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OPTIMAL LINE PACKINGS FROM NONABELIAN GROUPS

JOSEPH W. IVERSON, JOHN JASPER, AND DUSTIN G. MIXON

Abstract. We use group schemes to construct optimal packings of lines through the origin.
In this setting, optimal line packings are naturally characterized using representation theory,
which in turn leads to a necessary integrality condition for the existence of equiangular
central group frames. We conclude with an infinite family of optimal line packings using the
group schemes associated with certain Suzuki 2-groups, specifically, extensions of Heisenberg
groups. Notably, this is the first known infinite family of equiangular tight frames generated
by representations of nonabelian groups.

1. Introduction

How does one pack n points in complex projective space CPm−1 so that the minimum
distance is maximized? At first glance, this problem of optimal line packings bears some
resemblance to the problem of packing points on a sphere. The latter problem enjoys famous
instances such as the kissing number problem (dating back to Newton [35]) and the Tammes
problem [46]. The former problem has been the subject of active research since the seminal
work of Conway, Hardin and Sloane [7] and the identification by Strohmer and Heath [45]
of its applications to coding and communication.

Given two points p, q ∈ CPm−1, let a, b ∈ Cm denote unit-norm representatives of the
corresponding lines in Cm, respectively. Then any reasonable metric on CPm−1 will take
the distance between p and q to be some decreasing function of |〈a, b〉|. For example, the

so-called chordal distance between p and q is given by
√
1− |〈a, b〉|2. In pursuit of an optimal

line packing, we therefore seek a sequence Φ = {φi}ni=1 of unit vectors in Cm that minimizes

µ(Φ) := max
i,j∈{1,...,n}

i 6=j

|〈φi, φj〉|.

We refer to µ(Φ) as the coherence of Φ.
In order to provably minimize coherence, the most successful approach has been to achieve

equality in some lower bound. To this end, the so-called Welch bound has been particularly
effective (see [14] for a survey):

(1.1) µ(Φ) ≥
√

n−m

m(n− 1)
.

This bound has been rediscovered multiple times [37, 50, 29, 7], in part because its proof is
so simple: Let ‖ · ‖F be the Frobenius norm. Denoting the m× n matrix Φ = [φ1 · · ·φn] by
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abuse of notation, we have

(1.2) 0 ≤
∥∥∥ΦΦ∗ − n

m
I
∥∥∥
2

F
= ‖Φ∗Φ‖2F − n2

m
≤ n + n(n− 1)µ(Φ)2 − n2

m
,

the last inequality follows from bounding the off-diagonal entries of the Gram matrix Φ∗Φ
by µ(Φ). Rearranging then gives the Welch bound.

Observe that the proof (1.2) of the Welch bound illuminates exactly when equality occurs:
It is necessary and sufficient that there exist scalars α and β such that

(1.3) ΦΦ∗ = αI and |〈φi, φj〉| = β whenever i 6= j.

(Indeed, tr(ΦΦ∗) = tr(Φ∗Φ) = n forces α = n/m, and then ‖Φ∗Φ‖2F = ‖ΦΦ∗‖2F = n2/m
forces β to equal the Welch bound.) Ensembles which satisfy the first requirement in (1.3)
were historically known as eutactic stars [41], but the recent literature instead refers to
them as tight frames due to their significance in frame theory [12, 8]. Since the second
condition in (1.3) imposes equiangularity between the vectors, we refer to Welch bound–
equality ensembles as equiangular tight frames (ETFs).

For this paper, it is convenient to rescale the vectors in a given ETF so that ΦΦ∗ = I,
that is, α = 1. In doing so, the norms of our frame vectors become

(1.4) ‖φi‖2 =
m

n
(1 ≤ i ≤ n),

and the angle β becomes a rescaled version of the Welch bound:

(1.5) β =

√
m(n−m)

n2(n− 1)
.

Tight frames with α = 1 are called Parseval frames, since they satisfy the following Parseval-
type identity:

n∑

i=1

|〈x, φi〉|2 = ‖x‖2 for all x ∈ Cm.

Note that Φ is a Parseval frame precisely when Φ∗Φ is an orthogonal projection. Furthermore,
given an orthogonal projection P , one may take its spectral decomposition to find a Parseval
frame Φ such that Φ∗Φ = P . As such, the pursuit of ETFs can be recast as finding orthogonal
projections with both a constant diagonal and an off-diagonal of constant modulus.

Some of the earliest known examples of ETFs were harmonic frames [45], in which Φ is
constructed from the character table of an abelian group by collecting rows indexed by a
so-called difference set [45, 52, 11]. While harmonic ETFs are the ETFs that exhibit abelian
symmetry, the pursuit of new ETFs compels one to seek nonabelian symmetry. Along these
lines, Zauner’s conjecture in quantum information theory suggests the existence of an ETF
of n = m2 vectors in Cm with Heisenberg symmetry for every m [53, 42].

This paper constructs ETFs with nonabelian symmetry through a generalization of the
harmonic ETF theory. While our construction and its relation to harmonic ETFs can be
described in purely group-theoretic terms, we will work in the broader arena of association
schemes, as detailed in Section 2. Working in this context offers no additional difficulties, and
in our opinion, even simplifies matters. Every association scheme gives rise to a distinguished
set of Parseval frames whose Gram matrices lie in its adjacency algebra. Characterizing
ETFs of this form leads to a notion of hyperdifference sets, which unify several disparate
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ETF constructions, such as harmonic ETFs, those involving skew-symmetric conference
matrices [38, 44], as well as real ETFs with so-called centroidal symmetry [13]. Section 3
then focuses on a particular type of association schemes, namely, group schemes. Here,
hyperdifference sets enjoy a characterization in terms of the representations of the underlying
group, and the resulting ETFs are known as central group frames (introduced in [48]).
Furthermore, this characterization leads to a necessary integrality condition on the existence
of such hyperdifference sets, which we then use to significantly reduce the search space in
certain cases.

The second half of this paper focuses on a new example of the theory developed in Sec-
tions 2 and 3. Specifically, we discover an infinite family of ETFs by studying the group
schemes associated with Suzuki 2-groups [20]. The reader primarily interested in our new
construction of nonabelian group frames can safely start here and look back to Sections 2
and 3 as necessary. In Section 4, we use character theory to establish the existence of these
ETFs, and in Section 5, we explicitly construct the ETFs out of copies of an extension of
the Heisenberg group. This is particularly interesting in light of Zauner’s conjecture [53, 42],
though instead of n = m2, our construction takes

m = 22k(22k+1 − 1), n = 22(2k+1)

for any positive integer k.

2. Association schemes and hyperdifference sets

In the case of abelian group frames, ETFs are in one-to-one correspondence with difference
sets. For nonabelian groups there is a notion of difference set, however there is no obvious
connection to ETFs arising as group frames from nonabelian groups. In this section we will
present a generalization of difference sets which we call hyperdifference sets. The theory of
hyperdifference sets is naturally presented in the context of association schemes, which has
the pleasing consequence of placing harmonic ETFs, real ETFs with centroidal symmetry,
and the ETFs in [38] and [44] within the same theory.

2.1. Review of association schemes.

Definition 2.1. An association scheme is a pair X = (X, {Ri}di=0) consisting of a finite set
X and relations Ri ⊆ X ×X , with the following properties:

(R1) {Ri}di=0 is a partition of X ×X .
(R2) Some relation, say R0, is the identity R0 = {(x, x) : x ∈ X}.
(R3) For each i ∈ {0, . . . , d}, there is some i′ such that Ri′ = {(y, x) : (x, y) ∈ Ri}.
(R4) For any i, j, k ∈ {0, . . . , d}, there is a constant pki,j such that, for any (x, y) ∈ Rk,

|{z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj}| = pki,j .

These constants are the intersection numbers of the scheme.
(R5) For any i, j, k ∈ {0, . . . , d}, we have pki,j = pkj,i.

We refer to nonidentity relations as classes, so that d is the number of classes. The constant
ki = p0i,i′ = p0i′,i is called the valency of Ri. The scheme is symmetric if each Ri is a symmetric
relation. If properties (R1)–(R4) hold but (R5) fails, we have a non-commutative association
scheme.
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We associate each relation Ri with an adjacency matrix Ai ∈Mn(C) whose (j, k) entry is

Ai(j, k) =

{
1, if (xj , xk) ∈ Ri

0, if (xj , xk) /∈ Ri.

The axioms of an association scheme place equivalent conditions on the adjacency matrices:

(A1) A0 + · · ·+ Ad = J , the all-ones matrix.
(A2) One of the adjacency matrices, say A0, is the identity matrix.
(A3) The set {A0, . . . , Ad} is closed under taking transposes.
(A4) The adjacency matrices span a subalgebra A ⊆Mn(C), called the adjacency algebra

or the Bose-Mesner algebra. Specifically, for every i, j ∈ {0, . . . , d} there are numbers
pki,j (necessarily nonnegative integers) such that

AiAj =
d∑

k=0

pki,jAk.

(A5) The adjacency algebra is commutative.

The valency ki is the constant number of 1’s in any row or column of Ai. The scheme is
symmetric if and only if ATi = Ai for every i.

