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Abstract
Let F be a family of convex sets in Rd, which are colored with d + 1 colors. We say that F
satisfies the Colorful Helly Property if every rainbow selection of d + 1 sets, one set from each
color class, has a non-empty common intersection. The Colorful Helly Theorem of Lovász states
that for any such colorful family F there is a color class Fi ⊂ F , for 1 ≤ i ≤ d+1, whose sets have
a non-empty intersection. We establish further consequences of the Colorful Helly hypothesis. In
particular, we show that for each dimension d ≥ 2 there exist numbers f(d) and g(d) with the
following property: either one can find an additional color class whose sets can be pierced by
f(d) points, or all the sets in F can be crossed by g(d) lines.
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1 Introduction

1.1 Helly-type theorems
Let F be a finite family of convex sets in Rd. We say that a collection X of geometric objects
(e.g., points, lines, or k-flats – k-dimensional affine subspaces of Rd) is a transversal to F , or
that F can be pierced or crossed by X, if each set of F is intersected by some member of X.
For an integer j we use the symbol

(F
j

)
to denote the collection of subfamilies of F of size j.

The 1913 theorem of Helly [14] states that a finite family F of convex sets has a non-empty
intersection (i.e., F can be pierced by a single point) if and only if each of its subsets F ′ ⊂ F
of size at most d+ 1 can be pierced by a point.

In the past 50 years Geometric Transversal Theory has been preoccupied with the following
questions (see e.g. [5], [10], [11], [12], [19]):

Does Helly’s Theorem generalize to transversals by k-flats, for 1 ≤ k ≤ d− 1?
Given that a significant fraction of the (d + 1)-tuples F ′ ∈

( F
d+1
)
have a non-empty

intersection, can F , or at least some fixed fraction of its members, be pierced by constantly
many points?

The first question has been settled to the negative already for k = 1. For instance, Santaló
[18] and Danzer [9] observed that for any n ≥ 3 there are families F of n convex sets in R2 so
that any n− 1 of the sets can be crossed by a single line transversal while no such transversal
exists for F . Nevertheless, Alon and Kalai [2] show that the following almost-Helly property
holds for k = d− 1: If every d+ 1 (or fewer) of the sets of F can be crossed by a hyperplane,
then F admits a transversal by h hyperplanes, where the number h = h(d) depends only on
the dimension d.

While the properties of hyperplane transversals largely resemble those of point transversals,
this is not the case for transversals by k-flats of intermediate dimensions 1 ≤ k ≤ d− 2. For
example, Alon et al. [3] showed that for every integers d ≥ 3,m and n0 ≥ m+ 4 there is a
family of at least n0 convex sets so that any m of the sets can be crossed by a line but no
m+ 4 of them can; this phenomenon can be largely attributed to the complex topological
structure of the space of transversal k-flats.

The second question gave rise to a plethora of inter-related results in discrete geometry
and topological combinatorics.

I Theorem 1 (Fractional Helly’s Theorem). For any d ≥ 1 and α > 0 there is a number
β = β(α, d) > 0 with the following property: For every finite family F of convex sets in Rd
so that at least α

( |F|
d+1
)
of the (d+ 1)-subsets F ′ ∈

( F
d+1
)
have non-empty intersection, there

is a point which pierces at least β|F| of the sets of F .

Theorem 1 was proved by Liu and Katchalski in [16] and it is one of the key ingredients in
the proof of the so called Hadwiger-Debrunner (p, q)-Conjecture [13] by Alon and Kleitman
[4].

I Definition 2. We say that a family of convex sets has the (p, q)-property, for p ≥ q, if for
any p-subset F ′ ∈

(F
p

)
there is a q-subset F ′′ ∈

(F ′

q

)
with non-empty common intersection⋂

F ′′ 6= ∅.

I Theorem 3 (The (p, q)-theorem [4]). For any d ≥ 1 and p ≥ q ≥ d+ 1 there is a number
P = P (p, q, d) with the following property: Any finite family F of convex sets in Rd with the
(p, q)-property can be pierced by P points.

The proof of Theorem 3 combines Theorem 1 with the following result of independent
interest.
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I Theorem 4 (Weak ε-net for points [1]). For any dimension d ≥ 1 and ε > 0 there is
W = W (ε, d) with the following property: For every finite (multi-)set P of points in Rd one
can find W points in Rd that pierce every convex set A ⊆ Rd with |A ∩ P | ≥ ε|P |.

