(log c)

time bound but is only for the Boolean case, leading to researchers to ask whether the same
result holds for the more general problem for real input. In one section of Chan and Williams’
paper [9], such a result was obtained but only for d ≈ 2Θ(

√
logn).

In Section 3, we resolve this question by giving a black-box reduction from the real case to
the Boolean case, in particular, yielding n2−1/O(log c) time for any d = c logn� 2Θ(

√
logn).

This equivalence between general dominance searching and the Boolean orthogonal vectors
problem is noteworthy, since the Boolean orthogonal vectors problem has been used recently
as a basis for many conditional hardness results in P.

As one immediate application, we can now solve the integer linear programming problem
on n variables and cn constraints in 2(1−1/O(log c))n time, improving Impagliazzo et al.’s
2(1−1/poly(c))n algorithm [17].

Our new reduction is simple, this time, using a range-tree-like recursion.

Approximate `∞ nearest neighbor searching. So far, our discussion has been focused on
exact algorithms. We now turn to `∞ nearest neighbor searching in the approximate setting.
By known reductions (ignoring polylogarithmic factors) [16], it suffices to consider the fixed-
radius decision problem: deciding whether the nearest neighbor distance is approximately
less than a fixed value. Indyk [18] provided the best data structure for the problem, achieving
O(logρ log d) approximation factor, O(dnρ logn) preprocessing time, O(dnρ) space, and
O(d logn) query time for any ρ ranging from 1 to log d. The data structure is actually based
on traditional-style geometric divide-and-conquer. Andoni, Croitoru, and Pătraşcu [5] proved
a nearly matching lower bound.

In Section 4, we improve the approximation factor of Indyk’s data structure to O(logρ log c)
for dimension d = c logn, for any ρ ranging from 1 + δ to log c (as an unintended byproduct,
we also improve Indyk’s query time to O(d)). The improvement in the approximation factor
is noticeable when the dimension is close to logarithmic. It does not contradict Andoni et
al.’s lower bound [5], since their proof assumed d� log1+Ω(1) n.

For example, by setting ρ ≈ log c, we getO(1) approximation factor, nO(log c) preprocessing
time/space, and O(d) query time. By dividing into n1−α groups of size nα, we can lower the
preprocessing time/space to n1−α ·(nα)O(log(c/α)) while increasing the query time to O(dn1−α).
Setting α ≈ 1/ log c, we can thus answer n (online) queries with O(1) approximation factor
in n2−1/O(log c) total time, which curiously matches our earlier result for exact `∞ nearest
neighbor search but by a purely combinatorial algorithm.

In the full paper, we also provide an alternative data structure with linear space but a
larger O(c(1−ρ)/ρ2) approximation factor, and O(dnρ+δ) query time for any ρ ∈ (δ, 1− δ).

The idea is to modify Indyk’s method to incorporate, once again, a range-tree-like
recursion.
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2 Online Dominance Range Searching

In this section, we study data structures for online orthogonal range searching in the reporting
version (counting or detection can be dealt with similarly), using only combinatorial techniques
without fast matrix multiplication. By doubling the dimension (footnote 1), it suffices to
consider the dominance case.

Our data structure is an augmented, randomized lopsided variant of the k-d tree, where
each node contains secondary structures for various lower-dimensional projections of the
input.

Data structure. Let δ ∈ (0, 1) and c ∈ [δC0, (δ/C0) logN/ log2 logN ] be user-specified
parameters, for a sufficiently large constant C0, where N is a fixed upper bound on the size
of the input point set. Let b ≥ 2 and α ∈ (0, 1/2) be parameters to be chosen later.

Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is
simple and is constructed as follows:

0. If n ≤ 1/α or d = 0, then just store the given points.
1. Otherwise, let J be the collection of all subsets of {1, . . . , d} of size bd/bc. Then |J | =(

d
bd/bc

)
= bO(d/b). For each J ∈ J , recursively3 construct a data structure for the

projection PJ of P that keeps only the coordinate positions in J .
2. Pick a random i∗ ∈ {1, . . . , d}. Let µ(i∗) be the d(1− α)ne-th smallest i∗-th coordinate

value in P ; let p(i∗) be the corresponding point in P . Store n, i∗, and p(i∗). Recursively
construct data structures for

the subset PL of all points in P with i∗-th coordinate less than µ(i∗), and
the subset PR of all points in P with i∗-th coordinate greater than µ(i∗).

Analysis. The preprocessing time and space satisfy the recurrence

Td(n) ≤ Td(bαnc) + Td(b(1− α)nc) + bO(d/b)Tbd/bc(n) +O(n),

with Td(n) = O(n) for the base case n ≤ 1/α or d = 0. This solves to

Td(N) ≤ bO(d/b+d/b2+··· )N(log1/(1−α)N)O(logb d)

= bO(d/b)N((1/α) logN)O(logb d)

= N1+O((c/b) log b)2O(log((1/α) logN) logb d) ≤ N1+O(δ)2O(log2((1/α) logN))

by setting b := (c/δ) log(c/δ).

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our
query algorithm proceeds as follows.

0. If n ≤ 1/α or d = 0, then answer the query directly by brute-force search.
1. Otherwise, let Jq = {i ∈ {1, . . . , d} : qi 6=∞}. If |Jq| ≤ d/b, then recursively answer the

query for PJq and the projection of q with respect to Jq.
2. Else,

if qi∗ ≤ µ(i∗), then recursively answer the query for PL and q;
if qi∗ > µ(i∗), then recursively answer the query for PR and q, and recursively answer
the query for PL and q′ = (q1, . . . , qi∗−1,∞, qi∗+1, . . . , qd);
in addition, if q dominates p(i∗), then output p(i∗).

3 There are other options beside recursion here; for example, we could just use a range tree for PJ .
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27:6 Orthogonal Range Searching in Moderate Dimensions

Analysis. We assume that the query point q is independent of the random choices made
during the preprocessing of P . Let Lq = {i ∈ {1, . . . , d} : µ(i) < qi 6=∞}. Let j = |Jq| and
` = |Lq|.

Suppose that j > d/b. The probability that we make a recursive call for PR is equal
to Pr[(i∗ ∈ Lq) ∨ (i∗ 6∈ Jq)] = `/d + (1 − j/d). We always make a recursive call for PL,
either for q or a point q′ with j − 1 non-∞ values; the probability of the latter is equal to
Pr[i∗ ∈ Lq] = `/d.

Hence, the expected number of leaves in the recursion satisfies the following recurrence:

Qd,j(n) ≤


Qbd/bc,j(n) if j ≤ d/b

max`≤j
[(
`
d + 1− j

d

)
Qd,j(bαnc) +

(
`
d

)
Qd,j−1(b(1− α)nc)

+
(
1− `

d

)
Qd,j(b(1− α)nc)

]
if j > d/b,

(1)

with Qd,j(n) = 1 for the base case n ≤ 1/α or d = 0.
This recurrence looks complicated. Following [8], one way to solve it is by “guessing”. We

guess that

Qd,j(n) ≤ (1 + γ)jn1−ε

for some choice of parameters γ, ε ∈ (0, 1/2) to be specified later. We verify the guess by
induction.

The base case n ≤ 1/α or d = 0 is trivial. Assume that the guess is true for lexicographi-
cally smaller tuples (d, j, n). For j ≤ d/b, the induction trivially goes through. So assume
j > d/b. Let ` be the index that attains the maximum in (1). Then

Qd,j(n) ≤
(
`

d
+ 1− j

d

)
(1 + γ)j(αn)1−ε +

(
`

d

)
(1 + γ)j−1((1− α)n)1−ε +(

1− `

d

)
(1 + γ)j((1− α)n)1−ε

=
[(

`

d
+ 1− j

d

)
α1−ε +

(
`

d
· 1

1 + γ
+ 1− `

d

)
(1− α)1−ε

]
(1 + γ)jn1−ε

≤
[(

1− j − `
d

)
α1−ε +

(
1− γ`

2d

)
(1− α)1−ε

]
(1 + γ)jn1−ε

≤ (1 + γ)jn1−ε.