Example 2.2. Let G be a finite abelian group. Each element g ∈ G determines a relation

Rg = {(h, k) ∈ G×G : hk−1 = g},
and X := (G, {Rg}g∈G) is an association scheme whose adjacency matrices {Ag}g∈G describe
the translation operators on L2(G). The adjacency algebra is isomorphic to the group algebra
C[G] through the mapping Ag 7→ δg, the latter being a canonical basis element of C[G]. Every
relation in X has valency 1, so the scheme is called thin. Conversely, given a thin association
scheme we see that the set of adjacency matrices forms a group. The association scheme
arises from this group as described above.

Non-symmetric association schemes were first axiomatized by Delsarte in his PhD thesis
[9]. We recommend [4] for a thorough introduction.

Let X = (X, {Ri}di=0) be an association scheme with |X| = n, and let A0, . . . , Ad be its
adjacency matrices. They form a basis for the adjacency algebra A , which is a commutative
∗-algebra. Putting together (A3) and (A5), we see that the adjacency matrices form a
commuting set of normal operators. By the spectral theorem, the adjacency algebra has
a second basis of mutually orthogonal primitive idempotents E0, . . . , Ed, i.e., the set of
projections onto the maximal eigenspaces of the adjacency matrices, and hence the maximal
eigenspaces of all of A . Since span{(1, . . . , 1)} is a maximal eigenspace of J ∈ A , one of
the idempotents is projection onto that space, and we may assume that E0 = (1/n)J .

In Example 2.2 we saw that the set of adjacency matrices of an association scheme can
be thought of as a generalization of an abelian group. We see in the next example that the
basis of idempotents plays the role of the dual group.

Example 2.3. When our scheme comes from a finite abelian group G, the primitive idempo-
tents are indexed by the Pontryagin dual Ĝ, which consists of all homomorphisms α : G→ T
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from G to the multiplicative group of unimodular complex numbers. With each character

α ∈ Ĝ, we associate a projection

Eα =
1

|G|
∑

g∈G

α(g)Ag ∈ A

of rank mα = 1.

The complex vector space spanned by A0, . . . , Ad admits another multiplication which
plays an important role in our theory. The Hadamard product of two matrices M1,M2 ∈
Mn(C) is obtained by entry-wise multiplication:

(M1 ◦M2)(i, j) =M1(i, j) ·M2(i, j) (1 ≤ i, j ≤ n).

The corresponding involution is entry-wise complex conjugation, which we denote by

M(i, j) =M(i, j) (M ∈Mn(C), 1 ≤ i, j ≤ n).

The span of A0, . . . , Ad is closed under both of these operations, since Ai = Ai and

(2.1) Ai ◦ Aj = δi,jAi (i, j ∈ {0, . . . , d}).

To distinguish between Hadamard and matrix multiplication, we write Â for the ∗-algebra
spanned by A0, . . . , Ad with the Hadamard product and complex conjugation. Its multi-
plicative identity is J = nE0. The projection matrices E0, . . . , Ed still form a linear basis

for Â , and they behave well under its involution: for every i ∈ {0, . . . , d}, there is some
ı̂ ∈ {0, . . . , d} such that Eı̂ = Ei = ET

i .

The algebras A and Â are dual in a certain sense; cf. [4, Ch. II, §5]. Under this duality,
the intersection numbers of A roughly correspond with the Krein parameters of Â , which
are the unique constants qki,j ∈ C such that

Ei ◦ Ej =
1

n

d∑

k=0

qki,jEk (0 ≤ i, j ≤ d).

The Krein condition says that qki,j ≥ 0 for all i, j, k ∈ {0, . . . , d} [4, Theorem 3.8].
Having reviewed the basics of association schemes, we are now ready to discuss their

application to the construction of equiangular tight frames.

2.2. Parseval frames and hyperdifference sets. If X is an association scheme with
primitive idempotents E0, . . . , Ed, then for any D ⊆ {0, . . . , d} we form the operator

GD =
∑

j∈D

Ej.

Since the maximal idempotents are mutually orthogonal, if follows that GD is a projection,
and hence the Gram matrix of some Parseval frame. Set mi = rankEi and mD = rankGD =∑

i∈Dmi.
Our goal is not just to create tight frames, but equiangular tight frames. Again, looking

at the case of abelian groups is instructive.
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Example 2.4. Let G be a finite abelian group, as in Examples 2.2 and 2.3. For any D ⊆ Ĝ,
the matrix

GD =
∑

α∈D

Eα

is the G×G matrix with entries

(GD)g,h =
1

|G|
∑

α∈D

α(hg−1) =
1

|G|
∑

α∈D

α(h)α(g) (g, h ∈ G).

This is the Gram matrix of the harmonic frame (introduced in [21, 17])

ΦD = |G|−1/2 (α(g))α∈D, g∈G ,

which is obtained by extracting the rows indexed by D from the discrete Fourier transform
(DFT) matrix for G. In this context, the choices of D that lead to ETFs are called difference
sets. Note that GD is the Gram matrix of an ETF if and only if the off-diagonal entries have
constant modulus. This is the motivation for the following definition.

Definition 2.5. Let X be an association scheme, and let E0, . . . , Ed be the basis of primitive
idempotents for the adjacency algebra A . A set D ⊆ {0, . . . , d} is called a hyperdifference
set if the off-diagonal entries of the matrix GD all have equal modulus.

The “hyper” here comes from the fact that a hyperdifference set is a subset of the primitive
idempotents in the dual adjacency algebra of an association scheme. While this set is a linear

basis for the algebra Â , it also forms a hypergroup. See Remark 2.10 below.
In the next example we see that a large class of real ETFs come from hyperdifference sets.

In particular, ETFs with centroidal symmetry [13], also known as regular ETFs [5], come
from 2-class association schemes related to certain strongly regular graphs.

Example 2.6. A collection of symmetric v × v matrices {I, A1, A2} are the adjacency ma-
trices of a 2-class association scheme if and only if A1 and A2 are the adjacency matrices of
complementary strongly regular graphs on v vertices. Let A1 be the adjacency matrix of a
strongly regular graph with parameters v, k, λ, and µ, that is, A2

1+(µ−λ)A1+(µ−k)I = µJ .
In this case, the primitive idempotents are given by

E0 =
1

v
J, E1 =

λ− − k − λ−v

v(λ+ − λ−)
I+

v − k + λ−
v(λ+ − λ−)

A1+
λ− − k

v(λ+ − λ−)
A2, E2 = I−E0−E1.

where λ± = 1
2

[
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

]
.

It turns out that this association scheme yields a nontrivial hyperdifference set (i.e. distinct
from {0}, {1, 2}, and {0, 1, 2}) if and only if 2k − v is either 2λ+ or 2λ−. If 2k − v = 2λ−,
then E1 and E0+E2 = I−E1 are Gram matrices of ETFs. That is, {1} and {0, 2} are both
hyperdifference sets. Alternatively, if 2k−v = 2λ+, then E2 and E0+E1 = I−E2 are Gram
matrices of ETFs. That is, {2} and {0, 1} are hyperdifference sets.

Remark 2.7. The association scheme approach outlined above goes back to the work of Del-
sarte, Goethels, and Seidel on real spherical t-designs with few angles [10]. Specifically,
let Φ = {ϕi}ni=1 ∈ Rm×n be a sequence of real, equiangular, unit-norm vectors, and let
µ = |〈ϕi, ϕj〉| for i 6= j. If Φ is a spherical 2-design, then [10, Theorem 7.4] implies that ΦTΦ
carries a 2-class association scheme X = {I, A1, A2}, in the sense that ΦTΦ = I + µA1 − µA2.
By [22, Proposition 1.2], Φ is a spherical 2-design if and only if it is a tight frame and
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∑n
i=1 ϕi = 0. This is the case for the ETFs in Example 2.6 corresponding to the hyperdif-

ference sets {1} and {2}, by [13, Theorem 3.1(b)(ii)]. There are many examples, including

several infinite families with n < m(m+1)
2

[13].

On the other hand, every real ETF Φ gives rise to a 3-distance spherical 3-design Φ̃ :=
[Φ,−Φ], by [10, Example 8.3]. Then the Gram matrix of Φ̃ carries a symmetric, 3-class
association scheme by [10, Theorem 7.4]. Coming from the other direction, one can start with
a symmetric, 3-class association scheme and comb through the idempotents in its adjacency

algebra to find Φ̃T Φ̃. Then one can recover Φ from Φ̃ by discarding a vector from each pair
{ϕi,−ϕi}. In this sense, every real ETF arises from a projection in the adjacency algebra of
an association scheme. For more details and an analogue for complex ETFs, we refer to our
followup papers [25, 27]. In contrast, the present article focuses exclusively on ETFs Φ for
which Φ∗Φ already lies in the adjacency algebra of an association scheme.

Finally, the complex ETFs which are the focus of this article have considerably less overlap
with t-designs. If Φ ∈ Cm×n is a sequence of complex equiangular unit-norm vectors, then
it is a complex 2-design (in the sense of Roy [39]) if and only if n = m2, by [39, Corollary
3.5.15]. One can also consider projective 2-designs, but the same obstruction occurs, as any
projective 2-design for CPm−1 requires at leastm2 lines [3]. By way of comparison, a complex
ETF in Cm can have at most m2 vectors [22, Proposition 3.4], and only finitely examples
are currently known to saturate this bound. (This is the subject of Zauner’s conjecture [53],
which is still unresolved as of this writing.) Overall, there is very little overlap between
complex ETFs and t-designs with few angles. However, given the similarities between these
notions, it is perhaps unsurprising that association schemes give rise to many interesting
examples of complex ETFs.