Understanding the asymptotic behaviour of W (ε, d) is one of the most challenging open
problems in discrete geometry.

The starting point of our investigation is the Colorful Helly Theorem of László Lovász,
first stated in [7], which concerns the scenario in which the intersecting (d+ 1)-tuples form a
complete (d+ 1)-partite hypergraph.

I Definition 5. We say that a finite family of convex sets F is k-colored if each set K ∈ F
is colored with (at least) one of k distinct colors. The k-coloring of F can be expressed by
writing F as a union of k color classes F1 ∪ F2 ∪ · · · ∪ Fk, where each class Fi consists of
the sets with color i ∈ [k]. We say that the k-colored family F , with color classes F1, . . . ,Fk,
has the Colorful Helly property, or CH(F1, . . . ,Fk) if every rainbow selection Ki ∈ Fi, for
1 ≤ i ≤ k, has non-empty intersection

⋂k
i=1 Ki 6= ∅.

I Theorem 6 (Colorful Helly’s Theorem). Let F be a (d+ 1)-colored family of convex sets
in Rd, with color classes F1, . . . ,Fd+1. Then CH(F1, . . . ,Fd+1) implies that there is a color
class Fi with non-empty intersection

⋂
Fi 6= ∅.

Notice that Theorem 6 says nothing about transversals to the remaining d color classes
Fj , with j ∈ [d+ 1] \ {i}. The primary goal of this paper is to gain a deeper understanding of
the transversals to all of the color classes Fi in a (d+ 1)-colored family F that satisfies CH.

Theorem 6 is in close relation, via point-hyperplane duality, with the colorful version of
the Carathéodory theorem due to Bárány [7]. Holmsen et al. [15] and independently Arocha
et al. [6] recently established the following strengthening of Bárány’s result:

I Theorem 7 (Very Colorful Carathéodory Theorem). Let P be a finite set of points in Rd
colored with d+ 1 colors. If every (d+ 1)-colorful subset of P is separated from the origin,
then there exist two colors such that the subset of all points of these colors is separated from
the origin.

Unfortunately, there is no Very Colorful Helly Theorem which guarantees that a second
color class can be pierced with few points, as is illustrated by the following example (see
Figure 1). Let Fd+1 = {Rd} and, for each 1 ≤ i ≤ d let Fi be a collection of hyperplanes
orthogonal to the xi-axis. Then Fd+1 is the only class that has a point transversal, moreover,
each of the remaining classes may need an arbitrarily large number of points in order to be
pierced. Note, though, that one can cross all the sets of

⋃d+1
i=1 Fi by a single line.

1.2 Our results
Our main result suggests that, in a sense, the scenario in Figure 1 is the only possible unless
an additional color class can be pierced by few points.

I Theorem 8. For each dimension d ≥ 2 there exist numbers f(d) and g(d) with the following
property. Let F be a finite (d + 1)-colored family of convex sets in Rd (with color classes
F1, . . . ,Fd+1) that satisfies CH(F1, . . . ,Fd+1). Let i ∈ [d+ 1] be a color whose class Fi has
a non-empty intersection (by Theorem 6). Then one of the following statements must also
hold:
1. an additional color class Fj, for j ∈ [d+ 1] \ {i} can be pierced by f(d) points, or
2. the entire family F can be crossed by g(d) lines.

SoCG 2018
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Figure 1 Optimality of the Colorful Helly Theorem in R3. For each 1 ≤ i ≤ 3 the family Fi

consists of xi-orthogonal planes.

Theorem 8 is equivalent to the following statement concerning d-colored families of convex
sets.

I Theorem 9. For each dimension d ≥ 2 there exist numbers f ′(d) and g′(d) with the
following property. Let F be a finite d-colored family of convex sets in Rd, with color classes
F1, . . . ,Fd, that satisfies CH(F1, . . . ,Fd). Then one of the following statements holds:
1. there is a color class Fj, for j ∈ [d], that can be pierced by f ′(d) points, or
2. the entire family F can be crossed by g′(d) lines.

Theorem 8 immediately follows from Theorem 9 by setting f(d) = f ′(d) and g(d) =
g′(d) + 1. For the other direction, by letting Fd+1 = {Rd} we can set f ′(d) = f(d) and
g′(d) = g(d).

Notice that in the d-colored scenario of Theorem 9 one can use Theorem 6 to obtain one
color class Fi that can be crossed by a single line (through a generic projection of Fd to
Rd−1). The main strength of Theorem 9 is that it shows a complementary relation between
transversals to multiple colors Fi, for i ∈ [d]. This relation can be further generalized as
follows.