For the last inequality, we need to upper-bound the following expression by 1:(
1− j − `

d

)
α1−ε +

(
1− γ`

2d

)
(1− α)1−ε. (2)

Case I: j − ` > d/(2b). Then (2) is at most(
1− 1

2b

)
α1−ε + (1− α)1−ε ≤

(
1− 1

2b

)
αeε ln(1/α) + 1− (1− ε)α

≤
(

1− 1
2b

)
α(1 + 2ε log(1/α)) + 1− (1− ε)α

≤ 1− α

2b + 3αε log(1/α),

which is indeed at most 1 by setting ε := 1/(6b log(1/α)).
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Case II: ` > d/(2b). Then (2) is at most
α1−ε + 1− γ

4b ≤ αeε ln(1/α) + 1− γ

4b
≤ α(1 + 2ε log(1/α)) + 1− γ

4b
≤ 2α+ 1− γ

4b ,
which is indeed at most 1 by setting γ := 8bα.

We can set α := 1/b4, for example. Then γ = O(1/b3). We conclude that

Qd(N) ≤ (1 + γ)dN1−ε ≤ eγdN1−ε ≤ N1−ε+O(cγ) ≤ N1−1/O(b log b).

Now, Qd(N) only counts the number of leaves in the recursion. The recursion has depth
O(log1/(1−α)N + log d). Each internal node of the recursion has cost O(d), and each leaf
has cost O(d/α), excluding the cost of outputting points (which occurs during the base
case d = 0). Thus, the actual expected query time can be bounded by Qd(N)(bd logN)O(1),
which is N1−1/O(b log b) for b � logN/ log2 logN . As b = (c/δ) log(c/δ), the bound is
N1−1/O((c/δ) log2(c/δ)).

Slight improvement of one log(c/δ) factor in the exponent is possible, by an interesting
application of covering designs. The details are explained in Appendix A.1. Thus:

I Theorem 1. Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/ log2 logN ] for a
sufficiently large constant C1. Given N points in d = c logN dimensions, we can construct a
data structure in O(N1+δ) preprocessing time and space, so that for any query point, we can
answer a dominance range reporting query in N1−1/O(c log c) +O(K) expected time where K
is the number of reported points. For dominance range counting, we get the same time bound
but without the K term.

We mention one application to online (min,+) matrix-vector multiplication. The corollary
below follows immediately from a simple reduction [10] to d instances of d-dimensional
dominance range reporting with disjoint output.4

I Corollary 2. Let δ > 0 be any fixed constant and d = (1/C1) log2N/ log2 logN for a
sufficiently large constant C1. We can preprocess an N × d real-valued matrix A in O(N1+δ)
time, so that given a query real-valued d-dimensional vector x, we can compute the (min,+)-
product of A and x in O(N) expected time.

Applying the above corollary N/d times yields:

I Corollary 3. Let δ > 0 be any fixed constant. We can preprocess an N ×N real-valued
matrix A in O(N2+δ) time, so that given a query N-dimensional real-valued vector x, we
can compute the (min,+)-product of A and x in O((N2/ log2N) log2 logN) expected time.

A similar result was obtained by Williams [25] for online Boolean matrix-vector multipli-
cation. Recently Larsen and Williams [19] have found a faster algorithm, in the Boolean case,
but it is not combinatorial, requires amortization, and does not deal with the rectangular
matrix case in Corollary 2.

In Appendix A.2, we further show how to reduce the O(K) term in Theorem 1 by
about a logarithmic factor in the offline case, by modifying the algorithm to incorporate

4 For any j0 ∈ {1, . . . , d}, the key observation is that mind
j=1(aij +xj) = aij0 +xj0 iff (aij0−ai1, . . . , aij0−

aid) is dominated by (x1 − xj0 , . . . , xd − xj0 ) in Rd.