Proposition 2.8. Given D ⊆ {0, . . . , d}, define constants

bk :=
∑

i,j∈D

qki,̂ (0 ≤ k ≤ d).

Then the following are equivalent:

(i) D is a hyperdifference set
(ii) There are constants C1, C2 ≥ 0 such that

(2.2) GD ◦ GD = C1E0 + C2

d∑

k=0

Ek.

(iii) b1 = b2 = · · · = bd.

If one of the equivalent conditions (i)–(iii) holds, then

(2.3) C1 =
mD(n−mD)

n(n− 1)
and bk = nC2 =

mD(mD − 1)

n− 1
for k ∈ {1, . . . , d}.

The equivalence of (i) and (ii) above shows that our hyperdifference sets are in some
sense dual to the association scheme difference sets as introduced by Godsil [16]. In partic-
ular, Godsil’s difference sets use adjacency matrices, matrix multiplication, and conjugate
transposes where we have primitive idempotents, Hadamard multiplication, and entrywise
complex conjugation, respectively, in (ii).
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Proof of Proposition 2.8. Since GD ◦GD is the entrywise square of GD, equivalence of (i) and

(ii) follows from the observation that nE0 is the all-ones matrix, and
∑d

j=0Ej is the identity
matrix.

For the equivalence of (ii) and (iii), first note that

(2.4) GD ◦ GD =

(∑

i∈D

Ei

)
◦
(∑

j∈D

Ej

)
=
∑

i,j∈D

(
Ei ◦ Ej

)
=
∑

i,j∈D

1

n

d∑

k=0

qki,̂Ek =
1

n

d∑

k=0

bkEk.

Assume (ii) holds. The matrices {Ej}dj=0 are a basis for the adjacency algebra A . Equat-
ing coefficients in (2.2) and (2.4) we see that bk = nC2 for k ∈ {1, . . . , d}, that is, (iii) holds.
Finally, if (iii) holds, then from (2.4) we see that (ii) holds with C2 = bk/n for k ∈ {1, . . . , d}.

Finally, assume that (i)–(iii) hold. The matrix GD is an n×n projection of rank mD with
constant diagonal equal to mD/n, and hence

mD

n
= (GD)1,1 = (G2

D)1,1 = (GD)21,1 +
n∑

j=2

|(GD)1,j |2 =
(mD

n

)2
+ (n− 1)

C1

n
.

Solving for C1 and using the observation from (2.2) that C1/n + C2 = (mD/n)
2 we obtain

(2.3). �

While the preceding proof is very simple, Proposition 2.8 contains the following nontrivial
correspondence between harmonic ETFs and difference sets.

Example 2.9. Let G be an abelian group, as in Examples 2.2, 2.3, and 2.4. The Pontryagin

dual Ĝ is itself an abelian group under pointwise multiplication, with

(αβ)(g) = α(g)β(g) and (α−1)(g) = α(g)

for all α, β ∈ Ĝ and g ∈ G. The Hadamard product reflects this multiplication on the
primitive idempotents, so that

Eα ◦ Eβ =
1

|G|Eαβ and Eα = Eα−1 = Eα̂

for all α, β ∈ Ĝ. Hence, the mapping Eα 7→ |G|−1δα gives a ∗-algebra isomorphism Â ∼=
C[Ĝ], and the Krein parameters are given by qγα,β = δαβ,γ for all α, β, γ ∈ Ĝ.

Given a subset A ⊆ Ĝ, let Ã, Ã(−1) ∈ C[Ĝ] be the vectors

Ã =
∑

α∈A

δα and Ã(−1) =
∑

α∈A

δα−1 .

For fixed D ⊆ Ĝ, we can read (2.2) to be the statement

(2.5) D̃D̃(−1) = C1δ1 + C2
˜̂
G.

Meanwhile, the constants {bγ}γ∈Ĝ are given by

bγ =
∑

α,β∈D

δαβ−1,γ =
∣∣{(α, β) ∈ D ×D : αβ−1 = γ}

∣∣ (γ ∈ Ĝ).

Thus, Proposition 2.8 tells us that ΦD is an equiangular tight frame if and only if there is a
constant λ such that every nontrivial element of Ĝ can be written as a difference of elements

8



of D in exactly λ ways. In other words, ΦD is an ETF if and only if D is a difference set in

Ĝ. See [45, 52, 11]. By counting, we observe that Ĝ admits a difference set of size m only if

|Ĝ| − 1 divides m(m− 1), the quotient being λ.

Remark 2.10. The situation for general commutative association schemes closely mirrors
the previous example if we use the language of hypergroups [51]. Briefly, if we define ai =
k−1
i Ai, then K = {ai}di=0 has the structure of a commutative hypergroup under matrix

multiplication, with involution given by adjoints. As in the case of abelian groups, we must

look to the dual hypergroup K̂ to construct ETFs. Setting ej = m−1
j Ej, we have K̂ = {ej}dj=0

under Hadamard multiplication and entry-wise complex conjugation. Its identity element is

e0, and its measure algebra, akin to the group algebra C[Ĝ] in Example 2.9, is Â . The Haar

measure in K̂ is given by µ(ej) = mj ; in the abelian group case, this was constantly equal
to 1. In parallel with Example 2.9, we associate any subset A ⊆ {0, . . . , d} with the vectors

GA,GA ∈ Â , which satisfy

GA =
∑

j∈A

µ(ej)ej and GA =
∑

j∈A

µ(ê)ê.

These take the places of Ã and Ã(−1), respectively. Then Proposition 2.8 tells us that
D ⊆ {0, . . . , d} is a hyperdifference set if and only if there are constants c1, c2 ≥ 0 such that

GD ◦ GD = c1e0 + c2GK̂ .
This is the hypergroup version of (2.5).

3. Central group frames and the group scheme

Given any finite groupG with conjugacy classes C0, . . . , Cd we define an association scheme
X(G), called the group scheme, whose relations are given by

(3.1) Ri = {(g, h) ∈ G×G : hg−1 ∈ Ci} (0 ≤ i ≤ d),

with valencies ki = |Ci|.
Let Irr(G) denote the set of irreducible characters of a group G. For each χ ∈ Irr(G)

let dχ := χ(1) denote its degree, and let πχ : G → Mdχ(C) denote a unitary representation
having χ as its trace character.

The set of primitive idempotents for X(G) are given by

(3.2) (Eχ)g,h =
dχ
|G|χ(g

−1h).

for any χ ∈ Irr(G) [16, Theorem 10.6.1]. From the definition of GD it follows that

(3.3) (GD)g,h =
1

|G|
∑

χ∈D

dχχ(g
−1h) (g, h ∈ G).

We regard Md(C) as a Hilbert space with the Hilbert-Schmidt inner product 〈A,B〉HS =
tr(AB∗). For each representation πχ we define another unitary representation ρχ : G →
U(Mdχ(C)) by

ρχ(g)(A) = πχ(g) ·A
(
g ∈ G, A ∈Mdχ(C)

)
.

The following proposition gives an explicit description of the frames made by X(G). That
is, we give an explicit frame with Gram matrix GD for D ⊆ Irr(G).
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Proposition 3.1. Let G be a finite group, and let D ⊆ Irr(G). Define the sequence ΦD :=
{φg}g∈G by

φg := |G|−1/2
(√

dχπχ(g)
)
χ∈D

∈
⊕

χ∈D

Mdχ(C) =: HD.

Then, ΦD is a Parseval frame for the space HD of dimension mD :=
∑

χ∈D d
2
χ. The Gram

matrix of ΦD is GD, and ΦD is the orbit of φ1 under ρD :=
⊕

χ∈D ρχ.

Proof. For g, h ∈ G we begin by computing the (g, h) entry of the Gram matrix of ΦD:

〈φh, φg〉 =
1

|G|
∑

χ∈D

dχ〈πχ(h), πχ(g)〉HS =
1

|G|
∑

χ∈D

dχ tr(πχ(h)πχ(g)
∗)

=
1

|G|
∑

χ∈D

dχ tr(πχ(g
−1h)) =

1

|G|
∑

χ∈D

dχχ(g
−1h) = (GD)g,h.

Note that the dimension of HD is mD, and using (3.3) we have

tr(GD) =
∑

g∈G

1

|G|
∑

χ∈D

dχχ(g
−1g) =

∑

g∈G

1

|G|
∑

χ∈D

d2χ =
∑

χ∈D

d2χ.

Since GD is a projection, this shows that the rank of GD is mD.
The claim that ΦD is the orbit of φ1 under ρ follows from

ρ(g)φ1 = |G|−1/2(
√
dχπχ(g)πχ(1))χ∈D = φg. �

This construction of ΦD is a special case of the generalized harmonic frames introduced
separately by the first author [24] and by Thill and Hassibi [47].