I Theorem 10. For all 1 ≤ i ≤ d there exist numbers f(i, d) and g(i, d) with the follow-
ing property. Let F be a finite (d + 1)-colored family of convex sets in Rd that satisfies
CH(F1, . . . ,Fd+1). Then there exist k ∈ [d] and a re-labeling of the color classes F1, . . . ,Fd+1
of F so that
1.
⋃

1≤j≤k Fj can be pierced by f(k, d) points, and
2.
⋃
k<j≤d+1 Fj can be crossed by g(k, d) k-flats.

In other words, Theorem 10 characterizes the families of sets with the Colorful Helly
property up to their transversal structure by flats.

This paper is organized as follows. In Section 2 we prove our main technical results –
Theorems 9 and 10. To this end, we establish a series of claims of independent interest that
concern 2-colored families of convex sets. Despite the apparent weakness of the 2-colored
hypothesis in dimension higher than 2, these results provide all the essential ingredients for
our analysis. Theorem 9 is finally established by repeatedly invoking a so called “Step-Down”
Lemma which provides a crucial relation between k-flat and (k − 1)-flat transversals of
families with the Colorful Helly property, for all 1 ≤ k ≤ d− 1.

The proof of the “Step-Down” Lemma is deferred to Section 3, and it is based on a careful
adaptation of the machinery of Alon and Kleitman [4] and Alon and Kalai [2], to families of
convex sets whose intersection graph is complete bi-partite.
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Figure 2 Proof of Lemma 11. We have A1, A2, A3 ∈ A and B ∈ B. Since A1 ∩ A2 ∩ A3 = ∅, we
have have halfspaces Hi ⊃ Ai, for 1 ≤ i ≤ 3, so that

⋂n

i=1 Hi = ∅. Hence, the set B ∈ B must cross at
least one of the respective bounding lines Π1 and Π2 of H1 and H2 to meet the sets A1, A2 and A3.

Section 4 is devoted to constructing a lower bound for g′ in Theorem 9. Our example
implies that, independently of the value given to f ′(d), g′(d) ≥ dd+1

2 e.
Finally, in Section 5 we conclude the paper with several intriguing questions for future

study.

2 Proofs of Theorems 9 and 10

A crucial ingredient of our proof is the following claim which concerns 2-colored families.

I Lemma 11. Let A and B be families of convex sets in Rd so that A ∩ B 6= ∅ for every
A ∈ A and B ∈ B. Then either
(1)

⋂
A 6= ∅, or

(2) B can be crossed by d hyperplanes.

One can establish Theorem 9 in dimension d = 2 (with f ′(2) = 1 and g′(2) ≤ 4)
by applying Lemma 11 twice. The weaker transversal guarantee of Lemma 11 in higher
dimension d ≥ 3 (namely, crossing by few hyperplanes instead of few lines) is due to the
weaker, 2-colored hypothesis.

Proof of Lemma 11. Assume that (1) does not hold. Then by Helly’s theorem there are
convex sets Ai ∈ A, for 1 ≤ i ≤ d+ 1, with empty intersection. By a standard argument (see
e.g. [8, Theorem 7.1]), there exist d+ 1 halfspaces Hi ⊇ Ai with empty intersection. Let Πi

be the bounding hyperplane of Hi. We claim that the union of the first d hyperplanes Πi

(for i = 1, . . . , d) must meet all the sets from B. See Figure 2 for an illustration in R2.
Indeed, consider the arrangement of Π1, . . . ,Πd and suppose that a set B ∈ B does not

intersect any of the hyperplanes Πi. Then B must be completely contained in an open cell
σ of their arrangement. Since B intersects each of the sets Ai, for 1 ≤ i ≤ d, we obtain
σ =

⋂d
i=1 Hi. However, then B cannot intersect Ad+1 ⊂ Hd+1, since H1 ∩ · · · ∩Hd+1 = ∅.

This contradiction implies (2). J

Both Theorems 9 and 10 are established by iterating the following more refined variant
of Lemma 11.

SoCG 2018
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I Lemma 12 (“Step-Down” Lemma). For any 1 ≤ k ≤ d and m ≥ 1 there exist numbers
F (m, k, d) and G(m, k, d) with the following property.