SoCG 2017



27:8 Orthogonal Range Searching in Moderate Dimensions

bit-packing tricks. This has applications to speeding up combinatorial algorithms for (min,+)
matrix-matrix multiplication and all-pairs shortest paths.

In the full paper, we note that the method can be simplified in the Boolean case – the
data structure becomes just an augmented, randomized variant of the trie. This has an
application to combinatorial algorithms for Boolean matrix multiplication.

3 Offline Dominance Range Searching

In this section, we study the offline orthogonal range searching problem in the counting
version (which includes the detection version), allowing the use of fast matrix multiplication.
By doubling the dimension (footnote 1), it suffices to consider the dominance case: given n
data/query points in Rd, we want to count the number of data points dominated by each
query point. We describe a black-box reduction of the real case to the Boolean case.

We use a recursion similar to a degree-s range tree (which bears some resemblance to a
low-dimensional algorithm from [13]).

Algorithm. Let δ ∈ (0, 1) and s be parameters to be set later. Let [s] denote {0, 1, . . . , s−1}.
Given a set P of n ≤ N data/query points in Rj × [s]d−j , with d ≤ c logN , our algorithm

is simple and proceeds as follows:

0. If j = 0, then all points are in [s]d and we solve the problem directly by mapping each
point (p1, . . . , pd) to a binary string 1p10s−p1 · · · 1pd0s−pd ∈ {0, 1}ds and running a known
Boolean offline dominance algorithm in ds dimensions.

1. Otherwise, for each i ∈ [s], recursively solve the problem for the subset Pi of all points in
P with ranks from i(n/s) + 1 to (i+ 1)(n/s) in the j-th coordinate.

2. “Round” the j-th coordinate values of all data points in Pi to i+ 1 and all query points
in Pi to i, and recursively solve the problem for P after rounding (which now lies in
Rj−1 × [s]d−j+1); add the results to the existing counts of all the query points.

Analysis. Suppose that the Boolean problem for n points in d ≤ c logn dimensions can be
solved in dCn2−f(c) time for some absolute constant C ≥ 1 and some function f(c) ∈ [0, 1/4].
The following recurrence bounds the total cost of the leaves of the recursion in our algorithm
(assuming that n is a power of s, for simplicity):

Td,j(n) = s Td,j(n/s) + Td,j−1(n).

For the base cases, Td,j(1) = 1; and if n >
√
N , then Td,0(n) ≤ (ds)Cn2−f(2cs) (since

the Boolean subproblems have dimension ds ≤ cs logN ≤ 2cs logn). On the other hand,
if n ≤

√
N , we can use brute force to get Td,0(n) ≤ dn2 ≤ dn3/2N1/4. In any case,

Td,0(n) ≤ (ds)Cn3/2N1/2−f(2cs) = An3/2 where we let A := (ds)CN1/2−f(2cs).
One way5 to solve this recurrence is again by “guessing”. We guess that

Td,j(n) ≤ (1 + γ)jAn3/2

for some choice of parameter γ ∈ (0, 1) to be determined later. We verify the guess by
induction.

5 Since this particular recurrence is simple enough, an alternative, more direct way is to expand Td,d(N)
into a sum

∑
i≥0

(
d+i

i

)
siTd,0(N/si) ≤

∑
i≥0 O( d+i

i
√

s
)i ·AN3/2, and observe that the maximum term

occurs when i is near d/
√

s. . .
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The base cases are trivial. Assume that the guess is true for lexicographically smaller
(j, n). Then

Td,j(n) ≤ (1 + γ)jAs(n/s)3/2 + (1 + γ)j−1An3/2

=
[

1√
s

+ 1
1 + γ

]
(1 + γ)jAn3/2 ≤ (1 + γ)jAn3/2,

provided that
1√
s

+ 1
1 + γ

≤ 1,

which is true by setting γ := 2/
√
s.