Let ρ : G → U(Cm) be a unitary representation of G, and fix a vector φ ∈ Cm. If
Φ = {ρ(g)φ}g∈G happens to be a frame, we call it a group frame. Its properties can be

deduced from the associated function of positive type ψ ∈ L2(G) given by ψ(g) = 〈φ, ρ(g)φ〉
for g ∈ G. One of the important consequences of Proposition 3.1 is that a frame made
from a group scheme X(G) is a group frame, but more can be said. When ψ lies in the
center of the convolution algebra L2(G), that is, the span of Irr(G), then the frame is called
central. This terminology is due to Vale and Waldron [48]. The following corollary recasts
[48, Theorem 5.1] in the language of association schemes. It says that central group frames
are exactly the frames we are constructing from X(G).

Corollary 3.2. Let G be a finite group. A Parseval frame has Gram matrix GD for some
D ⊆ Irr(G) if and only if it is a central group frame over G.

Proof. Note that for a group frame Φ over G, the entries of the G × G Gram matrix are
determined by the function of positive type ψ. Indeed, for g, h ∈ G, the (g, h) entry of the
Gram matrix is exactly ψ(h−1g).

If GD is the Gram matrix of Φ, then Φ is unitarily equivalent to the group frame ΦD. The
function of positive type associated with ΦD is 1

|G|

∑
χ∈D dχχ(g

−1). This shows that ΦD, and

hence Φ, is a central group frame.
Next, assume Φ = {ρ(g)φ}g∈G is a central group frame with Gram matrix G and let ψ be

the function of positive type associated with Φ. That Φ is central means that ψ is constant
on conjugacy classes. It follows that G is constant on every relation Ri ⊆ G × G in X(G),
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that is, G is in the adjacency algebra A . Since Φ is a Parseval frame G is a projection, and
hence G is a sum of primitive idempotents in A . That is, G = GD for some D ⊆ Irr(G). �

Corollary 3.3. Let G be a finite group of order n, and let D ⊆ Irr(G). The set D is a
hyperdifference set in X(G) if and only if

(3.4)

∣∣∣∣∣
∑

χ∈D

dχχ(g)

∣∣∣∣∣ =
√
mD(n−mD)

n− 1
for all g ∈ G \ {1}.

Proof. Note that the off-diagonal entries of nGD are exactly
∑

χ∈D dχχ(g) for g ∈ G \ {1}.
From this it follows that D is a hyperdifference set if and only if the the left side of (3.4)
equals some constant C1. The value of this constant follows from Proposition 2.8. �

3.1. An integrality condition for hyperdifference sets. The Krein parameters for X(G)
have a useful interpretation in terms of multiplicities and tensor products. For any η, τ ∈
Irr(G) we have

Eη ◦ Eτ =
1

|G|
∑

χ∈Irr(G)

qχη,τEχ.

Multiplying on both sides by Eχ for some fixed χ ∈ Irr(G) we have

(3.5) (Eη ◦ Eτ )Eχ =
qχη,τ
|G|Eχ.

From (3.2) we know the entries of the matrix Eχ. In particular, looking at the (1, 1)-entry
of both sides of (3.5) we obtain the first equality in the following identity:

(3.6) qχη,τ =
dηdτ
dχ

· 1

|G|
∑

g∈G

η(g)τ(g)χ(g) =
dηdτ
dχ

· 1

|G| mult(πχ, πη ⊗ πτ ).

The hypergroup structure on the dual algebra of X(G) is then identical to the usual hy-
pergroup structure on Irr(G). We have a similar interpretation of hyperdifference sets for
X(G).

Corollary 3.4. Let D ⊆ Irr(G), and define ρD =
⊕

χ∈D ρχ. Then, D is a hyperdifference

set for X(G) if and only if there is a constant λ ≥ 0 such that

mult(πχ, ρD ⊗ ρD) = dχ · λ
for every nontrivial irreducible character χ ∈ Irr(G). In that case,

(3.7) λ =
mD(mD − 1)

n− 1
.

Proof. For a character χ ∈ Irr(G) and g ∈ G, the trace character of ρχ can be calculated
using the orthonormal basis of matrix units es,t ∈Mdχ(C):

tr(ρχ(g)) =

dχ∑

s,t=1

〈ρχ(g)(es,t), es,t〉HS =

dχ∑

s,t=1

tr(πχ(g)es,te
∗
s,t) = dχ

dχ∑

s=1

[πχ(g)]s,s = dχχ(g).

This shows that ρχ ∼= π
(dχ)
χ , and hence ρD ∼=

⊕
χ∈D π

(dχ)
χ .

11



For any χ ∈ Irr(G) we use (3.6) to compute

mult(πχ, ρD ⊗ ρD) =
1

|G|
∑

g∈G

(∑

τ∈D

dττ(g)

)(∑

η∈D

dηη(g)

)
χ(g)

=
∑

τ,η∈D

dτdη
1

|G|
∑

g∈G

τ(g) η(g)χ(g) = dχ
∑

τ,η∈D

qχτ,η.

In the notation of Proposition 2.8 the last expression is equal to dχbχ. From the same
theorem, we see that D is a hyperdifference set if and only if there is some constant λ such
that bχ = λ for all nontrivial characters χ ∈ Irr(G). Moreover, from (2.3) we see that (3.7)
holds. �

Corollary 3.4 is the nonabelian version of Example 2.9, which gave the correspondence
between ETFs and difference sets for abelian groups. Just as in the abelian setting, this in-
terpretation of hyperdifference sets provides a powerful integrality condition for the existence
of ETFs produced by group schemes.

Corollary 3.5. Let n ≥ 2, and let {φi}ni=1 be a frame for Cm. If {φi}ni=1 is an ETF and a
central group frame, then

m(m− 1)

n− 1
∈ Z.

Proof. By Corollary 3.2, we may assume that n = |G| and that the Gram matrix of our ETF
is GD for some D ⊆ Irr(G), which must be a hyperdifference set. By Corollary 3.4, for any
nontrivial character χ ∈ Irr(G)

dχ ·
m(m− 1)

n− 1
∈ Z.

In other words, n− 1 divides dχ ·m(m− 1). A basic result of character theory says that dχ
divides n = |G|. Therefore, dχ and n− 1 are coprime. Thus, n− 1 divides m(m− 1). �

3.2. Hyperdifference sets of constant degree. We now apply the integrality condition
of Corollary 3.5 for a special class of indexing sets. Thill and Hassibi [47] have suggested a
construction for low-coherence frames that always produces a central group frame. In the
abelian case, their construction sometimes yields actual ETFs. In the following section, we
will produce an infinite family of ETFs generated by nonabelian groups, each of which is an
instance of the construction in [47]. The frames of [47] have a useful feature: their indexing
sets D ⊆ Irr(G) are all characters of equal degree. For this class of frames, the integrality
constraint of Corollary 3.5 is especially discriminating.

We say that a hyperdifference set D ⊆ Irr(G) is of constant degree with parameters
(n, k, l,m) if |G| = n, |D| = k, dχ = l for each χ ∈ D, and m = mD. The goal of
this subsection is to produce a short list of possible parameters of hyperdifference sets of
constant degree in nonabelian groups of order n < 1024. To this end we will combine the
integrality condition of Corollary 3.5, a few group-theoretic lemmas outlined below, and an
exhaustive computer search using GAP [15] and Sage [40]. For the sake of reproducibility,
our code is available in [26].

In this section we will find use for the following notation: Irrl(G) is the set of irreducible
characters of degree equal to l, and Irr>1(G) is the set of nonlinear irreducible characters.
We will suppress the group if there will be no confusion.
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Lemma 3.6. Let G be a nonabelian group. If D ⊆ Irr(G) is a hyperdifference set of constant
degree with parameters (n, k, l,m) and m 6= 1, then l ≥ 2.

Proof. Every character of degree 1 is constantly equal to 1 on the commutator subgroup
[G,G], which must be nontrivial since G is nonabelian. If l = 1, then any g ∈ [G,G] \ {1}
satisfies ∣∣∣∣∣

∑

χ∈D

dχχ(g)

∣∣∣∣∣ = mD 6=
√
mD(n−mD)

n− 1
,

contrary to Corollary 3.3. �

Lemma 3.7. Suppose there is a hyperdifference set D 6= ∅ for X(G) such that dχ ≥ 2 for all
χ ∈ D. If dM = maxχ∈D dχ, then the size of each of the d conjugacy classes Ci ⊆ G other
than C0 = {1} satisfies the inequality

(3.8)
|G|
|Ci|

≥ |G|
|[G,G]| +

mD

d2M |D| ·
|G| −mD

|G| − 1
(1 ≤ i ≤ d),

Consequently:

(i) Every coset of [G,G] contains at least two conjugacy classes.
(ii) At least half of the irreducible characters of G are nonlinear.

Proof. Let Ci ⊆ G be a conjugacy class other than C0 = {1}, and let g ∈ Ci be arbitrary.
By the column orthogonality relations [28, Theorem 16.4],

|G|
|Ci|

=
∑

χ∈Irr

|χ(g)|2 =
∑

χ∈Irr1

|χ(g)|2 +
∑

χ∈Irr>1

|χ(g)|2.

Since |χ(g)| = 1 for every χ ∈ Irr1, and since D ⊆ Irr>1,

(3.9)
|G|
|Ci|

≥ |Irr1(G)|+
∑

χ∈D

|χ(g)|2 = |G|
|[G,G]| +

∑

χ∈D

|χ(g)|2.