Let A and B be finite families of convex sets in Rd so that the family

I(A,B) := {A ∩B | A ∈ A, B ∈ B}

can be crossed by m k-flats. Then one of the following conditions is satisfied:
1. A can be pierced by F (m, k, d) points, or
2. B can be crossed by G(m, k, d) (k − 1)-flats.

Notice that the hypothesis of Lemma 12 implies, in particular, that every two sets
A ∈ A, B ∈ B intersect. Thus, Lemma 11 deals with the special case of Lemma 12 in which
k = d, yielding F (1, d, d) = 1 and G(1, d, d) ≤ d.

We defer the somewhat complex proof of Lemma 12 to Section 3. It combines the
standard duality relation between transversal and packing numbers of hypergraphs with
a “hyperplane” variant of Theorem 4, due to Alon and Kalai [2], in which we are given a
collection of hyperplanes H and seek to find a small hyperplane transveral to all the convex
sets that are crossed by a fixed fraction of the hyperplanes of H.

We are now ready to establish Theorem 9.

Proof of Theorem 9. Let F be a d-colored family that satisfies CH(F1, . . . ,Fd) and does
not satisfy conclusion 1. Since the labeling of the color classes F1, . . . ,Fd is arbitrary, it
suffices to show that the last family Fd can be crossed by few lines.

The underlying idea of our analysis is as follows. We apply the “Step-Down” Lemma 12
d− 1 times. In the i-th iteration (for 1 ≤ i ≤ d− 1) we deal with a (d− i+ 1)-colored and
essentially (d− i+ 1)-dimensional scenario in which the family of all the (d− i+ 1)-wise
intersections

I(Fi, . . . ,Fd) :=
{ d⋂
j=i

Aj | Aj ∈ Fj
}

is “captured” by only M = M(i, d) copies of Rd−i+1 within Rd. Unless Fi can be pierced
by F (M, i, d) points, the “Step-Down” Lemma can be used to further reduce the intrinsic
“transversal dimension” of the remaining sets Fi+1, . . . ,Fd to d− i.

For reasons that will become evident shortly, we set

M(i, d) :=


1 for i = 1,
d for i = 2,
G(M(i− 1, d), d− i+ 2, d) for 3 ≤ i ≤ d− 1.

For i = 1, the condition that I(F1, . . . ,Fd) is crossed by Rd is equivalent to the
CH(F1, . . . ,Fd) hypothesis. Notice that the families A := F1 and B := I(F2, . . . ,Fd)
satisfy the hypothesis of Lemma 11. Therefore, unless F1 can be pierced by a single point,
the family I(F2, . . . ,Fd) can be crossed by M(2, d) = d hyperplanes.

Let us now fix 2 ≤ i ≤ d−1 and assume that I(Fi, . . . ,Fd) can be crossed byM = M(i, d)
(d−i+1)-flats. Note that the families A := Fi and B := I(Fi+1, . . . ,Fd) satisfy the 2-colored
hypothesis of Lemma 12. Therefore, given that Fi cannot be pierced by F (M,d− i+ 1, d)
points, the other family I(Fi+1, . . . ,Fd) can be crossed by M(i+ 1, d) = G(M,d− i+ 1, d)
(d− i)-flats.
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Assuming neither of the families Fi, for 1 ≤ i ≤ d− 1, can be pierced by F (M(i, d), d−
i+ 1, d) points, by the end of the (d− 1)-st iteration we can cross the last color class Fd by
G(M(d− 1, d), 2, d) lines.

This proves Theorem 9 with

f ′(d) = max{F (M(i, d), d− i+ 1, d) | 1 ≤ i ≤ d− 1}, and
g′(d) = d ·G(M(d− 1, d), 2, d). J

I Remark. In the proof of Theorem 9, the value of g′(d) can be further improved to

g′(d) = (d− 1) ·G(M(d− 1, d), 2, d) + 1

by observing that at least one of the families F1, . . . ,Fd can be crossed by a single line. To
this end, we project F in a generic direction ~ν and apply Theorem 6 to the resulting d-colored
family F(~ν) = F1(~ν) ∪ · · · ∪ Fd(~ν) within Rd−1. This yields an intersecting color class Fi(~ν)
within Rd−1 and, therefore, a ~ν-parallel line which crosses the respective color class Fi.

Proof of Theorem 10. The Theorem is obviously true for d = 1 (with f(1, 1) = 1, g(1, 1) =
1). Assume with no loss of generality that the last color class Fd+1 can be pierced by a point
(in accordance with Theorem 6). We adopt the notation of the previous proof while dealing
with the remaining color classes F1, . . . ,Fd.