We can set s := c4, for example. Then γ = O(1/c2). We conclude that

Td,d(N) ≤ (1 + γ)dAN3/2 ≤ eγd(ds)O(1)N2−f(2cs)

≤ (ds)O(1)N2−f(2cs)+O(γc)

= dO(1)N2−f(2c5)+O(1/c).

Now, Td,d(N) excludes the cost at internal nodes of the recursion. Since the recursion has
depth at most logsN + d, the actual running time can be bounded by Td,d(n)(d logN)O(1).

Abboud, Williams, and Yu’s algorithm [1] for the Boolean case, as derandomized by
Chan and Williams [9], achieves f(c) = 1/O(log c), yielding an overall time bound of
N2−1/O(log c)(d logN)O(1), which is N2−1/O(log c) for log c�

√
logN .

I Theorem 4. Let c ∈ [1, 2(1/C1)
√

logN ] for a sufficiently large constant C1. Given N points
in d = c logN dimensions, we can answer N offline dominance range counting queries in
N2−1/O(log c) time.

We remark that if the Boolean problem could be solved in truly subquadratic time
dO(1)N2−ε, then the above analysis (with s := (c logN)2, say) would imply that the general
problem could be solved in truly subquadratic time with the same ε, up to (d logN)O(1)

factors.

4 Approximate `∞ Nearest Neighbor Searching

In this section, we study (online, combinatorial) data structures for t-approximate `∞ nearest
neighbor search. By known reductions [16, 18], it suffices to solve the fixed-radius approximate
decision problem, say, for radius r = 1/2: given a query point q, we want to find a data
point of distance at most distance t/2 from q, under the promise that the nearest neighbor
distance is at most 1/2.

Our solution closely follows Indyk’s divide-and-conquer method [18], with a simple
modification that incorporates a range-tree-like recursion.

Data structure. Let δ ∈ (0, 1), ρ > 1, and c ≥ 4 be user-specified parameters. Let s and k
be parameters to be chosen later.

Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is
constructed as follows:

0. If n ≤ s or d = 0, then just store the points in P .
Otherwise, compute and store the median first coordinate µ in P . Let P>i (resp. P<i)
denote the subset of all points in P with first coordinate greater than (resp. less than)
µ+ i. Let αi := |P>i|/n and βi := |P<−i|/n. Note that the αi’s and βi’s are decreasing
sequences with α0 = β0 = 1/2.
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1. If αk > 1/s and αi+1 > αρi for some i ∈ {0, 1, . . . , k − 1}, then set type = (1, i) and
recursively construct a data structure for P>i and for P<i+1.

2. Else if βk > 1/s and βi+1 > βρi for some i ∈ {0, 1, . . . , k − 1}, then set type = (2, i) and
recursively construct a data structure for P<−i and for P>−(i+1).

3. Else if αk, βk ≤ 1/s, then set type = 3 and recursively construct a data structure for
the set P>k ∪ P<−k and
the (d − 1)-dimensional projection of P − (P>k+1 ∪ P<−(k+1)) that drops the first
coordinate (this recursion in d − 1 dimensions is where our algorithm differs from
Indyk’s).

We set k :=
⌈
logρ log s

⌉
. Then one of the tests in steps 1–3 must be true. To see this,

suppose that αk > 1/s (the scenario βk > 1/s is symmetric), and suppose that i does not
exist in step 1. Then αk ≤ (1/2)ρk ≤ 1/s, a contradiction.

Analysis. The space usage is proportional to the number of points stored at the leaves
in the recursion, which satisfies the following recurrence (by using the top expression with
(α, α′) = (αi, αi+1) for step 1 or (α, α′) = (βi, βi+1) for step 2, or the bottom expression for
step 3):

Sd(n) ≤ max

 max
α,α′: α′>αρ, 1/s<α′≤α≤1/2

[Sd(αn) + Sd((1− α′)n)]

Sd(2n/s) + Sd−1(n),
(3)

with Sd(n) = n for the base case n ≤ s or d = 0.
We guess that

Sd(n) ≤ (1 + γ)dnρ

for some choice of parameter γ ∈ (0, 1). We verify the guess by induction.
The base case is trivial. Assume that the guess is true for lexicographically smaller (d, n).