On the other hand, Corollary 3.3 and the Cauchy–Schwarz inequality show that

(3.10)
mD(|G| −mD)

|G| − 1
=

∣∣∣∣∣
∑

χ∈D

dχχ(g)

∣∣∣∣∣

2

≤
(∑

χ∈D

d2χ

)(∑

χ∈D

|χ(g)|2
)

≤ d2M |D|
∑

χ∈D

|χ(g)|2.

Combining (3.9) and (3.10) gives (3.8).
Since G/[G,G] is abelian, every conjugacy class Ci lies in a single coset of [G,G], so that

|Ci| ≤ |[G,G]|.
Equality obviously fails when i = 0, since G has a nonlinear character and is therefore
nonabelian. It cannot hold for any i ≥ 1, either, or else (3.8) will fail. Thus, the coset
of [G,G] containing Ci contains another conjugacy class, too. This is the case for every
conjugacy class, hence for every coset of [G,G]. This proves (i).

For (ii), recall that the number of irreducible characters equals the number of conjugacy
classes. By (i),

d+ 1 ≥ 2(G : [G,G]) = 2|Irr1|.
In other words, no more than half of the irreducible characters are linear. �
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n k l m #

64 7 2 28 10
256 30 2 120 1936
256 34 2 136 1936
320 22 2 88 17
320 58 2 232 10
576 69 2 276 56
576 75 2 300 56
640 18 2 72 799
896 45 2 180 709
896 179 2 716 41

Table 1. The parameters for which there may exist hyperdifference sets of
constant degree in nonabelian groups of orders less than 1024. The column
labeled “#” gives the number of groups of order n that might admit a hyper-
difference set with parameters (n, k, l,m); see [26] for a complete list.

The remainder of this section will be dedicated to showing that the parameters of any
hyperdifference set of constant degree in a nonabelian group of order n < 1024 with m /∈
{0, 1, n} appear in Table 1.

Suppose we have a hyperdifference set D of constant degree with parameters (n, k, l,m)
in a nonabelian group G of order less than 1024. The constant degree l = dχ must divide
n = |G| and satisfy

kl2 = m < n,

since m is the dimension of a frame with n vectors. Moreover, l ≥ 2 by Lemma 3.6. We
performed a brute force search for all parameters (n, k, l,m) with these properties that also
satisfy the integrality condition of Corollary 3.5. This produced 238 tuples (n, k, l,m).

The computer program GAP [15] contains a library of all groups with order less than
1024. For each of our 238 tuples, we used GAP to determine whether or not there was a
nonabelian group of order n with conjugacy classes of sizes consistent with Lemma 3.7. That
reduced the list to 38 tuples.

For the groups that remained, we again used GAP to compute their full character tables,
and checked two more conditions. First, the group had to actually possess k characters of
degree l. Second, Corollary 3.3 required that

(3.11)
m(n−m)

n− 1
= l2

∣∣∣∣∣
∑

χ∈D

χ(g)

∣∣∣∣∣

2

≤ kl2
∑

χ∈D

|χ(g)|2 ≤ m
∑

χ∈Irrl

|χ(g)|2

for all g 6= 1. In other words, the character table of G had to satisfy
∑

χ∈Irrl

|χ(g)|2 ≥ n−m

n− 1
(g 6= 1).

We used the package FUtil [34] to make the necessary comparisons in GAP. Only 11 of the
remaining 38 tuples had groups that passed this test. One of these, (64, 9, 2, 36), was small
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enough to allow a brute force check on all ten of its candidate groups. We used GAP to verify
that no such hyperdifference set exists. The ten tuples that remained appear in Table 1.

To pare down the list of candidate groups even further, we turned to Sage [40]. The current
implementation of cyclotomic numbers in GAP does not allow for square roots of irrational
real numbers. Consequently, it can compute things like |z|2 = zz, but not |z| =

√
zz. That

is why we used the Cauchy–Schwarz inequality in (3.11), even though the triangle inequality
gives a potentially tighter bound:

(3.12)

√
m(n−m)

n− 1
= l

∣∣∣∣∣
∑

χ∈D

χ(g)

∣∣∣∣∣ ≤ l
∑

χ∈D

|χ(g)| ≤ l
∑

χ∈Irrl

|χ(g)| (g 6= 1).

Unlike GAP, Sage has an implementation of algebraic numbers that allows the user to take
absolute values, while still affording exact computations. Using Sage’s internal interface to
GAP, we checked the groups that passed all of our previous tests for compliance with the
inequality

(3.13)
∑

χ∈Irrl

|χ(g)| ≥
√
k(n−m)

n− 1
(g 6= 1),

which is equivalent to (3.12). Where equality held, we checked additional necessary condi-
tions. Namely, if equality holds across (3.12) for some g, then χ(g) = 0 for all χ ∈ Irrl \D.
Moreover, the nonzero elements of {χ(g)}χ∈D must all have the same phase, since equality
held in the triangle inequality. The same is then true of {χ(g)}χ∈Irrl. Finally, the set

D̃ = {χ ∈ Irrl : χ(g) 6= 0 for some g 6= 1 that produces equality in (3.13)} ⊆ D

must have cardinality |D̃| ≤ k, and if equality holds then D̃ must actually be a hyperdif-
ference set. The number of groups that passed all of these tests appears in the table. This
completes the argument that the table above is complete.

When a hyperdifference set with parameters in our table exists, it produces an m×n ETF.
It turns that all ten of the groups implicated by the first row of the table have hyperdifference
sets with parameters (64, 7, 2, 28). In the next section, we will prove that one of these is the
smallest example in a new infinite family of hyperdifference sets for group schemes with
parameters n = 24j+2, k = 22j+1−1, and l = 2j for j ≥ 1. We are especially interested in the
last two rows of the table, because if there are hyperdifference sets with these parameters,
they produce previously unobserved ETFs [14].

Remark 3.8. In the next section, we build an infinite family of nonabelian groups with
hyperdifference sets of a form suggested by [47]: For some subgroup A ⊆ Aut(G), D is an
orbit of the action of A on Irr(G). Any hyperdifference set of this form consists of characters
with equal degrees, so if it exists in a group of order n < 1024, its parameters appear in the
table. Meanwhile, k must divide |A|, which must divide |Aut(G)|. We made an exhaustive
search of all the parameters and groups that passed the tests described in this subsection,
and the only one for which k divides |Aut(G)| is SmallGroup(64,82), with k = 7. That
group really does have a hyperdifference set of 7 characters with the form suggested in [47].
However, no other nonabelian group of order n < 1024 possesses a hyperdifference set with
this form.
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4. Hyperdifference sets for Suzuki 2-groups

For the remainder of the paper, we focus on an example of the theory built so far. In this
section, we construct a new infinite family of hyperdifference sets for group schemes. This is
the first time an infinite family of nonabelian groups has been shown to generate ETFs as
projective orbits under unitary representations. As we will see in Section 5, the frames we
build here are intimately connected with finite Heisenberg groups.

Definition 4.1. Let U and V be vector spaces over the same field K, and let B : U×U → V
be a K-bilinear map. We write U ×B V for the group with underlying set U × V and
multiplication

(u, v) · (x, y) = (u+ x, v + y +B(u, x)) (u, x ∈ U ; v, y ∈ V );

we call U ×B V the B-product of U and V .

The reader can verify that U ×B V forms a group with identity (0, 0) and inverses given
by

(u, v)−1 = (−u,−v +B(u, u)) (u ∈ U, v ∈ V ).

In fact, U ×B V is the central extension of (U,+) by (V,+) associated with the 2-cocycle B.

Example 4.2. When U = Rn, V = R, and B is the usual dot product, U ×B V is the
Heisenberg group Hn.

In general, U ×B V is not abelian unless B is symmetric. In fact, much of the structure
of U ×B V is controlled by the antisymmetric bilinear map B̂ : U × U → V ,

B̂(u, v) = B(u, v)− B(v, u) (u, v ∈ U),

which acts like a sort of commutator. For each u ∈ U , we let Lu : U → V be the linear map

Lu(v) = B̂(u, v) = B(u, v)− B(v, u) (v ∈ U),

and we let L : U → HomK(U, V ) be the linear function with L(u) = Lu.

Proposition 4.3. Keep notation as above.

(i) Z(U ×B V ) = (kerL)× V = {u ∈ U : B̂(u, v) = 0 for all v ∈ U} × V .

(ii) [U ×B V, U ×B V ] = {0} × spanK{B̂(u, v) : u, v ∈ U}.
(iii) Conjugacy classes in U ×B V take the form

(u, v)U×BV = {(u, v + B̂(u, w)) : w ∈ U} (u ∈ U, v ∈ V ).

(iv) If W ⊆ V is a vector subspace, and if q : V → V/W is the natural quotient, then there
is a group homomorphism ϕ : U ×B V → U ×q◦B (V/W ) given by ϕ(u, v) = (u, v +W )
for u ∈ U and v ∈ V . It factors to give an isomorphism

(U ×B V )/({0} ×W ) ∼= U ×q◦B (V/W ).

Proof. Let u, x ∈ U and v, y ∈ V . The reader can check that

(x, y)−1 · (u, v) · (x, y) = (u, v + B̂(u, x)) = (u, v + Lu(x)),

hence
(u, v)−1 · (x, y)−1 · (u, v) · (x, y) = (0, B̂(u, x)).