Let l be the size of the largest sequence j1, j2 . . . , jl so that no class Fji
can be pierced

by F (M(l, d), d− l + 1, d) points. Let F ′ be the relabeling of F whose first l color classes
satisfy F ′i = Fji

, for 1 ≤ i ≤ l. By following the first l− 1 iterations of the proof of Theorem
9, we obtain that F ′l = Fjl

can be crossed by G(M(l − 1, d), d − l, d) (d − l + 1)-flats. By
reordering of j1, . . . , jl, this establishes the claim of Theorem 10 for F with

k = d− l + 1,
f(k, d) = k · F (M(d− k + 1, d), k, d), and
g(k, d) = (d− k + 1) ·G(M(d− k, d), k + 1, d). J

3 Proof of the “Step-Down” Lemma

We develop a bi-partite variant of the machinery that was used by Alon and Kleitman [4] to
establish the (p, q)-Conjecture (Theorem 3). This method was extended by Alon and Kalai
[2] to obtain an analogous result for hyperplane transversals.

3.1 From piercing to packing numbers
The crucial ingredient of Alon-Kleitman approach was a duality relation between transversal
(or piercing), and packing (or matching) numbers of hypergraphs.

I Definition 13. Let G = (V, E) be a hypergraph, where V is a finite set of elements and E
is a family of subsets of V. The elements of V are called vertices, and the sets of E are called
edges.

A subset A ⊂ V is a transversal for G if it intersects every edge S ∈ E (i.e., A ∩ S 6= ∅ for
each S ∈ E). The transversal number τ(G) of G is the size |A| of the smallest such transversal
A.

A non-negative function f : V → R is a fractional transversal for G if it satisfies∑
x∈S f(x) ≥ 1 for every edge S ∈ E . The fractional transversal number τ∗(G) of G is the

SoCG 2018
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total “weight”
∑
x∈V f(x) of the “lightest” fractional transversal f of G (that is, it is the

smallest possible value
∑
x∈V f(x) that can be attained by a fractional tranfsversal f).

A subset of edges E ′ ⊆ E is called a b-matching (or b-packing) for G if every vertex x ∈ V

belongs to at most b edges of E ′. The b-matching number νb(G) of G is the size |E ′| of the
largest such b-matching E ′.

A non-negative function g : E → R is a fractional matching for G if it satisfies∑
S∈E:x∈S

g(S) ≤ 1

for every x ∈ V. The fractional matching number ν∗(G) of G is the total “weight”
∑
S∈E g(S)

of the “heaviest” fractional matching g of G (that is, it is the largest possible value
∑
S∈E g(S)

that can be attained by a fractional matching g).
A standard use of Linear Programming duality [4, 2, 3] yields the following relation

between transversal and matching numbers of G.

I Theorem 14. We have

νb(G)/b ≤ ν∗(G) = τ∗(G) ≤ τ(G)

for every hypergraph G and b ≥ 1.

The proof of Theorem 3 by Alon and Kleitman [4] combines the following key elements:
An abstract hypergraph G0(F), whose edges correspond to the sets of F , is constructed.
Each vertex of G0(F) is a point that pierces some sub-family F ′ ⊂ F . (To keep the vertex
set finite, we add one vertex for each F ′ ⊂ F with non-empty intersection

⋂
F ′ 6= ∅.)

The fractional matching number ν∗(G0(F)) = τ∗(G0(F)) is bounded from above using a
suitable fractional Helly-type result (Theorem 1).
The fractional transversal for G0(F) is converted to an integral one using a weak ε-net
result for point transversals [1].

3.1.1 Overview
As we cast the 2-colored setup of the “Step-Down” Lemma into the above abstract framework,
several fundamental challenges are to be addressed.

As we seek a relation between the transversal numbers of A and B, we maintain two
hypergraphs G0(A) and Gk−1(B), where the former (resp., latter) hypergraph describes partial
point (resp., (k− 1)-flat) transversals to A (resp., B). To show that at least one of G0(A) and
Gk−1(B) has a bounded fractional packing number, we need a suitable fractional Helly-type
result which is conveniently provided by the fractional variant of our 2-colored Lemma
11. Finally, to convert a fractional transversal for Gk−1(B) into an integral one, we need a
small-size weak ε-net construction for (k − 1)-flats.