Case I: the maximum in (3) is attained by the top expression and by α, α′. Then
Sd(n) ≤ (1 + γ)d [(αn)ρ + ((1− α′)n)ρ]

≤ [αρ + 1− α′] (1 + γ)dnρ

≤ (1 + γ)dnρ.
Case II: the maximum in (3) is attained by the bottom expression. Then

Sd(n) ≤ (1 + γ)d(2n/s)ρ + (1 + γ)d−1nρ

≤
[(

2
s

)ρ
+ 1

1 + γ

]
(1 + γ)dnρ

≤ (1 + γ)dnρ

by setting s := 2(2/γ)1/ρ.

Set γ := δ/c. Then s = O((c/δ)1/ρ) and k = logρ log(c/δ) +O(1). We conclude that

Sd(N) ≤ eγdNρ ≤ Nρ+O(γc) = Nρ+O(δ).

For the preprocessing time, observe that the depth of the recursion is h := O(logs/(s−1)N+
d) (since at each recursive step, the size of the subsets drops by a factor of 1− 1/s or the
dimension decreases by 1). Now, h = O(s logN + d) ≤ O((c/δ) logN + d) = O((c/δ) logN).
Hence, the preprocessing time can be bounded by O(Sd(N)h) = O((c/δ)Nρ+δ logN).
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Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our
query algorithm proceeds as follows:

0. If n ≤ s or d = 0, then answer the query directly by brute-force search.
1. If type = (1, i): if q1 > i+ 1/2, then recursively answer the query in P>i, else recursively

answer the query in P<i+1.
2. If type = (2, i): proceed symmetrically.
3. If type = 3:

if q1 > k + 1/2 or q1 < −(k + 1/2), then recursively answer the query in P>k ∪ P<−k;
else recursively answer the query in P − (P>k+1 ∪ P<−(k+1)), after dropping the first
coordinate of q.

Note that in the last subcase of step 3, any returned point has distance at most 2k + 3/2
from q in terms of the first coordinate. By induction, the approximation factor t is at most
4k + 3 = O(logρ log(c/δ)).

Analysis. The query time is clearly bounded by the depth h, which is O((c/δ) logN).

I Theorem 5. Let δ > 0 be any fixed constant. Let ρ > 1 and c ≥ Ω(1). Given N

points in d = c logN dimensions, we can construct a data structure in O(dNρ+δ) time and
O(dN +Nρ+δ) space, so that we can handle the fixed-radius decision version of approximate
`∞ nearest neighbor queries in O(d) time with approximation factor O(logρ log c).
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A Online Dominance Range Searching (Continued)

A.1 Slightly Improved Version
We now describe a small improvement to the data structure in Section 2. The idea is to
replace J with a collection of slightly larger subsets, but with fewer subsets, so that any
set Jq of size t := bd/bc is covered by some subset in J ∈ J . Such a collection is called
a covering design (e.g., see [14]), which can be constructed easily by random sampling, as
explained in see part (i) of the lemma below. In our application, we also need a good time
bound for finding such a J ∈ J for a given query set Jq; this is addressed in part (ii) of the
lemma. (Proofs are deferred to the full paper.)

http://dl.acm.org/citation.cfm?id=1283383.1283490
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I Lemma 6 (Covering designs). Given numbers v ≥ k ≥ t and N , and given a size-v ground
set V ,
(i) we can construct a collection J of at most

((
v
t

)/(
k
t

))
lnN size-k subsets of V in O(v|J |)

time, so that given any query size-t subset Jq ⊂ V , we can find a subset J ∈ J containing
Jq in O(v|J |) time with success probability at least 1− 1/N ;

(ii) alternatively, with a larger collection J of at most
((
v
t

)/(
k
t

))2
ln2(vN) subsets, we can

reduce the query time to O(v3 log2(vN)).