Statements (i)–(iii) follow immediately. The reader can check that ϕ is a homomorphism in
(iv); the rest is immediate. �
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Definition 4.4. Use notation as above. We will say that B has the injective hyperplane
property (IHP) if:

(i) For each u ∈ U \ {0}, ranLu is a hyperplane in V . That is, dimK V/(ranLu) = 1.
(ii) The function u 7→ ranLu is injective on U \ {0}.
For the remainder of this section, we assume that U = V is a vector space over K = F2

with odd dimension n = 2k + 1 ≥ 3, and that B : U × U → U is a bilinear map with IHP.
We will prove that G = U ×B U admits a nontrivial hyperdifference set.

For each u ∈ U \ {0}, we let

Hu = ranLu = {B̂(u, v) : v ∈ U}
be the hyperplane guaranteed by IHP. Then U/Hu

∼= F2 in exactly one way, and with this
identification in mind we let qu : U → F2 give the natural quotient of U onto U/Hu; explicitly,

qu(v) =

{
0, if v ∈ Hu

1, otherwise
(v ∈ U).

We define Gu = U ×qu◦B F2, whose multiplication is given by

(x, ǫ) · (y, δ) =
{
(x+ y, ǫ+ δ), if B(x, y) ∈ Hu

(x+ y, ǫ+ δ + 1), otherwise
(x, y ∈ U ; ǫ, δ ∈ F2).

By Proposition 4.3(iv), Gu is essentially a copy of G/({0} ×Hu). More precisely, we have a
surjective homomorphism ϕu : G→ Gu given by

ϕu(x, y) =

{
(x, 0), if y ∈ Hu

(x, 1), otherwise
(x, y ∈ U).

Our plan is to pull a nonlinear character of Gu back to G through ϕu. As u iterates through
U \ {0}, these pullbacks will form a hyperdifference set for G.

Theorem 4.5. For each u ∈ U \ {0}, Gu has exactly two nonlinear irreducible characters,
both of dimension 2k. If χu : Gu → C is either choice of these two, and if χ̃u = χu ◦ϕu is its
pullback to G, then {χ̃u}u∈U\{0} is a hyperdifference set for G.

Proof. We begin by computing some basic properties of Gu with Proposition 4.3. For any
x, y ∈ U ,

(qu ◦B)ˆ(x, y) = qu(B̂(x, y)) =

{
0, if B̂(x, y) ∈ Hu

1, otherwise
(x, y ∈ U).

When x = u, we clearly get (qu◦B)ˆ(u, y) = 0 for all y ∈ U . On the other hand, if x /∈ {0, u}
then Hx 6= Hu, so there is some y ∈ U with (qu ◦B)ˆ(x, y) 6= 0. Thus,

(4.1) Z(Gu) = {0, u} × F2 and [Gu, Gu] = {0} × F2.

Moreover, for any x ∈ U and ǫ ∈ F2, the conjugacy class of (x, ǫ) is

(x, ǫ)Gu =

{
{(x, ǫ)}, if x ∈ {0, u}
{(x, 0), (x, 1)}, otherwise.
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Next, we find the degrees of the irreducible characters of Gu. All together, there are 2
n+2

conjugacy classes in Gu, for 2
n + 2 irreducible characters. Of these,

|Gu|
|[Gu, Gu]|

= 2n

have degree 1. We must show that the other two have degree 2k. Their degrees must divide
|Gu| = 2n+1, so we may assume they are 2k1 and 2k2 with k1 ≤ k2. Since the squares of all
the degrees of irreducible characters sum to |Gu|, we must have

2n + 22k1 + 22k2 = 2n+1,

or equivalently,

(4.2) 1 + 22k2−2k1 = 2n−2k1 .

Since n is odd, the right-hand side is even. For this to be true of the left-hand side, we must
have 2k1 − 2k2 = 0. Then another look at (4.2) shows that k1 = k2 = k.

Let χu be one of the two irreducible characters of Gu with degree 2k. We claim that

(4.3) χu(x, ǫ) = 0 for all x /∈ {0, u} and all ǫ ∈ F2,

and that

(4.4) (0, 1) /∈ kerχu.

For an irreducible representation corresponding to χu, Schur’s Lemma implies that Z(Gu)
acts by scalar multiples of the identity. Hence, |χu(x, ǫ)| = 2k for all (x, ǫ) ∈ Z(Gu). The
row orthogonality relations require that

|Gu| =
∑

(x,ǫ)∈Z(Gu)

|χu(x, ǫ)|2 +
∑

(x,ǫ)/∈Z(Gu)

|χu(x, ǫ)|2,

so
2n+1 = 4 · 22k +

∑

(x,ǫ)/∈Z(Gu)

|χu(x, ǫ)|2.

Since 4·22k already equals 2n+1, we conclude that χu(x, ǫ) = 0 whenever (x, ǫ) /∈ Z(Gu). This
proves (4.3). Meanwhile, if (0, 1) ∈ kerχu, then χu factors to give an irreducible character
of the abelian group Gu/[Gu, Gu], despite the fact that its degree is 2k 6= 1. (Here we use
the fact that n ≥ 3.) This establishes (4.4).

Finally, let χ̃u be the pullback of χu to G via ϕu. That is,

(4.5) χ̃u(x, y) =

{
χu(x, 0), if y ∈ Hu

χu(x, 1), otherwise.

We will prove that {χ̃u}u∈U\{0} is a hyperdifference set, and in particular that

(4.6)

∣∣∣∣∣∣
∑

u∈U\{0}

χ̃u(x, y)

∣∣∣∣∣∣
= 2k for all (x, y) 6= (0, 0) in G.

If x ∈ U \ {0}, then (4.3) shows that χ̃u(x, y) = 0 for all u 6= x. On the other hand,
ϕx(x, y) ∈ Z(Gx) by (4.1), so |χx(x, y)| = 2k. Thus, (4.6) holds whenever x 6= 0.

It remains to prove (4.6) in the case where x = 0. This is exactly the case where (x, y) ∈
Z(G), by Proposition 4.3: since ranLu = Hu 6= {0} for all u ∈ U \ {0}, Z(G) = {0} × U .

18



In particular, Z(G) has exactly 2n distinct linear characters. For each u ∈ U \ {0}, let
αu : Z(G) → T be the central character of χ̃u; in other words, χ̃u(0, y) = αu(0, y) · 2k. From
(4.5) and (4.4), we see that

χ̃u(0, y) =

{
χu(0, 0) = 2k, if y ∈ Hu

χu(0, 1) 6= 2k, otherwise.

Therefore, kerαu = {0} ×Hu.
By the injective hyperplane property, the characters αu are all different. In particular,

they exhaust all 2n−1 nontrivial characters of Z(G). Now the column orthogonality relations
for Z(G) show that

(4.7)
∑

u∈U\{0}

χ̃u(0, y) = 2k ·
∑

u∈U\{0}

αu(0, y) = 2k ·


 ∑

α∈Ẑ(G)

α(0, y)− 1


 = −2k

whenever y 6= 0. This completes the proof of (4.6). �

Remark 4.6. The onus for creating a hyperdifference set in Theorem 4.5 lies entirely on the
antisymmetric map B̂, and not necessarily on B itself. It can and sometimes does happen

that a different bilinear map B0 : U × U → V has B̂0 = B̂, while U ×B0
V ≇ U ×B V . In

that case, the nonisomorphic group U ×B0
V also enjoys a hyperdifference set, which may

produce a completely different ETF. For instance, all ten groups of order 64 mentioned in
the first row of the table in Subsection 3.2 are related in this way.

Theorem 4.7. For any odd integer n = 2k+1 ≥ 3, the F2-bilinear map B : F2n ×F2n → F2n

given by B(α, β) = αβ2 has the injective hyperplane property. Hence, F2n ×B F2n admits a
hyperdifference set of 2n − 1 irreducible representations with constant degree 2k.

The resulting ETF has size 2n−1(2n − 1) × 22n. The proof of Theorem 4.7 relies on the
field trace tr : F2n → F2, which is given by

tr(α) = α + α2 + α4 + · · ·+ α2n−1

(α ∈ F2n).

For background on this and other matters of finite fields, we refer the reader to [33]. The
field trace is linear, so it produces a bilinear form F2n ×F2n → F2, called the trace form, that
maps (α, β) 7→ tr(αβ). The trace form is nondegenerate, so the linear functionals on F2n are
precisely the maps Tα : F2n → F2 given by Tα(β) = tr(αβ) for α, β ∈ F2n . The elements of
trace zero are precisely those in the subspace

X1 := {β2 − β : β ∈ F2n}.
Hence, the hyperplanes in F2n are the spaces

Xα := ker Tα−1 = {α(β2 − β) : β ∈ F2n}
for α ∈ F2n \ {0}, and these are distinct.

Proof of Theorem 4.7. For any α ∈ F2n \ {0} and any β ∈ F2n ,

B̂(α, β) = αβ2 − α2β = α3
(
(α−1β)2 − (α−1β)

)
.

Thus,

ranLα = {B̂(α, β) : β ∈ F2n} = Xα3 .
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To show that B has IHP, we only have to show that α3 6= β3 when α 6= β. Equivalently, we
need to show that α3 6= 1 when α 6= 1. For this, we must use the fact that n = 2k + 1 is
odd, so that

|F×
2n| = 2n − 1 = 4k · 2− 1 ≡ 1k · 2− 1 ≡ 1 mod 3.