Unfortunately, no Helly-type results and no weak ε-net constructions are known for
transversals by general (k− 1)-flats in Rd, unless k = 1 [4] or k = d [2]. Note though that, in
the scenario of Lemma 12, the pairwise intersections I(A,B) are assumed to “occur” within
few k-dimensional flats of Rd. We can therefore invoke the fractional variant of Lemma 11
in dimension k and similarly apply the weak ε-net construction of Alon and Kalai [2] for
hyperplanes in Rk.

3.2 Bounding the fractional packing number
Let A and B be families of convex sets that satisfy the hypothesis of Lemma 12. That is,
the family I(A,B) of pairwise intersections can be crossed by m k-flats Γ1, . . . ,Γm.
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3.2.1 The hypergraphs G0(A) and Gk−1(B)

Below we define the abstract hypergraphs G0(A) and Gk−1(B) which describe, respectively,
partial point transversals to A, and partial transversals by (k − 1)-flats to B.

The hypergraph G0(A) = (VA, EA) is constructed analogously to the one of Alon and
Kleitman [4]: For every subfamily A′ ⊂ A with

⋂
A′ 6= ∅ we add a point xA′ ∈

⋂
A′ to VA,

and for every convex set A ∈ F we add the edge eA := {xA′ |
⋂
A′ 6= ∅, A ∈ A′} to EA.

The definition of Gk−1(B) = (VB, EB) is somewhat more involved: For every subfamily
B′ ⊂ B that can be crossed by a (k − 1)-flat within

⋃m
i=1 Γi, we add one such (k − 1)-flat

σB′ ⊂
⋃m
i=1 Γi to VB. Accordingly, each B ∈ B yields the edge

eB := {σB′ | B ∈ B′} ∈ EB.

To show that at least one of the hypergraphs G0(A) or Gk−1(B) has a bounded fractional
packing number, we use the following fractional variant of our 2-colored Lemma 11.

I Lemma 15 (Fractional 2-colored Lemma). For every 0 < α ≤ 1 and d ≥ 1 there exist
γ = γ(α, d) and λ = λ(α, d) with the following property. Let A and B be finite (multi-)families
of convex sets in Rd so that A ∩ B 6= ∅ holds for at least α|A||B| of the pairs A ∈ A and
B ∈ B. Then either
1. one can pierce at least γ|A| members of A by a single point, or
2. one can cross at least λ|B| members of B by a single hyperplane.

For a proof of Lemma 15, we refer the reader to Section 3.2.1 of the full version of the
paper [17]. Here we prove the following auxiliary statement.

I Claim 16. We have either ν∗(G0(A)) ≤ 1/ (γ(1/m, k)) or ν∗(Gk−1(B)) ≤ 1/ (λ(1/m, k)),
where m, G0(A) and Gk−1(B) are as defined above, and the functions γ and λ are defined as
in Lemma 15.

Proof of Claim 16. The fractional packing and fractional transversal numbers exist as we
are optimizing continuous functions on a compact set. Moreover, the optimal value may be
obtained via a rational approximation. Thus, given the contrapositive assumption, we have a
pair of non-negative rational assignments f : EA → Q and g : EB → Q so that the following
inequalities hold for all x0 ∈ VA and σ0 ∈ VB:∑

x0∈e
f(e) <γ(1/m, k)

∑
e∈EA

f(e), (1)

∑
σ0∈e

g(e) <λ(1/m, k)
∑
e∈EB

g(e). (2)

By scaling f and g, we end up with a pair of integer functions f : EA → Z+ and
g : EB → Z+ which still satisfy the Inequalities (1) and (2). By the definition of G0(A) and
Gk−1(B), this yields a pair of multisets Â and B̂ of, respectively, A and B, so that
(i) no point in Rd crosses more than γ(1/m, k)|Â| members of Â, and
(ii) no (k − 1)-flat within

⋃m
i=1 Γi crosses more than λ(1/m, k)|B̂| members of B̂.

By the pigeonhole principle, one of the k-flats Γi must cross at least (1/m)|I(A,B)| of the
pairwise intersections I(A,B). Applying Lemma 15 to the cross-sections {A ∩ Γi | A ∈ Â}
and {B ∩ Γi | B ∈ B̂} within Γi ∼= Rk, and with α := 1/m, yields the eventual contradiction
to the above properties (i) and (ii) of Â and B̂. J
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3.3 Wrap-up
Combining Claim 16 with Theorem 14, we obtain that at least one of the graphs G0(A) and
Gk−1(B) has a bounded fractional transversal number, so one of the following inequalities
must hold:

τ∗(G0(A)) ≤ 1
γ(1/m, k) , τ∗(Gk−1(B)) ≤ 1

λ(1/m, k) .