We now modify the data structure in Section 2 as follows. In step 1, we change J to
a collection of size-bd/2c subsets of {1, . . . , d} obtained from Lemma 6(ii) with (v, k, t) =
(d, bd/2c , bd/bc). Then |J | ≤

((
d
bd/bc

)/(bd/2c
bd/bc

))2
ln2(dN) ≤ 2O(d/b) log2N . The recurrence

for the preprocessing time and space then improves to

Td(n) ≤ Td(bαnc) + Td(b(1− α)nc) + (2O(d/b) log2N)Tbd/bc(n) +O(n),

which solves to Td(N) ≤ 2O(d/b+d/b2+··· )N(log1/(1−α)N)O(logb d) ≤ N1+O(δ)2O(log2((1/α) logN)),
this time by setting b := c/δ (instead of b := (c/δ) log(c/δ)).

In the query algorithm, we modify step 1 by finding a set J ∈ J containing Jq by
Lemma 6(ii) and recursively querying PJ (instead of PJq ). If no such J exists, we can afford
to switch to brute-force search, since this happens with probability less than 1/N . The
analysis of the recurrence for Qd(N) remains the same. Each internal node of the recursion
now has cost O(d3 log2N) by Lemma 6(ii); the extra factor will not affect the final bound.
The overall query time is still N1−1/O(b log b), which is now N1−1/O((c/δ) log(c/δ)).

A.2 Offline Packed-Output Version, with Application to APSP
In this subsection, we discuss how to refine the algorithm in Section 2, so that the output
can be reported in roughly O(K/ logn) time instead of O(K) in the offline setting. The
approach is to combine the algorithm with bit-packing tricks.

We assume a w-bit word RAM model which allows for certain exotic word operations. In
the case of w := δ0 logN for a sufficiently small constant δ0 > 0, exotic operations can be
simulated in constant time by table lookup; the precomputation of the tables requires only
NO(δ0) time.

We begin with techniques to represent and manipulate sparse sets of integers in the word
RAM model. Let z be a parameter to be set later. In what follows, an interval [a, b) refers
to the integer set {a, a+ 1, . . . , b− 1}. A block refers to an interval of the form [kz, (k+ 1)z).
Given a set S of integers over an interval I of length n, we define its compressed representation
to be a doubly linked list of mini-sets, where for each of the O(dn/ze) blocks B intersecting
I (in sorted order), we store the mini-set {j mod z : j ∈ S ∩ B}, which consists of small
(log z)-bit numbers and can be packed in O((|S∩B|/w) log z+1) words. The total number of
words in the compressed representation is O((|S|/w) log z + n/z + 1). Proofs of the following
facts can be found in the full paper.

I Lemma 7 (Bit-packing tricks).
(i) Given compressed representations of two sets S1 and S2 over two disjoint intervals, we

can compute the compressed representation of S1 ∪ S2 in O(1) time.
(ii) Given compressed representations of S0, . . . , Sm−1 ⊂ [0, n), we can compute the com-

pressed representations of T0, . . . , Tn−1 ⊂ [0,m) with Tj = {i : j ∈ Si} (called the
transposition of S0, . . . , Sm−1), in O((K/w) log2 z + mn/z + m + n + z) time, where
K =

∑m−1
i=0 |Si|.

SoCG 2017



27:14 Orthogonal Range Searching in Moderate Dimensions

(iii) Given compressed representations of S0, . . . , Sm−1 ⊂ [0, n) and a bijective function
π : [0, n) → [0, n) which is evaluable in constant time, we can compute compressed
representations of π(S1), . . . , π(Sm) in O((K/w) log2 z+mn/z+m+n+ z) time, where
K =

∑m−1
i=0 |Si|.