Hence, no element of F×
2n has order 3. �

Remark 4.8. After deriving and proving Theorem 4.7, the authors learned that the groups
it describes were studied as early as 1961 by G. Higman [20], who called them examples of
Suzuki 2-groups. In his terminology, F2n ×B F2n = A(n, θ), where θ is the Frobenius auto-
morphism θ(α) = α2 on F2n. Interestingly, these groups have already caught the attention of
the association scheme community as examples of a different phenomenon called self-duality
[2, 18, 19]. When n = 3, the correlation explained in Remark 4.6 leads to ten non-isomorphic
groups of order 64, each of which admits a hyperdifference set with the parameters in Theo-
rem 4.5. These ten groups were the basis for our study of equiangular central group frames;
they were also identified by Bannai [2, Thm. 5.1] as the first examples of self-dual nonabelian
groups. As a curiosity, we mention that every abelian group is self-dual. This means that
every group currently known to admit a nontrivial hyperdifference set is self-dual.

5. Connections with Heisenberg groups

Theorem 4.7 establishes the existence of a hyperdifference set D for G = F2n ×B F2n, but
it does not explain how to construct it. In this section, we examine D in greater detail,
giving an explicit description of both the Gram matrix GD and the unitary representations
involved in D. As we will see, the ETF we produce is essentially made from 2n − 1 copies
of an expanded Heisenberg group over Zk2. The architecture that fits these copies together
is controlled by F×

2n , disguised as a subgroup of Aut(G) that spins the expanded Heisenberg
group around to build our hyperdifference set.

Let L2(Zk2) be the Hilbert space of functions f : Zk2 → C with the inner product

〈f, g〉L2(Zk
2
) =

∑

x∈Zk
2

f(x)g(x) (f, g ∈ L2(Zk2)).

Denote e0, . . . , ek−1 for the canonical basis of Zk2, and give Zk2 the usual dot product

(ǫ0, . . . , ǫk−1) · (δ0, . . . , δk−1) =

k−1∑

j=0

ǫjδj ∈ Z2.

For 0 ≤ s, t ≤ k − 1 and f ∈ L2(Zk2), we define the translation and modulation Tsf,Mtf ∈
L2(Zk2) by (Tsf)(x) = f(x− es) and (Mtf)(x) = (−1)x·etf(x), respectively. The translation
and modulation operators satisfy the power relations

(5.1) T 2
s =M2

t = I

and the commuting relations

(5.2) TsTt = TtTs, MsMt =MtMs, and TsMt = (−1)δs,tMtTs

for all s, t ∈ {0, . . . , k − 1}. They generate the Heisenberg group over Zk2,

H := 〈Ts,Mt : 0 ≤ s, t ≤ k − 1〉 ⊆ U(L2(Zk2)).
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It has order 22k+1 = 2n, and its natural representation on L2(Zk2) is irreducible. (This is well
known; for instance, see [36].) We will work with the slightly extended group H〈iI〉 = H∪iH,
which has order 2n+1. Notably, this group was leveraged in [6] to construct extremal two-
angle line sets.

Our plan is to map G onto H〈iI〉 using a certain basis for the space X1 ⊆ F2n of trace-
zero field elements. Since 1 /∈ X1 is the unique α ∈ F2n for which ker Tα = X1, and since
tr(α2) = tr(α) = 0 for all α ∈ X1, the trace form is nondegenerate and alternating on
X1. Consequently, X1 admits a symplectic basis x0, . . . , xk−1, y0, . . . , yk−1, which means that
tr(xsxt) = tr(ysyt) = 0 and tr(xsyt) = δs,t for 0 ≤ s, t ≤ k−1; see [30, Chapter XV, Section 8].
We will deform our symplectic basis with the linear map θ : F2n → F2n given by

(5.3) θ(α) = α20 + α22 + · · ·+ α2n−1

(α ∈ F2n).

Our main result here is the following.

Theorem 5.1. Fix a symplectic basis x0, . . . , xk−1, y0, . . . , yk−1 ∈ X1, and let αs = θ(xs) and
βt = θ(yt) for 0 ≤ s, t ≤ k − 1.

(i) There is a unique irreducible representation π : G→ H〈iI〉 with
π(αs, y) = (−1)tr(y) · itr(α3

s)Ts,

π(βt, y) = (−1)tr(y) · itr(β3
t )Mt,

and π(1, y) = (−1)tr(y) · iI for all y ∈ F2n and all s, t ∈ {0, . . . , k − 1}.
(ii) Each γ ∈ F×

2n defines an automorphism ψγ ∈ Aut(G) with ψγ(x, y) = (γx, γ3y) for
x, y ∈ F2n.

(iii) D = {χπ ◦ ψγ−1}γ∈F×

2n
is a hyperdifference set for X(G).

Combining Theorem 5.1 with Theorem 3.1 gives an explicit description of the ETF asso-
ciated with D. In fact, we have written GAP code that implements this theory and returns
a short, fat matrix [26]. The automorphisms {ψγ : γ ∈ F×

2n} form a subgroup of Aut(G) iso-
morphic to F×

2n , and our hyperdifference set is an orbit of this group under its natural action
on Irr(G). In this sense, the ETF we get has a form suggested by Thill and Hassibi [47].

Remark 5.2. In the spirit of constructivism, let us give one possible description of {αs}k−1
s=0

and {βt}k−1
t=0 . A field element z ∈ F2n generates a self-dual normal basis if tr(z2

i

z2
j

) = δi,j
for 0 ≤ i, j ≤ n− 1. Self-dual normal bases are well studied in the finite field literature, and
many constructions are known [31, 32, 43, 49]. Once we have such a generator, the reader
can check that

xs = z2
2s

+ z2
2s+1

and yt = z2
2t

+
n−1∑

j=2t+2

z2
j

(0 ≤ s, t ≤ k − 1)

define a symplectic basis for X1. To compute αs and βt we first note the following easily
verified formulas

θ(α) + θ(α2) = α + tr(α) and θ(α) + θ(α4) = α + α2.

Using these and the observation that tr(z2
j

) = tr(z2
j−1

z2
j−1

) = 1 for any j, we have

αs = θ(xs) = θ(z2
2s

) + θ
(
(z2

2s

)2
)
= z2

2s

+ tr(z2
2s

) = z2
2s

+ 1,
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and

βt = θ(z2
2t

) + θ
(
(z2

2t

)4
)
+

n−1∑

j=2t+3

θ(z2
j

) = z2
2t

+ z2
2t+1

+
n−1∑

j=2t+3

θ(z2
j

)

= z2
2t

+ z2
2t+1

+

k−1∑

r=t+1

[
θ(z2

2r+1

) + θ
(
(z2

2r+1

)2
)]

= z2
2t

+ z2
2t+1

+

k−1∑

r=t+1

[
z2

2r+1

+ tr(z2
2r+1

)
]

=

{
z2

2t

+
∑k−1

j=t z
22j+1

+ 1, if k − t is even

z2
2t

+
∑k−1

j=t z
22j+1

, if k − t is odd

for 0 ≤ s, t ≤ k − 1.

The proof of Theorem 5.1 relies on the quotient group G1 = F2n ×tr ◦B F2, whose multipli-
cation is given by

(5.4) (α, ǫ) · (β, δ) = (α + β, ǫ+ δ + tr(αβ2)) (α, β ∈ F2n ; ǫ, δ ∈ F2).

For α, β ∈ F2n, we define

(5.5) 〈α, β〉 = tr(αβ2 − α2β).

This is a symmetric bilinear form on F2n , and in fact 〈·, ·〉 = (tr ◦B)ˆ(·, ·). With this notation,
we have the following presentation of G1.

Lemma 5.3. Let γ1, . . . , γn be a basis for F2n over F2. For i = 1, . . . , n, define fi = (γi, 0) ∈
G1; also define fn+1 = (0, 1) ∈ G1. Then f1, . . . , fn+1 generate G1, and they satisfy the power
relations

P = {f 2
1 = f

tr(γ31 )
n+1 , . . . , f 2

n = f
tr(γ3n)
n+1 , f 2

n+1 = 1G1
}

and the commuting relations

C = {fifj = fjfif
〈γi,γj〉
n+1 : 1 ≤ i, j ≤ n} ∪ {fifn+1 = fn+1fi : 1 ≤ i ≤ n}.

In fact, G1
∼= 〈f1, . . . , fn+1 | P ∪ C〉.

Proof. It is easy to check that f1, . . . , fn+1 satisfy P and C using (5.4); we leave this to the
reader. To see that f1, . . . , fn+1 generate G1, let α ∈ F2n be arbitrary, and write

α =
n∑

i=1

ǫiγi

for some ǫi ∈ F2. Then
n∏

i=1

f ǫii = (ǫ1γ1, 0) · · · (ǫnγn, 0) = (α, δ)

for some δ ∈ F2. Hence,

{(α, 0), (α, 1)} =

{
n∏

i=1

f ǫii , fn+1 ·
n∏

i=1

f ǫii

}
⊆ 〈f1, . . . , fn+1〉.