Analogously to the proof of Claim 16, we obtain respectively either a rational (and not
everywhere zero) function f : VA → Q+ so that every edge e ∈ EA (representing some set
A ∈ A) contains vertices (i.e., points) of total weight∑

x∈e
f(x) ≥ γ(1/m, k)

∑
x∈VA

f(x),

or a similar function g : VB → Q+ so that every edge e ∈ EB contains vertices of total weight∑
σ∈e

g(σ) ≥ λ(1/m, k)
∑
σ∈VB

g(σ).

Arguing as in the proof of Claim 16, we obtain either (i) a multiset of points V̂A ⊂ Rd so
that any member A of A contains at least γ(1/m, k)|V̂A| of these points, or (ii) a multiset V̂B

of (k−1)-flats within
⋃m
i=1 Γi so that any member B of B is crossed by at least λ(1/m, k)|V̂B|

of the flats.
In the former case, we use Theorem 4 to show that, in case (i), the family A can be

pierced by

F (m, k, d) := W (γ(1/m, k), 0, d)

points.
In the remaining case (ii), we use the following analogue of Theorem 4 for hyperplane

transversals, due to Alon and Kalai [2]:

I Lemma 17 (Weak ε-net for hyperplanes). For any dimension d ≥ 1 and ε > 0 there is
Whpl(ε, d) with the following property: For every finite (multi-)set H of hyperplanes in Rd
one can find Whpl(ε, d) hyperplanes in Rd whose union crosses every convex set A ⊆ Rd that
meets at least ε|H| of the hyperplanes of H.

For each 1 ≤ i ≤ m we apply Lemma 17 to construct a weak (λ(1/m, k)/m)-net with
respect to the (k − 1)-flats σ ∈ V̂B that are contained in Γi ∼= Rk. It is immediate to check
that the resulting family of at most

G(m, k, d) := m ·Whpl

(
λ(1/m, k)

m
, k − 1, k

)
(k − 1)-flats crosses each B ∈ B: Since B is crossed by at least λ(1/m, k)|V̂B| (k − 1)-flats of
V̂B, and at least (1/m)λ(1/m, k)|V̂B| of such flats must be contained in some k-flat Γi, then
B must be crossed by the corresponding k-dimensional net. �

4 A lower bound for Theorem 9

I Theorem 18. For every d ≥ 2 and integer f ≥ 1 there exists a d-colored family F =
F1 ] F2 ] . . . ] Fd in Rd that satisfies CH(F1,F2, . . . ,Fd) and the following additional
properties:
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Figure 3 The planar construction (for m = 4). Each triangle Ti has a horizontal topmost side which
lies below all the pairwise intersections of T1, . . . Ti−1.

For every 1 ≤ i ≤ d, one needs at least f points to pierce the color class Fi. (In other
words, τ(G(Fi)) ≥ f .)
At least dd+1

2 e lines are necessary to cross
⋃
Fi.

We prove the result in the following two subsections. We begin with the case d = 2 which
is later used to deal with the general case.

4.1 The planar construction
Let m = 2f and T0 be a triangle in the plane so that its bottom side is parallel to the x-axis.
We first construct m triangles T1, . . . , Tm, each with one horizontal side and vertices in the
relative interiors of the three sides of T0, and such that no three of these triangles Ti, Tj , Tk
for 1 ≤ i < j < k ≤ m have a common intersection. A way to do this is to construct them
recursively: we start with two arbitrary such triangles T1 and T2 and at each step i > 2 we
place the horizontal side of Ti sufficiently close to the horizonal side of T0 so that it avoids
all previous pairwise intersections (see Figure 3). Let the first color class F1 be the resulting
family {T1, . . . , Tm}. Clearly we need at least m/2 = f points to pierce F1.

Let E1, E2, E3 be the three sides of T0. As each set of F1 intersects the relative interior
of each Ei, for 1 ≤ i ≤ 3, we can slightly shrink each Ei away from its adjacent vertices of T0
while preserving the intersection with every element of F1. The family F2 will consist of m
slightly translated copies of each (previously shrunk) segment Ei so that they still intersect
every triangle in F1 but are still pairwise disjoint. Note that we need at least 3m > f points
to pierce F2.