I Theorem 8. Assume z ≤ No(1). Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/
log2 logN ] for a sufficiently large constant C1. Given a set P of N points in d = c logN
dimensions, we can construct a data structure in O(N1+δ) preprocessing time and space, so
that we can answer N offline dominance range reporting queries (with a compressed output
representation) in N2−1/O(c log c) +O(((K/w) log2 z +N2/z) log d) time where K is the total
number of reported points over the N queries.

Proof. We adapt the preprocessing and query algorithm in Section 2, with the improvement
from Appendix A.1. A numbering of a set S of n elements refers to a bijection from S to
n consecutive integers. For each point set P generated by the preprocessing algorithm, we
define a numbering φP of P simply by recursively “concatenating” the numberings φPL and
φPR and appending p(i∗). The output to each query for P will be a compressed representation
of the subset of dominated points after applying φP .

In step 2 of the query algorithm, we can union the output for PL and for PR in O(1) time
by Lemma 7(i). In step 1 of the query algorithm, we need additional work since the output
is with respect to a different numbering φPJ , for some set J ∈ J . For each J ∈ J , we can
change the compressed representation to follow the numbering φP by invoking Lemma 7(iii),
after collecting all query points Q(PJ) that are passed to PJ (since queries are offline). To
account for the cost of this invocation to Lemma 7(iii), we charge (a) (1/w) log2 z units to
each output feature, (b) 1/z units to each point pair in PJ ×Q(PJ ), (c) 1 unit to each point
in PJ , and (d) 1 unit to each point in Q(PJ), and (e) z units to the point set PJ itself.

Each output feature or each point pair is charged O(log d) times, since d decreases to bd/2c
with each charge. Thus, the total cost for (a) and (b) is O((K/w) log2 z log d+ (N2/z) log d).
The total cost of (c) is N1+o(1) by the analysis of our original preprocessing algorithm;
similarly, the total cost of (e) is zN1+o(1). The total cost of (d) is N2−1/O(c log c) by the
analysis of our original query algorithm.

We can make the final compressed representations to be with respect to any user-specified
numbering of P , by one last invocation to Lemma 7(iii). The algorithm can be derandomized,
as noted in the full paper. J

One may wonder whether the previous range-tree-like offline algorithm by Impagliazzo et
al. [17, 8] could also be adapted; the problem there is that d is only decremented rather than
halved, which makes the cost of re-numbering too large.

The main application is to (min,+) matrix multiplication and all-pairs shortest paths
(APSP). The corollary below follows immediately from a simple reduction [10] (see footnote 4)
to d instances of d-dimensional offline dominance range reporting where the total output size
K is O(n2). Here, we set w := δ0 logN and z := poly(logN).

I Corollary 9. Let d = (1/C1) log2N/ log2 logN for a sufficiently large constant C1. Given
an N × d and a d ×N real-valued matrix, we can compute their (min,+)-product (with a
compressed output representation) in O((N2/ logN) log3 logN) expected time.

The corollary below follows from applying Corollary 9 q/d times, in conjunction with a
subroutine by Chan [11, Corollary 2.5]. (The result improves [11, Corollary 2.6].)

I Corollary 10. Let q = log3N/ log5 logN . Given an N × q and a q×N real-valued matrix,
we can compute their (min,+)-product in O(N2) time.
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Applying Corollary 10 N/q times (and using a standard reduction from APSP to (min,+)-
multiplication), we obtain:

I Corollary 11. Given two N×N real-valued matrices, we can compute their (min,+)-product
by a combinatorial algorithm in O((N3/ log3N) log5 logN) time. Consequently, we obtain a
combinatorial algorithm for APSP for arbitrary N -vertex real-weighted graphs with the same
time bound.

Note that Williams’ algorithm [23] is faster (achieving N3/2Ω(
√

logN) time), but is non-
combinatorial and gives a worse time bound (O(N2 logO(1)N)) for the rectangular matrix
case in Corollary 10.
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