As α ∈ F2n was arbitrary, we conclude that f1, . . . , fn+1 generate G1.
Finally, let H = 〈f1, . . . , fn+1 | P ∪ C〉. This is a polycyclic presentation (see e.g. [23]),

so every element of H can be written in the form
∏n+1

i=1 f
ǫi
i with ǫi ∈ {0, 1}. In particular,
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|H| ≤ 2n+1. Now, von Dyck’s Theorem supplies an epimorphism H → G1, and by comparing
orders, we conclude that this surjection is an isomorphism. �

Our plan is to construct an isomorphism π1 : G1
∼= H〈iI〉 and then pull it back through

an epimorphism ϕ1 : G → G1. In order to build π1, we need a way to see the symplectic
structure on X1 through the bilinear form 〈·, ·〉.

Let θ : F2n → F2n be given by (5.3), and let η : F2n → F2n be the linear map with η(α) =
α2 + α for α ∈ F2n . These functions are very nearly inverses, in the sense that

η(θ(α)) =
(
α20 + α22 + · · ·+ α2n−1

)2
+
(
α20 + α22 + · · ·+ α2n−1

)

=
(
α21 + α23 + · · ·+ α2n

)
+
(
α20 + α22 + · · ·+ α2n−1

)

=
(
α20 + · · ·+ α2n−1

)
+ α2n

= α + tr(α)

and similarly θ(η(α)) = α + tr(α) for α ∈ F2n . Since n is odd, tr(1) = 1, and therefore

tr(tr(α)) = tr(α) = tr
(
α2j
)
for all α ∈ F2n and all j ≥ 0. It follows that η and θ both map

F2n into X1. With this in mind, the equations above show that η and θ restrict to inverse
isomorphisms X1

∼= X1. These maps serve as bridges between the trace form and 〈·, ·〉: for
any α, β ∈ F2n ,

〈α, β〉 = tr(αβ2 + α2β) = tr (η(α) · η(β)) .
Thus, when x, y ∈ X1,

(5.6) 〈θ(x), θ(y)〉 = tr(xy).

Lemma 5.4. Let x0, . . . , xk−1, y0, . . . , yk−1 ∈ X1 be a symplectic basis for X1, and let αs =
θ(xs) and βt = θ(yt) for 0 ≤ s, t,≤ k − 1. There is a unique isomorphism π1 : G1

∼= H〈iI〉
with

π1(1, 0) = iI, π1(αs, 0) = itr(α
3
s)Ts, and π1(βt, 0) = itr(β

3
t )Mt

for 0 ≤ s, t ≤ k − 1.

Proof. First, observe that α0, . . . , αk−1, β0, . . . , βk−1 is a basis for X1, since θ restricts to an
isomorphism X1

∼= X1. Thus, α0, . . . , αk−1, β0, . . . , βk−1, 1 is a basis for F2n . In order to more
easily use Lemma 5.3 we will set

γi =





αi−1 i = 1, . . . , k,

βi−k−1 i = k + 1, . . . , 2k,

1 i = 2k + 1 = n,

fi = (γi, 0) for 1 ≤ i ≤ n, and fn+1 = (0, 1).
Set

gj =





itr(α
3
j−1

)Tj−1 j = 1, . . . , k

itr(β
3
j−k−1

)Mj−k−1 j = k + 1, . . . , 2k

iI j = 2k + 1 = n,

−I j = 2k + 2 = n + 1.

From (5.1) we see that g2j = g
tr(γ3j )

n+1 for 1 ≤ j ≤ n, and clearly g2n+1 = 1H〈iI〉. This shows that
g1, . . . , gn+1 satisfy the relations P from Lemma 5.3.
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From (5.6) we see that

〈1, αs〉 = 〈1, βt〉 = 〈αs, αt〉 = 〈βs, βt〉 = 0 and 〈αs, βt〉 = δs,t

for 0 ≤ s, t ≤ k − 1. From this and (5.2) we deduce that gigj = gjgig
〈γi,γj〉
n+1 for 1 ≤ i, j ≤ n

and gign+1 = gn+1gi for 1 ≤ i ≤ n. That is, g1, . . . , gn+1 satisfy the relations C from Lemma
5.3.

Now von Dyck’s Theorem gives the existence of a homomorphism π1 : G1 → H〈iI〉 such
that π1(fi) = gi for 1 ≤ i ≤ n + 1. Since the image of π1 generates H〈iI〉, and since
|G1| = |H〈iI〉|, π1 must be an isomorphism. �

Now we can prove our main result.

Proof of Theorem 5.1. Let ϕ1 : G → G1 be the epimorphism with ϕ1(x, y) = (x, tr(y)) for
x, y ∈ F2n , and let π1 : G1 → U(L2(Zk2)) be the representation given by Lemma 5.4. Then

π1(x, ǫ) = π1(x, 0) · π1(0, ǫ) = (−1)ǫ · π1(x, 0)
for all x ∈ F2n and all ǫ ∈ F2, so the pullback π = π1 ◦ ϕ1 is exactly as we have described in
the theorem statement. Moreover, α0, . . . , αk−1, β0, . . . , βk−1, 1 is a basis for F2n , so the set

{(αs, y), (βt, y), (1, y) : y ∈ F2n}
generates G. Thus, the images we have given uniquely determine π. Since H ⊆ π(G) already
acts irreducibly on L2(Zk2), π is irreducible. This completes the proof of (i). The proof of
(ii) is an easy exercise.

For (iii), remember that we get the characters in our hyperdifference set by modding out
the hyperplanes guaranteed by IHP and pulling back characters of the quotients. In the
proof of Theorem 4.7, we saw that the hyperplane corresponding to γ ∈ F×

2n is

Hγ = Xγ3 = {x ∈ F2n : tr(γ−3x) = 0}.
The map we called qγ : F2n → F2 in the lead-up to Theorem 4.5 is the same as the one
we called Tγ−3 in the discussion after Theorem 4.7; it has qγ(y) = tr(γ−3x) for x ∈ F2n .
Therefore, multiplication in

Gγ = F2n ×qγ◦B F2
∼= G/({0} ×Hγ)

is given by

(x, ǫ) · (y, δ) = (x+ y, ǫ+ δ + tr(γ−3xy2)) (x, y ∈ F2n; ǫ, δ ∈ F2),

and the epimorphism ϕγ : G→ Gγ has the neat formula

(5.7) ϕγ(x, y) = (x, tr(γ−3y)) (x, y ∈ F2n).

The reader can check that ψγ({0} ×H1) = {0} ×Hγ. Thus, ψγ factors to give an iso-

morphism ψ̃γ : G1 → Gγ; in particular, ψ̃γ(x, ǫ) = (γx, ǫ) for x ∈ F2n and ǫ ∈ F2. The
relationship between these functions is summarized below.

G
∼

ψγ

//

ϕ1

��
��

G

ϕγ
��
��

G1
∼

ψ̃γ

// Gγ
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Now χγ := χπ1 ◦ ψ̃−1
γ is an irreducible character of Gγ, and its pullback to G is

(5.8) χγ ◦ ϕγ = χπ1 ◦ ψ̃−1
γ ◦ ϕγ = χπ1 ◦ ϕ1 ◦ ψ−1

γ = χπ ◦ ψγ−1 .

By Theorem 4.5, D = {χγ ◦ ϕγ}γ∈F×

2n
is a hyperdifference set for X(G). �

We end with an explicit representation of the Gram matrix GD, which may be useful, for
example, in the estimation of its restricted isometry constants [1]. We leave this investigation
for future work.

Corollary 5.5. Let D be as in Theorem 5.1. Then GD is the G×G matrix with entries

(GD)(x,y),(α,β) =





1
2
− 1

2n+1 , if x = α and y = β

− 1
2n+1 , if x = α and y 6= β
i

2n+1 · (−1)tr((x−α)
−3(y−β+α3+xα2)), otherwise

for x, y, α, β ∈ F2n.

Proof. We continue the notation used in the proof of Theorem 5.1. For each γ ∈ F×
2n , let

χ̃γ = χγ ◦ ϕγ = χπ ◦ ψγ−1 , as in (5.8). By (3.3),

G(x,y),(α,β) =
2k

22n

∑

γ∈F×

2n

χ̃γ
(
(x, y) · (α, β)−1

)

=
2k

22n

∑

γ∈F×

2n

χ̃γ(x− α, y − β + α3 + xα2).

When x = α and y = β, we quickly see that the diagonal entries are given by

G(x,y),(x,y) =
2k

22n
· (2n − 1) · 2k = 1

2
− 1

2n+1
.

If x = α and y 6= β, then (4.7) gives us

G(x,y),(x,β) =
2k

22n

∑

γ∈F×

2n

χ̃γ(0, y − β) = −22k

22n
= − 1

2n+1
.

Finally, when x 6= α, (4.3) and (5.7) show that χ̃γ(x − α, z) = 0 for all z ∈ F2n and all
γ 6= x− α. Hence,

G(x,y),(α,β) =
2k

22n
χ̃x−α(x− α, y − β + α3 + xα2)

=
2k

22n
χπ
(
1, (x− α)−3(y − β + α3 + xα2)

)
.

Since π(1, z) = (−1)tr(z) · iI for z ∈ F2n , we conclude that

G(x,y),(α,β) =
i

2n+1
· (−1)tr((x−α)

−3(y−β+α3+xα2)). �
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