In order to cross F1 ∪ F2 with lines, we need in particular to cross the interiors of
E1, E2, E3, so at least 2 lines are needed.

4.2 The general construction
Set d > 2 and m = 2f . Let ∆(d) ⊂ Rd be a d-simplex with vertex set V = {v1, v2, . . . , vd+1}.
For each 1 ≤ i ≤ d− 1, define τi to be the triangle with vertices {vi, vi+1, vi+2}. As in the
planar case, let Ti be a family of m triangles, each with vertices in the relative interiors of
the three sides of τi, such that no three of them intersect. Let F̂ (d)

i be the family consisting
of the sets

conv((V \ {vi, vi+1, vi+2}) ∪ τ),

with τ ∈ Ti. Let F̂ (d)
d denote the family of all the (d− 1)-dimensional faces (facets) of ∆(d);

see Figure 4.
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Figure 4 The construction of F̂ (3) – a pair of sets C1 ∈ F̂ (3)
1 and C2 ∈ F̂ (3)

2 are depicted. We have
C1 = conv(τ, v4) and C2 = conv(λ, v1), with τ ∈ T1 and λ ∈ T2. The sets of F̂ (3)

3 are the facets of the
bounding simplex ∆(3).

As the resulting d-colored family F̂ (d) =
⋃
F̂ (d)
i can obviously be pierced by d+ 1 points,

the convex sets in F̂ have to be suitably shrunk in order to satisfy the conditions of Theorem
18. However, before we describe the actual family F (d), we establish a key property of the
families F̂ (d)

i . We provide the proof of the following lemma in Section 4.2 of the full version
of the paper [17].

I Lemma 19. For any selection of Ci ∈ F̂ (d)
i with 2 ≤ i ≤ d we have(

d−1⋂
i=1

Ci

)
∩ relint(Cd) 6= ∅,

where relint(C) denotes the relative interior of C.

We are almost done with the construction. In view of Lemma 19, we may shrink all the
elements of F̂ (d) away from the (d− 2)-dimensional faces of ∆(d) in such a way that they
remain convex and the colorful intersections continue to be non-empty. In this way we obtain
the families F (d)

1 , . . . ,F (d)
d−1. To construct the last family F (d)

d , we take an additional step:
we take m parallel copies of each so that they still intersect every element of F1 ∪ · · · ∪ Fd−1
but are pairwise disjoint.

By the cut-off procedure, no three sets of the same Fi intersect for i ∈ [d − 1] (as any
such intersection would project to a triple intersection within Ti). Thus, in order to pierce
any such Fi at least m

2 = f points are needed. To cross F = F1 ∪ · · · ∪ Fd by lines we also
need to cross the relative interiors of the facets of ∆. No line can pierce more than two such
interiors. Therefore, at least dd+1

2 e lines are needed. This concludes the proof of Theorem
18.

5 Discussion

We studied families of convex sets which satisfy the Colorful Helly hypothesis. Our Theorems
8 and 10 offer complementary relations between the “transversal dimensions” of individual
color classes.

We conjecture that an even stronger phenomenon happens:
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I Conjecture 20. For all 1 ≤ k ≤ d there exist numbers h(k, d) with the following property.
For any d-colored family F of convex sets in Rd with CH(F1, . . . ,Fd) there exist numbers
k1, . . . , kd so that
1.
∑

1≤i≤d ki ≤ d, and
2. each color class Fi, for i ∈ [d], can be crossed by h(ki, d) ki-flats.

It is easy to check that Conjecture 20 is sharp for families of flats. The most elementary
instance of the conjecture arises for d = 3 and F3 = {R3}. The remaining two classes F1
and F2 satisfy a 2-colored hypothesis. If one of the classes has a transversal by few points,
then Conjecture 20 holds for the families, as the other class can simply be pierced by R3.
Otherwise, by Lemma 11 both F1 and F2 can be pierced by few planes. Then the validity of
Conjecture 20 in this case depends on the answer to the following question:

I Problem. Is it true that for any two families A,B of convex sets in R3 so that A ∩B 6= ∅
holds for all A ∈ A and B ∈ B, one of the families A or B can be crossed by O(1) lines?

Another intriguing question is what are the “true” values of f ′(d) and g′(d) for Theorem
9 or, more precisely, what is the relation between these parameters? For example, does the
theorem still hold with f ′(d) = 1 and large enough g′(d), as it happens for d = 2?
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